background image

Science & Education

13:

179–195, 2004.

Š 2004

Kluwer Academic Publishers. Printed in the Netherlands.

179

Pseudohistory and Pseudoscience

DOUGLAS ALLCHIN

Program in the History of Science and Technology, University of Minnesota, Minneapolis, MN
55455, USA (E-mail: allchin@pclink.com)

Abstract.

The dangers of pseudoscience â€“ parapsychology, astrology, creationism, etc. â€“ are widely

criticized. Lessons in the history of science are often viewed as an educational remedy by conveying
the nature of science. But such histories can be flawed. In particular, many stories romanticize scient-
ists, inflate the drama of their discoveries, and oversimplify the process of science. They are, literally
and rhetorically, myths. While based on real historical events, they distort the basis of scientific au-
thority and foster unwarranted stereotypes. Such stories are

pseudohistory

. Like pseudoscience, they

promote false ideas about science â€“ in this case, about how science works. Paradoxically, perhaps,
the history of pseudosciences may offer an excellent vehicle for remedying such impressions.

Characteristically, textbooks of science contain just a bit of history,
either in an introductory chapter or, more often, in scattered refer-
ences to the great heroes of an earlier age. From such references
both students and professionals come to feel like participants in
a long-standing historical tradition. Yet the textbook-derived tra-
dition in which scientists come to sense their participation is one
that, in fact, never existed.

–Thomas Kuhn,

The Structure of Scientific Revolutions

1. Introduction

Every science teacher, it seems, knows the dangers of pseudoscience: parapsycho-
logy, astrology, new age healing, creationism, UFOs and the like. While defined
variously, pseudoscience essentially tries to claim scientific authority where there
is no science. Individuals may â€˜conjure’ science using the emblems of its authority
(Toumey 1997), or they may mislead their audience by using evidence selectively.
Science teachers often endeavor to teach the nature of science, so that students will
not succumb to the illegitimacy of pseudoscience.

Here I discuss a variant of this syndrome:

pseudohistory

. Pseudohistory, like

pseudoscience, uses facts selectively and so fosters misleading images â€“ in this
case, about the nature of science. I refer, in particular, to stories that romanticize
scientists, inflate the drama of their discoveries, and oversimplify the process of
science. They often use rhetorical devices that, literally, give them mythic status
(Allchin 2003a). While based on real historical events, they are deeply misleading.

background image

180

DOUGLAS ALLCHIN

They contribute to unwarranted stereotypes and false ideas

about how science

works

. Science educators especially, I fear, perpetuate many such stories. But

they are also ideally positioned to remedy such misperceptions. Here, I provide
an extended example of pseudohistory offered for science teachers (Section 2),
then distinguish between pseudohistory and false history (Section 3), and elab-
orate on pseudohistory as pseudoscience (Section 4). Ironically perhaps, placing
pseudosciences in their historical context may deepen understanding of the nature
of science for students (Section 5). I conclude by summarizing some simple
strategies for the science teacher who faces the challenge of assessing history
without historical expertise (Section 6).

2. Appropriate History |

Appropriating

History

Distinguishing between history and pseudohistory is essential for the teacher in the
classroom. To begin, then, I show just how the difference can matter â€“ not about
the historical details themselves, but about how those details shape perceptions of
the nature of science. I also want to highlight how someone unfamiliar with history
might recognize an account as possibly misleading. I illustrate the problem with a
recent example: a discussion of William Harvey’s discovery of the circulation of
the blood presented to a wide audience of biology teachers.

Harvey was certainly a prominent figure in the emergence of modern science

(Pagel 1967, 1976; Frank 1980; Hamburger 1992). A physician to royalty, he
claimed that the blood did not move on its own to its â€˜natural place’, but was
propelled by the action of the heart. Moreover, blood is not merely used up in
the extremities. Rather, it continues to flow as in a natural cycle. Harvey’s peers
certainly recognized his conceptual achievement, although some disputes arose.
Harvey also epitomized early efforts in experimental investigation in the 1600s. He
thus prospectively serves as a model for introducing students to these concepts and
to the very methods of modern science.

Indeed, in the treatment I am considering, Harvey â€“ along with four other

historical cases - was presented explicitly to exemplify â€˜The Generality of the
Hypothetico-Deductive Method’ (Lawson 2000, quoted below). Thus, it seems
at first glance to offer a valuable synopsis of history and material for classroom
lessons. But the persuasive context is an important clue. The case is introduced:

Let us start with early theories of blood flow and the classic research of William Harvey to see how
his thinking can be cast in the form of hypothetico-deductive arguments. (p. 482)

Note the phrase â€˜

can

be cast’. The primary aim seems to be fitting the history into a

predetermined philosophical mold. History interpreted through an ideological lens
can be misleading, of course. Thus, a historian would demur here. And justly so. As
I will show, some facts were misrepresented and other relevant facts were omitted,
with powerful rhetorical effect. The fundamental approach was echoed later:

The hypothetico-deductive reasoning behind his experiment can be reconstructed as follows . . .
(p. 483).

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

181

Reconstructions are easily shaped by retrospect. They can fail to capture the ori-
ginal historical context and the process as it happened

prospectively

(Allchin 1996).

To understand the nature of science, one wants to understand how Harvey actually
reasoned, not how he

might

have reasoned according to some idealized scheme.

Anything less trivializes what contributed to his very real achievement. Thus, the
careful reader may hesitate at the very outset. Indeed, this case was ultimately about
appropriating history, not appropriate history.

First, this reconstruction distorts Harvey’s investigations. It makes deductive

logic seem central and his method seem much simpler than historical evidence
indicates. In his 1628 book, Harvey reported numerous demonstrations by which
one might observe his claims. He encouraged the would-be skeptic to trust his own
observations, rather than the authority of a text. The most famous demonstration is
portrayed in an oft-reproduced diagram of a ligatured arm. Harvey adapted it from
one that his teacher, Fabricius, used to illustrate the presence of valves in the veins.
Harvey exhorted his reader to see the evidence for unidirectional flow in veins: â€˜But
that this truth may be made more apparent . . . â€™(Chap. 13). However, when this was
reconstructed for teachers, it became

Harvey’s own

decisive investigation. It was

treated as his

planned test

based on a

theoretical prediction

. The implication was

that Harvey accepted or rejected his theory based on the results of this bold test,
as in a Popperian ideal. The persuasive context of Harvey’s text was completely
ignored. Moreover, Harvey’s work was cast according to the standard rhetoric of
a

modern

scientific paper. The account discounts the role of Harvey’s many years

of observations and vivisections, well before he developed any explicit theory of
circulation. The account for teachers seems to show, through Harvey’s example,
that scientific discovery occurs through a very deliberate, unproblematic and quite
formulaic method. Success in science seems guaranteed by simply following the
rules.

Harvey’s imagined if-then reasoning is â€˜reconstructed’ in other cases. Most

notably, the account parades what it portrays as Harvey’s greatest triumph: the
prediction of capillaries (pp. 483, 484; also see Lawson 2002). Although no one
could observe them at the time, Harvey supposedly boldly saw the implications of
his theory:

If

. . . the blood flows away from the heart in the arteries, and

If

. . . the bloods flows towards the heart in the veins,

Then

. . . the arteries and the veins must be connected by unseen capillaries.

Harvey’s impressive â€˜if-then’ reasoning, we are told, later inspired Marcello
Malpighi’s observations, which ultimately proved the theory. This is certainly how
we might reason today, knowing that capillaries exist. When I began teaching
biology many years ago, I encountered this myth about Harvey â€“ and believed
it uncritically. I had not yet been alerted to think about bias in history. Would
that I had been inspired then to read Harvey’s original work, which is eminently
accessible. In his classic

De motu cordis

, Harvey describes how blood percolates in

the lungs and is collected as though

from a sponge

(Chap. 7). Blood

permeates the

background image

182

DOUGLAS ALLCHIN

pores

in the flesh, he said (Chaps. 10, 14). In a later publication he echoed that it is

absorbed

and

imbibed from every part

by the veins (

A Second Disquisition to John

Riolan

). Harvey had dissected many â€˜lesser’ animals that have hearts but no blood

vessels (open circulatory systems, in our terminology). He had observed directly
that connections were not needed for circulation.

Harvey did not predict capillaries

(Elkana & Goodfield 1968). Nor were Malpighi’s investigations guided by Har-
vey’s work (Allchin 2003b). But it is not the historical misconceptions that matter
so much as how they are used rhetorically. This account instructs teachers that
the non-existent prediction is â€˜an excellent example of how theory generation and
test directs observations â€“ rather than the other way around’. It lauds Malpighi’s
discovery as â€˜very impressive’ just â€˜

because

the theory led to the

prediction

that ca-

pillaries should eventually be seen’ (p. 484, italics in original). The error functions
explicitly in promoting a specific image of scientific thinking. It seems to result
from reading a modern methodology into Harvey’s 17th-century perspective.

Harvey’s reasoning is contrasted especially against the conclusions of the Greek

physician Galen centuries earlier. Galen knew that blood entered the left chamber
of the heart and had supposed that blood not only seeped in from the lungs but
that some also permeated the septum of the heart from the right side. Here, we
are told how theory guided Harvey, absent any prior observation, to infer that no
holes exist there â€“ a deduction that he then tested (p. 483). We do not learn that
Andreas Vesalius had criticized Galen on this very point decades earlier. Vesalius,
of course, did not use any theory or elaborate reasoning process. It was simply a
‘brute’ anatomical observation. Vesalius does not fit the philosophical model and
is not mentioned all too conveniently. Moreover, Harvey quotes extensively from
Galen himself in trying to persuade his readers that blood flows from the right to
the left side of the heart via the lungs (Chap. 7). As in the case of the ligatured arm,
Harvey’s â€˜test’ on blood flow through the septum functions more as a persuasive
demonstration than as inquiry towards discovery.

These three elements of the reconstructed account confirm the initial suspi-

cion that the history might be misleading due to conceptual shoehorning (Allchin
2003b). Far more important, however, is understanding how they mislead. An
essential principle for historians is respect for historical context. Failing this prin-
ciple, by reading the past in terms of current norms or standards, earns its own label:

Whiggism

. This perhaps odd term derived from the practice of a political party

in Britain to cast history as substantiating their own eventual power (Butterfield
1931). The history functioned as a political device for legitimizing authority. One
element was erasing historical contingency, making it seem that the outcome was
inevitable. It cast historical actors as acting for anachronistic reasons. Histories
of science, too, may exhibit Whiggism when they cast a particular theory, now
deemed correct, as proven from the very start. Other ideas, for example, are framed
as opposing it, rather than as alternative trajectories in a blind process of trial and
error. The historical uncertainty is suppressed. The reasons scientists might have
supported an alternative is regarded as due to psychological or sociological

inter-

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

183

ference

, rather than based on evidence or proper scientific judgment of the time.

To portray the history of science otherwise may seem to threaten the legitimacy
of the final outcome and, with it, the ultimate authority of science. Of course,
historical scientists could have reasoned scientifically, yet still, ultimately, been
‘wrong’. Whiggish history of science eclipses that possibility. It blames all errors
on unscientific factors and credits all success to proper method alone. The account
of Harvey reflects the tendency to make the past conform to a present ideal. It
tries to ensure progress through logic. It also reflects how an appeal to history may
function ideologically. The strong Whiggish perspective is thus a clue for the reader
to interpret the account’s relative reliability.

The science teacher not deeply informed about history might not be able to

notice or articulate the particular errors noted above. But the tendency towards
Whiggism is evident there and in other ways as well. For example, critics of Harvey
are portrayed as persons who â€˜held fast to prior beliefs’ â€˜regardless of an impressive
amount of both qualitative and quantitative evidence in favor of circulation theory’
(p. 484) â€“ that is, as irrational. (Waiting for the proof of Harvey’s presumed predic-
tion, ironically, is portrayed as critical here.) Harvey’s critics seem to obstinately
impede the inevitable. One never learns how they might have interpreted Harvey’s
observations differently, or why they might have

reasonably

considered them irrel-

evant, misleading or flawed (Gregory 2001, pp. 115–136). Even the non-historian
may notice the Whiggish omission and wonder. The teacher should always

strive

to understand context

.

Consider, again, Harvey’s analysis of Galen’s claims about the septum of the

heart. The observation seems so obvious that one may feel like blaming Galen
for missing it. This, too, contributes to the Whiggish sense of correcting Galen’s
ancient beliefs and â€˜imagined’ blood flow (p. 482). Progress seems to depend on
the power of Harvey’s style of reasoning. If one is interested in scientific reasoning,
however, one might also wonder how

Galen

reasoned. As Harvey himself mused

at one point, â€˜I wonder what would have been the answer of that most ingenious
and learned man?’ (Chap. 5). Galen was a pioneer in dissection. He hardly would
have advanced a claim foolishly, absent any observation. One would never guess,
for example, that Galen remedied earlier misinterpretations about arteries. Arteries,
meaning â€˜air ducts’, had been so named because they had been empty in cadavers.
Through his own observations Galen was able to assert, however, that blood indeed
flowed through them. As Harvey himself acknowledged, Galen also understood
how the valves of the heart ensure one-way flow. Galen’s ideas were respected for
over a millenium, yet this account does not address why. Again, the truncation of
context is itself a telling clue.

Finally, context is missing in the treatment of how Harvey developed his the-

ory. Namely, how did his new ideas originate? â€˜Harvey’s guiding analogy’, we
are told, â€˜was . . . circular planetary orbits and the belief that large-scale planetary
patterns should be echoed in smaller-scale physiological systems’ (p. 482). This
is the microcosm-macrocosm concept of the chemical philosophy, exemplified in

background image

184

DOUGLAS ALLCHIN

the writings of Robert Fludd, a friend of Harvey’s. The analogy also extended to
chemical distillations, strengthening the analogical resonance. Harvey expounded
this image throughout his book. He referred to the heart as the sun of the mi-
crocosm, giving warmth and life to the body. In a Whiggish view, this is very
strange â€“ perhaps â€˜unscientific’. It may seem counterintuitive to us now that the
microcosm worldview could have led Harvey to discover something we now re-
gard as true. Historians concur, however, that the analogy was

integral

to Harvey’s

very

reasoning

(Pagel 1967, Frank 1980). In this account, however, the analogy

quickly becomes peripheral. After all,

we

cannot justify it logically or empirically.

What seems to matter, then, are only logic-driven tests, which can contribute to a
Whiggish framework of legitimation. The creative element of scientific thinking
is thereby obscured. In Harvey’s case, the microcosm analogy was not an incid-
ental inspiration soon abandoned after empirical study. His text presents it as a
further argument. Other later cited it as a

reason

to accept Harvey’s conclusions.

One cannot regard the analogy as peripheral if one wants to understand Harvey’s
reasoning and thus portray science faithfully to students. In the history for teachers,
the discussion of Harvey’s thinking is incomplete. The context is missing. Hence,
the perceptive reader may consider the account suspect â€“ even without knowing
the historical significance of the microcosm analogy.

The problem of Whiggism is primarily one of elided content. Yet stylistic clues

may betray a misleading account, as well. Historians question, in particular, ac-
counts that tend to romanticize scientists as saint-like heroes. Such

hagiographies

mislead by hyperbole and/or by reporting only what reflects favorably on the sci-
entist. Consider, for example, the dramatic introduction of Harvey as a character in
the story:

Galen’s theory of blood flow was virtually unquestioned for nearly fifteen hundred years until 1628
when the English physician William Harvey (1578–1657) published a book . . . (p. 482).

The statement may seem harmless enough. But it casually discounts others who,
before Harvey, had introduced new ideas about circulating blood flow (e.g.,
URL: www.timelinescience.org/resources/teacher/blood.htm). For example, the
‘pulmonary transit’ had been recognized by Michael Servetus in 1553, Realdus
Columbus six years later, and Andreas Cesalpius in 1603, although each for dif-
ferent reasons. All three questioned Galen’s authority. Moreover, Ibn al-Nafis
discussed pulmonary blood flow in the 1200s, during the Golden Age of Arabic
science. The statement collapses contributions from several physicians over at least
a century into just one person: William Harvey. Now, set aside again the historical
details and any cultural slight. The rhetorical effect of the omissions is unmistak-
able. Harvey’s genius is inflated. In the same way, Vesalius’s earlier commentary
on Galen is missing. Harvey’s amplified achievement contributes to seeing him
as a landmark authority, or model scientist. The implicit lesson is that Harvey
seemed to exercise some extraordinary skill that his peers did not. This primes
the following discussion, which reconstructs Harvey’s work to promote science
as â€˜largely hypothetico-deductive in nature’ (p. 482). The monumental, virtually

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

185

superhuman Harvey may clue the reader to the myth-like hagiography (Allchin
2003a).

As noted earlier, the account of Galen is incomplete. This has significant con-

sequences narratively, as well. That is, Galen represents the ideas which Harvey
must disprove. In the hagiographic perspective, then, Harvey must be completely
‘right’ and Galen completely â€˜wrong’. Galen becomes a competitor, or adversary,
like a villain in a melodrama. Knowledge and ignorance conflict. Dramatically,
Galen’s theory is â€˜finally dealt a fatal blow’ (p. 384). Harvey’s stature as â€˜hero’ is
amplified. But because Galen is virtually a caricature (Gauld 1992), he is hardly
more than a straw man, here. There is no real sense of intellectual encounter, be-
cause only reasoning supporting Harvey is included. The asymmetry of perspective
is another clue that this account does not illuminate the process of science, but
again uses Harvey only for authority.

A final hagiographic element is

how

the (false) story of the prediction of ca-

pillaries is presented. Harvey’s impressive â€˜if-then’ reasoning, we are told, was
ultimately vindicated. But only fourteen years after Harvey’s death (p. 484). The
tragic irony, here, evokes sympathy for Harvey and charges the lesson with emo-
tion. Harvey is not only a hero. He is almost a martyr, apparently having never
enjoyed the full glory he was due. Of course, one can celebrate scientific achieve-
ment without romanticizing it or relying on falsehoods. The inflated drama is
another signal that the reader should not regard the history as reliable.

As detailed above, the account of Harvey I have analyzed includes

numerous

historical sleights: omitting antecedant thinkers, vilifying Galen, imagining that
Harvey predicted capillaries, mistaking rhetoric for investigation, suppressing the
role of the microcosm analogy. The individual errors are not as important as their
common therme: everything is shoehorned into an idealized model of scientific
reasoning and genius. While misrepresenting history, they also misrepresent

the

nature of science

. This is not just a streamlined account that omits needless detail.

By eclipsing historical context and romanticizing the scientist as hero, it actively
misleads. This is not appropriate history for understanding science. Rather, it is

appropriated

history for promoting a particular notion about how science works.

When historical integrity suffers, so too do the lessons about nature of science.

Note, too, the role of the history itself. A perspective inscribed into history tends

to garner the semblance of naturalness or authority. The strategy is, essentially:
‘Observe how great science was done historically’. But the history here does not
function as an idle illustration. History may seem transparent. For some, it may
seem only a matter of describing plain historical facts. Yet selective use of such
facts, like selective use of facts in science, can mislead. An incomplete or biased
history that obscures the original historical context can

lie

.

Whiggish history and hagiography misrepresent history. While drawing on

some authentic elements of history, they are ultimately

pseudohistory

. Fortunately

for the novice, one can typically recognize the basic errors

stylistically

and through

telltale omissions

(Figure 1, Section 6). Equipped with the proper analytical per-

background image

186

DOUGLAS ALLCHIN

spective, a reader may recognize when a history is probably untrustworthy. One
need not know the actual history in detail.

3. False History | Pseudohistory

Not every science teacher can become a professional historian, of course. While
teachers should certainly be concerned about historical accuracy, my primary focus
here is not false history. For example, many popular anecdotes are apocryphal: the
apple falling on Newton’s head, Galileo dropping balls from the Leaning Tower of
Pisa, Archimedes shouting â€˜Eureka!’ as he ran from the baths naked through the
streets of Athens, among others. These seem relatively harmless. Some such stories
are still debated by historians, who can’t seem to document conclusively whether
some historical figure’s remark is trustworthy. We need not be unduly preoccupied
with inconsequential infelicities.

Other false stories can be misleading. For example, Darwin did not deduce nat-

ural selection upon seeing the finches on the Galapagos Islands. The Church during
the time of Galileo

supported

astronomical investigation and many challenged

Galileo’s claims

scientifically

. When Columbus set out on his voyage, educated

persons did

not

believe that the world was flat. The photoelectric effect did not

inspire Einstein’s concept of the photon (Whitaker 1979). While many science
teachers have promulgated such false stories, I think most treat them with caution
once they learn otherwise. Science teachers tend to respect historical fact, I think.
They seek to avoid historical error as much as scientific error â€“ when they know
the history. Thus, historians do have an important role in publicizing their findings
and in informing science educators.

My concern, however, is not false history per se, but

pseudohistory

. Pseudohis-

tory conveys false ideas about the historical process of science and the nature of
scientific knowledge, even if based on acknowledged facts. Fragmentary accounts
of real historical events that omit context can mislead, even while purporting to
show how science works. For example, a romanticized tale of discovery may
overemphasize the contributions of one individual, minimize the role of accident
or errors, simplify the investigative process, disguise less than noble motivations,
hide the effect of personal or cultural values, as partly illustrated in the Harvey
case. They turn real science into an imaginary idealized science. Such a misleading
selective history masquerading as responsible history is justly called

pseudohistory

.

Michael Shermer and Alex Grobman (2000) have recently used the term

pseudohistory to describe Holocaust denial. One may regard such denials, however,
as simply blatant disregard for documented history: another case of demonstrably
false history. The concept of pseudohistory underscores the role of the implicit his-
torical lesson, even when many of the basic facts are reliable. Robert Todd Carroll,
in his online

Skeptic’s Dictionary

(2001), echoes this dimension of pseudohistory:

Pseudohistory is purported history which . . .
is on a mission, not a quest, seeking to support some contemporary political or religious agenda . . .

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

187

is selective in its use of ancient documents, citing favorably those that fit with its agenda, and ignoring
or interpreting away those documents which don’t fit.

The bias or agenda may surely also be philosophical or cultural, not always
blatantly ideological. Also, pseudohistory need not be deliberate or intentional. It
may result from negligence or even naivety. One cannot suppose that this account,
despite its flagrant errors, was intended to misrepresent science. Still, suppres-
sion or omission of relevant facts can be as misleading as outright falsehoods.
Pseudohistory may be as much what the history is not, as what it is.

A few more examples may illustrate. Consider a teacher who reconstructs Ga-

lileo’s arguments for Copernicanism. The lesson plan omits Galileo’s theory of
the tides (from Day 4 of the

Dialogue

). It was ultimately wrong, after all: no

need to confuse the students. Here, one has subverted what

Galileo

considered

most critical. He thought he had physical not just mathematical or circumstantial
proof. Without seeing the basis for criticizing Galileo, of course, students are im-
pressed by the â€˜resistance’ to his ideas. One enthusiastic student encounters the
tides argument independently and poses a query in class. The teacher explains
away Galileo’s error: knowledge was simply inadequate at the time; Galileo was
right about everything else; and, well, the Church was unwilling to admit to the
plain facts. Here, the casual dismissal again discounts the basis for contemporary
criticism. â€˜Plain fact’ was not so plain at the time. One cannot understand science
fully without appreciating the controversy. And one cannot understand the contro-
versy if some evidence is missing. Here, addressing all Galileo’s evidence except
the tides is pseudohistory.

As a second case, consider Ignaz Semmelweis, whose innovation â€“ hand-

washing â€“ dramatically reduced puerperal fever in a maternity ward in the
mid-1800s (Colyer 2000; Leinhard 1988–1997). Although we hail the discovery
now, Semmelweis was harshly criticized by his peers. Critics, we are told, were
wrong. All wrong. They exhibited personal prejudice and social ideology, even
xenophobia. It is hard to imagine that Vienna was then viewed as â€˜the Mecca of
Medicine’. In fact, if one probes the contemporary intellectual context, one finds
that therapeutic caution was correcting earlier excesses of bloodletting and pur-
gatives. Modern practices of diagnostics and loose bandaging of wounds emerged
here. Many found Semmelweis’s results empty because he could not identify what
caused the disease. Without knowing the cause, one could easily err â€“ and be diver-
ted from searching for the real cause. Semmelweis’s peers may thus have responded
to his conclusions cautiously

for good reasons

(Allchin 2003a). A Whiggish history

where results are measured only by the outcome is pseudohistory.

Cases may be compounded. For example, two conventional heroes of the Sci-

entific Revolution, Isaac Newton and Robert Boyle, each pursued alchemy (Dobbs
1975; Principe 1999), now viewed as unscientific. This small detail deeply trans-
forms how one interprets their roles in establishing modern science and, indeed,
what makes science science. A century later, many chemists supported phlogiston
even after the discovery of oxygen (Allchin 1994). According to conventional stor-

background image

188

DOUGLAS ALLCHIN

ies of the Chemical Revolution, these two concepts were mutually exclusive. Here,
the polarized story obscures how late phlogistonists reasoned, a clue to understand-
ing how new scientific ideas emerge. Finally, when Bernard Kettlewell popularized
his now landmark research on the evolution of the peppered moth, his story was
largely â€˜black-and-white’. He did not mention that some forms had intermediate
coloration. His edited account affects how students, in turn, will conceive the role
of crucial experiments (Allchin 2001). In all these cases, the â€˜textbook histories’
eclipse relevant information, while perpetuating a caricature of science (Gauld
1992). Embarassing examples of pseudohistory even haunt the pages of this journal
(Lawson 2002 and in press). Pseudohistory may not include any outright falsities.
But this does not mean that the resulting story cannot â€˜lie’.

4. Pseudohistory

as

Pseudoscience

No one will dispute, I think, that everyone, including every teacher, has a minimal
responsibility to respect historical fact. By contrast, pseudohistory may seem like
a subtlety relevant only to historians. But as portrayed above, pseudohistory is
more than just a historian’s parallel to pseudoscience. Pseudohistory of science is
pseudoscience. Like pseudoscience, it conveys false ideas about science. But unlike
pseudoscience, which typically deals with facts or concepts, it concerns misleading
ideas about the

nature of science

. Pseudohistory misportrays

the process of science

,

rather than its content. The science teacher should thus be as concerned about
pseudohistory as about well-worn pseudoscience topics. Hagiography and Whig-
gism in science should join the ranks of the Loch Ness monster and cataclysmic
planetary alignments.

Histories are not â€˜just’ stories of science. They are â€˜just-so’ stories of science.

Like Kipling’s fables â€“ such as â€˜How the Leopard Got His Spots’ (1902) â€“ they
are explanatory. They explain through narrative. The events of the story and the
outcome are intimately linked. Every history â€“ every story â€“ has an implicit lesson,
or moral. Historical tales of science inherently model the scientific process by
showing how a series of events

leads to

a certain result, such as a famous discovery.

They identify what is relevant to scientific discovery. The narrative thereby explains
how science works. When the narrative is biased, the explanation falters.

Many educators may use historical stories strictly to teach science content, in

a narrow disciplinary mode, apart from any intended overtones or lessons about
nature of science, in a cultural mode (Gauld 1977). They may feel, therefore,
that they can escape or minimize the dangers of pseudohistory (Matthews 1994,
pp. 79–80). But every narrative of science is

implicitly

explanatory. Every history

of science teaches nature of science. The pseudoscience of pseudohistory is thus
always a concern.

Science classrooms, and indeed popular culture, are replete with scientific

myths (Allchin 2003a). Literally. Some educators refer to myths of science in the
generic sense of entrenched misconceptions (e.g., McComas 1998). I mean myths

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

189

in the sense of literary form and narrative structure. Many pseudohistories share a
rhetorical architecture with ancient myths. Common elements include, briefly:

(1) monumentality,
(2) idealization,
(3) affective drama, and
(4) explanatory function.

The account of Harvey exemplifies all these elements. And it is these

rhetorical

features that help transform history into pseudohistory. Collectively, they package
the nature of science into a simplistic just-so story of â€˜How Science Finds the
Truth’:

•

Science unfolds by a special method, independent of context or contingency.

•

All experiments are well designed and forestall any mistakes.

•

Interpreting evidence is unproblematic, and yields yes-or-no answers.

•

Achievement relies on the privileged intellect of extraordinary persons.

•

Scientific method thus leads surely and inevitably to the truth, with no error.

Scientific myths, then, are designed to explain and justify the authority of science.
However, they often rely on distorting history. Students cannot truly understand the
warrant and limits of science if educators promote such â€˜myth-conceptions’. That
is why, again, pseudohistories of science are ultimately pseudoscience, as well.

5.

History of

Pseudoscience

Educators, then, should purge science classrooms of pseudohistory of science.
But the reverse may be true for

history of pseudo

science. Indeed, history of

pseudoscience offers an ideal opportunity for teaching nature of science. That may
seem paradoxical. If teaching pseudoscience is reprehensible, how can teaching its
history be any better?

Consider, first, that many of today’s pseudosciences were yesteryear’s sciences.

Astrology, alchemy, craniology and others were once pursued by notable scientists.
For example, Johannes Kepler, renowned for finding that planets trace elliptical
orbits (not circles), was committed to astrology, which indeed fostered many of his
discoveries. Robert Boyle, of Boyle’s Law fame and co-founder of the Royal Soci-
ety, pursued alchemy (Principe 1999). So, too, did Isaac Newton, otherwise known
for his three laws of motion and his monumental achievements in gravitation, cal-
culus and optics (Dobbs 1975). Paul Broca, who identified a language-processing
region of the brain now known as Broca’s area, advocated craniology. He en-
gaged members of the Anthropological Society of Paris in a sustained debate
over the size of George Cuvier’s brain, defending its importance in measuring
intelligence (Gould 1980, pp. 145–151). Given the pursuits of such distinguished
scientists from history, teachers certainly might pause before disparaging students
who themselves entertain such topics seriously.

When teaching the nature of science, therefore, one might appropriately begin

by acknowledging how pseudoscientific claims

seem

entirely plausible or reason-

background image

190

DOUGLAS ALLCHIN

able, at least at first. If one follows constructivist pedagogical strategies, eliciting
such views is preliminary to transforming them into something more sophistic-
ated. Here, the educational exercise is also historical: to recover the (good) reasons
once advanced for what is now pseudoscience. For example, consider again Robert
Boyle and his views on the healing power of gems. Boyle believed that the salu-
brity, or healthiness, of the air was due to â€˜subterraneal Effluvia’, which carried
the distinctive mineral properties of a region (1699, Book III, Vol. 2, pp. 275–
299). The effluvia would explain local epidemics, for example. Further, when gems
crystallized, they were â€˜imbued with Virtues by subterranean Exhalations and other
steams’ (1672, p. 166). That is, in solidifying, a gem could trap particles of, say,
the healthy vapors. Later, rubbing the gem would release them, just as rubbing
amber excited its electrical attractions (1672, p. 108). The gem’s â€˜virtues’ would
‘exert their power by the copious Effluxions of their more agile and subtle parts’ (p.
122). It was no different than deer leaving behind subtle effluvia that hunting dogs
sensed (1699, Book II, p. 249; 1673, Chap. V), or perfume causing people to faint,
or odors causing headaches (1673, Chap. VI). Here, Boyle explained a commonly
known â€˜fact’: namely, that certain gems have specific types of healing powers.
Now, to our ears, this sounds dangerously â€˜new age’. But for Boyle it expressed
his corpsucular philosophy. Indeed, what had once been attributed to some tran-
scendental â€˜sympathy’, he reconceived as mediated by the mechanial properties
of minute particles. Now we tend to regard that as a scientific achievement, not
pseudoscience. If Boyle was wrong, it was not because the idea was intrinsically
unscientific. One can only say that further study of gems did not bear out their
healing power. The historical transformation holds the critical lesson: the difference
between science and pseudoscience.

Consider, too, the notorious history of craniology. For several decades in the

nineteenth century anthropologists, such as Paul Broca, tried to use skull measure-
ments to prove sexual and racial differences in intelligence. Science would interpret
and validate why social power and privilege had developed as it did (Gould 1981).
Now, the whole enterprise is a blemish on science. At the time, however, craniology
seemed like a straightforward application of the principle of structure and function:
‘if mental functions take place in the brain, then the brain’s size should reflect
mental capacity or ability’. Likewise, the brain’s shape should reveal significant
features of specific, localized mental functions, such as personality, rational fac-
ulties and emotions. This would naturally affect the size and shape of the skull,
as well. Phrenology, the study of cranial shapes and proportions, thus also seems
eminently plausible. As it does to many even today (Cordingley 2001). Moreover,
craniology was

quantitative

, following one oft-cited hallmark of science. Craniolo-

gists used over 600 instruments and 5,000 measurements. For historian Elizabeth
Fee, it was a â€˜Baconian orgy of quantification’ (1979, p. 419) . Of course, the
prospects of craniology and phrenology went unfulfilled. When women eventu-
ally entered the field, they challenged claims earlier deemed acceptable by men.
Standards of evidence rose. The whole field soon dissolved. In retrospect one can

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

191

see that the community of (white) European male researchers was culturally biased
(not that any practitioner recognized his own bias). Now the episode is a persuasive
example of how diversity in a scientific discipline can contribute to its objectivity.
Here, a historical perspective makes the pseuodscience seem a little less â€˜pseudo”.
Substantive data showed that the plausible approaches were, ultimately, unfounded.
Craniology is wrong, not misguided. History thus offers complementary lessons in
science and pseudoscience. It helps reveal vividly how science works and why,
sometimes, it errs.

A historical perspective highlights that many topics typically branded as

pseudoscience are not

self-evidently

pseudoscience. That status of understanding

is the outcome of historical investigation. Identifying error in various claims or as-
sumptions involved work,

scientific

work. Claims characterized as pseudoscientific

reflect

negative

scientific knowledge. Such negative knowledge continues to be

important (for example, in ending the search for a perpetual motion machine, or
in deferring from astrological inquiries). Negative discoveries generally raise the
standards of evidence or interpretation. Indeed, scientists disregard past error at
their peril, lest they repeat it. Just because something â€˜is known’ does not mean
that each individual automatically knows it. Therein lies the very rationale for
education. So: every generation must re-learn what is scientific, what pseudos-
cientific. The evidence shaping knowledge of pseudoscience historically must be
reinstantiated in each student. The history itself, of course, may be a valuable tool
(for results on the effectiveness of one classroom lesson on historical error, see
Allchin 1997).

By advocating a historical approach to pseudoscience I do not endorse, of

course, succumbing to pseudohistory. Turning to history merely to bash pseudos-
cience with today’s â€˜obvious’ conclusions achieves nothing. History is valuable,
rather, for showing students how they might

challenge

the â€˜obvious’. Educators

may help them probe evidential claims and show them how historically, with fur-
ther evidence, later scientists found them ultimately to be without merit. Indeed,
the very understanding that something may appear reasonable until it is considered
more deeply, is a powerful lesson worth offering to anyone.

6. Conclusion: Strategies for Educators

Concerns about pseudohistory or â€˜quasi-history’ in the science classroom are not
new (e.g., Klein 1972; Whitaker 1979). Yet most such concerns address preserving
the integrity of

history

. My focus, by contrast, is preserving the integrity of

the

nature of the process of science

(Section 2). That is, while many accounts may be

historically misleading, or false (Section 3), my argument highlights how they can
be

scientifically

misleading (where science is construed as the enterprise, not just

its ideas). When past science is reconstructed on some idealized model, it becomes

pseudohistory

of science. When a narrative of scientific discovery verges on myth,

background image

192

DOUGLAS ALLCHIN

it becomes pseudohistory of science. In both cases, pseudo

history

of science is also

pseudo

science

(Section 4).

One might approach such claims as threatening the role of history in science

teaching (Matthews 1994, pp. 77–81). Indeed, Stephen Brush (1974) once asked,
‘Should the history of science be rated X?’. He voiced a possible concern that
‘the way scientists behave (according to historians) might not be a good model for
students’ (p. 1164; but also see Brush 2002). Recent reforms in science education
seem not to have heeded this caveat. They recommend more history of science, in
the spirit of Brush’s alternate profile for the humanities-oriented student (p. 1172).
But neither more history nor less history is the problem. History already permeates
science classrooms, I contend. However, much of such history, as exemplified in
the case of Harvey above, is

pseudohistory

. As such, it is really

pseudoscience

trying to borrow illicitly the authority of historical narrative. We need, instead,

different

history. My concern, in contrast to Brush’s, is that Disneyfied, G-rated

pseudohistories of science (Sterling 1994, Wallace 1994) promote role models
undesirable for a very different reason. The idealized scientists of romanticized
myths provide unrealisitic models for what citizens can expect of scientists in our
society. They distort the nature of scientific knowledge by concealing its limits
and oversimplifying the nature of evidence and interpretation. How can students
schooled in pseudohistory of science ever make informed decisions where complex
science is involved â€“ for example, in cases of global climate change, genomics,
cloning, alternative energies, or biological and chemical weapons? By graduation,

all

students need mature views of science.

Without historical expertise, how is the typical science educator to proceed?

First, educators should understand pseudohistory, Whiggism and hagiography, per-
haps just by a few clear examples. They must recognize and be alert to their
warning signs, exemplified in the case above (and summarized in Figure 1).

Ideally, they learn more about analyzing texts rhetorically. They also learn about

the architecture of myth â€“ monumentality, idealization and affective drama in an
explantory fable â€“ and appreciate how myths work culturally to shape views of
science (Allchin 2003a). Second, educators should master at least one historical
case study in-depth (e.g., Matthews 2000; College Board 1999; Hagen et al. 1996).
A single well developed case study can be far more valuable in profiling the nature
of science than, for example, a comprehensive â€˜greatest hits’ survey course in the
history of science. Likewise, brief vignettes and tangential sidebars rarely convey
the context so essential to a full, integrated picture. Teachers will then adapt this
case for their students. Familiarity with its complexity will allow discussion and
probing it in depth. Ideally, it can illustrate how simple stories can be misleading.
Finally, as teachers gain experience, they broaden into other cases. They under-
score resonances between them. They highlight the questions that lead to deeper
understanding and the clues that should occasion such questioning. They guide
students in exploring and analyzing cases on their own. Remedying pseudohistory
in science education is not difficult. It begins with simply recognizing it for what it

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

193

Figure 1.

Several â€˜warning signs’ may alert science educators to possible pseudohistory. No

symptom is absolute, but each should signal the teacher to question and check a source’s
reliability.

is â€“ and thereby changing the standards for what history is deemed appropriate in
the classroom.

In some cases, science teachers need better history. In other cases, they need, far

more importantly, to abandon the mythic structure of science and its history. If the
aim is to present students with a genuine portrait of science, not of pseudoscience,
educators need to be wary of pseudohistory, as well. At the same time, the history
of a pseudoscience may well be a vehicle for helping students develop a mature
understanding of the nature of science â€“ and of claims that only purport to be
scientific.

Acknowledgements

The author acknowledges support from the Herbert P. and Alice W. Bailey Trust
and helpful comments from Ralph Mason, Michael Matthews and four anonymous
reviewers.

background image

194

DOUGLAS ALLCHIN

References

Allchin, D.: 1994, â€˜Phlogiston After Oxygen’,

Ambix

39

, 110–116.

Allchin, D.: 1995, â€˜How

Not

to Teach History in Science’, in F. Finley, D. Allchin, D. Rhees and

S. Fifield (eds.),

Proceedings, Third International History, Philosophy and Science Teaching

Conference

, Vol. 1, University of Minnesota, Minneapolis, MN, pp. 13–22. Reprinted in

The

Pantaneto Forum #7

(July, 2002), URL: www.pantaneto.co.uk/issue7/allchin.htm.

Allchin, D.: 1997, â€™Rekindling Phlogiston: From Classroom Case Study to Interdisciplinary Rela-

tionships’,

Science and Education

6

, 473–509.

Allchin, D.: 2001, â€˜Kettlewell’s Missing Evidence, a Study in Black and White’,

Journal of College

Science Teaching

31

, 240–245.

Allchin, D.: 2003a, â€˜Scientific Myth-Conceptions’,

Science Education

87

, 329–351.

Allchin, D.: 2003b, â€˜Lawson’s Shoehorn’,

Science and Education

12

, 315–329.

Boyle, R.: 1699,

The Works of the Honorable Robert Boyle, Esq., Epitomized

, Richard Boulton,

London.

Boyle, R.: 1672/1673, â€˜An Essay about the Origins & Virtues of Gems’, in

Essays on the Strange

Subtilty, Determinate Nature, Great Efficacy of Effluviums

, London.

Brush, S.G.: 1974, â€˜Should the History of Science Be Rated â€œX”?’,

Science

18

, 1164–1172.

Brush, S.G.: 2002, â€˜Cautious Revolutionaries: Maxwell, Planck, Hubble’,

American Journal of

Physics

70

, 119–128.

Butterfield, H.: 1931,

The Whig Interpretation of History

, G. Bell and Sons, London.

Carroll, R.T.: 2001, â€˜Pseudohistory’,

The Skeptic’s Dictionary

, URL: SkepDic.com/pseudohs.html

[updated December 31, 2001; accessed October 12, 2002].

The College Board: 1999,

The Spanish Flu and Its Legacy

, College Board Publications, New York,

NY.

Cordingley, B.: 2001,

In Your Face: What Facial Features Reveal about the People You Know and

Love

, New Horizon Press, East Rutherford, NJ.

Dobbs, B.J.: 1975,

The Foundations of Newton’s Alchemy

, Cambridge University Press, Cambridge,

UK.

Fee, E.: 1979, â€˜Nineteenth-Century Craniology: The Study of the Female Skull’,

Bulletin of the

History of Medicine

53

, 415–433.

Frank, R.G., Jr.: 1980,

Harvey and the Oxford Physiologists

, University of California Press, Berkeley,

CA.

Gauld, C.F.: 1977, â€˜The Role of History in the Teaching of Science’,

The Australian Science Teachers

Journal

23

(3), 47–52.

Gauld, C.: 1992, â€˜The Historical Anecdote as a â€œCaricature”: A Case Study’,

Research in Science

Education

22

, 149–156.

Gould, S.J.: 1980,

The Panda’s Thumb

, W.W. Norton, New York.

Gould, S.J.: 1981,

The Mismeasure of Man

,W.W. Norton, New York.

Gregory, A.: 2001,

Harvey’s Heart

, Icon Books, Cambridge, UK.

Hagen, J.B., Allchin, D. & Singer, F.: 1996,

Doing Biology

, Harper Collins, Glenview, IL.

Hamburger, J.: 1992,

The Diary of William Harvey

, Rutgers University Press, New Brunswick, NJ.

Kipling, R.: 1902,

Just So Stories

, Macmillan, London.

Klein, M.J.: 1972, â€˜The Use and Abuse of Historical Teaching in Physics’, in S.G. Brush and A.L.

King (eds.),

History in the Teaching of Physics

, University Press of New England, Hanover, NH,

pp. 12–18.

Lawson, A.: 2000, â€˜The Generality of the Hypothetico-Deductive Method: Making Scientific

Thinking Explicit’,

American Biology Teacher

62

, 482–495.

Lawson, A.: 2002, â€˜What Does Galileo’s Discovery of Jupiter’s Moons Tell Us about the Process of

Scientific Discovery?’,

Science and Education

11

, 1–24.

background image

PSEUDOHISTORY AND PSEUDOSCIENCE

195

Lawson, A.: in press, â€˜

T. rex

, the Crater of Doom and the Nature of Scientific Discovery’,

Science

and Education

.

Lienhard, J.H.: 1988–1997, â€˜Ignaz Philipp Semmelweis’,

The Engines of Our Ingenuity

, Episode

622. URL: www.uh.edu/engines/epi622.htm [accessed October 12, 2002].

Matthews, M.: 1994,

Science Teaching: A Role for History and Philosophy of Science

, Routledge,

New York.

Matthews, M.: 2000,

Time for Science Education

, Kluwer Academic/Plenum, New York.

McComas, W.F.: 1998, â€˜The Principal Elements of the Nature of Science: Dispelling the Myths’,

in W.F. McComas (ed.),

The Nature of Science in Science Education

, Kluwer, Dordrecht, pp.

53–70.

Pagel, W.: 1967,

William Harvey’s Biological Ideas

, Hafner, New York.

Pagel, W.: 1977,

New Light on William Harvey

, S. Karger, Basel.

Principe, L.: 1999,

Robert Boyle: Aspiring Adept

, Johns Hopkins University Press, Baltimore, MD.

Shermer, M. & Grobman, A.: 2000,

Denying History: Who Says the Holocaust Never Happened &

Why Do They Say It?

, University of California Press, Berkeley, CA.

Sterling, J.: 1994, â€˜The World According to Disney: Trading in Fantasies’,

Earth Island Journal

9

(3),

32+. (URL: www.earthisland.org/journal/disney.html, accessed September 29, 2002).

Toumey, C.: 1996,

Conjuring Science

, Rutgers University Press, New Brunswick, NJ.

Wallace, M.: 1996,

Mickey Mouse History and Other Essays on American Memory

, Temple

University Press, Philadelphia, PA.

Whitaker, M.A.B. :1979, â€˜History and Quasi-history in Physics Education’,

Physics Education

14

,

108, 239.

background image