background image

Melissa L. McGuire
Glenn Research Center, Cleveland, Ohio

Michael C. Martini and Thomas W. Packard
Analex Corporation, Brook Park, Ohio

John E. Weglian and James H. Gilland
Ohio Aerospace Institute, Brook Park, Ohio

Use of High-Power Brayton Nuclear Electric
Propulsion (NEP) for a 2033 Mars
Round-Trip Mission

NASA/TM—2006-214106

March 2006

background image

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home Page
at 

http://www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access
Help Desk at 301–621–0134

Telephone the NASA Access Help Desk at
301–621–0390

Write to:

           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076

background image

Melissa L. McGuire
Glenn Research Center, Cleveland, Ohio

Michael C. Martini and Thomas W. Packard
Analex Corporation, Brook Park, Ohio

John E. Weglian and James H. Gilland
Ohio Aerospace Institute, Brook Park, Ohio

Use of High-Power Brayton Nuclear Electric
Propulsion (NEP) for a 2033 Mars
Round-Trip Mission

NASA/TM—2006-214106

March 2006

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
Space Technology and Applications International Forum (STAIF–2006)
sponsored by the University of New Mexico’s Institute for Space
and Nuclear Power Studies (UNM-ISNPS)
Albuquerque, New Mexico, February 12–16, 2006

background image

Acknowledgments

The reactor, shield, power conversion, power management and distribution, and heat rejection

systems were sized using SRPS_Opt, created by Lee Mason, NASA Glenn Research Center.

Robert Adams, NASA Marshall Space Flight Center, led the overall 2004–2005 RASC Mars

Orbiter study and is the point of contact for the NEP-Rankline and the chemical studies.

The Space Propulsion and Mission Analysis Office, led by Glen Horvat,

was instrumental in supporting this study.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

This report is a preprint of a paper intended for presentation at a conference. Because

of changes that may be made before formal publication, this preprint is made

available with the understanding that it will not be cited or reproduced without the

permission of the author.

This report is a formal draft or working

paper, intended to solicit comments and

ideas from a technical peer group.

This report contains preliminary

findings, subject to revision as

analysis proceeds.

Available electronically at 

http://gltrs.grc.nasa.gov

background image

NASA/TM—2006-214106 

1

Use of High-Power Brayton Nuclear Electric Propulsion (NEP)  

for a 2033 Mars Round-Trip Mission  

 

Melissa L. McGuire 

National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 

Michael C. Martini and Thomas W. Packard 

Analex Corporation 

Brook Park, Ohio 44142 

 

John E. Weglian and James H. Gilland 

Ohio Aerospace Institute 

Brook Park, Ohio 44142 

Abstract 

The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research 

Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic 
goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study 
of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation 
architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal 
cooled fission reactor with a Brayton power conversion system to generate the electrical power required 
by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP 
system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors 
providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency 
(5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust 
heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two 
moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo 
vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day 
excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit 
and

 

returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle 

prior to Earth flyby and aerobrakes for a direct-entry landing.

 

Introduction 

This paper details a Revolutionary Aerospace Systems Concepts (RASC) study investigating a high-

power nuclear electric propulsion (NEP) space transportation architecture to support a manned mission to 
Mars. The RASC project, led by the NASA Langley Research Center, is tasked with exploring 
revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future 
missions. For this study, two vehicle concepts were designed, both using a high-power NEP system with 
Brayton power conversion and magnetoplasmadynamic (MPD) thrusters. The first vehicle is the Mars 
Transfer Vehicle (MTV) which carries the crew from the Earth to Mars and back again. The second 
vehicle, the Cargo Transfer Vehicle (CTV), delivers additional cargo necessary for the mission from the 
Earth to Mars.

  

This paper details one of the four space transportation architectures selected by the 2004-2005 RASC 

Mars Obiter Study for analysis. The other three investigated were nuclear thermal propulsion (Borowski, 
Packard, and McCurdy, 2006), NEP with Rankine power conversion, and chemical propulsion. In order 
for the architectures to be compared across an even playing field, all four started with the same mission  

background image

NASA/TM—2006-214106 

2

182 m

Two 5 MW

e

reactors, shield

Four Brayton Power 

conversion units

Six 7.6 m x 19 m

LH2 tanks

TransHab,

ECRV

Four 2.5 MW

e

MPD 

thrusters (two operational)

per arm

Main radiators:

2722 m

2

planform area

5444 m

2

effective area

182 m

Two 5 MW

e

reactors, shield

Four Brayton Power 

conversion units

Six 7.6 m x 19 m

LH2 tanks

TransHab,

ECRV

Four 2.5 MW

e

MPD 

thrusters (two operational)

per arm

Main radiators:

2722 m

2

planform area

5444 m

2

effective area

 

Figure 1.—Mars Transfer Vehicle. 

 

and payload assumptions. The mission consisted of a split profile with the cargo elements sent out on one 
vehicle and the crew sent out on a second vehicle. Each transportation architecture in the RASC study 
assumed the same cargo and crew payloads. These study requirements led to a mission that was not 
optimized specifically for an NEP system. 

Vehicle Configurations 

Mars Transfer Vehicle (MTV) 

In order to provide the required artificial gravity for the crew during the Trans-Mars Injection (TMI) 

outbound and Trans-Earth Injection (TEI) inbound trajectory legs, the Mars Transfer Vehicle was 
configured to allow a rotation about the center of gravity. The crew is located in an inflated 
Transportation Habitat (TransHab) at one end of the NEP vehicle while the Brayton power conversion 
system and the nuclear reactors are located at the other end. To minimize the translation of the center of 
gravity over the mission, the LH2 tanks are located at the center of the vehicle configuration. The MTV 
uses two reactors, each providing 5 MW

e

, and a total of four Brayton power conversion units. There are 

two thruster arms with four 2.5 MW

e

 MPD thrusters (two operational, two spare) on each arm. Each 

thruster arm has a radiator to reject heat from the power processing units (PPU). The total planform area 
of the PPU radiators is 136.7 m

2

 (273.4 m

2

 effective radiating area). Six LH2 tanks that are 7.6 m in 

diameter and 19 m long occupy the middle truss section of the vehicle and store the 279.4 MT of 
propellant. The main radiator is comprised of two sections of double-sided flat panels attached to the 
center truss structure on either side of the propellant tanks due to center of gravity requirements. The total 
planform area of the main radiator is 2722 m

2

 (5444 m

2

 effective radiating area). The MTV is 182 m long 

and must be assembled in orbit. The configuration of the MTV is shown in figure 1.  

Cargo Transfer Vehicle (CTV) 

The Cargo Transfer Vehicle is modeled after the NEP configuration used in the 2002 RASC Callisto 

mission entitled HOPE (McGuire, et al., 2003, and Borowski et al., 2003). Since the cargo vehicle does 
not require the artificial gravity spin, the propellant tanks are located at the far end from the reactor to 
prevent splitting up the radiator into two sections. This avoids having the hot heat-rejection fluid routed 
around the cryogenic tanks, as is required in the MTV configuration. Like the MTV, the CTV has double-
sided radiator panels attached to the central truss structure of the vehicle. The total planform area of the 
main radiator is 1361 m

2

, which provides 2722 m

2

 effective radiating area. The CTV uses one reactor and  

background image

NASA/TM—2006-214106 

3

 
 

127

 m

5 MW

e

reactor,

shield

Two Brayton power 

conversion units

Main radiator:

1361 m

2

planform area

2722 m

2

effective area

Two 2.5 MW

e

MPD 

thrusters (1 operational)

per arm

PPU radiator:

137 m

2

planform area

Two 7.6 m x 19 m

LH2 tanks

127

 m

5 MW

e

reactor,

shield

Two Brayton power 

conversion units

Main radiator:

1361 m

2

planform area

2722 m

2

effective area

Two 2.5 MW

e

MPD 

thrusters (1 operational)

per arm

PPU radiator:

137 m

2

planform area

Two 7.6 m x 19 m

LH2 tanks

 

Figure 2.—Cargo Transfer Vehicle. 

 
 
two Brayton power conversion units to provide 5 MW

e

 power. The four 2.5 MW

e

 MPD thrusters are 

mounted on the outside of the truss section that contains the propellant tanks with two thrusters, one of 
which is a spare, on each side. The total planform area of the PPU radiators is 273.4 m

2

 (546.8 m

2

 

effective radiating area). The CTV only has two of the 7.6 m diameter, 19 m long LH2 tanks, storing the 
63.9 MT of propellant. The CTV is 127 m long and, like the MTV, must be assembled in orbit. The 
configuration of the CTV is shown in figure 2. 

Assumptions 

Mission Assumptions and Outline 

The RASC Mars Orbiter mission was configured as an opposition class (short stay) Earth-to-Mars 

round-trip mission. A crew of six is deployed to Mars, but does not perform any Mars surface operations. 
Rather, they perform two nine-day excursions to Phobos and Demos before returning home to Earth. The 
total stay-time in Mars orbit is 60 days. The components of the NEP stages of both vehicles are launched 
on heavy-lift Magnum expendable launch vehicles (ELVs) and assembled in a circular Low Earth Orbit 
(LEO) at 1000 km altitude and 28.5° inclination. The Magnum is assumed to be capable of delivering  
80 MT into LEO in a payload shroud 7.5 m wide by 30 m long.  

The CTV conducts a spiral escape from Earth and follows a low-thrust trajectory to Mars to pre-

deploy two moon landers (for landing on Phobos and Deimos) in Mars orbit prior to the crew’s arrival. 
After assembly and checkout, a second NEP stage with the TransHab begins the spiral escape from LEO. 
After the NEP stage has cleared the Van Allen belts and is ready to escape Earth, the crew is launched on 
a smaller ELV (Delta IV Heavy class) in an Earth crew return vehicle (ECRV) and docks with the NEP 
stage in a high orbit. At this point, the mated NEP stage with the inflated TransHab and ECRV is referred 
to as the MTV. The MTV uses the reaction control system (RCS) thrusters to spin the MTV end-over-end 
upon Earth escape to provide artificial gravity (38 percent of Earth gravity, equal to Mars gravity) to the 
crew in the TransHab module. The MPD thrusters provide for “side thrusting” by thrusting along the axis 
of rotation. Once the MTV has reached Mars space, the vehicle performs a spin down maneuver, and the 
MTV spiral captures into the same Mars orbit as the CTV. 

background image

NASA/TM—2006-214106 

4

After 60 days of Mars orbit operations, the MTV spiral escapes from Mars orbit and follows a low-

thrust trajectory back to Earth. During the heliocentric portion of the flight, the RCS thrusters induce 
another end-over-end spin for artificial gravity (38 percent of Earth gravity) for the crew in the TransHab. 
At Earth arrival, the ECRV separates from the MTV with the crew onboard to perform a direct-entry 
aerobrake and parachute landing on Earth.  

Payload Assumptions 

With this mission architecture, the cargo (moon landers) is sent out on a separate vehicle than the 

crew. The crew only carries enough supplies and cargo to last them through the TMI leg, the 60-day stay, 
and the TEI leg of the trip. All cargo necessary to carry out moon-landing operations at the destination is 
sent out on the CTV. The CTV payload consists of two moon landers designed by a team led by the 
NASA Langley Research Center as part of this RASC study. These landers are designed to take three 
crew on nine-day excursions to the surfaces of Deimos and Phobos, and then return to Mars orbit to 
rendezvous with the MTV.  

The MTV payload consists of an inflatable TransHab and an ECRV. The TransHab is similar to the 

TransHab design from the Human Exploration and Development of Space (HEDS) design reference 
mission 4.0 study (Joosten, 2002). The TransHab mass includes enough consumables for a 545-day 
round-trip mission. Any missions with total trip times longer than 545 days must add an additional  
2.45 kg/person/day to the dry-mass allocation. The crew are onboard the MTV for a total of 612 days, so 
this adds 984.9 kg of consumables to the TransHab for this study. The mass of the TransHab also includes 
approximately 1900 kg of water for radiation protection and 400 kg for the environmental control and 
life-support system. The ECRV carries the crew during the final aerobrake for an Earth landing at the end 
of the mission. Table 1 shows the masses for each of the piloted and cargo payload elements as set by the 
RASC study. These masses already contain the appropriate contingency for each item, so no additional 
contingency was added to the payloads in this study. 

 

TABLE 1.—RASC 2004 PAYLOADS 

Element Mass 

(MT) 

Vehicle 

TransHab: includes food for 545 days, 6 crew 

35.0 

MTV 

Earth crew return vehicle (ECRV) 

7.0 

MTV 

ECRV docking structure 

8.0 

MTV 

Two moon landers for 9-day missions 

42.5 

CTV 

 

Power System 

This study assumes a high-temperature, liquid-metal, fission reactor with a Brayton power conversion 

system to generate the electrical power required to supply the MPD thrusters. The reactor was based on an 
advanced version of the early reactor concept for the Jupiter Icy Moons Orbiter study. The fission reactors 
use liquid-metal coolant loops, which operate at a temperature of about 1600 K, in order to represent 
“mid-term” technology (Mason, 2001), consistent with the 2033 mission timeframe. Each reactor coolant 
loop transfers heat to the Brayton system’s working fluid via a heat source heat exchanger (HSHX), 
producing a Brayton turbine inlet temperature of 1500 K. The Brayton unit includes a recuperator to 
improve system efficiency by pre-heating the working fluid from the compressor outlet with the turbine 
exhaust before it reaches the gas cooler. The recuperator reduces the heat load of both the gas cooler and 
the HSHX, which in turn reduces the size of the radiators and the reactor. The heat rejection system uses a 
pumped NaK working fluid to remove heat from the Brayton working fluid via the gas cooler and 
transfers that heat to the radiator panels via water heat pipes. A turbine inlet temperature of 1500 K 
requires a very high-temperature turbine blade material (possibly ceramic) or active cooling of the blades, 

background image

NASA/TM—2006-214106 

5

and a reactor temperature of 1600 K necessitates the use of refractory metals or other high temperature 
material for the reactor. A schematic of the Brayton power conversion system is shown in figure 3. 

The MTV uses two reactors sized to provide 5 MW

e

 net electrical power, each. Neutron interactions 

between the two reactors were not considered. The cargo vehicle only requires one reactor sized to 
provide 5 MW

e

 net electrical power. The component masses and radiator areas for both vehicles are 

presented in table 2. The reactor system includes the radiation shield, which is composed of layers of 
tungsten (gamma shield) and lithium hydride (neutron shield). The MTV’s shields are much heavier than 
the CTV’s due to the crew’s more stringent radiation limits. The radiator is double-sided, so heat is 
rejected from both sides of the radiator panels. Because of this, the effective area for rejecting heat is 
double the physical area of the radiator panels. The radiator design is described by Siamidis and  
Mason (2006). 

 

TABLE 2.—POWER SYSTEM PARAMETERS. 

 MTV 

CTV 

Reactor system mass 

18088 

kg 

4973 

kg 

Brayton power conversion system mass 

8748 

kg 

4374 

kg 

Heat rejection system mass 

33456 

kg 

16728 

kg 

PMAD system mass 

20484 

kg 

9648 

kg 

Radiator area (effective) 

5444 

m

2

 2722 

m

2

 

Radiator area (physical) 

2722 

m

2

 1361 

m

2

 

 

HSHX

Reactor

Gas Cooler

Radiator

Alternator

Turbine

Comp.

Recuperator

HSHX

Reactor

Gas Cooler

Radiator

Alternator

Turbine

Comp.

Recuperator

 

Figure 3.—Schematic of the power conversion system. 

 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

1000

3000

5000

7000

9000

11000

Isp (sec)

A

lph

a (

kg

/kW

e)

..

MPD thruster: 1 MWe 

MPD thruster:  2.5 MWe 

MPD thruster: 5 MWe 

30%

40%

50%

60%

70%

80%

90%

1000

3000

5000

7000

9000

11000

Isp (sec)

E

ff

ici

ency (

%

)

..

MPD thruster: 1 MWe 

MPD thruster:  2.5 MWe

MPD thruster: 5 MWe 

(a) Near term MPD thruster alpha

(b) Near term MPD thruster system efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

1000

3000

5000

7000

9000

11000

Isp (sec)

A

lph

a (

kg

/kW

e)

..

MPD thruster: 1 MWe 

MPD thruster:  2.5 MWe 

MPD thruster: 5 MWe 

30%

40%

50%

60%

70%

80%

90%

1000

3000

5000

7000

9000

11000

Isp (sec)

E

ff

ici

ency (

%

)

..

MPD thruster: 1 MWe 

MPD thruster:  2.5 MWe

MPD thruster: 5 MWe 

(a) Near term MPD thruster alpha

(b) Near term MPD thruster system efficiency

 

Figure 4.—MPD system alpha and efficiency versus I

SP

background image

NASA/TM—2006-214106 

6

Propulsion System 

This study used magnetoplasmadynamic (MPD) thrusters using hydrogen propellant. Besides 

operating at a high specific impulse (I

SP

), the MPD thrusters also have the added advantages of a high-

power capability and a compact size.

 

This analysis used high power MPD thrusters operating at 2.5 MW

e

 

per thruster at a constant I

SP

 of 5,000 sec with a thruster lifetime of 7500 hr. 

The MPD thrusters use cryogenically-stored liquid Hydrogen (LH2) propellant. This mission utilized 

the 2.5 MW

e

 thrusters assumed in the 2002 HOPE study (McGuire et al., 2003). The MTV vehicle used 

four operating thrusters for a total power level of 10 MW

e

 and had 4 non-operating spares for redundancy. 

Likewise, the CTV used two operating thrusters at a total power level of 5 MW

e

 and had two non-

operating spares for redundancy. The mass of the thrusters is I

SP

 dependant. Since a constant I

SP

 was used 

in this analysis, the mass of the thrusters was calculated using the system alpha (mass/kW

e

) for an I

SP

 of 

5000 sec. The thrusters were run at an I

SP

 of 5000 sec due to higher efficiencies at this specific impulse. 

See figure 4 for the dependency of system alpha and MPD thruster efficiency versus operating I

SP

One power processing unit (PPU) and one radiator are assumed per thruster. The system alpha of the 

PPU and radiator is assumed to be 2.5 kg/kW

e

. This included the mass for the power conditioning at the 

turbine (transformer to increase the voltage to 1 kV), the 1 kV transmission line, the PPU to convert 
power at the other end, and the Parasitic Load radiator (PLR) to reject waste heat. The sink temperature  
is assumed to be 250 K at Earth orbit for a worst-case sizing. The effective radiator areas for the two 
vehicles were: CTV = 273.4 m

2

 for a rejection of 5 MW

e

, and MTV = 546.8 m

2

 for a rejection of  

10 MW

e

Trajectory 

Both the MTV and the CTV begin in LEO at 1000 km altitude, spiral out from the Earth, and  

follow a low-thrust trajectory to Mars. The CTV captures into a 24.65-hr period Mars orbit (radius of 
periapse = 3643 km, radius of apoapse = 37,186 km, orbital period = one Martian day). The MTV spiral-
captures into the same Mars orbit 12 days later. After a 60-day stay at Mars, the MTV returns the crew to 
Earth on a flyby trajectory. The crew aerobrakes at Earth in the ECRV for a direct-entry that is 
constrained to 13 km/sec at 125 km altitude.

 

The trajectories for the vehicles were optimized using the 

VARITOP trajectory optimization program (Williams, 1994). The trajectory for the MTV and CTV are 
shown in figure 5. The dates and times of each mission phase as well as the total mission time and total 
crew time (for the MTV) are shown in table 3. 

 
 

TABLE 3.—MISSION EVENT LIST 

MTV CTV 

Mission event 

Date Time 

of 

segment 

(days) 

Mission 

time 

(days) 

Crew 

time 

(days) 

Date Time 

of 

segment 

(days) 

Mission 

time 

(days) 

Begin Earth escape spiral 

11/7/2032 

12/23/2032 

Escape Earth 

3/24/2033 

137 

137 

4/5/2033 103 103 

Mars capture 

10/22/2033 212  349  212 

10/14/2033 192  295 

Complete Mars capture spiral 

11/3/2033 12 361 

224 

10/22/2033 9 304 

Begin Mars escape spiral 

1/2/2034 60 

421 

284   

 

 

Escape Mars 

1/14/2034 12 433 

296   

 

 

Arrive Earth 

11/26/2034 316  749  612 

 

 

 

 
 

background image

NASA/TM—2006-214106 

7

(a) MTV trajectory

(b) CTV trajectory

Depart Mars
January 14, 2034

Earth escape
March 24, 2033

Arrive Mars 
October 22, 2033

Arrive Earth 
November 26, 2034 
Vinf=6.81 km/sec

60 Day Mars 

Stay Time

12.1 days 
spiral capture

Begin 11.7 day
spiral escape

Begin 137 days 
Earth spiral escape
November 7, 2032

Thrust Arc
Coast Arc

Begin 24-hour 
Mars orbit

Earth escape
April 5, 2033

Arrive Mars 
October 14, 2033

Begin 102.9 days 
Earth spiral escape
December 23, 2032

8.6 days 
spiral capture 

Thrust Arc
Coast Arc

Begin 24-hour 
Mars orbit

(a) MTV trajectory

(b) CTV trajectory

Depart Mars
January 14, 2034

Earth escape
March 24, 2033

Arrive Mars 
October 22, 2033

Arrive Earth 
November 26, 2034 
Vinf=6.81 km/sec

60 Day Mars 

Stay Time

12.1 days 
spiral capture

Begin 11.7 day
spiral escape

Begin 137 days 
Earth spiral escape
November 7, 2032

Thrust Arc
Coast Arc

Begin 24-hour 
Mars orbit

Earth escape
April 5, 2033

Arrive Mars 
October 14, 2033

Begin 102.9 days 
Earth spiral escape
December 23, 2032

8.6 days 
spiral capture 

Thrust Arc
Coast Arc

Begin 24-hour 
Mars orbit

 

Figure 5.—CTV and MTV trajectories. 

 
 
 

 

Figure 6.—Effect of trip time on the minimum distance to the Sun. 

 
 
 

The study requirements on the total round-trip time and stay time at Mars were not optimal for an 

NEP mission and led to a close approach to the sun (0.41 AU) in the return trajectory. Such a close 
approach to the sun could require additional shielding to protect the crew, the power system, and the 
electronics; however, these effects were not included in this study. VARITOP was used to determine how 
the trip time affected the closest approach to the Sun for varying propulsion specific masses. While the 
propulsion specific mass does not have much of an effect, figure 6 shows that increasing the trip time 
actually decreases the closest distance to the Sun. Reducing the trip time could be accomplished by 
increasing power and/or reducing I

SP

, however, this would raise the power or propulsion system masses. 

These trade-offs were not performed as part of this study. Since the MTV passes within the orbit of Venus 
(0.7233 AU), a Venus flyby may be able to improve the trip time and/or the closest approach to the Sun. 
A preliminary investigation using a Venus flyby, subject to the RASC mission constraints, did not show 
any improvement to the trip time. Similarly, another mission profile using a stay time at Mars longer than 
60 days might allow for a more favorable return trajectory, but this was beyond the scope of this study, 
since the RASC mission requirements did not allow for changing the Mars stay-time. 

 

0.35

0.4

0.45

0.5

0.55

500

550

600

650

700

Time From Earth Departure (Days)

Min

imu

m Distan

ce

 T

o Su

n (AU) 

.

alfa=10

alfa=15

alfa=20

alfa=25

background image

NASA/TM—2006-214106 

8

Mission Mass Summary 

The mass breakdown for the MTV and CTV is shown in table 4. A common contingency factor of  

25 percent was applied to all dry masses other than the RASC payloads in this analysis in order to get a 
final mass with contingency. A 1 percent contingency was applied to the LH2 propellant masses. 

TABLE 4.—MASS AND POWER SUMMARY FOR THE MTV 

MTV Mass (MT) 

CTV Mass (MT) 

Subsystem 

Baseline Contingency Total Baseline Contingency  Total 

Power system  

Reactor (liquid metal)—2 x 5 MW

e

 18.1 

4.5  22.6 5.0  1.2 

6.2 

Brayton conversion system 

8.7 2.2 

10.9 

4.4 1.1  5.5 

Radiator 

33.5 8.4 

41.8 

16.7 4.2 20.9 

Power management and distribution 

20.5 

5.1 25.6 

9.7  2.4  12.1 

Propulsion system 

MPD thrusters—4 active, 4 spares 2.4  0.6  3.0 

0.9 0.2  1.1 

PPU, radiators, electrical lines, 

etc. 

23.3 5.8 

29.1 

11.7 2.9 14.6 

Tank details 

LH2 tanks—six 7.6 m x 19 m 41.5 

10.4 

51.9 

15.6 

3.9 

19.5 

LH2 feed lines 

3.7 

0.9 

4.6 

2.4 

0.6 

3.0 

Tank attachments 

1.2 

0.3 1.5 

1.2 0.3  1.5 

Refrigeration System 

6.0 1.5 7.5 

6.0 1.5  7.5 

LH2 propellant  

276.6 

2.8 279.4 

63.3  0.6 

63.9 

Structure 

5 m square box truss (total of 

52) 13.9 3.5 

17.4 

11.2 2.8 14.0 

Radiator connection to the truss 0.8 

0.2 

0.9 

0.7 

0.2 0.9 

Artificial gravity balance 

2.0 0.5 2.5 

N/A N/A N/A 

ECRV docking structure 

8.0 2.0 

10.0 

N/A N/A N/A 

Vehicle communications/avionics 0.2 

0.1 

0.3 

0.2 

0.1 

0.3 

RCS system, tanks, thrusters, prop. 7.0 

1.8 

8.8 

N/A 

N/A 

N/A 

RASC payload 

Trans habitat 

34.96 

N/A 

N/A 

N/A 

ECRV - 

7.0 

N/A 

N/A 

N/A 

Additional Consumables for 67 days 

1.0 

N/A 

N/A 

N/A 

Phobos/Deimos landers 

 

N/A N/A 

N/A 

-  42.5 

Total NEP stage mass 

190.7 47.7 

238.4 

85.62 

21.4 

107.0 

Total NEP stage mass with payload 233.7 

47.7 

281.4 

127.12 

21.4 

149.5 

Total NEP wet mass with payload  

560.7 

213.5 

Conclusion 

This study has developed a space transportation architecture based on high-power nuclear electric 

propulsion using Brayton power conversion and magnetoplasmadynamic propulsion to support a manned 
Mars mission. The architecture consists of a cargo transfer vehicle with one 5 MW

e

 fission reactor and a 

Mars transfer vehicle with two 5 MW

e

 fission reactors. The RASC study fixed the mission parameters to 

investigate the performance of 4 different technological approaches to accomplishing the mission. 
Unfortunately, these mission parameters were not optimal for this architecture and led to several 
difficulties. The Mars Transfer Vehicle makes a very close approach to the sun (0.41 AU) during the 
return trajectory in order to rendezvous with Earth. Adjusting the stay-time at Mars and/or utilizing a 
Venus flyby could be used to increase this distance. The trajectory sequence requires the MTV to begin 
thrusting before the CTV; however, this occurs before the crew is on board. The MTV similarly departs 
Earth and begins the heliocentric portion of the flight before the CTV, even though the CTV arrives at 
Mars, first. A better approach would be to launch the CTV on an earlier opportunity than the MTV to pre-
deploy the cargo in the proper orbit before any resources associated with the MTV are launched. 

background image

NASA/TM—2006-214106 

9

References 

Borowski, S. K., McGuire, M. L., Mason, L. S., Gilland, J. H. and Packard, T. W., “Bimodal NTR 

Propulsion for an Artificial Gravity HOPE Mission to Callisto,” in proceedings of 

Space Technology 

and Applications International Forum (STAIF-2003)

, edited by M. El-Genk, AIP, New York, 2003. 

Borowski, S. K., Packard, T. W., McCurdy, D. R., “Crewed Orbiter/Moon Survey Mission to Mars using 

‘Bimodal’ NTR Propulsion,” in these proceedings of 

Space Technology and Applications 

International Forum (STAIF-2006)

, AIP, New York, 2006. 

Joosten, B.

 

K.,

 “

Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design”, 

JSC Document no. EX-02-50, NASA Johnson Space Center, Houston, CA, 2002. 

Mason, L. S., “A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels 

from 1 Kilowatt to 10 Megawatts,” NASA/TM 2001-210593, NASA Glenn Research Center, 
Cleveland, Ohio, 2001. 

McGuire, M. L., Borowski, S. K., Mason, L. S., and Gilland, J. H., “High Power MPD Nuclear Electric 

Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto,” in proceedings of 

Space 

Technology and Applications International Forum (STAIF-2003)

, AIP, New York, 2003. 

Siamidis, J., Mason, L., “A Comparison of Coolant Options for Brayton Power Conversion Heat 

Rejection Systems,” in these proceedings of 

Space Technology and Applications International Forum 

(STAIF-2006)

, AIP, New York, 2006. 

Williams, S. N., “An Introduction to the Use of VARITOP, A General Purpose Low-Thrust Trajectory 

Optimization Program,” Jet Propulsion Laboratory, JPL D-11475, 24 January 1994. 

background image
background image

NASA/TM—2006-214106 

11

Appendix—Nomenclature 

CTV 

Cargo transfer vehicle 

ECRV 

Earth crew return vehicle 

ELV 

Expendable launch vehicle 

HSHX 

Heat source heat exchanger 

I

SP

 Specific 

impulse 

LEO 

Low Earth orbit 

LH2 Liquid 

hydrogen 

MPD Magnetoplasmadynamic 
MT 

Metric ton (1000 kg) 

MTV 

Mars transfer vehicle 

NEP 

Nuclear electric propulsion 

PLR 

Parasitic load radiator 

PPU 

Power processing unit 

RASC 

Revolutionary aerospace systems concepts 

RCS 

Reaction control system 

TEI Trans-Earth 

injection 

TMI Trans-Mars 

injection 

TransHab Transportation 

habitat 

 

background image

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION

 OF ABSTRACT

18. SECURITY CLASSIFICATION

 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION

 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT 

(Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION

 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified

Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135 – 3191

1. AGENCY USE ONLY

 (

Leave blank)

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546– 0001

Available electronically at 

http://gltrs.grc.nasa.gov

March 2006

NASA TM—2006-214106

E–15441

WBS 463169.03.03

17

Use of High-Power Brayton Nuclear Electric Propulsion (NEP)
for a 2033 Mars Round-Trip Mission

Melissa L. McGuire, Michael C. Martini, Thomas W. Packard, John E. Weglian,
and James H. Gilland

Cargo; Trajectories; Flyby missions; Aerospace systems; Nuclear electric propulsion;
Space transportation; Manned Mars missions; Mars missions; High temperature;
Brayton cycle

Unclassified - Unlimited
Subject Category: 13

Prepared for the Space Technology and Applications International Forum (STAIF–2006) sponsored by the University
of New Mexico’s Institute for Space and Nuclear Power Studies (UNM-ISNPS), Albuquerque, New Mexico, February
12–16, 2006. Melissa L. McGuire, NASA Glenn Research Center; Michael C. Martini and Thomas W. Packard, Analex
Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142; and John E. Weglian and James H. Gilland, Ohio Aerospace
Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142. Responsible person, Melissa L. McGuire, organization
code PBM, 216–977–7128.

The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with
exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions.
This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric
propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a
high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical
power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP
system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a
combined total of 10 MW of electrical power.  Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse)
MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars
with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed
vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew
conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian
orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth
flyby and aerobrakes for a direct-entry landing.

background image
background image