background image

 

 
 
 
 

Kibo HANDBOOK 

 
 
 
 
 

 

September 2007 

 
 
 
 

Japan Aerospace Exploration Agency (JAXA) 

Human Space Systems and Utilization Program Group 

 

background image

Kibo HANDBOOK 

Contents 

1.

 

Background on Development of Kibo ............................................ 1-1

 

1.1

 

Summary ........................................................................................................................... 1-2

 

1.2

 

International Space Station (ISS) Program ........................................................................ 1-2

 

1.2.1

 

Outline ......................................................................................................................... 1-2

 

1.3

 

Background of Kibo Development...................................................................................... 1-4

 

2.

 

Kibo Elements................................................................................... 2-1

 

2.1

 

Kibo Elements.................................................................................................................... 2-2

 

2.1.1

 

Pressurized Module (PM) ............................................................................................ 2-3

 

2.1.2

 

Experiment Logistics Module - Pressurized Section (ELM-PS) ................................... 2-4

 

2.1.3

 

Exposed Facility (EF) .................................................................................................. 2-5

 

2.1.4

 

Experiment Logistics Module - Exposed Section (ELM-ES) ........................................ 2-6

 

2.1.5

 

JEM Remote Manipulator System (JEMRMS)............................................................. 2-7

 

2.1.6

 

Inter-orbit Communication System (ICS) ..................................................................... 2-8

 

3.

 

Kibo Specifications .......................................................................... 3-1

 

3.1

 

Specifications of Kibo Components.................................................................................... 3-2

 

3.2

 

Kibo Operation Mode ......................................................................................................... 3-4

 

4.

 

Kibo System Components ............................................................... 4-1

 

4.1

 

Pressurized Module (PM) .................................................................................................. 4-2

 

4.1.1

 

Brief Summary............................................................................................................. 4-2

 

4.1.2

 

Layout ......................................................................................................................... 4-3

 

4.1.3

 

System Components of PM......................................................................................... 4-6

 

4.2

 

Experiment Logistics Module- Pressurized Section (ELM-PS) ........................................ 4-12

 

4.2.1

 

Brief Summary........................................................................................................... 4-12

 

4.2.2

 

Layout ....................................................................................................................... 4-13

 

4.2.3

 

System Components of ELM-PS............................................................................... 4-14

 

4.3

 

Exposed Facility............................................................................................................... 4-17

 

4.3.1

 

Brief Summary........................................................................................................... 4-17

 

4.3.2

 

Layout ....................................................................................................................... 4-19

 

4.3.3

 

System Components of EF........................................................................................ 4-21

 

4.4

 

Experiment Logistic Module-Exposed Section (ELM-ES) ................................................ 4-24

 

4.4.1

 

Brief summary ........................................................................................................... 4-24

 

4.4.2

 

Layout ....................................................................................................................... 4-26

 

background image

Kibo HANDBOOK 

4.4.3

 

System Components of ELM-ES............................................................................... 4-27

 

4.5

 

Japanese Experiment Module Remote Manipulator System (JEMRMS) ......................... 4-29

 

4.5.1

 

Brief Summary........................................................................................................... 4-29

 

4.5.2

 

Layout ....................................................................................................................... 4-31

 

4.5.3

 

System Components of JEMRMS ............................................................................. 4-32

 

4.6

 

Inter orbit Communication System (ICS).......................................................................... 4-34

 

4.6.1

 

Brief Summary........................................................................................................... 4-34

 

4.6.2

 

Layout ....................................................................................................................... 4-35

 

4.6.3

 

System Components of ICS ...................................................................................... 4-36

 

5.

 

Kibo Operations................................................................................ 5-1

 

5.1

 

Launch and Flight Plan ...................................................................................................... 5-2

 

5.2

 

Kibo Assembly Sequence .................................................................................................. 5-3

 

5.2.1

 

1J/A Flight.................................................................................................................... 5-3

 

5.2.2

 

1J Flight....................................................................................................................... 5-6

 

5.2.3

 

2J/A Flight.................................................................................................................. 5-10

 

5.3

 

Kibo Operations Control................................................................................................... 5-13

 

5.3.1

 

Orbital Interface (between the ground to/from Kibo).................................................. 5-17

 

5.3.2

 

Ground Interface (between TKSC and NASA Mission Control Centers) ................... 5-18

 

6.

 

Kibo Utilization ................................................................................. 6-1

 

6.1

 

Summary ........................................................................................................................... 6-2

 

6.2

 

Environment....................................................................................................................... 6-2

 

6.2.1

 

Microgravity ................................................................................................................. 6-2

 

6.2.2

 

Line of Sight and field of view from the ISS ................................................................. 6-2

 

6.2.3

 

Background Atmosphere ............................................................................................. 6-3

 

6.2.4

 

Space Radiation .......................................................................................................... 6-4

 

6.2.5

 

Thermal Environment .................................................................................................. 6-4

 

6.2.6

 

Micrometeoroid and Space Debris .............................................................................. 6-4

 

6.3

 

Experiment Payloads ......................................................................................................... 6-5

 

6.3.1

 

Experiment Payloads for Kibo’s Pressurized Module (PM) ......................................... 6-5

 

6.3.2

 

Exposed Facility (EF) Experiment Payloads.............................................................. 6-15

 

6.4

 

Utilization Plan ................................................................................................................. 6-21

 

6.4.1

 

Overall Schedule ....................................................................................................... 6-21

 

6.4.2

 

Utilization Fields ........................................................................................................ 6-22

 

6.4.3

 

Experiment Themes .................................................................................................. 6-23

 

ii 

background image

Kibo HANDBOOK 

6.4.4

 

Utilization Plan........................................................................................................... 6-27

 

7.

 

H-II Transfer Vehicle (HTV) Overview .............................................. 7-1

 

7.1

 

Summary ........................................................................................................................... 7-2

 

7.1.1

 

HTV Components ........................................................................................................ 7-3

 

7.2

 

HTV Operations ................................................................................................................. 7-7

 

7.2.1

 

Launch ........................................................................................................................ 7-8

 

7.2.2

 

Rendezvous ................................................................................................................ 7-9

 

7.2.3

 

Berthing with the ISS (Proximity Operation Phase) ................................................... 7-10

 

7.2.4

 

Operations while berthed to the ISS.......................................................................... 7-12

 

7.2.5

 

Departure from the ISS and Reentry ......................................................................... 7-14

 

 

Appendix

 

Acronyms and Abbreviations 

 
 
 
 
 
 
 
 
 

iii 

background image

Kibo HANDBOOK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 

 

iv 

background image

Kibo HANDBOOK 

1.  Background on Development of Kibo 

1-1

 

background image

1. Background on Development of Kibo 

1-2

 

1.1 Summary 

The International Space Station (ISS) is “the first borderless world

  mankind has ever had in history.    The 

United States of America (US), Japan, Canada, European countries and Russia are participating in this ISS 

program. These partners have been collaboratively promoting the construction, assembly, and utilization of the 

ISS. This type of collaboration, which utilizes the state-of-the-art technologies from many different countries 

for constructing a single facility, has never been done before.    The ISS, in many ways, is truly a symbol of 

global cooperation and peace, as well as an important research facility to provide a major breakthrough in the 

world’s space development endeavors.   

The conceptual design of the space station’s drawing was initiated in 1982. The first ISS component, the 

Zarya Module, was launched in 1998 overcoming numerous obstacles through the international cooperation of 

the ISS partner countries.  The ISS construction was once suspended due to the Space Shuttle Columbia 

accident in 2003. However, from 2006, the ISS construction has resumed with the target completion year set at 

2010. 

This chapter describes the background and the surrounding issues related to the development of Kibo from 

the perspectives of cross-border collaboration and Japan’s domestic activities. 

 

 

1.2 

International Space Station (ISS) Program 

1.2.1 Outline 

The International Space Station (ISS) is a manned research facility flying about 400 km above the earth.   

While the ISS orbits the earth at a rate of 90 minutes per orbit, earth observation, astronomical observations 

and scientific experiments are conducted on-board.   

The primary objectives of the ISS are to provide a facility for conducting long-term experiments and 

researches by using the environment unique to space, to promote science and technology by utilizing the results 

from these experiments and researches, and to contribute to the betterment of mankind and a means for 

commercial development.   

For the assembly and construction of the ISS, the US space shuttles and Russia’s Proton and Soyuz launch 

vehicles are used for transporting the ISS components, one segment after another, more than 40 launches 

projected to assemble the ISS.    The US, Japan, Canada, Russia and 11 of the 17 member countries of the 

European Space Agency (ESA), including Italy, Denmark, Norway, Belgium, Netherlands, France, Spain, 

Germany, Swedish, Switzerland and the United Kingdom (UK), are participating in this international 

collaborative program, as ISS partner countries.  Japan contributes to the ISS program through the 

development and utilization of Kibo. 

Figure 1.2.1-1shows an overview of the ISS.    Table 1.2.1-1 shows the ISS specifications. 

 

background image

Kibo HANDBOOK 

 

Figure 1.2.1-1 ISS Overview 

 

 

Table 1.2.1-1 ISS Specifications 

Items Specifications 

Size 

108.5 m x 72.8 m (Size is equivalent to an American football field) 

Mass (Weight) 

420 t 

Power Generation   

110 kW   

Experiment Modules: 5 
(includes: US 1 (Destiny), Japan 1 (Kibo), ESA 1 (Columbus), Russia 2 
(RM, MLM)) 

Number of pressurized modules

Habitation Modules: 1 
(Russia 1 (Zvezda)) 

External Research 
Accommodations 

10 on the ISS truss 
10 on Kibo’s Exposed Facility (EF) 
4 on Columbus 

Number of crew (capacity) 

6 (2 to 3 during the construction/assembly phase) 

Orbit 

Circular Orbit (Altitude 330 to 480 km) 
Inclination 51.6 degree 

Transportation system/launch 
vehicle 

Assembly flight: Space Shuttle (US), Soyuz launch vehicle / Proton 
launch vehicle (Russia)   
Logistics flight: Space Shuttles (US), Soyuz launch vehicle (Russia), 
Ariane launch vehicle (ESA), H-IIB launch vehicle (Japan) 

 

1-3

 

background image

1. Background on Development of Kibo 

1-4

 

1.3 

Background of Kibo Development 

In June 1982, the government of Japan was requested from NASA to participate in the Space Station 

Program.    In response to this request, a technical study led by the National Space Development Agency of 

Japan (NASDA) was initiated to establish the basic framework for Japan’s participation in the Space Station 

Program.    In August 1982, the Space Station Program Task Force was formed under the auspices of the Space 

Development Committee. Deliberations on Japan’s participation in the Space Station Program Framework were 

started. 

In April 1985, the "Basic Framework for Participating in the Space Station Program" was established based 

on the results from the studies conducted by the Space Development Committee's Space Station Taskforce.   

Japan’s participation in the Space Station Program was then officially announced.    In the "Basic Framework 

for Participating in the Space Station Program", the significance of Japan’s participation in the program was 

described.    The following is a summary of the framework. 

(1) High 

Technology 

Acquisition 

 

The space station is expected to actively and extensively use advanced technologies.  This will ultimately 

lead to acquiring techniques for supporting manned space flight and the developing leading edge space 

technologies while this large construction project in space is ongoing.    The space station will also lead to the 

promotion and development of advanced technologies in several fields including robotics, computers, and 

communications.  In addition, significant improvements in advanced technology standards are anticipated.   

(2)  Promotion of Science and Technology for the Next Generation, and Expansion of Space 

Activity Scope 

The space station has the capability to 1) extend the amount of time that humans can spend in space, 2) 

accommodate many crew members, and 3) increase power supply and crew time.  This capability would 

enable extensive scientific observations or conducting larger experiments in space. It would also increase the 

opportunity for new scientific findings and promote the development of new technologies.    In addition, the 

space station has the capability of being an outpost for on-orbit space activities, or could be a base station for 

supporting manned explorations to the moon and other planets.  These capabilities will lead to expanding the 

scope of human activities in space.   

(3) International 

Contribution 

Japan is expected to fulfill Japan’s share of international responsibility by contributing to the world’s space 

development through the technologies fostered by Japan’s own independent developments or by utilizing the 

space shuttles.  Through collaboration and participation in the Space Station Program, the relationship 

between the US and Japan can be maintained or enhanced.  In addition, Japan’s technology will be enhanced 

by keeping pace with the world’s space development.  Specifically, Japan will be able to internationally 

background image

Kibo HANDBOOK 

contribute to the advanced technology fields, including electronics, optical communication and robotics, which 

are technological strengths of Japan. 

(4)  Promotion of Practical Application of Space Environment Utilization   

Recently, experiments using the space environment, including the development of materials and the 

production of medicines, are being promoted.  The utilization of the space environment has received a 

significant amount of attention.  The Space Station Program will advance space environment utilization. 

Space utilization is generally targeted for commercial activities.    Expansion of commercial activities in space 

is a goal for many countries, including the United States. 

With the aim of achieving the above objectives, Kibo has been developed as Japan’s first manned spacecraft. 

Table 1.3-1 shows the background of Kibo development. 
 

Table 1.3-1 Background of Kibo Development (1/2) 

Timeline Activities 

April, 1984 

In response to US President Reagan’s request, NASDA and the commissioned 
companies began studies on Japan’s participation in the Space Station Program   

May, 1985 

The government of Japan signed a Memorandum of Understanding (MOU) with 
NASA that pertained to Japan’s participation in the space station’s preliminary 
design. The preliminary design was continued for two years thereafter. 
Policy-related discussions with NASA were conducted under the auspices of 
Japan’s Science and Technological Agency (STA). Technical and 
engineering-related discussions with NASA were conducted under the auspices of 
NASDA. 

March, 1987 

Completion of the space station’s preliminary design. 

March, 1989 

A MOU was signed between NASA and the government of Japan. 

June, 1989 

Japan’s Diet (Japan’s legislature) approved the Inter-Governmental Agreement 
(IGA) that covered the detailed design, development, operation and utilization of a 
regularly manned civil space station, and included the US government, European 
countries that are members of the ESA, the government of Japan and Canada’s 
government. Japan officially started the full-scale development of the Japanese 
Experiment Module for the Space Station Program. 

January, 1990 

Japan initiated basic designs of Kibo’s systems and components.   

March, 1990 

The “Tokyo Agreement” was executed to establish standardization requirements for 
the International Standard Payload Rack (ISPR) for use with the ISS modules. The 
standardizing requirements for the ISPR had been discussed amongst NASA, ESA 
and NASDA, as part of their trilateral cooperation. The standardizing requirements 
stipulated and defined the system interfaces, including the rack structure envelope, 
attachment mechanisms to the ISS modules, power, cooling, data, and video 
interfaces. 

March, 1994 

Design of a newly reconfigured space station, also renamed as the “International 
Space Station (ISS)”, was approved. During the reconfiguration and review, the 
interfaces between Kibo and the ISS were revised. The control documents related 
to Kibo’s launch, operations and development were also reviewed.   

March, 1994 

Development of the Kibo Flight Model (PFM) was initiated. 

 

1-5

 

background image

1. Background on Development of Kibo 

1-6

 

Table 1.3-1 Background of Kibo Development (2/2) 

Timeline Activities 

July, 1996 

Development of Kibo’s Inter-orbit Communication System (ICS), which will be 
used for communications between Kibo and the Data Relay Test Satellite (DRTS), 
also known as “Kodama”, was decided, based on the consensus to utilize the 
DRTS.  

April, 1999 

The name of the Japanese Experiment Module was domestically solicited and, 
“Kibo” was selected from the numerous names that were submitted.   

May, 2000 

Kibo’s Experiment Logistics Module-Pressurized Section (ELM-PS) arrived at 
Tsukuba Space Center (TKSC). A series of tests on the ELM-PS systems were 
initiated. 

November, 2000 

Kibo’s Exposed Facility (EF) was shipped from the prime contractor to TKSC. A 
series of tests on the EF systems were initiated.   

December, 2000 

Kibo’s Experiment Logistic Module-Exposed Section (ELM-ES) was shipped from 
the prime contractor to TKSC. A series of tests on the ELM-ES systems were 
initiated.  

September, 2001 

After completing a series of system tests, Kibo’s Pressurized Module (PM) was 
shipped from the prime contractor to TKSC.   

October, 2001 

Kibo’s total system test was conducted from October 2001 to May 2002.   

April, 2003 

At the NASA-NASDA PM Pre-shipment Review meeting held on April 7th, the 
PM was verified as satisfying the requirements for transferring to the US. On April 
22nd, the PM departed on a river barge from Tsuchiura New Harbor to Yokohama 
Harbor. 

May, 2003 

The PM departed on an ocean vessel from Yokohama Harbor to NASA’s Kennedy 
Space Center (KSC). The PM arrived at Port Canaveral, which is adjacent to the 
KSC on May 30th.   

August, 2003 

At KSC, the PM went through the Multi-Element Integrated Test-III (MEIT-III), 
which is a test that verifies the system functionality and interface compatibility 
between the PM and the connection module, Node 2. 

September, 2003 

From September 2003 to March 2004, a series of tests on the PM were conducted, 
including the functionality verification tests, the Flight Crew Interface Test (FCIT), 
leak tests and a series of checkouts and inspections prior to classifying the PM as, 
“in loading process”. One year prior to launch is set as the “functionality 
maintenance period”. During this period, various tasks are scheduled that’s targeted 
to the loading of the PM on to the space shuttle. 

January, 2007 

On January 12th, Kibo’s robotic arm, Japanese Experiment Module Remote 
Manipulator System (JEMRMS) was shipped via air transport, from TKSC to KSC.   
On January 26th, Kibo’s ELM-PS was shipped from TKSC. The ELM-PS was 
shipped via river barge from Tsuchiura New Harbor to Yokohama Harbor.   

February, 2007 

On February 7th, the ELM-PS departed on an ocean vessel from Yokohama Harbor 
to KSC. The ELM-PS arrived at Port Canaveral, which is adjacent to KSC on 
March 12th.   

 

background image

Kibo HANDBOOK 

2. Kibo Elements 

2-1 

background image

2. Kibo Elements

 Elements 

2-2

 

 

2-2

 

2.1 Kibo 

Elements 

2.1 Kibo 

Elements 

The Japanese Experiment Module (JEM), also known as Kibo, consists of six components: two experiment 

facilities of the Pressurized Module (PM) and the Exposed Facility (EF), a Logistics Module that is attached to 

each of the PM and EF, a Remote Manipulator System(RMS), and an Inter-Orbit Communication System(ICS).   

Figure 2.1-1 shows an overview of the assembled Kibo structure. 

The Japanese Experiment Module (JEM), also known as Kibo, consists of six components: two experiment 

facilities of the Pressurized Module (PM) and the Exposed Facility (EF), a Logistics Module that is attached to 

each of the PM and EF, a Remote Manipulator System(RMS), and an Inter-Orbit Communication System(ICS).   

Figure 2.1-1 shows an overview of the assembled Kibo structure. 

Air, electrical power, heat and communications, which are essential for Kibo’s operation, will be supplied 

from the International Space Station (ISS).   

Air, electrical power, heat and communications, which are essential for Kibo’s operation, will be supplied 

from the International Space Station (ISS).   

Inside the space shuttle cargo bay, electrical power is provided to the Kibo’s elements from the Space Shuttle 

to prevent the coolant water lines from freezing, and to maintain optimal temperatures within the critical 

components prior to final attachment to the ISS. 

Inside the space shuttle cargo bay, electrical power is provided to the Kibo’s elements from the Space Shuttle 

to prevent the coolant water lines from freezing, and to maintain optimal temperatures within the critical 

components prior to final attachment to the ISS. 
  

Experiment Logistics Module-Pressurized Section   
(ELM-PS) 

Pressurized Module (PM)

Inter-orbit Communication System (ICS) 

Exposed Facility (EF) 

Kibo

Direction of travel 

JEM Remote Manipulator System   
(JEMRMS) 
 

Experiment Logistics Module 
- Exposed Section (ELM-ES)

  

Figure 2.1-1 Kibo Structure 

Figure 2.1-1 Kibo Structure 

background image

Kibo HANDBOOK 

2.1.1  Pressurized Module (PM) 

Kibo’s Pressurized Module (PM) is 11.2 meters in length and 4.4 meters in diameter.    The PM’s internal air 

pressure is maintained at one atmosphere (1 atm), thus providing a shirt-sleeve working environment for the 

crew.    ISS crew will conduct unique microgravity experiments within the PM.    The PM will hold 23 racks - 

ten of which are International Standard Payload Rack (ISPR) for experiment payloads.    The remaining 13 

racks are dedicated to Kibo’s systems and storage.     

Kibo also has a scientific airlock, the “JEM Airlock”, through which experiments are transferred and 

exposed to the external environment. 

Figure 2.1.1-1 shows a picture of the PM. 

Pressurized Module (PM) 

JEM Airlock

 

Figure 2.1.1-1 Pressurized Module (PM) 

2-3 

background image

2. Kibo Elements 

2-4

 

2.1.2  Experiment Logistics Module - Pressurized Section (ELM-PS) 

Kibo’s Experiment Logistics Module - Pressurized Section (ELM-PS) provides a storage space for 

experiment payloads, samples and spare items.    The interior of the ELM-PS is controlled and maintained at 

the same air pressure and temperature as that of the PM, and astronauts will be able to freely move between the 

ELM-PS and the PM.    Among the ISS research facilities/modules, Kibo is the only experiment module with 

its own dedicated storage facility. 

Figure 2.1.2-1 shows an external view of the ELM-PS. 

 

Figure 2.1.2-1 Experiment Logistics Module-Pressurized Section (ELM-PS) 

background image

Kibo HANDBOOK 

2.1.3  Exposed Facility (EF) 

Kibo’s Exposed Facility (EF) provides a multipurpose platform where science experiments can be deployed 

and operated in the exposed envirnment.    The experiment payloads attached on the EF will be exchanged or 

retrieved by using Kibo’s robotic arm, the “JEM Remote Manipulator System (JEMRMS)”, which will be 

operated by the crew from inside the PM.   

Figure 2.1.3-1 shows an external view of the EF. 

 

Figure 2.1.3-1 Exposed Facility (EF) 

2-5 

background image

2. Kibo Elements 

2-6

 

2.1.4  Experiment Logistics Module - Exposed Section (ELM-ES) 

Kibo’s Experiment Logistics Module-Exposed Section (ELM-ES) is attached to the end of the EF and 

provides a storage space for experiment payloads and samples.  Experiment payloads and samples are stored 

for later use for the experiments on the EF.    Up to three experiment payloads can be stored on the ELM-ES.   

In addition, the ELM-ES provides a logistics function where the ELM-ES can be detached from the EF and 

returned to the ground aboard the space shuttle along with completed experiments or samples.    The ELM-ES 

can be re-stocked and then launched again on missions to the ISS.   

Figure 2.1.4-1 is an overview of the ELM-ES. 

 

Figure 2.1.4-1 Experiment Logistics Module-Exposed Section (ELM-ES) 

background image

Kibo HANDBOOK 

2.1.5  JEM Remote Manipulator System (JEMRMS) 

Kibo’s robotic arm, JEM Remote Manipulator System (JEMRMS), serves as the human arm and hand in 

supporting the experiments conducted on the EF.    The JEMRMS is composed of the Main Arm (MA) and the 

Small Fine Arm (SFA). Each arm has six joints.  The MA is used primarily for exchanging external EF 

payloads and for moving large items.    The SFA, which is attached to the end of the MA, is used for more 

delicate operations.    The crew will operate these robotic arms from a remote operations console, the JEMRMS 

Console, located inside the PM.  The crew will watch external images, taken from the cameras that are 

attached to the MA, on a television monitor at the JEMRMS Console. 

Figure 2.1.5-1 shows a picture of the JEMRMS. 

Main Arm

MA) 

Small Fine Arm

SFA)

EF ORU mock-up 

Figure 2.1.5-1 JEM Remote Manipulator System (JEMRMS) -Combination Operation Test 

2-7 

background image

2. Kibo Elements

 Elements 

2-8

 

 

2-8

 

2.1.6  Inter-orbit Communication System (ICS) 

2.1.6  Inter-orbit Communication System (ICS) 

Kibo’s Inter-Orbit Communication System (ICS) provides independent intercommunications between Kibo 

and the Tsukuba Space Center (TKSC).    Through the JAXA’s Data Relay Test Satellite (DRTS), commands 

and voice are uplinked from the ground to Kibo, and experiment data, image data or voice are downlinked from 

Kibo to the ground for scientific payload operations.  The ICS consists of two subsystem components: 

ICS-Pressurized Module (ICS-PM) and ICS-Exposed Facility (ICS-EF). The ICS-PM, which is installed in the 

PM, provides command and data handling functions.    The ICS-EF has antenna and pointing mechanism that 

will be used to communicate with the DRTS. 

Kibo’s Inter-Orbit Communication System (ICS) provides independent intercommunications between Kibo 

and the Tsukuba Space Center (TKSC).    Through the JAXA’s Data Relay Test Satellite (DRTS), commands 

and voice are uplinked from the ground to Kibo, and experiment data, image data or voice are downlinked from 

Kibo to the ground for scientific payload operations.  The ICS consists of two subsystem components: 

ICS-Pressurized Module (ICS-PM) and ICS-Exposed Facility (ICS-EF). The ICS-PM, which is installed in the 

PM, provides command and data handling functions.    The ICS-EF has antenna and pointing mechanism that 

will be used to communicate with the DRTS. 

Figure 2.1.6-1 shows pictures of the ICS subsystems. 

Figure 2.1.6-1 shows pictures of the ICS subsystems. 

ICS-Pressurized Module (ICS-PM)

ICS Exposed Facility subsystem (ICS-EF) 

Antenna 
(being stowed) 

ICS-Pressurized Module 
(ICS-PM) 

Space for PROX system

PROX (Proximity Communication System) is a communication system which will be used for a 
rendezvous operation of the H-II Transfer Vehicle (HTV) 

  

Figure 2.1.6-1 Inter-orbit Communication System (ICS) 

Figure 2.1.6-1 Inter-orbit Communication System (ICS) 

  

background image

Kibo HANDBOOK 

3. Kibo Specifications 

3-1

 

background image

3. Kibo Specifications 

3-2

 

3.1 

Specifications of Kibo Components 

Table 3.1-1 shows the specifications for Kibo’s components.  Figure 3.1-1 shows Kibo’s configuration 

diagrams.    For further details on Kibo’s components, please refer to Chapter 4. 

 

 

Table 3.1-1 Specifications 

Component Dimension 

(m) 

Mass (t) 

Number of racks or ISPRs installed 

Pressurized Module (PM) 

Outer Diameter: 4.4 
Inner Diameter: 4.2 
Length: 11.2   

15.9 

23 racks ( 11 Kibo’s System Racks 
and 12 International Standard 
Payload Racks (ISPR) ) 

Experiment Logistic 
Module-Pressurized 
Section (ELM-PS) 

Outer Diameter: 4.4 
Inner Diameter: 4.2 
Length: 4.2 

4.2 8 

racks 

 

Remote Manipulator 
System (JEMRMS) 

Length: 
Main Arm: 10 
Small Fine Arm: 2.2

1.6 
(Includes RMS 
console) 

Main Arm’s maximum lifting 
capacity: 7 t 

Exposed Facility (EF) 

Width: 5.0 
Height: 4.0 
Length: 5.6 

4.1 

12 attachments for EF payloads (10 
for payloads and 2 for systems. In 
addition, one space for temporary 
storage/attachment is available) 

Experiment Logistic 
Module-Exposed Section 
(ELM-ES) 

Width: 4.9 
Height: 2.2 
Length: 4.2 

1.2 

3 EF payloads   

 Total 

27 

 

 

background image

Kibo HANDBOOK 

ELM-PS

PM 

JEMRMS 

ELM-ES

EF 

4.2m 

8.6m 

φ

4.4m 

8.9m 

4.9m 

20.5m

11.2m

10m

φ

4.4m 

CBM  

inclusive

 

CBM: Common Berthing Mechanism

 

Figure 3.1-1 Kibo Configuration Diagram 

 

3-3

 

background image

3. Kibo Specifications

 Specifications 

3-4

 

 

3-4

 

3.2 

Kibo Operation Mode 

3.2 

Kibo Operation Mode 

Four different operation modes are used for managing Kibo’s systems.  Kibo operation mode varies 

according to the Kibo’s operations and/or the upper ISS operation modes.  Kibo operation modes and the 

corresponding descriptions are shown in Table 3.2-1.    The operation mode can be switched manually by crew 

or by commands sent from the ground.    Figure 3.2-1 shows the Kibo operation mode transition. 

Four different operation modes are used for managing Kibo’s systems.  Kibo operation mode varies 

according to the Kibo’s operations and/or the upper ISS operation modes.  Kibo operation modes and the 

corresponding descriptions are shown in Table 3.2-1.    The operation mode can be switched manually by crew 

or by commands sent from the ground.    Figure 3.2-1 shows the Kibo operation mode transition. 

Similarly, the International Space Station (ISS) has seven operation modes.    All the ISS operation modes 

are switched by commands sent from the ground or by the crew.  The ISS operation modes and their 

corresponding descriptions are shown in Table 3.2-2.   

Similarly, the International Space Station (ISS) has seven operation modes.    All the ISS operation modes 

are switched by commands sent from the ground or by the crew.  The ISS operation modes and their 

corresponding descriptions are shown in Table 3.2-2.   

There are situations where Kibo operation modes are constrained depending on the status of the ISS 

operation mode.    For example, the ISS operation mode has to be set as “External Operation Mode” when 

switching the Kibo operation mode from “Standard Operation Mode” to “Robotics Operation Mode” for 

JEMRMS operation.  The relation between Kibo operation modes and ISS operation modes are shown in 

Table 3.2-3.  In the event of an ISS emergency, the ISS operation modes will be switched accordingly; 

however if Kibo operation mode at this point is not applicable, then Kibo operation mode will be switched to 

“Standby Mode” automatically. 

There are situations where Kibo operation modes are constrained depending on the status of the ISS 

operation mode.    For example, the ISS operation mode has to be set as “External Operation Mode” when 

switching the Kibo operation mode from “Standard Operation Mode” to “Robotics Operation Mode” for 

JEMRMS operation.  The relation between Kibo operation modes and ISS operation modes are shown in 

Table 3.2-3.  In the event of an ISS emergency, the ISS operation modes will be switched accordingly; 

however if Kibo operation mode at this point is not applicable, then Kibo operation mode will be switched to 

“Standby Mode” automatically. 

  

Table 3.2-1 Kibo Operation Modes 

Table 3.2-1 Kibo Operation Modes 

Kibo Operation Mode 

Kibo Operation Mode 

Mode Description and Status 

Mode Description and Status 

Standard Operation Mode 

Kibo primary operation mode.    The crew can conduct experiments.   
However, the crew can not use the JEMRMS.   

Robotics Operation Mode 

The mode where the crew operates Kibo’s robotic arms. The other features 
are the same as those of “Standard Operation Mode”.   

Standby Mode 

Mode for when an emergency occurs with Kibo’s systems.    In emergency 
cases, Kibo will be operated with minimal systems by prohibiting all the 
experiment supports.   

Isolation Mode 

Mode for when the pressurization in the Kibo’s pressurized section cannot 
be maintained.    In this mode, the hatch between Kibo and ISS will be 
closed and crew will not be able to enter either the PM or ELM-PS.   

   

Robotics Operation Mode 

Standard Operation Mode 

Isolation Mode 

Standby Mode 

Command

Command or 
Automatic 

Command or 
Automatic 

Command

Command
 

Command 
 

Command
 

Figure 3.2-1 Kibo Operation Mode Transitions 

background image

Kibo HANDBOOK 

Table 3.2-2 ISS Operation Modes 

ISS Operation Mode 

iption and Status 

Mode Descr

Standard Mode 

ISS primary operation mode. 

Re-boost Mode 

Mode for when the ISS changes orbital altitude (re-boost). 

Microgravity Mode 

Mode for operating the experiment payloads that require a 
microgravity environment. 

Survival Mode 

ency situations (eg when a verified 

anomaly occurs with the ISS power or attitude control systems).   

y of 

Mode for ISS critical emerg

This mode is used to sustain the long-term operation/survivabilit
the ISS. 

Proximity Operation Mode 

 and Progress cargo ships are in proximity operations to 

Mode for when spacecrafts, including the space shuttles, Soyuz 
spacecrafts
dock or undock/depart from the ISS.   

Assured Safe Crew Return (ASCR) 
Mode 

 is in danger and for 

supporting the swift departure (undock/separation) of the Soyuz for 

Mode for when the life of the ISS crew

returning the crew safely back to the ground. 

External Operation Mode   

As) or robotic arm 

operations for external assembly or maintenance. 

Mode to support Extravehicular Activities (EV

 
 

Table 3.2-3 Applicability of Kibo Modes to ISS Operation Modes 

ISS Operation Mode

 
 

ibo Operation Mode 

Re-boost 

Assur

Retur

Extern

S

t

S

u

andard 

Microgravity 

rvival Oper

ati
on 

Proximity Op

era
tion 

ed Safe Cr

ew 

n (ASCR)

 

al Op

erat

ione 

 
 
K

Standard 

NA

A A A 

Robotics Operation 

N

NA 

NA

NA

NA

A

NA 

Standby 

A A A A A  A  A 

Isolation 

A A A A A  A  A 

A: App
NA: No

licable 

t Applicable 

 

3-5

 

background image

3. Kibo Specifications 

3-6

 

 
 

This page intentionally left blank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

Kibo HANDBOOK 

4.  Kibo System Components 

4-1

 

background image

4. Kibo System Components

ystem Components 

4-2

 

 

4-2

 

4.1 

Pressurized Module (PM) 

4.1 

Pressurized Module (PM) 

4.1.1 Brief Summary 

4.1.1 Brief Summary 

 Kibo’s Pressurized Module (PM) is a research facility 

where astronauts will enter and conduct scientific experiments 

or control Kibo’s systems.    The air composition inside the PM 

is nearly the same as that on earth. The air pressure is 

maintained at one atmospheric pressure (1atm), thus providing 

a comfortable working environment for the astronauts. The 

temperature and humidity inside the PM are also controlled so 

that the astronauts will be able to work in a shirt-sleeve 

environment. 

 Kibo’s Pressurized Module (PM) is a research facility 

where astronauts will enter and conduct scientific experiments 

or control Kibo’s systems.    The air composition inside the PM 

is nearly the same as that on earth. The air pressure is 

maintained at one atmospheric pressure (1atm), thus providing 

a comfortable working environment for the astronauts. The 

temperature and humidity inside the PM are also controlled so 

that the astronauts will be able to work in a shirt-sleeve 

environment. 

The racks that will be installed inside the PM are basically 

divided into two categories; JEM system racks which will 

control and maintain Kibo’s facilities, and payload racks which will be used for experiments inside the PM. 

The racks that will be installed inside the PM are basically 

divided into two categories; JEM system racks which will 

control and maintain Kibo’s facilities, and payload racks which will be used for experiments inside the PM. 

The JEM system racks includes, power supply, communications, air conditioning, thermal control and 

experiment support systems.  The console for Kibo’s robotic arms (JEMRMS Console) and the scientific 

airlock (JEM Airlock) are Kibo’s unique system. 

The JEM system racks includes, power supply, communications, air conditioning, thermal control and 

experiment support systems.  The console for Kibo’s robotic arms (JEMRMS Console) and the scientific 

airlock (JEM Airlock) are Kibo’s unique system. 

The research payloads are for conducting experiments that have been solicited and selected from 

applications submitted from the general scientific community.    The PM will hold ten International Standard 

Payload Racks (ISPRs) for various types of experiments; mainly for life science and material science 

experiments. 

The research payloads are for conducting experiments that have been solicited and selected from 

applications submitted from the general scientific community.    The PM will hold ten International Standard 

Payload Racks (ISPRs) for various types of experiments; mainly for life science and material science 

experiments. 

Figure 4.1.1-1 PM location 

Table 4.1.1-1 shows the specifications for the PM. 

Table 4.1.1-1 shows the specifications for the PM. 

  

Table 4.1.1-1 PM Specifications 

Table 4.1.1-1 PM Specifications 

Items 

Items Specifications 

Specifications 

Shape Cylindrical 

Outer diameter

4.4 m   

Diameter 

Inner diameter 

4.2 m   

Length 11.2 

 

Mass 15.9 

Number of Payload Racks 

23 racks 
JEM system racks: 11   
Scientific experiment racks: 12 (10 research/experiment 
racks, one refridgerator rack, and one stowage rack) 

Electrical Power 

Max. 24kW, max. 120V DC 

Data management system 

32-bit computer system 
High-speed data link: max. 100 Mbps 

Temperature 

18.3 to 26.7 degrees Celsius (

°

C) 

Environmental 
control  

Humidity 

25 to 70 % 

Number of crew 

2 persons for normal operation (max. 4 persons) 

Life time 

More than 10 years 

background image

Kibo HANDBOOK 

4.1.2 Layout 

Figure 4.1.2-1 shows an external view and structure of the PM. 

 

Window

Exposed Facility Berthing Mechanism (EFBM) 

JEMRMS base plate 

JEM Airlock 

Hand Rails for 
Extravehicular Activity 

Debris Shield

 

 

Common Berthing 
Mechanism (CBM) 

Window 

JEM Airlock 

Exposed Facility Berthing Mechanism (EFBM)

JEMRMS base plate

Hatch 

to ELM-PS

to Node 2 

Hand Rails for Extravehicular Activity

11.2m

φ

4.4m 

Debris Shield

Figure 4.1.2-1 Kibo’s PM 

4-3

 

background image

4. Kibo System Components 

4-4

 

Figure 4.1.2-2 Internal Image of PM (view as may be seen from the Harmony Module) 

Inside the PM, the inner walls will hold racks that are composed of either JEM system or scientific research 

payloads.    The work space inside the PM is almost square in shape and is 2.2 m in height and width.    An 

internal view of the PM is shown in Figure 4.1.2-2.   

The PM can hold a total of 23 racks.    The racks are built into the inner four walls of the PM.    Of the four 

inner walls, six racks will be built into three of the walls, and five racks will be built in the remaining wall.   

Of these racks, 11 racks are for JEM system, and 12 are for payloads.    The racks can be attached or detached 

on orbit.    Figure 4.1.2-3 shows the locations of the JEM system racks. Figure 4.1.2-4 shows the locations of 

the payload racks.    A schematic of how to attach and/or detach the racks is shown in Figure 4.1.2-5.   

The payloads racks are designed according to the standardized specifications for hardware interface power 

and data interface.    These racks built in accordance with the required standardized specifications are called 

“International Standard Payload Rack (ISPR)”.    Of the 12 payload racks inside of the PM, 11 racks are ISPRs 

and one rack is for storing experiment materials. 

 

DMS: Data Management System 
EPS: Electric Power System 
ECLSS: Environmental Control and Life Support System 
TCS: Thermal Control System 
LIFE: Life Science Payload Rack   
MTL: Material Science Payload Rack   

background image

Kibo HANDBOOK 

ECLSS/TCS Rack 2

Electric Power System Rack 2

Workstation Rack

Stowage Rack 2

Electric Power System Rack 1

ECLSS/TCS Rack 1

DMS Rack 2

Stowage Rack 1

Inter-orbit Communication System Rack

Data Management System (DMS) Rack 1 

JEMRMS Rack 

to Node 2 

JEM Airlock

Port

Starboard

Forward (direction of travel)

Aft

 

Figure 4.1.2-3 JEM System Racks inside PM 

 

Figure 4.1.2-4 Experiment racks (ISPRs) inside PM 

Material Science Payload Racks (ISPR) 

Material Science 
Payload Racks 
(ISPR) 

Life Science 
Payload Racks 
(ISPR) 

Stowage Rack

Refrigerator Rack

Material Science Payload Racks (ISPR)

to Node 2 

JEM Airlock

ELM-PS 

Aft

Port

Starboard

Forward (direction of travel)

Life Science Payload Racks (ISPR)

4-5

 

background image

4. Kibo System Components

ystem Components 

4-6

 

Figure 4.1.2-5 Schematic of

lly be attached and 

detached for relocation, exch

 

4-6

 

Figure 4.1.2-5 Schematic of

lly be attached and 

detached for relocation, exch

 

4.1.3  System Components of PM 

The PM is composed of the following subsystems. 

 

Command and Data Handling (C&DH) 

 

Electrical Power System (EPS) 

 

Communication and Tracking (C&T) 

 

Thermal Control System (TCS) 

 

Environmental Control and Life Support System (ECLSS) 

 

Experiment Support System (ESS) 

 

Structure  

 

Mechanical System   

 

Crew Support System (CSS) 

 

The Command and Data Handling (C&DH), the Electric Power System (EPS), the Communication and 

Tracking (C&T), the Thermal Control System (TCS) and the Environmental Control and Life Support System 

(ECLSS) are in particular critical systems, and thus, have redundant structures composed of primary and 

secondary strings. If a system’s primary string fails, the secondary string will takeover the primary’s function 

and capability, and will fully or partially maintain the system.  When the PM is in an operational status, 

Rack

  

 how to attach or detach the racks: Each rack can individua
ange, or maintenance. 

 how to attach or detach the racks: Each rack can individua
ange, or maintenance. 

 

4.1.3  System Components of PM 

The PM is composed of the following subsystems. 

 

Command and Data Handling (C&DH) 

 

Electrical Power System (EPS) 

 

Communication and Tracking (C&T) 

 

Thermal Control System (TCS) 

 

Environmental Control and Life Support System (ECLSS) 

 

Experiment Support System (ESS) 

 

Structure  

 

Mechanical System   

 

Crew Support System (CSS) 

 

The Command and Data Handling (C&DH), the Electric Power System (EPS), the Communication and 

Tracking (C&T), the Thermal Control System (TCS) and the Environmental Control and Life Support System 

(ECLSS) are in particular critical systems, and thus, have redundant structures composed of primary and 

secondary strings. If a system’s primary string fails, the secondary string will takeover the primary’s function 

and capability, and will fully or partially maintain the system.  When the PM is in an operational status, 

background image

Kibo HANDBOOK 

basically, both primary and secondary strings of the above listed systems will be activated.    The followings 

are details of the systems/subsystems. 

 

m includes the JEM Control Processor (JCP), which is 

Kibo

s

n

s the status of Kibo

s system and experiment payloads.   

The JC

peration Mode in concert with the ISS Operation Modes.    For 

further 

odes, please refer to Chapter 3, Section 3.2.     

This subs

nctions, including collecting and compiling Kibo’s system status 

data and exp

 to each of Kibo’s systems through the 

Comm

a

r relaying the actual time data provided from the ISS to each 

payloa

 

rd Kibo.    Kibo is equipped with two JCP units for redundant purposes. If one of the 

JCP un

fa

it will automatically take over the control and fully maintain the functions 

and cap

li

 for. 

(2

(3)  Communication and Tracking (C&T) 

The Communication and Tracking (C&T) consists of Low /Medium/High Data Rate Systems, Video System 

an

 as an interphone for communicating with another crew in a 

different segment of the ISS. 

(4)  Thermal Control System (TCS) 

(1)  Command and Data Handling (C&DH)

The Command and Data Handling (C&DH) syste

 ce tral subsystem that controls and monitor

P also controls the setting of Kibo O

information on Kibo

s and ISS operation m

ystem also has data processing fu

eriment data for downlink to the ground, relaying data files

unic tion and Tracking (C&T) system, o

d or system onboa

its  ils, the second JCP un

abi ties that the JCP is responsible

)  Electrical Power System (EPS) 

The Electric Power System (EPS) converts and distributes the electrical power (two electrical power 

channels, 120V DC each) that is supplied from the Node 2 of the ISS.    The EPS consists of various units 

including, Power Distribution Boxes (PDBs) and Power Distribution Units (PDUs) that distributes power to 

payloads and system equipments. 

d Audio System.   

The Low Rate (max. 1Mbps), Medium Rate (max. 10Mbps) and High Rate (max. 100 Mbps) Data Systems 

relays the data sent from the C&DH system to each subsystem, and collects data from the JEM system or 

payloads to be relayed to the C&DH system. 

The Video System is composed of Television Cameras (TVCs) which are installed inside and outside of Kibo, 

Television Monitors and Camera Control Panels (CCPs).    The Video System will transmit visual images taken 

by the TVCs.   

The Audio System is composed of Audio Terminal Units (ATUs) installed in the Work Station Rack (WS 

Rack) and JEMRMS rack.    The ATU is a unit common to the ISS.    ATUs are installed in several locations 

within the ISS.  The crew can use the ATUs

The Thermal Control System (TCS) consists of the following two systems: An Active Thermal Control 

4-7

 

background image

4. Kibo System Components 

4-8

 

Passive Thermal Control System (PTCS) which controls and maintains the 

temperature of Kibo’s equipment through the use of insulating materials or heaters.    Two water coolant loops, 

Temperature Loop (MTL) are included in the PM.    The heat 

generated in Kibo is collected and discharged through two external ammonia coolant loops (medium and low 

te

f heat can be discharged through the medium temperature IFHX, and a maximum of 9 kW 

ca

pport System (ECLSS) 

n a range of 18.3 to 26.7 degree Celsius (

°

C) and humidity within a range of 25 to 70 %.    The 

as

 

Kibo by fans for inter-module ventilations, and then returned to the ISS US 

segment.  

 function.    Smoke sensors will detect any fire. The fire’s location 

will be isolated by power shut down. Fire extinguishers (carbon dioxide) will be used to suppress the fire. 

  The PM is equipped with two windows located on the side 

of

System (ATCS) which transfers the heat generated in the Kibo’s equipments by means of circulating coolant 

water in the coolant loops, and a 

the Low Temperature Loop (LTL) and Moderate 

mperature), known as the Interface Heat Exchanger (IFHX), which is located on the Node 2 exterior.    A 

maximum of 25kW o

n be discharged through the low temperature IFHX. 

(5)  Environmental Control and Life Su

The Environmental Control and Life Support System (ECLSS) controls and maintains the temperature inside 

of the PM withi

tronauts will be able to conduct experiments in a shirt-sleeve environment.  This system provides a 

comfortable and safe intra-vehicular environment. 

The pressurized air is adjusted by a mixture of oxygen and nitrogen supplied from the US segment of the ISS. 

The air is circulated inside 

Kibo has fire detection and suppression

(6)  Experiment Support System (ESS) 

The Experiment Support System (ESS) supplies argon (Ar), helium (He), nitrogen (N2) and carbon dioxide 

(CO2) to the payload racks located in the PM. The ESS also conducts vacuum ventilation and evacuates the 

gasses from the payload racks.    The Common Gas Supply Equipment (CGSE) is a unique special element of 

Kibo.    The CGSE contains gas bottles of Ar, He and CO2, and supplies these gases to each experiment rack.   

Nitrogen gas that will be supplied to the experiment racks is provided from NASA’s Environment Control and 

Life Support System (ECLSS). 

(7) Structure 

The structural body of the PM is designed to bear loads imposed during the space shuttle’s launch, ascent, 

ISS attitude control and maneuver.    At the same time, the system will maintain a pressurized environment 

inside the PM through a shielding of aluminum alloy panels.    The Debris Shield covers the PM’s outer shell 

structure to protect the body from debris impacts. 

 the EF docking port.    Astronauts will be able to look outside through these windows.    The Node 2 side’s 

Passive Common Berthing Mechanism hatch is part of the PM’s structure. 

background image

Kibo HANDBOOK 

(8) Mechanical 

System 

The Mechanical System consists of the following three mechanisms: 1) the Common Berthing Mechanism 

(CBM) which will be used as the berthing port for the Node 2 or the ELM-PS, 2) the JEM Airlock and 3) the 

Exposed Facility Berthing Mechanism (EFBM).    The following are further details on the CBM and the JEM 

Airlock.    For details of the EFBM, please refer to Section 4.3.3 in this chapter. 

(a)  Common Berthing Mechanism (CBM) 

rthing Mechanism (CBM) is an ISS common mechanism designed to connect different ISS 

modules (except Russian modules).  The CBM ensures that the modules berthed by the CBM maintain a 

pr

 

Figure 4.1.3-1 Common Berthing Mechanism (CBM) 

The Common Be

essurized environment where astronauts and materials can move freely between different ISS modules.   

The CBM is paired and composed of active and passive parts: the Active CBM (ACBM) that uses electric 

motors for berthing and the Passive CBM (PCBM).  The PM has both the PCBM and the ACBM.  The 

PCBM is located on the Node 2 berthing port, and the ACBM is located on the berthing port for the 

Experiment Logistics Module's Pressurized Section (ELM-PS).  Figure 4.1.3-1 shows an outline and 

configuration of the CBM. 

ACBM

PCBM 

φ

2.0m

φ

2.0m

Capture latch 

Bolt

Structure 

Ring 

Alignment Guide 

CBM controller

Alignment Guide 

ELM-PS 

ACBM 

PCBM 

ACBM

EF

JEMRMS

PM

Node2 

4-9

 

background image

4. Kibo System Components

ystem Components 

4-10

 

nding the slide table.    The 

“Inner Hatch” is equipped with a small window so that astronauts can visually check the inside of the airlock. 

 

Figure 4.1.3-2 JEM Airlock 

 

Table 4.1.3-1 JEM Airlock Specifications 

Item Specifications 

 

4-10

 

(b) JEM 

Airlock 

An airlock is basically a passage or small area where air pressure can be adjusted for differences between 

two docked neighboring compartments so as to allow astronauts or equipments to move between the two 

compartments.  

The JEM Airlock is designed for transferring experiments and supplies; humans cannot enter this airlock.   

The JEM Airlock inside is pressurized with air at one atmospheric pressure and the EF which is exposed to the 

vacuum space environment.  The JEM Airlock is used for transferring experiment payloads or samples 

between PM and EF.     

The JEM Airlock is cylindrical and equipped with the Inner Hatch which is located inside of the PM side and 

“Outer Hatch” which is located outside of the EF side. Experiments and supplies that will be transferred 

through the airlock are first fastened on a slide table, and then, transferred

nding the slide table.    The 

“Inner Hatch” is equipped with a small window so that astronauts can visually check the inside of the airlock. 

 

Figure 4.1.3-2 JEM Airlock 

 

Table 4.1.3-1 JEM Airlock Specifications 

Item Specifications 

(b) JEM 

Airlock 

An airlock is basically a passage or small area where air pressure can be adjusted for differences between 

two docked neighboring compartments so as to allow astronauts or equipments to move between the two 

compartments.  

The JEM Airlock is designed for transferring experiments and supplies; humans cannot enter this airlock.   

The JEM Airlock inside is pressurized with air at one atmospheric pressure and the EF which is exposed to the 

vacuum space environment.  The JEM Airlock is used for transferring experiment payloads or samples 

between PM and EF.     

The JEM Airlock is cylindrical and equipped with the Inner Hatch which is located inside of the PM side and 

“Outer Hatch” which is located outside of the EF side. Experiments and supplies that will be transferred 

through the airlock are first fastened on a slide table, and then, transferred by exte

 by exte

Outer side

 

1.7 m

 

Outer 
Diameter

Inner side (inside the PM) 

1.4 m 

Length 2.0 

Pressure proof performance 

1047 hPa 

Allowable size for transfer

 

0.64

×

0.83

×

0.80 m

 

Allowable weigh for transfer 

300 kg 

Power Consumption

 

Less than 600 W 

Pressurized 
section (PM) 

Exposed section 
(Vacuum)

Outer Hatch

Slide Table

Inner Hatch

Small window 

background image

Kibo HANDBOOK 

(9)  Crew Support System (CSS) 

The Crew Support System (CSS) is composed of support equipment which will be used by astronauts during 

inter-vehicular activities.  The CSS includes in-board lightings, emergency lightings, handrails, and foot 

restraints. 

4-11

 

background image

4. Kibo System Components 

4-12

 

s Module- Pressurized Section (ELM-PS) 

4.2.1 Brief Summary 

ill initially be used as a logistics container for 

carrying payload racks and system racks from the ground to the 

ISS.    Once the ELM-PS is on orbit, the ELM-PS will be used 

as a stowage facility.    Maintenance tools for the system and 

payloads, samples and spare items will be stored inside the 

ELM-PS.    The ELM-PS volume is less than that of the PM.   

A total of eight racks can be stored inside the ELM-PS 

Table 4.2.1-1 shows the ELM-PS specifications. 

 

 

Table 4.2.1-1 ELM-PS Specifications 

Items Specifications 

4.2 

Experiment Logistic

The Experiment Logistics Module – Pressurized Section, or 

ELM-PS w

Structural Type 

Cylindrical 

Outer Diameter 

4.4 m 

Diameter 

Inner Diameter 

4.2 m 

Length 4.2 

Mass 4.2 

Number of Racks 

8 racks 

Power provided 

3kW 120V DC 

Environment 

Temperature: 18.3 to 29.4 degree Celsius (

°

C) 

Humidity: 25 to 70 % 

Life Time 

More than 10 years 

 

 

 

Figure 4.2.1-1 ELM-PS location 

background image

Kibo HANDBOOK 

4.2.2 Layout 

Figure 4.2.2-1 shows the ELM-PS structure.    Figure 4.2.2-2 shows the rack locations inside the ELM-PS. 

   

Figure 4.2.2-1 ELM-PS Structure 

 

Figure 4.2.2-2 Rack Locations inside ELM-PS 

Image of right side is internal
view of ELM-PS which is seen 
from PM 

Port 

Port

Starboard

Fo

  (Directi

avel)

rward 
on of tr

Aft

Forward (direction of travel)

Aft

S

tarboard

ELM-PS Exposed Facility Unit

Common Berthing 
Mechanism (CBM) 

φ

4.4m 

4.2m

CBM Hatch (for PM) 

4-13

 

background image

4. Kibo System Components 

4-14

 

mponents of ELM-PS 

 

subsystem.    In the event that the PM 

l is available as backup; however the 

subsystem provides a comfortable inner

 the PS.    In the ELM-PS, air 

is circulated by fans and supplied

4.2.3  System Co

The ELM-PS consists of the following subsystems. 

 

Electrical Power System (EPS) 

 

Communication and Tracking (C&T) 

 

Thermal Control System (TCS) 

 

Environmental Control and Life Support System (ECLSS) 

 

Structure  

 

Mechanical System 

 

Crew Support System (CSS) 

 

Each ELM-PS subsystem is driven with one-string system, whereas the PM’s subsystems have a redundant

functionality.    The followings are details of the ELM-PS subsystems. 

(1)  Electrical Power System (EPS) 

The Electrical Power System (EPS) distributes electrical power provided by the PM’s EPS to each ELM-PS 

EPS fails, a second PM EPS channe

crew will need to change the wiring. When the ELM-PS is attached temporarily to the Node 2 awaiting arrival 

of the PM (Please refer to Chapter 5, Section 5.2.1), the electrical power will be supplied to the ELM-PS from 

the Node 2. 

(2)  Communication and Tracking (C&T) 

The Communication and Tracking (C&T) consists of a Medium (max. 10 Mbps) Data System, Video System 

and Audio System.    The C&T relays the data from the ELM-PS subsystems or images inside of the ELM-PS 

to the PM’s Communication and Tracking (C&T) system. 

(3)  Thermal Control System (TCS) 

The Thermal Control System (TCS) maintains the temperature inside the ELM-PS, within a required range, 

by means of a Passive Thermal Control System (PTCS) that controls the thermal environment through the use 

of thermal insulating materials and heating devices. 

(4)  Environmental Control and Life Support System (ECLSS) 

The Environmental Control and Life Support System (ECLSS) controls the atmospheric pressure, 

temperature and humidity inside the ELM-PS so as to provide a shirt-sleeve working environment.  This 

 vehicular environment similar to that of

 from the PM.   

background image

Kibo HANDBOOK 

In addition, this subsystem has fire detection and suppression functions.    Smoke sensors will detect any fire.   

The fire will be isolated by power shut down.  The fire will be suppressed by fire extinguishers (carbon 

di

(5) S

Sim

ads imposed during the space shuttle’s 

launch

c

ude control and maneuver. The ELM-PS is also designed to maintain a pressurized 

environ

n

 through shielding by aluminum alloy panels.  Debris Shield covers the 

ELM-P

 o

tect the body from debris hit.    The berthing hatch for the PM is part 

of the ELM-PS’s structure. 

ommon Berthing Mechanism (CBM), which will be used as the 

berthing port for the Node 2 or the PM, and the ELM-PS Unit Replacement Mechanism (Note: A Passive CBM 

(P

While the H-II Transfer Vehicle (HTV) is berthed to the ISS, payloads or cargo on the Exposed Pallet (EP) 

osed Pallets carried by the HTV needs to be attached to the 

ELM-ES.    For this purpose, the ELM-ES is temporary attached to the ELM-PS whenever the HTV arrives.   

A

ation on the HTV, please refer to Chapter 8. 

oxide). 

tructure 

ilar to the PM, the ELM-PS structural body is designed to bear lo

, as ent, ISS attit

me t inside the ELM-PS

S’s uter shell structure so as to pro

(6) Mechanical 

System 

The Mechanical System consists of a C

CBM) is attached to the body of the ELM-PS).    The followings are details of the ELM-PS Exposed Facility 

Unit (EFU).    For details on the CBM, please refer to Section 4.1.3 in this chapter. 

(a)  ELM-PS Exposed Facility Unit (EFU) 

carried by the HTV will be unloaded.    The Exp

t this stage, the ELM-ES is attached to the ELM-PS EFU.    While the ELM-ES is berthed to the ELM-PS 

EFU, the ELM-ES is provided electrical power and enables data-exchange.    Figure 4.2.3-1 shows an image of 

the ELM-ES being berthed to the ELM-PS EFU. For inform

4-15

 

background image

4. Kibo System Components 

4-16

 

 

(7)  Crew Support System (CSS) 

 

Figure 4.2.3-1 ELM-ES berthed to ELM-PS EFU (image) 

The Crew Support System (CSS) provides in-board lightings and emergency lightings inside the ELM-PS. 

ELM-ES 

ELM-PS 

ELM-PS EFU 

EF

JEMRMS 

background image

Kibo HANDBOOK 

4.3 Exposed 

Facility 

4.3.1 Brief Summary 

Kibo’s Exposed Facility (EF) is a multipurpose experiment 

platform where various scientific activities, including scientific 

experiments, earth observation, communication, scientific and 

engineering experiments or material experiments can be 

conducted by utilizing the microgravity and vacuum space 

environment.    The EF can be used when the EF is berthed to 

the PM.  The Equipment Exchange Unit (EEU) will 

accommodate a maximum of 12 payloads, including the 

Exposed Facility (EF) payloads, ELM-ES and the Inter-orbit 

Communication System (ICS).    Since the EF payloads can be 

exchanged on orbit, it is expected that several different types of 

scientific experiments can be conducted on the EF.   

In order to support the space-exposed experiments on the EF, the EF will provide the necessary electrical 

power to each payload, wi

ired temperature and will 

collect experiment data.   

Table 4.3.1-1 shows the EF specifications.   

 

Table 4.3.1-1 EF Specifications 

Items Specifications 

ll circulate coolant so as to keep the payloads within a requ

 

Shape Box 

shaped 

Size 

5.0 m (width) x 5.6 m (length) x 4.0 m (height) 

Mass 4.1t 

Number of attached payload 

12 (including 2 for JEM system and 1 for temporary storage) 

Electrical power provided 

Max. 11 kW (max. 1 kW for system, 10 kW for EF payloads) 120 V DC 

Data management system 

16-bit computer system 
High-speed data link: max. 100 Mbps 

Environment control 

None 

Life time 

More than 10 years 

 

Figure 4.3.1-1 EF location 

4-17

 

background image

4. Kibo System Components

ystem Components 

4-18

 

 (EF-EEUs) are used to attach the EF payloads to the EF.  Figure 

tion of the EF with eight EF payloads and the ICS Exposed Facility subsystem 

(ICS-EF) attached on the EF. The standard EF payload envelope is assumed to be less than 1.85m x 1.0m x 

0.

 

Figure 4.3.1-2 Standard EF Payload 

 

 

4-18

 

 (EF-EEUs) are used to attach the EF payloads to the EF.  Figure 

tion of the EF with eight EF payloads and the ICS Exposed Facility subsystem 

(ICS-EF) attached on the EF. The standard EF payload envelope is assumed to be less than 1.85m x 1.0m x 

0.

EF payload configuration. 

 

Figure 4.3.1-2 Standard EF Payload 

 

The EF Equipment Exchange Units

The EF Equipment Exchange Units

4.3.2-1(2/2) shows the configura

4.3.2-1(2/2) shows the configura

8m, with a weight of 500kg.    Figure 4.3.1-2 shows a standard 

8m, with a weight of 500kg.    Figure 4.3.1-2 shows a standard EF payload configuration. 

0.8m

1.0m

Grapple Fixture 

JEMRMS will grapple here

1.85m 

Payload Interface Unit (PIU)

For details, refer to 
Paragraph 4.3.3 (5) (b)

Launch Restraint Trunnion 

background image

Kibo HANDBOOK 

4

 

Figure 4.3.2-1

1/2

 EF Structure 

.3.2 Layout 

EF Configuration diagram is shown in Figure 4.3.2-1. 

5.0m 

Small Fine Arm (SFA) 
Stowage Equipment 
(SSE) 

4.0m 

5.6m

Exposed Facility Unit (EFU) (12 units)

Trunnion (x 5) 

EF Berthing 
Mechanism 
(EFBM) 

PM 

Grapple Fixtures (x 2)

This is a fixture for 
fastening the EF to the 
space shuttle’s cargo bay, 
when the EF is launched.

SSRMS or SRMS grapple 
here 

For details, refer to 
Paragraph 4.5.3 

This mechanism is used to attach EF payloads to the EF. 

Robot essential Orbital Replacement Unit (R-ORU) (8 units) 

PM 

Extravehicular Activity Orbital Replacement Unit (E-ORU) 

4 units

4-19

 

background image

4. Kibo System Components

ystem Components 

4-20

 

 

4-20

 

 

Figure 4.3.2-1

2/2

 EF Structure 

EF Berthing Mechanism (EFBM)

Grapple Fixtures

 

Figure 4.3.2-1

2/2

 EF Structure 

 (x 2)

PM

Small Fine Arm (SFA)
Stowage Equipment 
(SSE) 

Robot essential 
Orbital 
Replacement Unit 
(R-ORU) (4 
units) 

EF Equipment Exchange Unit (EEU) 

12 units

 

ICS-EF

EF Payloads

Trunnion (x 5) 

refer to section 4.6

background image

Kibo HANDBOOK 

4.3.3  System Components of EF 

The EF consists of the following subsystems; 

 

Electrical Power System (EPS) 

 

Communication and Tracking (C&T) 

 

Thermal Control System (TCS) 

 

Structure  

 

Mechanical System 

 

The Electrical Power System (EPS), Communication and Tracking (C&T) and Thermal Control System

(TCS) have redundant functionality.    If the primary strings of these subsystems fail, the secondary strings will 

take over and maintain their system functions.    The following are details of the subsystems. 

(1)  Electrical Power System (EPS) 

The Electrical Power System (EPS) receives electrical power from the PM and distributes power to the EF

equipment, Exposed Pallet (ELM-ES), and EF payloads attached to the EF respectively. 

(2)  Communication and Tracking (C&T) 

The Communication and Tracking (C&T) includes the Exposed Facility System Controller (ESC), which is

installed on the EF and controls the EF equipment or system devices by communicating with the JEM Control

 

 

 

Processor (JCP).    The ESC also rela

 payloads, such as experiment data, 

image, temperature and pressure data. 

(3)  Thermal Control System (TCS) 

The Thermal Control System (TCS) is composed of the following two systems.  The Active Thermal 

Control System (ATCS) which transfers heat generated in the equipment and payloads by circulating the 

coolant, Fluorinert

TM

, and the Passive Thermal Control System (PTCS) which maintains the temperature of the 

EF system equipments or payloads through the use of thermal insulators or heaters.    The TCS manages the 

temperature environment for the EF system and payloads operation by protecting the EF from the extreme 

space thermal environment.  The heat collected by the ATCS will be transferred to the Heat Exchanger 

installed on the PM structure. Coolant loops pipes have no redundancy; however other components, such as 

pumps, have redundancy. 

(4) Structure 

The Structure of the EF is composed of box shaped units, which consist of aluminum alloy frames, panels, 

and trunnions that are used to attach the EF to the space shuttle’s cargo bay. 

 

ys data between the PM and the EF

4-21

 

background image

4. Kibo System Components 

4-22

 

osed Facility Berthing Mechanism (EFBM) that is used to 

connect the

cility Equipment Exchange Unit (EEU) that attaches EF payloads 

to the E

(a)  Kibo’

 Berthing Mechanism (EFBM) 

he EF Berthing Mechanism (EFBM) is a mechanism to connect the EF to the PM.  It is paired and 

co

nd tracking, and 

thermal control system will be simultaneously connected. Data and power transfer between the PM and EF will 

M is shown in Figure 4.3.3-1. 

(5) Mechanical 

System 

The Mechanical System is composed of Exp

 EF with the PM, and Exposed Fa

F. 

s Exposed Facility

T

mposed of an Active EFBM and a Passive EFBM. The Active EFBM, which has a pull-in torque structure 

and fastens bolts by motor drive, is located on the PM.    The Passive EFBM is located on the EF.    Once both 

Active and Passive EFBMs are connected, the electrical power system, communication a

be initiated.    The external view of the EFB

 

Figure 4.3.3-1 Exposed Facility Berthing Mechanism 

EFBM

 

Active EFBM 

Passive EFBM 

Pull-in torque structure

background image

Kibo HANDBOOK 

(b)  Kibo’s Exposed Facility’s Equipment Exchange Unit (EF-EEU) 

 thermal control system (TCS) will be simultaneously connected and power supplies to the payloads, 

data transactions, and thermal control become operable.   

acility Unit (EFU) and is located on the 

side of the EF. The passive EEU, known as the Payload Interface Unit (PIU), is located on the EF payloads.   

Fi

Electrical Power System (EPS), Communications and Tracking (C&T) or Thermal Control System (TCS) are 

critical systems for operating the EF, thus these system units are designed as ORUs.    In case of failure, these 

units can be exchanged on orbit. There are two types of ORUs on the EF. The first type of ORU is the 

Extravehicular Activity ORU (E-ORU), which is attached to the nadir side of the EF, and will be exchanged by 

extravehicular activities.    The second ORU type is Robot essential ORU (R-ORU) which is attached to the 

zenith side, and will be exchanged by JEMRMS, Kibo’s robotic arm. 

The EF Equipment Exchange Unit (EEU) is a mechanism that attaches the EF payloads to the EF.    Once a 

payload is attached to the EF by the EEU, the electrical power system (EPS), communication and tracking 

(C&T) and

The EEU is composed of an active EEU known as the Exposed F

gure 4.3.3-2 shows the EEU (EFU and PIU) structures.   

The EEU accommodates the EF payloads to be exchanged on orbit, thus several different types of 

experiments can be conducted compared to existing spacecrafts, and thus will flexibly meet the demands for 

future technology development. 

 

Figure 4.3.3-2 EEU (EFU and PIU) Structures 

(c)  Exposed Facility’s Orbital Replacement Units (ORUs) – Extravehicular Activity ORU 

(E-ORU) and Robot essential ORU (R-ORU) 

Kibo’s Robotic arm 
(JEMRMS Main Arm)

Grapple Fixture 

EF 

Capture Latch

Power / fluid connectors

PIU

EFU 

EF payload 

4-23

 

background image

4. Kibo System Components

ystem Components 

4-24

 

 (ELM-ES) 

4.4.1 Brief summary 

-ES 

w

l be 

de

ransferred to the EF by using 

 

 

Figure 4.4.1-2 ELM-ES operation concept 

 

4-24

 

 (ELM-ES) 

4.4.1 Brief summary 

-ES 

w

l be 

de

ransferred to the EF by using 

the JEMRMS. 

The used payloads will be retrieved from the EF using the 

JEMRMS and stored on the ELM-ES.    Then, the ELM-ES will return to the ground aboard the space shuttles.   

Figure 4.4.1-2 shows the ELM-ES operations concept. Table 4.4.1-1 shows the ELM-ES specifications.   

 

 

Figure 4.4.1-2 ELM-ES operation concept 

4.4 Experiment 

Logistic 

Module-Exposed Section

4.4 Experiment 

Logistic 

Module-Exposed Section

Kibo’s Experiment Logistics Module-Exposed Section 

(ELM-ES) is a Kibo’s component, which carries Exposed 

Facility (EF) payloads and EF system ORUs.    The ELM

Kibo’s Experiment Logistics Module-Exposed Section 

(ELM-ES) is a Kibo’s component, which carries Exposed 

Facility (EF) payloads and EF system ORUs.    The ELM

ill supply and transfer the system ORUs and the EF payloads 

to the Kibo’s Exposed Facility (EF), as well as, store completed 

EF payloads exchanged from the EF.  The ELM-ES wil

ill supply and transfer the system ORUs and the EF payloads 

to the Kibo’s Exposed Facility (EF), as well as, store completed 

EF payloads exchanged from the EF.  The ELM-ES wil

livered to the ISS by space shuttles and attached to the EF.   

After the ELM-ES is attached to the EF, the EF payloads on the 

ELM-ES will be removed and t

livered to the ISS by space shuttles and attached to the EF.   

After the ELM-ES is attached to the EF, the EF payloads on the 

ELM-ES will be removed and t

the JEMRMS. 

The used payloads will be retrieved from the EF using the 

JEMRMS and stored on the ELM-ES.    Then, the ELM-ES will return to the ground aboard the space shuttles. 

Figure 4.4.1-2 shows the ELM-ES operations concept. Table 4.4.1-1 shows the ELM-ES specifications.   

 

Landing 

ISS 

ELM-ES loaded in 
the space shuttle’s 
cargo bay 

ELM-ES retrieved from the 
space shuttle’s cargo bay 

Exchange of 

EF payloads

ELM-ES prepared and 
checked out

Space shuttle 
docked to the ISS

Space shuttle undocked 
from the ISS 

to ground overhaul facility 

ELM-ES

EF 

Kibo

EF payloads exchanged 
by JEMRMS 

ELM-ES installed on / 
removed from EF 

Launch 

EF payloads installed 
on / removed from 

Figure 4.4.1-1 ELM-ES location 

ELM-ES 

background image

Kibo HANDBOOK 

Table 4.4.1-1 ELM-ES Specifications 

Items

 

Specifications

 

Structure type

Frame

 

 

Width 4.9 

 

Height

 

2.2 m (including the height of the payloads)

 

Length

 

4.2 m 

 

Mass (Dry weight)

 

1.2 t (excluding payloads)

 

Number of Payloads 
(loading style variable) 

 

Three EF payload
Two EF payloads +
Two EF payloads +

 three R-ORUs 
 two E-ORUs

 

Electrical power supply

 

Max. 1.0 kW 120 V DC

 

Thermal control

 

Heater and thermal insulator

 

Life time

 

More than 10 years

 

 
 

4-25

 

background image

4. Kibo System Components 

4-26

 

4.4.2 Layout 

ELM-ES configuration is shown in Figure 4.4.2-1. 

 

Figure 4.4.2-1 ELM-ES Configuration 

2.2m

4.2m

4.9m 

Trunnions (x 5)

Payload Interface Unit (PIU)

This mechanism is used to fasten the 
ELM-ES to the space shuttle’s cargo bay 

EF payloads

This illustrates 
when three EF 
payloads are 
attached 

Trunnions

This mechanism is 
used to attach the 
ELM-ES to the EF 
or ELM-PS 

Grapple Fixture (x 2) 

SSRMS or SRMS will grapple 
here 

Payload Attachment Mechanism (PAM)

Grapple Fixture

Payload Interface Unit 
(PIU) 

Payload Attachment Mechanism (PAM)

Trunnion

background image

Kibo HANDBOOK 

4.4.3  System Components of ELM-ES 

 (ELM-ES) is composed of the following subsystems. 

 

 

 

  

The Experiment Logistics Module-Exposed Section

 

Electrical Power System (EPS) 

 

Communication and Tracking (C&T) 

 

Thermal Control System (TCS) 

 

Structure 

 

Mechanical System 

Details of the subsystems are as follows. 

(1)  Electrical Power System (EPS) 

The Electrical Power System (EPS) receives power from the space shuttles during the period from launch to 

docking with the ISS, and distributes the power to ELM-ES system and Exposed Facility (EF) payloads. 

Power will be supplied from the EF while the ELM-ES is operated on orbit. 

(2)  Communication and Tracking (C&T) 

The Communication and Tracking (C&T) includes the Electronic Control Unit (ECU) that is installed on the 

ELM-ES.  The ECU monitors the status of the ELM-ES, temperature of the EF payloads attached on the 

ELM-ES, and the status of the Payload Attachment Mechanisms (PAMs) by communicating with the JEM

Control Processor (JCP) on the PM.    The ECU also controls the PAMs or temperature of the attached EF

payloads. 

(3)  Thermal Control System (TCS) 

The ELM-ES is entirely covered with thermal insulating materials in order to prevent the temperature of the 

ELM-ES system from exceeding the operating temperature.    In addition, to maintain the ELM-ES thermal 

environment, heating devices are installed in the areas where thermal insulating material are not sufficient and 

the temperature may exceed tolerable temperature ranges.    In addition, heating devices are installed in the EF 

system ORU and EF payloads which are attached on the ELM-ES. 

(4) Structure 

The ELM-ES structure is designed to bear loads imposed during the space shuttle’s launch, ascent, ISS 

attitude control and maneuver.    The main sections of the ELM-ES are composed of aluminum alloy panels in 

a reticular pattern.   A mechanism called “Trunnion” fastens the ELM-ES to the space shuttle’s cargo bay.

The ELM-ES has five Trunnions. 

4-27

 

background image

4. Kibo System Components 

4-28

 

ds 

on to t

L

nit (PIU), which connects the ELM-ES to the EF or the ELMPS.   

For inf

a

4.3.3 (5) (b). 

(a)  P

o

ment Mechanism (PAM) 

M) fastens the EF payloads to the ELM-ES while the ELM-ES is 

being launched to the ISS or returned to the ground aboard the space shuttle. In addition, this mechanism is 

r instances when these payloads need to be moved on orbit by using 

the robotic arms.    In addition, the PAM has electrical connectors that provide heater power for keeping the EF 

pa

 

Figure 4.4.3-1 Payload Attachment Mechanism (PAM) 

(5) Mechanical 

System 

The Mechanical System consists of Payload Attachment Mechanisms (PAMs), which locks the EF payloa

he E M-ES, and a Payload Interface U

orm tion on the PIU, please refer to Section 

ayl ad Attach

The Payload Attachment Mechanism (PA

used to install and remove EF payloads; fo

yloads temperature.  Figure 4.4.3-1 shows an overview of the PAM. 

EF payload

Structure Latch Mechanism (SLM) 

An EF payload will be grappled with four SLMs

Umbilical Connector Mechanism (UCM) 

This mechanism enables power to be 
supplied to the EF payloads from the 
ELM-ES 

Trunnion for the EF payload 

This structure connects the 
EF payloads to the ELM-ES 

Alignment Guide

background image

Kibo HANDBOOK 

4.5  Japanese Experiment Module Remote Manipulator System 

(JEMRMS) 

4

(JEMRMS), Kibo’s robotic arm, is a robotic manipulator 

conducted 

on Kibo and/or for supporting Kibo’s maintenance tasks in 

sp

 

.5.1 Brief Summary 

Japanese Experiment Module Remote Manipulator System 

system intended for supporting experiments being 

ace.  The JEMRMS will be the third remote manipulator 

robotic arm system designed for space operations that Japan 

will have flown into space. The JEMRMS follows Japan’s 

Manipulator Flight Demonstration (MFD)*

1

 in August 1997 

and the Engineering Test Satellite VII (ETS-VII)*

2

, also 

known as “KIKU No.7”, in November 1997.    The JEMRMS 

is composed of two arms, the Main Arm (MA) and the Small 

Fine Arm (SFA). The robotic control workstation, known as the JEMRMS Console, is used to operate the 

JEMRMS.   

Both the Main Arm (MA) and Small Fine Arm (SFA) have six joints and allow for similar movements with 

the human arm.  Inside the PM, the crew will control the JEMRMS, while watching images on the TV 

monitor, located on the JEMRMS Console, which are taken from the cameras attached to the arm. 

With these arms, the crew can conduct several tasks including exchanging EF payloads or EF system ORUs 

that are located on the EF and ELM-ES.    The ten-meter-long Main Arm transfers (grapple and move) large 

objects, and the two-meter-long Small Fine Arm is used for precise, delicate and fine-tuned operations.     

The JEMRMS will be operated for more than ten years on orbit.    Thus, the JEMRMS has exchangeable or 

repairable design in case of failure.    These arms can be repaired by intra-vehicular or extravehicular activities. 

(Repair of the Main Arm will be conducted only by extravehicular activity.) 

Table 4.5.1-1 shows the specifications for the JEMRMS (Main Arm and Small Fine Arm). 

                                                                  

1

*  The Manipulator Flight Demonstration

ed a test model 

(equivalent to the JEMRMS
*

2

 The Engineering Test Satellite VII (ETS-VII), "KIKU No.7", launched in November 1997, evaluated the 

remote-manipulation system and studied the basic techniques for using robotics in space. 

Figure 4.5.1-1 JEMRMS Location 

 (MFD) test, conducted on STS-85 in August 1997, us

), that verified some of the JEMRMS functions. 

4-29

 

background image

4. Kibo System Components

ystem Components 

4-30

 

Specifications 

 

4-30

 

Specifications 

Table 4.5.1-1 JEMRMS (Main Arm and Small Fine Arm) Specifications 

Table 4.5.1-1 JEMRMS (Main Arm and Small Fine Arm) Specifications 

Items 

Main Arm (MA) 

Small Fine Arm (SFA) 

Structure type 

Main Arm with attached Small Arm.    Both arms have 6 joints   

Degrees of freedom 

Length  

10  

2.2  

Mass (weight)   

kg 

780 

190 

Handling Capacity 

kg 

Max. 7,000 

Max. 300   

mm 

Translation 50(+/-) 

Translation 10(+/-) 

Positioning accuracy 

degree 

Rotation 1(+/-) 

Rotation 1(+/-) 

60 (P/L: less than 600kg) 

50 (P/L: less than 80kg) 

30 (P/L: less than 3,000kg) 

25 (P/L: less than300kg) 

Translation / rotation speed 

mm/s 

20 (P/L: less than 7,000kg) 

Maximum tip force 

More than 30 

More than 30 

Life time 

More than 10 years 

 

background image

Kibo HANDBOOK 

4.5.2 Layout 

Compositions of the Main Arm, Small Fine Arm and the JEMRMS 

wn in Figure 4.5.2-1. 

 

 

Figure 4.5.2-1 Main Arm (MA), Small Fine Arm (SFA) and JEMRMS Console 

Console are sho

MA Joint 2 

MA Joint 1 

MA Wrist Vision 
Equipment 

MA End Effector 

SFA Electronics 

Main Arm (MA)

Small Fine Arm (SFA) 

4m

JEMRMS Console

4m

MA Boom 1 

MA Joint 3 

関節の動作

 

Rotary Motion 

MA Elbow Vision 
Equipment 

MA Boom 2 

MA Joint 4 

MA Base 

MA Joint 6 

MA Joint 5

SFA Grapple Fixture 

MA Boom 3

2m

SFA TV Camera 
Electronics 

2.2m 
Fully 
Deployed 

SFA Wrist Joint (Roll) 

SFA Force / Torque Sensor

SFA Shoulder Joint (Roll)

SFA Shoulder Joint (Pitch)

SFA Wrist TV Camera Head 

Boom 1

SFA Tool

SFA Elbow Joint (Pitch)

Boom1

SFA Wrist Joint (Pitch)

Boom 2

SFA Wrist 
Joint (Yaw) 

Caution and Warning (C&W) Panel 

Hold/Release Electronics (HREL)

Audio Terminal Unit (ATU) 

Remote Interface Panel (RIP)

Television Monitor 1 (Display) 

Translational Hand Controller (THC) 

Camera Control Panel (CCP) 

Robotics Laptop Terminal (RLT)

Television Monitor 2 (Display) 

Avionics Air Assembly (AAA)

Rotational Hand Controller (RHC) 

Management Data Processor (MDP) 

Power Distribution Box (PDB)

Interface Panel

Arm Control Unit (ACU) 

4-31

 

background image

4. Kibo System Components 

4-32

 

mponents of JEMRMS 

 

Main Arm 

 

Small Fine Arm 

 

JEMRMS Console 

 

SFA Stowage Equipment   

 

JEMRMS Visual Equipment 

 

Hold and Release Mechanism 

 

The following are details of the subsystems. 

 

(1) Main 

Arm 

(MA) 

The Main Arm (MA) consists of MA Booms, MA Joints, MA Television Cameras (TV Cameras), MA 

Camera Pan Tilt Unit (PTU), a light and the MA End Effector (grapple fixture) that grapples EF payloads.   

There are three MA Booms, known as MA Boom 1, 2 and 3.    Vision equipments (TV Cameras, PTU and 

light) are attached to the MA Boom 2 and MA Boom 3.    The crew will control the JEMRMS while watching 

the images, which are taken with the visual equipment, on the TV monitor located on the JEMRMS Console. 

The Main Arm is primarily used for exchanging EF payloads (Standard payload envelope is planned to be 

1.85m x 1.0m x 0.8m and weighing less than 500kg).  The EF payload is grappled and moved by the 

JEMRMS Main Arm End-Effector.     

(2)  Small Fine Arm (SFA) 

The Small Fine Arm (SFA) consists of SFA Electronics, SFA Booms, SFA Joints, end effectors called “Tool”, 

and SFA TV Cameras.    The SFA is used when the SFA is grappled by the MA End Effector.     

The SFA is primarily used for precise, delicate and fine-tuned tasks, which include exchanging the Orbital 

Replacement Units (ORU) on the EF.    (ORU size is planned to be 0.62 x 0.42 x 0.41 m, and weighing 80 kg 

max)   

The SFA is designed with a compliance function that was validated on the Manipulator Flight Demonstration 

(MFD) during the STS-85 mission.  This feature allows the crew to easily operate the arm.  The SFA 

compliance function utilizes the Force/Torque Sensor on the arm to sense when a target is touched, after which 

the attitude of the arm is automatically controlled. 

 

 

(3) JEMRMS 

Console 

The JEMRM

ing the images, 

4.5.3  System Co

The JEMRMS is composed of the following subsystems. 

S Console is installed in the PM.    Crew will control the JEMRMS while watch

background image

Kibo HANDBOOK 

which are taken with TV cameras, on the TV monitor located on the JEMRMS Console. The JEMRMS 

Console is composed of a Management Data Processor (MDP), Laptop Computer, Hand Controllers, TV 

M

e MDP controls the JEMRMS systems by 

commu

a

 and the ISS Command and Control Multiplexer/Demultiplexer (C&C MDM) that 

control

p Computer and Hand Controllers (RHC and THC) are used to manipulate the 

JEMRM  T

lays images taken from the external cameras.    The Hold/Release Electronics 

(HREL

 u

 Release Mechanism (please refer to (5)).     

(4)  S

l

quipment (SSE) 

ment (SSE) is a device to stow the SFA when the SFA is not 

-use.  The SSE is installed on the EF.  The location of the SSE is shown in Figure 4.3.2-1. 

 Mechanism (HRM) 

 

Figure 4.5.3-1 JEMRMS locked to PM (Launch configuration) 

onitors and Hold/Release Electronics (HREL).  Th

nic ting with the JCP

s the ISS.  The Lapto

S.

he TV monitor disp

) is sed to operate the Hold and

ma l Fine Arm (SFA) Stowage E

The Small Fine Arm (SFA) Stowage Equip

in

(5)  Hold and Release

While the Main Arm (MA) is launched to the ISS, the Hold and Release Mechanism (HRM) locks the Main 

Arm to the PM.    After the PM is docked with the ISS, the crew will manipulate the HREL on the JEMRMS 

Console to release the locked Main Arm from the HRM.    Afterward, the Main Arm will be deployed.    The 

HRM holds the Main Arm’s elbow, wrist and Boom3.    Figure 4.5.3-1 shows the position of the JEMRMS 

locked to the PM. (Launch configuration). 

Main Arm

Pressurized 

Module (PM)

JEMRMS base plate

HRM

HRM

Hold and Release 

Mechanism (HRM) 

Hidden below the arm

 

4-33

 

background image

4. Kibo System Components 

4-34

 

diameter antenna that is installed on the EF and JAXA’s data 

 

as Kodama.   

provides the data communication functions. The ICS Exposed 

l

enna installed 

on the EF.   

Specifications 

4.6 

Inter orbit Communication System (ICS) 

4.6.1 Brief Summary 

The Inter-orbit Communication System (ICS) is Japan’s 

unique system for uplink/downlink data, images and voice data 

between Kibo and the Mission Control Room at the Tsukuba 

Space Center (TKSC).  The ICS uses the 80-centimeter 

relay satellite, the Data Relay Test Satellite (DRTS), also known

The ICS consists of the following two subsystems.    The ICS 

Pressurized Module (ICS-PM) subsystem located in the PM 

Faci ity (ICS-EF) subsystem composed of an ant

Table 4.6.1-1 shows the ICS specifications. 

 

 

Table 4.6.1-1 ICS Specifications 

Items 

ICS-PM ICS-EF 

Size (m) 

2.0 x 1.0 x 0.9   

1.1 x 0.8 x 2.0 (antenna retracted) 
2.2 x 0.8 x 2.0 (antenna deployed) 

Mass (weight) (kg) 

330 

310 

Downlink 

50 Mbps / About 26 GHz / QPSK 

Data rate / 
frequency / 
modulation 
method 

Uplink 

3 Mbps / About 23 GHz / BPSK 

DRTS Visible Window* 

Total of 7.8 hours per day (DRTS currently consists of only one satellite) 
Max. 40 min. per orbit 

*: The actual amount of time available for the DRTS communication may be shorter than the data in the above 
table since the above time is based on calculated estimations. In addition, DRTS communication time may 
occasionally be allocated for other satellites.   
QPSK (Quadrature Phase Shift Keying)   
BPSK (Binary Phase Shift Keying) 
 

Figure 4.6.1-1 ICS Location 

background image

Kibo HANDBOOK 

4.6.2 Layout 

The ICS configuration is shown in Figure 4.6.2-1. 

 

 

Figure 4.6.2-1 Inter-orbit Communication System (ICS) 

ICS Pressurized Module (ICS-P

ICS Exposed Facility (ICS-EF) subsystem

M) subsystem 

Eart

Grapple Fixture 

JEMRMS will 
grapples here 

h sensor 

Sun sensor

Antenna 

Retracted state

 

Stowage 
space 

ICS ORU 

(seven nits) 

Space fo

Communic

r HTV - Proximity 

ation Sys

OX)

tem (PR

4-35

 

background image

4. Kibo System Components 

4-36

 

mponents of ICS 

S-PM and ICS-EF components.   

(1)  ICS Pressurized Module (ICS-PM) subsystem 

The ICS Pressurized Module (ICS-PM) subsystem is comprised of seven Orbital Replacement Units (ORUs). 

Equipment or devices, such as the Base Band Data Processing Unit, are included in those ORUs.  These 

ORUs are installed in the ICS rack and manages the ICS.   

Primarily, the ICS-PM multiplexes the data of the Kibo’s system and experiment payloads for downlink from 

Kibo to the ground, demultiplexes the data uplinked from the ground, and modulates the data before sending or 

demodulates the data after receipt. 

In addition, the ICS-PM has an automatic operation scheduling function where, commands are uplinked 

from the ground in advance while the DRTS is in a communication window. The commands uplinked from the 

ground are stored in the ICS-PM.  Each command is executed at the scheduled time.  This provides ICS 

scheduled automatic operations.    In addition, the ICS-PM has data recording function for later downloading to 

the ground, whenever real time communication is not available.   

 

(2)  ICS Exposed Facility (ICS-EF) subsystems 

The ICS Exposed Facility (ICS-EF) subsystem is comprised of several components, including Pointing 

Mechanism, frequency converters, High-Power Amplifier, as well as, various sensors, including the Earth 

sensor, Sun sensor and Inertial Reference Unit.   

Data downlinked from Kibo to the ground are relayed to the ICS-EF by the ICS-PM. The data is passed 

through the frequency converter and power amplifier, and then, sent to the DRTS. Data uplinked from the 

ground will pass through the frequency converter, converted to a low frequency, and then, relayed to the 

ICS-PM.  

In addition, the ICS antenna can automatically track the DRTS.  The ICS-EF determines the antenna’s 

attitude based on data from the Earth sensor, Sun sensor and Inertial Reference Unit, while at the same time, 

calculating the antenna’s directions based on the ISS and DRTS orbital positions The ICS-EF moves the 

antenna using the Antenna 

CS attitude, and tracks the 

DRTS automatically.    Further, while communicating with the DRTS, the ICS can calibrate the direction of the 

DRTS by detecting any pointing error based on the high-frequency signals that the antenna receives. 

4.6.3  System Co

The following are details of the ICS subsystems, IC

Pointing Mechanism by estimating the variability of the I

background image

Kibo HANDBOOK 

5. Kibo Operations 

5-1

 

background image

5. Kibo Operations 

5.1 

Launch and Flight Plan 

Kibo’s components will be launched to the International Space Station (ISS) in three assembly flights as 

shown in Table 5.1-1 below. 

 

Table 5.1-1 Kibo Launch Plan 

ISS Assembly Flight 

*1 

Kibo Component 

Launch Target 

1J/A 

Experiment Logistics Module -Pressurized 
Section (ELM-PS) 

No earlier than February 14, 
2008 

1J 

Pressurized Module (PM) with JEMRMS 

No earlier than April 24, 2008 

2J/A 

Exposed Facility (EF) and Experiment 
Logistics Module –Exposed Section (ELM-ES)

Japanese Fiscal Year (JFY) 
2008 

 

After being attached to the ISS, every ISS component including Kibo’s component is and will be operated 

according to the operations overview as shown in Table 5.1-2.    Each country or organization that develops an 

ISS component is responsible for operating their own components.    Kibo operations are controlled from the 

Mission Control Room in the Space Station Integration and Promotion Center (SSIPC) at the Tsukuba Space 

Center (TKSC).    For details on the ground facilities and Kibo’s mission operations, please refer to Section 5.3. 

 

Table 5.1-2 Operations of ISS Components after launch 

Operations Overview 

Assembly Activation and 
Checkout 

Assemble and activate, and verify whether the components are 
operational 

System Operations 

Control and monitor the component’s operational status 

Utilization 

(For Kibo) Conduct experiments in space using experiment payloads 
onboard Kibo 

Maintenance 

Exchange or repair failed or failing equipment 

 

Supplies, which are necessary for maintaining or exchanging experiment payloads on-orbit, are delivered to 

the ISS by the space shuttle, the H-II Transfer Vehicle (HTV) that is currently under development by Japan, the 

Russian Progress spacecraft, and the Automated Transfer Vehicle (ATV) developed by the European Space 

agency (ESA).    For information on the HTV, please refer to Chapter 8. 

                                                                  

*1

 For the ISS Assembly Flight Numbers, the letter "J" represents the mission relating to Japan's element, and 

"A" represents the mission relating to US elements.  For example, "2J/A" is the second assembly flight which 
delivers elements of Japan and US. 

5-2

 

background image

Kibo HANDBOOK 

5.2 Kibo 

Assembly 

Sequence 

5.2.1 1J/A Flight 

During the 1 J/A Flight, the Experiment Logistics Module – Pressurized Section (ELM-PS) will be delivered 

to the ISS.  The ELM-PS will be carrying Kibo’s system racks (JEM system racks) and payload racks.  

Figure 5.2.1-1 shows the expected external view of the ISS after completion of the 1J/A Flight Mission.    The 

planned cargo bay layout during launch of the 1J/A Flight is shown in Figure 5.2.1-2.   

After the docking of the space shuttle to the ISS, the following procedures will be used to attach the ELM-PS 

to the ISS.    Figure 5.2.1-3 shows the procedures for attaching the ELM-PS to the ISS. 

 

1.

 

Space shuttle docks to ISS 

2.

 

Canadarm2 (ISS robotic arm) grapples the Orbiter Boom Sensor System (OBSS) and removes the 

OBSS from the space shuttle’s cargo bay. (This will provide sufficient clearance for the safe removal 

of the ELM-PS from the space shuttle’s cargo bay.) (Figure 5.2.1-3 (1)) 

3.

 

The Shuttle Remote Manipulator System (SRMS) removes the ELM-PS from the space shuttle’s cargo 

bay. (Figure 5.2.1-3 (1) to Figure 5.2.1-3 (3)) 

4.

 

The ELM-PS is attached, by the SRMS, to the Common Berthing Mechanism (CBM) at the zenith side 

of Node 2. (Figure 5.2.1-3 (4)) 

5.

 

The CBM vestibule is pressurized.  The crew connects the electrical power cables and air ducts 

between the ELM-PS and Node 2.   

6.

 

The ELM-PS is powered up and activated.    The operational status of the ELM-PS is checked.   

7.

 

The crew enters the ELM-PS from Node 2. 

 

Eventually, the ELM-PS will be attached to the PM.    However, since the ELM-PS will be launched before 

the PM, the ELM-PS will temporarily be attached to the Node 2 until the PM is delivered to the ISS. 

 

 

Note: The above procedures are based on NASA/JAXA coordination as of March 2007.  The above 

procedures are subject to change dependent on possible changes. 

 

5-3

 

background image

5. Kibo Operations 

Direction of travel 

Direction towards earth

Node 2

Experiment Logistics Module – 
Pressurized Section (ELM-PS) 

 

Figure 5.2.1-1 ISS after completion of 1J/A Flight 

to space shuttle’s Middeck

Experiment Logistics Module –
Pressurized Section (ELM-PS)

SRMS 

Canadian element 

Orbiter Docking System (ODS) 

 

Figure 5.2.1-2 Cargo bay layout during launch of 1J/A Flight (Image) 

5-4

 

background image

Kibo HANDBOOK 

 

Node 2 

ELM-PS 

(1) 

(2)

 

(3)

(4)

Canadarm2 (SSRMS) 

OBSS 

SRMS

ELM-PS

SRMS

Node 2 
 

Figure 5.2.1-3 Procedures for connecting ELM-PS to ISS 

5-5

 

background image

5. Kibo Operations 

5.2.2 1J Flight 

During the 1J Flight, the Pressurized Module (PM) and Kibo’s Remote Manipulation System (JEMRMS) 

will be delivered to the ISS.    Figure 5.2.2-1 shows the expected external view of the ISS after completion of 

the 1J Flight.    The Planned cargo bay layout during launch of 1J Flight is shown in Figure 5.2.2-2.    The 

JEMRMS will be securely locked to the PM when the JEMRMS is launched to the ISS. 

Following the space shuttle’s docking to the ISS, the PM will be berthed to the ISS according to the 

following procedure.    Figure 5.2.2-3 shows the procedures for berthing of the PM to the ISS. Figure 5.2.2-3 

shows the procedures for relocating the ELM-PS from the Node 2 to the PM. 

 

1.

 

Space shuttle docks to ISS 

2.

 

Canadarm2 removes the PM from the space shuttle’s cargo bay (Figure 5.2.2-3 (1) to Figure 5.2.2-3 

(2)) 

3.

 

The PM is berthed to the CBM on the port side of Node 2. (Figure 5.2.2-3 (3) to Figure 5.2.2-3 (4)) 

4.

 

The CBM vestibule is pressurized.  The crew connect electrical power cables and other cables or 

lines.  

5.

 

The PM is powered up.    The operational status of the PM system is checked through the activation of 

one (B string) of the two strings (A & B strings) of the PM system. 

6.

 

The air conditioning and air ventilations are activated.    The crew enters the PM.   

7.

 

Three JEM system racks and JEMRMS Console, which were launched during the 1J/A Flight while 

being stored in the ELM-PS, are transferred to the PM through the Node 2. 

8.

 

The “A” string (second string) of the PM system is activated. The system’s operational status (two 

strings activated) is checked.   

9.

 

The JEMRMS Console is activated.    The JEMRMS is deployed.   

10.

 

The other racks are transferred from the ELM-PS to the PM.   

11.

 

After closing the ELM-PS hatches, the ELM-PS is deactivated. And the Canadarm2 removes the 

ELM-PS from the Node 2 CBM and relocate to the PM CBM. (Figure 5.2.2-4 (1) to Figure 5.2.2-4 (4)) 

12.

 

The ELM-PS system is reactivated, and the crew enters the module.   

 

 

Note:  

The above procedures are based on NASA/JAXA coordination as of March 2007.  The above 

procedures are subject to change dependent on possible changes. 

5-6

 

background image

Kibo HANDBOOK 

Direction of travel 

Direction towards earth

Node 2

ELM-PS 

JEMRMS 

PM

 

Figure 5.2.2-1 ISS after 1J Flight is completed 

 

 

to space shuttle’s Middeck

SRMS

Orbiter Docking System
(ODS) 

PM 

JEMRMS 

Main Arm 

Configuration of the 
JEMRMS during launch 

PM

Figure 5.2.2-2 Cargo bay layout during launch of 1J Flight (Image) 

5-7

 

background image

5. Kibo Operations 

 

Node 2 
 

PM 

(1) 

(2) 

(3) 

Canadarm2 (SSRMS) 
 

ELM-PS 

JEMRMS
 

PM 

JEMRMS

(4) 

Figure 5.2.2-3 Procedures for attaching PM to ISS 

5-8

 

background image

Kibo HANDBOOK 

Node 2
 

PM

Canadarm2 (SSRMS)
 

ELM-PS
 

JEMRMS 
 

ELM-PS
 

(1) 

(2) 

(3) 

(4) 

 

Figure 5.2.2-4 Procedures for relocating ELM-PS (space shuttle is not included) 

5-9

 

background image

5. Kibo Operations 

5.2.3 2J/A Flight 

During the 2J/A Flight, the Exposed Facility (EF) and the Experiment Logistics Module – Exposed Section 

(ELM-ES) will be launched to the ISS.    Figure 5.2.3-1 shows the expected external view of the ISS after 

completion of the 2J/A Flight.    The Planned cargo bay layout during launch of the 2J/A Flight is shown in 

Figure 5.2.3-2.   

After the docking of the space shuttle to the ISS, the EF and ELM-ES will be attached to the ISS according 

to the following procedures.    The procedures for attaching the EF and ELM-ES to the ISS are shown in Figure 

5.2.3-3. 

 

1.

 

Space shuttle docks to the ISS 

2.

 

Canadarm2 removes the EF from the space shuttle’s cargo bay (Figure 5.2.3-3 (1) to Figure 5.2.3-3 

(2)) 

3.

 

The EF is attached to the Exposed Facility Berthing Mechanism (EFBM) on the PM by the Canadarm2 

(Figure 5.2.3-3 (3) to Figure 5.2.3-3 (4)) 

4.

 

The EF is powered up and activated The EF’s operational status is checked. 

5.

 

The SRMS removes the ELM-ES from the space shuttle’s cargo bay (Figure 5.2.3-3) 

6.

 

The ELM-ES is handed over from the SRMS to the Canadarm2 (Figure 5.2.3-3 (6)) 

7.

 

The ELM-ES is attached to the EF by the Canadarm2 (Figure 5.2.3-3 (7) to Figure 5.2.3-3 (8)) 

8.

 

The ELM-ES is powered up and activated The ELM-ES’s operational status is checked. 

9.

 

The payloads carried on the ELM-ES during launch are relocated to the EF by the JEMRMS 

 

 

Note: The above procedures are based on NASA/JAXA coordination as of March 2007. The above procedures 

are subject to change dependent on possible changes. 

 

5-10

 

background image

Kibo HANDBOOK 

Direction of travel 

Direction towards earth

ELM-PS

JEMRMS 
 

PM 

EF

ELM-ES 

 

Figure 5.2.3-1 ISS after completion of 2J/A Flight (Illustration provided by NASA) 

to the space shuttle’s Middeck

SRMS

Orbiter Docking System (ODS)

US cargo

EF

ELM-ES 

 

Figure 5.2.3-2 2J/A Cargo bay layout during launch of 2J/A Flight (Image) 

5-11

 

background image

5. Kibo Operations 

 

PM 

Canadarm2 (SSRMS)
 

EF 

(1) 

(2) 

(3) 

(4) 

SRMS

(5)

(6)

(7)

(8) 

ELM-ES 

EF 

SRMS 

Canadarm2 (SSRMS)
 

ELM-ES

Figure 5.2.3-3 Procedures for connecting EF and ELM-ES to ISS 

5-12

 

background image

Kibo HANDBOOK 

5.3 

Kibo Operations Control 

The International Space Station (ISS) program, which includes the construction, assembly, and utilization of 

the ISS, has been promoted by the United States (US), Japan, Canada, 11 European countries that belong to the 

European Space Agency (ESA), and Russia.    Overall operations of the ISS are coordinated by the US.    Each 

International Partner is responsible for operating each country’s own ISS component including ISS 

components/modules/segments, ISS payloads or equipment. 

Communications between the ISS and the International Partners are conducted through the Tracking and 

Data Relay Satellite (TDRS) by way of NASA Johnson Space Center (JSC) and White Sands Ground Station.   

Japan will alternatively use JAXA’s Data Relay Test Satellite (DRTS), known as Kodama, for communicating 

with Kibo.    Russia communicates with the ISS only when direct communications with the ISS are permitted, 

and uses the TDRS as a backup communication method.   

Figure 5.3-1 shows the conceptual diagram for the ISS operations. 

 

Tracking and 

Data Relay 

Satellite 

JAXA Data 

Relay Test 

Satellite 

Space Shuttle 

Automated 
Transfer 
Vehicle (ATV)

Soyuz / 
Progress

H-II Transfer 
Vehicle (HTV) 

NASA White Sands 
Ground Station 

Payload Operations 
Integration Center 

NASA JSC: Mission 
Control Center 

NASA KSC: 
Kennedy Space 
Center 

ESA: Kourou, French 
Guiana 

Canadian Space Agency 

Saint-Hubert, Quebec 

ESA: 

Columbus Control Centre

Russian Space Agency: Mission 
Control Center-Moscow 

JAXA: Tsukuba Space 
Center (TSKC), 
Tsukuba Japan 

Russian Space 
Agency: Baikonur 
Cosmodrome 

Tanegashima 
Space Center 
(TNSC) 

Each organization operate their own components / modules / segments from their own Control Centers 

 

Figure 5.3-1 ISS Operations Conceptual Diagram 

5-13

 

background image

5. Kibo Operations 

After all of the Kibo components are assembled and attached to the ISS, Japan’s full-scale experiments in 

space will commence. 

Experiments, which will be performed in or on Kibo, are operated and controlled from the Space Station 

Operations Facility (SSOF) in the Space Station Integration and Promotion Center (SSIPC) at Tsukuba Space 

Center (TKSC) in collaboration with the Space Station Control Center (SSCC) at NASA’s Johnson Space 

Center (JSC), where the overall operations of the International Space Station (ISS) are controlled and managed.   

Overview of the SSIPC that consists of several related ground facilities is shown in Figure 5.3-1. 

The SSOF is responsible for Kibo’s operations control, including (1) controlling and monitoring Kibo’s 

ongoing systems, (2) operating Japan’s experiment payloads onboard Kibo, (3) implementing operations plans, 

and (4) supporting launch site processing. 

Kibo’s operations systems are categorized by the following systems: (a) Operations and Utilization Planning 

System, (b) Operations Control System, (c) Crew Operations Training System, (d) Engineering Support System, 

(e) Logistics and Maintenance Operations Management System and (f) Operations Data Network System. 

Overview of the Operations Control System (OCS), which is the most critical system for Kibo operations, is 

shown in Figure 5.3-2. 

5-14

 

background image

Kibo HANDBOOK 

Mission Control Room

(MCR) 

Operations Planning

Room 

Operations Rehearsal

Room(ORR) 

NASA 

 

 

 

 

 

 

 

 

 

 

 

 

 

This center is responsible for 
the operations of Columbus 
laboratory

Communication Interface for payload operations 

Communication Interface for system operations 

 

Space Station Test Building 

Space Experiment Laboratory (SEL) 

Columbus Control Center

(Col-CC) 

Payload Operations and 

Integration Center 

(POIC) 

This center is located at the 
MSFC and integrates the 
scientific payload operations 
aboard the ISS 

Space Station Control 

Center (SSCC) 

This center is located at the JSC 
and controls and operates the 
overall ISS systems.    This center 
is responsible for the safety of the 
ISS and the ISS flight crew. 

Mission Control Center – 

Moscow (MCC-M) 

This center controls and 
operates the Russian segment 
of the ISS. 

Space Station Integration 

and Promotion Center 

(SSIPC) 

This operations control complex is located at the TKSC. The SSIPC 
controls and manages Kibo operations. 

Tests on Kibo’s integrated systems are conducted 
here. Operational status of the systems, interfaces, 
and applicability of the payloads are tested here. 
Engineering supports for Kibo’s on-orbit operations 
will be provided. 

Astronaut Training Facility (ATF) 

Weightless Environment Test Building (WET)

Responsible for 1) development of technologies for 
experiments in space, 2) supporting users   
developed the Kibo experiments, 3) preparing Kibo 
experiment operations program, and 4) supporting 
the experiment data analysis. 

Responsible for crew selection, training, and health 
care. Research for developing technologies or 
methods for the crew selection, training and health 
care are conducted. 

Weightless environment simulator provides an 
artificial microgravity environment by water 
buoyancy,. Design verification tests on Kibo’s 
components are conducted here. Kibo maintenance 
or Kibo’s ORU replacement procedures are prepared 
and aastronaut’s basic training is conducted here. 

Space Station Operations Facility (SSOF) 

Responsible for controlling Kibo 
operations in cooperation with SSCC 
and POIC. At the SSOF, operations of 
Kibo’s system and payload are 
conducted and Kibo operations plans are 
prepared. The operability and launch 
feasibility are studied here. 

User Operations 

Area (UOA) 

Responsible for real-time Kibo operation 
on a 24-hour basis. Ongoing Kibo 
systems, monitoring health and status of 
Kibo’s payloads, sending commands, and 
real-time operational planning are 
managed here. 

Distributs status of Japan’s experiments 
and experiment data to the respective 
users. Users who are responsible for the 
experiment’s operations, can monitor, 
control, and analyze the experiment’s data. 
The users can support and conduct 
on-orbit experiments from the ground. 

Plans on-orbit and ground operations 
based on the power distribution, crew’ 
resources, and data transmission capacity. 
If the operation plands need to be 
changed, adjustments will be conducted 
in tandem with the Mission Control 
Room, the User Operations Area and 
NASA.

Functions are similar to the MCR’s. The 
ORR provides trainings for flight 
controllers, conducts integrated rehearsals, 
and conducts joint integrated simulations 
with NASA. 

ESA 

FSA 

JAXA

NASA 

 

Figure 5.3-1 Space Station Integration and Promotion Center (SSIPC) Ground facilities 

5-15

 

background image

5. Kibo Operations 

 

Figure 5.3-2 Kibo Operations Control System 

Operations Control System (OCS)

 

Monitoring Control subsystem

Experiment Operations

Support subsystem

Strategic and Tactical Planning

subsystem 

Operations Data Management

subsystem 

Operations Data Network

subsystem 

Common Equipment subsystem 

Along with the SSCC operations control, the Operations Control 
System (OCS), which is a core component of the SSIPC, controls 
and monitors Kibo’s systems and the status of Japan’s and 
international partners experiment payloads aboard Kibo. The OCS 
also conducts data management and provides user support.   
In addition, the OCS prepares and manages the operations plans for 
Kibo’s systems and payload operations within the available 
resources that are allotted to Kibo in cooperation with the 
SSCC/POIC that is responsible for integrating the overall ISS 
system and payload operations. 

This subsystem provides several types of supports for users 
who operate their experiments on or in Kibo including: (1) 
distribution and display of experiment data and ancillary 
data that is downlinked from Kibo to the users, (2) input and 
transmission of commands from the users, and (3) 
interfacing the uses’ provided equipment for standard 
interfacing. 

The Monitoring Control subsystem is responsible for: (1) the 
processing and display of telemetry data required for the real 
time monitoring and control of Kibo’s onboard payloads 
(Japan’s and international partners’), (2) control and 
verification of commands that are transmitted, (3) operations 
history data archive, (4) transmission, control and/or 
verification of on-orbit operations files, and (4) fault 
detection, isolation, and recovery. 

This planning subsystem manages: (1) planning and 
preparation of Kibo’s systems or payloads, (2) ground 
operations planning for Kibo on-orbit operations, and (3) 
revising or modifying ground operations plans, and (4) data 
management for operations planning. 

This data management subsystem manages: (1) operations 
data of Kibo’s system and Kibo’s on-board payloads (both 
Japan’s and international partners’), (2) experiment data for 
Japan’s experiment payloads, (3) accumulation of ancillary 
data and statistical processing, (4) data processing, 
long-term storage management and distribution of data, and 
(5) data search management. 

This network subsystem manages: (1) the equipment for 
interfacing between NASA and Kibo’s ICS and (2) OCS 
network operations. 

This subsystem provides equipment and information that are 
common to either the Kibo’s flight controllers or Kibo’s 
operations staff.  This subsystem is composed of: (1) audio 
and video communication equipment, (2) large displays, (3) 
standard time provision equipment, and (4) consoles at the 
MCR. 

5-16

 

background image

Kibo HANDBOOK 

5.3.1  Orbital Interface (between the ground to/from Kibo) 

TKSC) and Kibo for data 

uplink/downlink

(1)  NASA Data Communication Link 

 interface between Kibo and TKSC through NASA’s Tracking and 

Data R

(a) S 

band 

s commands (power-on and power-off commands to Kibo), telemetry data (Kibo’s health 

status data)

(b) Ku 

band 

s larger bandwidth data that is acquired at Kibo to the ground, including, experiment data 

or video

(2) JAXA 

Data 

Communication 

Link 

 the TKSC and Kibo through JAXA’s Data and Relay Test 

Satell

There are two types of communication links between Tsukuba Space Center (

.  In general, Kibo operations are conducted by using NASA’s communication link. 

This link provides the data communication

elay Satellite System (TDRSS).    Commands or data from the TKSC are first received at NASA JSC 

and White Sands Ground Station and forwarded to Kibo through the TDRSS and the ISS.    This link utilizes 

two types of communication bands. Each band relays different types of data. 

The S band relay

 and voice. 

The Ku band relay

 images. 

This link provides a direct interface between

ite (DRTS).    The data sent from TKSC are relayed through the DRTS and received by the Inter-orbit 

Communication System (ICS) installed on Kibo.    This link uses the Ka band.    The types of the data to be 

uplink/downlink are nearly the same as the types of data for NASA’s communication link, including, 

commands, telemetry, voice, video images, experiment data and experiment images.  JAXA’s Data 

Communication Link is also known as the “ICS link”. 

 

5-17

 

background image

5. Kibo Oper

5-18

ations 

 

5.3.2  Ground Interface (between TKSC and NASA Mission Control Centers) 

There are two types of ground links between JAXA and NASA.    Both links between the two control centers 

are via leased lines/channels. 

(1)  Link between the Tsukuba Space Center (TKSC) and NASA’s Johnson Space Center (JSC) 

This link interfaces the Tsukuba Space Center (TKSC) with NASA’s Johnson Space Center (JSC). 

Commands (power-on and power-off commands to Kibo), telemetry data (Kibo’s health status data), voice and 

video images are sent and received. 

(2)  Link between Tsukuba Space Center (TKSC) and NASA’s Marshall Space Flight Center 

(MSFC) 

This link interfaces Kibo with the TKSC through the Huntsville Operations Support Center (HOSC) at 

NASA’s Marshall Space Flight Center (MSFC).    Experiment data downlinked from Kibo is sent to the TKSC. 

 

 

  Figure 5.3-3 shows a conceptual diagram of the orbital/ground interfaces for Kibo operations. 

 
 

background image

Kibo HA

NDBO

O

K

  Figure 5.3-3 Conceptual Diagram of orbital/ground communication interfaces for Kibo Operations

 

 

5-19

 

TDRS 

DRTS 

U

U

n

n

i

i

t

t

e

e

d

d

 

 

S

S

t

t

a

a

t

t

e

e

s

s

 

 

T

T

s

s

u

u

k

k

u

u

b

b

a

O

O

p

p

e

e

r

r

a

a

t

t

i

i

o

o

n

n

s

s

 

 

C

C

o

o

n

n

t

t

r

r

o

o

l

l

 

 

S

S

y

y

s

s

t

t

e

e

m

m

 

 

O

O

C

C

S

S

 

 

NASA Data 

Communication Link

JAXA Data 

Communication Link

D

D

R

R

T

T

S

S

G

G

r

r

o

o

u

u

n

n

d

d

 

 

S

S

t

t

a

a

t

t

i

i

o

o

n

n

S

S

S

S

I

I

P

P

C

S-band 

Ku-band 

Ka-band 

S-band 

• 

Downlink: ISS/Kibo telemetry data, voice

 

• 

Uplink: ISS/Kibo commands, voice

 

Ku-band

 

• 

Downlink (50Mbps): Experiment data, video 

images

 

Ka-band

 

• 

Downlink (50Mbps): Kibo telemetry data, 
voice, video images, experiment data 

• 

Uplink (3Mbps): Kibo command, voice, 
data file for payloads

 

Kibo telemetry data / commands, 

voice, video images 

experiment data 

N

N

A

A

S

S

A

A

 

 

J

J

o

o

h

h

n

n

s

s

o

o

n

n

 

 

S

S

p

p

a

a

c

c

e

e

 

 

C

C

e

e

n

n

t

t

e

e

r

r

 

 

(

(

J

J

S

S

C

C

)

N

N

A

A

S

S

A

A

 

 

M

M

a

a

r

r

s

s

h

h

a

a

l

l

l

l

 

 

S

S

p

p

a

a

c

c

e

e

 

 

F

F

l

l

i

i

g

g

h

h

t

t

 

 

C

C

e

e

n

n

t

t

e

e

r

r

 

 

 

 

(

(

M

M

S

S

F

F

C

C

)

)

 

 

Mission Control Center 

Huntsville Operations Support 
Center (HOSC) 

(Space Station Integration and 

Promotion Center

 

N

N

A

A

S

S

A

A

 

 

W

W

h

h

i

i

t

t

e

e

 

 

S

S

a

a

n

n

d

d

s

s

 

 

G

G

r

r

o

o

u

u

n

n

d

d

 

 

S

S

t

t

a

a

t

t

i

i

o

o

n

n

 

 

background image

5. Kibo Operations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 

 

5-20

 

background image

Kibo HANDBOOK 

6. Kibo Utilization 

6-1

 

background image

6. Kibo Utilization 

6-2

 

6.1 Summary 

400 km above the earth, construction and assembly of the International Space Station (ISS) is ongoing.  

Aboard the ISS, various scientific experiments are currently or will be conducted by utilizing an environment 

unique to space.    The space environment is characterized by microgravity, space radiation, vast views, very 

high vacuum and an abundant source of solar energy. These environmental conditions are completely different 

and difficult to fully duplicate from what is available on earth.  The results from these experiments are 

expected to enhance the capabilities of our 21st century industry and will also be used for the betterment of 

mankind.  On Kibo, several types of scientific experiments that will use Kibo’s pressurized and exposed 

facilities are planned.  This chapter describes Kibo’s space experiment environment and the experiment 

payloads planned to be used inside or outside of Kibo, and introduces Kibo’s utilization plans during Kibo’s 

initial utilization phase. 

 

 

6.2 Environment 

6.2.1 Microgravity 

Every object orbiting the earth, like the ISS, is in a state of continuous free-fall towards the center of the 

earth.  Under these conditions, these orbiting objects are under the influence of microgravity or near zero 

gravity conditions.  On-board the ISS, several factors including atmospheric drag, gravity gradient (tidal 

force), crew activities, and the station’s solar array rotations may affect the ISS gravitational environment.  

However, microgravity is still only about 10

-6

 to 10

-4

 g of that on earth, and thus can be utilized for long-term 

research on-board the ISS.  (Note: 1 g is a measurement expressed as an object’s nominal acceleration at 

9.80665 m/s

2

 due to gravity on Earth at sea level and known as G-force or G-load).  Utilizing this 

microgravity environment, several types of experiments or studies on the effects of gravity on life are under 

consideration for Kibo’s future experiments. 

 

 

6.2.2  Line of Sight and field of view from the ISS 

The line of sight from certain sites of the ISS can be blocked by the ISS structural components, including the 

pressurized modules or rotating solar arrays.    The field of view or what can be seen depends on location and 

the direction of the line of sight. 

Since Kibo will be located at the front of the ISS (ISS’s direction of travel), a relatively wider field of view 

can be seen from the Exposed Facility (EF) experiment payloads site attached to the front (ISS’s direction of 

travel) of the Kibo’s Exposed Facility (EF).   

The field of view from the EF experiment payload #1, that will be attached to the EF, was estimated by a 

field of view analysis.    Figure 6.2.2-1 shows an estimated field of view from the EF experiment payload #1.   

Mission planning for an experiment, which will be conducted using an EF experiment payload on the EF and a 

view is of importance, will need to factor in the results of the field of view analysis. 

background image

Kibo HANDBOOK 

 

Solar Array

JEMRMS 

ELM-PS

PM 

Solar Array

ICS 

SFA Storage Equipment

EF

EF payload

Radiator

TV camera, 
lights, PTU 

Radiator

Solar Array

Solar Array 

Soyuz spacecraft 

Node 3 

Radiator 

Earth

30

60

90

30

60

90

Direction of travel 

Direction of travel 

EF experiment 
payload #1 

Zenith direction 

Direction of earth center

Direction of travel

Note: The rotation envelopes for the station’s solar arrays and radiators are

indicated.    Both figures illustrate a hemispheric view. 

SFA: Small Fine Arm 
PTU: Pan Tilt Unit

to Node 2 

EF 

Figure 6.2.2-1 Estimated field of view for EF experiment payload #1 site on EF 

 

6.2.3 Background Atmosphere 

The degree of vacuum at the ISS orbit (at an altitude of 400 km) is approximately 10

-5

 Pa.  Water dumps 

from the ISS or water dumps from the space shuttle being docked to the ISS could affect this vacuum 

environment.  In addition, the atmospheric density of the environment surrounding the ISS may vary 

depending on solar and geomagnetic activities.   

At the altitude where the ISS orbits, a significant amount of atomic oxygen exists.    The atomic oxygen is 

formed from dissociated oxygen molecules exposed to ultraviolet (UV) radiation.    Atomic oxygen is known to 

oxidize, erode and contaminate spacecraft materials on orbit.   

Excluding water dumps from the ISS, there are many contamination sources in Kibo’s surrounding 

environment, including out-gassing from the ISS components (gasses emitted from organic materials) or 

thruster burns by the space shuttles or other spacecrafts.    When planning experiments for the EF, atmospheric 

factors will need to be taken into consideration. 

6-3

 

background image

6. Kibo Utilization 

6-4

 

6.2.4 Space Radiation 

The environment where the ISS orbits are comprised of cosmic radiations, including a radiation belt (Van 

Allen belts) consisting of particles captured by the earth's magnetic field, solar flare particles (solar protons) 

generated by solar activities, and galactic cosmic rays that originates from outside the solar system.  The 

environment outside and inside the ISS can be affected by cosmic radiations impacted with the ISS structural 

components or the atmosphere, which in turns generates secondary radiations.  The cosmic radiation may 

cause malfunctions with the ISS equipment, which is known as a “single event effect”.  Additionally, the 

cosmic radiation may adversely affect the health of the ISS crew. Therefore, observations and researches on 

cosmic radiation have become increasingly important. 

 

 

6.2.5 Thermal Environment 

The ISS and Kibo’s thermal environments are complex and composed of direct solar exposure, sun light 

reflected from the earth (albedo), infrared radiation and cosmic background radiation.  The temperature 

surrounding the ISS and Kibo ranges from -150 

°

C to +120 

°

C (degree Celsius), depending on the shaded or 

un-shaded area of the ISS or Kibo. The thermal environment can also vary depending on the relative position of 

the sun and the ISS orbital plane.   

Before designing an EF experiment payload, as well as Kibo’s components, verification that EF experiment 

payload itself is strong enough to endure the severe thermal conditions of space including interruptions or 

reflections attributed to ISS’s surrounding components should be done. 

 

 

6.2.6  Micrometeoroid and Space Debris 

In space, micrometeoroids which are believed to originate from comets or asteroids and space debris, which 

originate from artificial satellites, spacecraft components, old launch vehicles or orbit burns of solid rocket fuel, 

are orbiting the earth.    These orbiting micrometeoroids and space debris may possibly impact the ISS or Kibo.   

Under an altitude of 2,000 km above the earth, more than 10,000 pieces of space debris, the size of 10 cm or 

greater, have been confirmed.    If a piece of debris that may impact the ISS is predicted or confirmed, a debris 

avoidance maneuver that alters the ISS orbital altitude will be implemented.    In addition, debris shields or 

debris bumpers are installed around the outside surface of the PM and ELM-PS for protecting these 

components’ structural bodies from possible space debris impacts.    Moreover, these components are designed 

not to break apart even if a hole is made in the component’s surfaces from debris impacts. The safety of the ISS 

crew can be ensured by evacuating the crew to a different ISS module, and then, closing and securing the 

hatches of the affected module. 

background image

Kibo HANDBOOK 

6.3 Experiment 

Payloads 

6.3.1  Experiment Payloads for Kibo’s Pressurized Module (PM) 

(1)  Cell Biology Experiment Facility (CBEF) 

The Cell Biology Experiment Facility (CBEF) is equipped with an incubation environment where the 

temperature, humidity and carbon dioxide (CO2) concentration can be controlled. The basic phenomena of life 

in space can be studied through the use of cells from animals, plants, microorganisms, etc. A centrifuge will be 

used to generate an artificial gravity environment, thus experiments in both a microgravity and artificial gravity 

environment can be conducted in Kibo.   

The culture chamber will be set in a “canister” and installed within the CBEF.    Through a utility connector 

inside the CBEF, the canister can receive power, command input, sensor output, video output.    These utilities 

will provide support for an efficient experimental environment.    In addition, by placing the canister in the 

Clean Bench (CB), the ISS crew can, by using the Clean Bench’s glove box, directly handle the samples inside 

the canister. 

Figure 6.3.1-1 shows an overview of the CBEF. Table 6.3.1-1 shows the CBEF specifications.     

The CBEF will be installed in the “SAIBO” experiment payload rack in Kibo’s Pressurized Module (PM). 

The Clean Bench (CB) will also be installed in the “SAIBO” rack.    The CBEF will be operated at the location 

as shown in Figure 6.3.1-2. 

 

 

Centrifuge 

Microgravity Compartment 
(

μ

G incubator unit) 

1G Compartment   
(1 G incubator unit) 

 

Figure 6.3.1-1 CBEF 

6-5

 

background image

6. Kibo Utilization 

6-6

 

Table 6.3.1-1 CBEF Specifications 

Items Specifications 

Temperature setting 

15 to 40 

°

Humidity setting 

Max. 80 

±

 10 % RH 

CO2 concentration setting 

0 to 10 % (0.1 % step) 

Gravity setting 

0.05 to 2 G (at 112.5 mm radius point) 

Utility 

Power: DC+5V, +12V, 

±

15V 

Sensor output: 0 to 5 V 
Command: 1 bit 
Video output 

 
 
 
 

 

Figure 6.3.1-2 Location of SAIBO Rack in Pressurized Module (PM) 

SAIBO Rack   

Location Code: A2 in PM

 

background image

Kibo HANDBOOK 

(2)  Clean Bench (CB) 

The Clean Bench (CB) will provide an aseptic glove-box operating compartment called “Operation Chamber 

(OC)” where germfree operations can be conducted. Life Science and biotechnological experiments can be 

performed on-board Kibo through the use of the CB.    The CB has a Disinfection Chamber (DC), which is 

separated from the OC. This separation prevents the OC from becoming contaminated by microorganisms 

while transferring samples or equipment.  In addition, the OC is equipped with ultraviolet lamps for 

sterilization and High Efficiency Particle Air (HEPA) Filters.  These filters eliminate particles that are 

suspended in the air.    Consequently, germfree experiments can be conducted by the Clean Bench.    The front 

of the OC is comprised of transparent materials so as to provide good views of the inside of the OC. The ISS 

crew will be able to conduct germfree experiments by directly monitoring the insides of the OC.  In addition, 

to support the experiments, a phase-contrast/fluorescent microscope and a monitor camera are installed in the 

CB.  

Figure 6.3.1-3 shows an overview of the CB. Table 6.3.1-2 shows the CB’s specifications.   

The CB will be installed in the “SAIBO” experiment payload rack in the PM together with the CBEF, and 

will be operated at the location as shown in Figure 6.3.1-2. 

Power Unit

Liquid Crystal Display 
(LCD) Monitor 

Operation 
Chamber

Joystick 

Glove 

Disinfection 

Chamber (DC)

Microscope

Control Unit 

Astronaut Furukawa using the OC 

 

Figure 6.3.1-3 CB 

6-7

 

background image

6. Kibo Utilization 

6-8

 

Table 6.3.1-2 CB Specifications 

Items Specifications 

Cubic Volume 

Operation Chamber: 52 L 
Disinfection Chamber: 14 L 

Environment Control 

Air duct filtering system: particle are eliminated by HEPA filters (two)   
Sterilization method: UV-germicidal lamp 
Temperature setting: 20 to 38 

°

Equipment installed 

Phase-contrast/fluorescent microscope (objective lens: x4, x10, x20, x40 
magnification) 

Utility 

Power: DC+5V, +12V, 

±

15V 

Video output 

 

background image

Kibo HANDBOOK 

(3)  Fluid Physics Experiment Facility (FPEF) 

The Fluid Physics Experiment Facility (FPEF) is an experiment facility for conducting fluid physics 

experiments at ambient temperature and in a microgravity environment.  In space or in a microgravity 

environment, the effects from thermal convection are lower than that on earth.    Thus, Marangoni convection 

(convection attributed to differences between surface tensions) is significant.  The primal objective of the 

FPEF is to investigate the Marangoni convection in a space environment which affects such as the 

semiconductor single crystal growth experiment.    The results from investigating the Marangoni convection 

are expected to facilitate control of convections that are currently hampering industrial applications.  The 

results, by deepening our understanding of the Marangoni convection, may be applied to methodologies for 

eliminating foam or bubbles in fluids.   

As part of the FPEF standard functions, the FPEF has the following features for observing, measuring or 

monitoring: (1) two-dimensional (2D) and three-dimensional (3D) flow field observation for observing flow 

distributions, (2) surface temperature measurement, (3) velocity profile measurement using ultrasound, and (4) 

surface flow velocity monitoring.    Currently, the “Liquid Bridge” application is being planned for the FPEF 

for investigating the Marangoni convection. In addition, several Experiment Cells are being developed to meet 

several diverse experiment purposes.  Figure 6.3.1-4 shows an overview of the FPEF. Table 6.3.1-3 shows the 

FPEF specifications. 

The FPEF will be installed in the “RYUTAI” experiment payload rack inside the PM. The FPEF will be 

operated at the location as shown in Figure 6.3.1-5. 

Figure 6.3.1-4 FPEF 

 

6-9

 

background image

6. Kibo Utilization 

6-10

 

Table 6.3.1-3 FPEF Specifications 

Items Specifications 

Liquid Bridge Formation 

Sample: Silicone Oil 
Diameter: 30 mm, 50 mm 
Length: 65 mm maximum 

Temperature Control 

Heating Disk: 90 

  (degrees Celsius) maximum 

Cooling Disk: 5 

  (degrees Celsius) minimum 

3D Flow Field Observation 

CCD camera (effective pixel: 768 (H) x 494 (V)) 

Liquid Bridge Overview 
Observation 

CCD camera (effective pixel: 768 (H) x 494 (V)) 

Surface Temperature 
Distribution Measurement 

Infrared Imager   
*spectral response: 8 to 14 

μ

*measurement range: 0 to 100 

°

Surface Flow Velocity 
Measurement  

Photochromic dye actuation with nitrogen gas laser 
(two points irradiation)   

Utility 

Power source:    12 

±

 2V, 4A (Max), 1ch 

                            24 

±

 2V, 3.5A (Max), 3ch 

                           

±

 15V 

±

 0.5V, 0.8A (Max)/ch, 1ch 

Analog Input: 0 to 10V, 8ch 
Digital Input: 8ch 
Digital Output: 8ch 
Gas supply: Argon (Ar) gas 

 

 

Figure 6.3.1-5 Location of RYUTAI Rack 

RYUTAI Rack 

Location Code: A3 in PM

 

background image

Kibo HANDBOOK 

(4)  Solution/Protein Crystal Growth Facility (SPCF) 

The Solution/Protein Crystal Growth Facility (SPCF) is an experiment facility for conducting basic 

researches related to crystal growth in various solutions or proteins in a space environment.  The SPCF 

consists of the Solution Crystallization Observation Facility (SCOF) and the Protein Crystallization Research 

Facility (PCRF).    The SCOF uses cell cartridges for growing solution crystals.    In-situ observations can be 

performed while the crystals are growing by controlling the temperature and pressure in the cell cartridge.    A 

Mach-Zehnder (MZ) Interference Microscope and a Dynamic Light Scattering unit are mounted in the SCOF 

for crystal growth observation, crystal surface observation, liquid-phase temperature/concentration distribution 

measurements, and/or particle size distribution measurements.  The second SPCF facility, the PCRF, is a 

facility for growing large and high-quality protein crystals for ground structural analyses.   

The SCOF and PCRF can be operated separately as independent facilities.  The overviews of the SCOF and 

PCRF are shown in Figure 6.3.1-6 and Figure 6.3.1-7, respectively.    The specifications for the SCOF and 

PCRF are shown in Table 6.3.1-4 and Table 6.3.1-5, respectively.     

The SPCF will be installed in the “RYUTAI Rack” in the PM together with the FPEF, and will be operated at 

the location as shown in Figure 6.3.1-5. 

(SCOF Front) 

(SCOF Inside) 

Mach-Zehnder (MZ) 
Interference Microscope 

Laser Light 

Optical Window

Electronics Controller 

Test specimen 
(cell cartridge) 

Cell Driving System 

Gas Port 

Amplitude-Modulation 
Microscope 

Polarizing Microscope 
Bright-Field Microscope 

 

Figure 6.3.1-6 SCOF 

6-11

 

background image

6. Kibo Utilization

bo Utilization 

6-12

 

 

6-12

 

CCD Camera

Cell Cartridge 

Cell Tray 

  

Figure 6.3.1-7 PCRF 

Figure 6.3.1-7 PCRF 

  

  

Table 6.3.1-4 SCOF Specifications 

Table 6.3.1-4 SCOF Specifications 

Items 

Items Specifications 

Specifications 

Mach-Zehnder (MZ) 
Interference Microscope 

Magnification: x2, x4 
Light source: LD and solid-state laser diode (

λ

 = 532 nm, 780 nm) 

Phase resolution: More than 0.2 

λ

 

Amplitude-Modulation 
Microscope 

Magnification: x2, x4 
Light source: LED (

λ

 = 600 nm) 

Phase resolution: More than 0.2 

λ

 

User Interface 

Temperature Control: Peltier element   
Temperature Measurement: Thermister (standard or high precision 
measurement), Thermocouple (K, J type) 

Options Dynamic 

Light 

Scattering 

Fluorescence Decay 
Reflecting Spectrophotometer 
Absorption Photometer 

 

 

Table 6.3.1-5 PCRF Specifications 

Items Specifications 

Cell Cartridge 

Number of cartridges: 6   
Temperature control: 0 to 35 

°

Harvesting method: Vapor Diffusion, Batch, Membrane, Liquid-liquid diffusion 

Observation systems 

Camera: 1/2 CCD camera 
Light source: LED 
Resolution: More than 40 

μ

background image

Kibo HANDBOOK 

(5)  Gradient Heating Furnace (GHF) 

The Gradient Heating Furnace (GHF) is a multipurpose electrical furnace for conducting experiments related 

to vapor deposition and crystal growth of semiconductor materials.    The GHF is comprised of a furnace, a 

Control Equipment, and a Sample Cartridge Automatic Exchange Mechanism (SCAM) with a controller.  

Samples will be heated or cooled in the Furnace Section.    The Control Equipment will receive commands 

from the ground to control the experiments while relaying data to the data communication system of Kibo.   

The SCAM can accommodate up to 15 samples and can automatically exchange the samples.    There are three 

heating units in the Furnace Section.    Each heating unit can independently be controlled or maneuvered. Thus, 

different temperature profiles can be set for conducting various experiments.    When running the experiments 

in the GHF, fusion and unidirectional solidification of the samples can be conducted.    The GHF overview is 

shown in Figure 6.3.1-8.    The GHF specifications are shown in Table 6.3.1-6. 

The GHF will be installed in the “KOBAIRO” experiment payload rack, with power or coolant water being 

supplied from the PM.    Data can be sent to or received from the ground. 

 

GHF installed in the KOBAIRO Rack

 

GHF Material Processing Unit (Furnace) 

Motor

Heating Unite

Vacuum Chamber 

 

Figure 6.3.1-8 GHF 

 

 

6-13

 

background image

6. Kibo Utilization

bo Utilization 

6-14

 

 

6-14

 

Table 6.3.1-6 GHF Specifications 

Table 6.3.1-6 GHF Specifications 

Items 

Items Specifications 

Specifications 

Heating Temperature Range 

500 to 1600 

°

Temperature Stability 

Within 

±

0.2 

°

Temperature Gradient 

150 

°

C / cm or higher at temperature 1450 

°

Speed 

0.1 to 200 mm / h 

Temperature Monitoring   

Five points (max. 10 points) 

 

KOBAIRO Rack (Installed at Location 
Code F3 in PM) 

 

Figure 6.3.1-9 Location of KOBAIRO Rack in PM 

background image

Kibo HANDBOOK 

6.3.2  Exposed Facility (EF) Experiment Payloads 

(1)  Monitor of All-sky X-ray Image (MAXI) 

The Monitor of All-sky X-ray Image (MAXI) will monitor X-ray variations from more than 1,000 X-ray 

sources.    The observations will encompass the entire sky during a time period ranging from a day to a few 

months.    The MAXI will conduct monitoring once per orbit. 

The MAXI is equipped with two types of slit cameras. The first camera is a Gas Slit Camera (GSC) with a 

gas proportional counter.    The GSC is equipped with 12 counters.    The GSC has a total effective area of 

5000 cm2.    The second camera is a Solid-state Slit Camera (SSC) with peltier-cooled X-ray sensitive CCD.   

The MAXI is equipped with two SSCs that provide a total effective area of 200 cm2.    By combining these 

cameras, an x-ray in a low to high-energy range can be captured over a wide range of wavelengths.    Color 

image data can be obtained using an X-ray.   

An overview of the MAXI is shown in Figure 6.3.2-1. The specifications for the slit cameras mounted on the 

MAXI are shown in Table 6.3.2-1. 

Payload Interface Unit 

Grapple Fixture 

Radiation plate 

Power unit 

Ring laser 
gyroscope

Signal processing

Mission Data Processor

Gas Slit Camera

Solid-state Slit Camera

Loop Heat Pipe 

Visual Star Camera Head 

 

Figure 6.3.2-1 MAXI 

 

 

 

 

 

 

 

6-15

 

background image

6. Kibo Utilization 

6-16

 

Table 6.3.2-1 Specifications of Slit Cameras mounted in MAXI 

 Items 

Specifications 

Sky coverage 

FOV: 160 degree (L) x 1.5 degree (FWHM), 2 directions 
Scope of instant observation: 2 % of the entire sky 
Scanning: 90 to 98 % of the entire sky (per orbit) 

Imaging capability 

Point spread function (PSF): 1.5 degree (FWHM) 
Pointing Accuracy: Less than 6 arc min.   

Spectroscopy   

X-ray photons of 2 to 30 keV 

Resolution   

18 % at 5.9 keV 

Timing accuracy 

120 

μ

 sec. with respect to GPS time 

GSC 

Sensitivity   

10 m Crab (1 orbit), 1 m crab (1 week) 

Sky coverage 

FOV: 90 degree (L) x 1.5 degree (FWHM), 2 directions 
Scope of instant observation: 1.3 % of the entire sky 
Scanning: 70 % of the entire sky (per orbit) 

Imaging capability 

Point spread function (PSF): 1.5 degree (FWHM) 
Pointing Accuracy: Less than 6 arc min. 

Spectroscopy   

X-ray photons of 0.5 to 10 keV 

Resolution   

150 eV at 5.9 keV 

Timing accuracy 

3 to 16 sec. (Dependent on CCD read-out methods) 

SSC 

Sensitivity   

20 m Crab (1 orbit), 2 m crab (1 week) 

Note: mCrab = unit, 1/1000 of the X-ray intensity of the Crab Nebula 

 

background image

Kibo HANDBOOK 

(2)  Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) 

The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) will observe submillimeter 

wavelengths that are emitted from trace gases in the stratosphere.    These observations will be conducted by 

pointing the SMILES antenna (Submillimeter Antenna (ANT)) at the upper reaches of the atmosphere. The 

SMILES can determine the amount of trace gases that exist in the ozone layer.    The SMILES measures the 

distribution and changes in the trace gases in the stratosphere, globally, with a high degree of accuracy.   

The Submillimeter-wave Receiver installed in SMILES is comprised of a superconductive sensor and 

amplifiers (low noise).  The SMILES uses a highly sensitive superconductive sensor and a 4-Kelvin 

mechanical cooler that are world leading edge components.   

An overview of the SMILES is shown in Figure 6.3.2-2. The specifications of SMILES sensors and 

measuring instruments are shown in Table 6.3.2-2. 

Ambient Temperature Optics

Beam Transfer Unit 

Crycooler Drive Electronics 

Antenna Drive Electronics

Electrical Power System

Acousto-Optic 
Spectrometer 

Star Tracker 

Antenna Reflector 

Submilimeter-wave emitted from trace gases 

 

Figure 6.3.2-2 SMILES 

6-17

 

background image

6. Kibo Utilization 

6-18

 

Table 6.3.2-2 SMILES / Equipment Specifications 

 Items 

Specifications 

Mass (weight) 

Less than 500 kg 

Electrical power 

Less than 900 W (tentative) 

Observation band 

640 GHz Band 

Target gases 

O

3

, HCI, CIO, HO

2,

 H

2

O

2

, HOCI, BrO, HNO

3

, SO

2

, etc. 

Latitude range 

65N to 38S 

Altitude range 

10 to 60 km 

Main body 

Sensitivity 

1 K (rms) in a single scan 

Submillimeter Antenna (ANT) 

Structure type: Offset Cassegrain reflector 
Size: 400 mm x 200 mm 
HPBW: 0.09 degree (El) x 0.18 degree (Az) 

Submillimeter-wave Receiver 

RF:   624.32 to 626.32 GHz (LSB) 
 

648.32 to 650.32 GHz (USB) 

LO frequency: 637.32 GHz 
Intermediate frequency: 11.0 to 13.0 GHz   

Mechanical 4-K Cooler   

Joule - Thomson Cryocooler: 4.5 K 
Stirling Cryocooler (x2): 20 K, 100 K 

Sensor & 
measuring 
instruments 

Acousto-optical Spectrometer 
(AOS) 

Band: 1.2 GHz 
Channel: 1500 per unit 
Resolution: 1.8 MHz 

 

background image

Kibo HANDBOOK 

(3)  Space Environment Data Acquisition equipment-Attached Payload (SEDA-AP) 

The Space Environment Data Acquisition equipment-Attached Payload (SEDA-AP) will measure the space 

environment (neutrons, plasma, heavy ions, high-energy light particles, atomic oxygen, and cosmic dust) at the 

ISS orbit.    Using the SEDA-AP, the space environmental effects on materials and electronic devices will be 

investigated.    

A number of sensors and equipment are mounted in the SEDA-AP, including the Neutron Monitor (NEM) 

and the Plasma Monitor (PLAM).    Space environment data obtained by the SEDA-AP will be applied to the 

development of future spacecraft designs.  The data will also be utilized for ISS operations and related 

scientific researches, and space weather forecast (prediction of solar activity trends).   

The SEDA-AP will conduct measurement and monitoring by extending a mast, on which the Neutron 

Monitor (NEM) - Sensor and the Plasma Monitor (PLAM) are attached.    The mast extends to over 1 m from 

the SEDA-AP structural body.  The experiments using the SEDA-AP sensors and electronic devices will 

measure, monitor, and collect data, simultaneously, for three consecutive years.   

An overview of the SEDA-AP is shown in Figure 6.3.2-3.    The specifications for the SEDA-AP sensors and 

measuring instruments are shown in Table 6.3.2-3. 

Heater Control Equipment 

Heavy Ion Telescope (HIT)

Neutron Monitor (NEM) - Sensor 

Plasma Monitor (PLAM) 

Neutron Monitor (NEM) - Electronic device 

Micro-Particles Capturer 
(MPAC) and Space Environment 
Exposure Device (SEED) 

Kibo Exposed Facility

Standard 
Dose Monitor 
(SDOM)

Atomic Oxygen Monitor 
(AOM) 

Electronic Device Evaluation 
Equipment (EDEE) 

PDU

Attached Payload Remote Terminal

Extension Mechanism 
Drive circuit

 

Figure 6.3.2-3 SEDA-AP 

6-19

 

background image

6. Kibo Utilization 

6-20

 

Table 6.3.2-3 SEDA-AP / Equipment Specifications 

 Items 

Specifications 

Dimension 

Mast stowed : W800 x H1000 x L1850 mm   
Mast extended :    W800 x H1000 x L2853 mm 

Mass (weight) 

Approx. 450 kg 

Power Consumption 

Approx. 220 W (Nominal operation) 

Main body 

Extension Capacity 

NEM Sensor extends to over 1 m from the SEDA-AP structural 
body 

Neutron Monitor   
(NEM) 

Bonner Ball Neutron Detector (BBND)   
Measuring energy range : 0.025 eV (thermal neutron) to 15 MeV   
Maximum number of measurable particles : 1 x 10

4

 count/sec     

Scintillation Fiber Detector (FIB)   
Measuring energy range : 15 MeV to 100 MeV   
Maximum number of measurable particles : 50 event/sec 

Heavy Ion Telescope 
(HIT) 

Li: 10 to 43 MeV/nuc   
C: 16 to 68 MeV/nuc   
O: 18 to 81 MeV/nuc   
Si: 25 to 111 MeV/nuc   
Fe: 34 to 152 MeV/nuc 

Plasma Monitor (PLAM)

Langmuir probe mode :   
High Gain -0.2 µA to +2 µA 
Low Gain -0.04 mA to +0.4 mA   
Floating probe mode :  
High Gain ±5 V   
Low Gain ±100 V 

Standard Dose Monitor 
(SDOM) 

Electron : 0.5-21 MeV (7 ch)   
Proton : 1.0-200 MeV (15 ch)   
Alpha : 7.0-200 MeV (6 ch)   
Heavy Ion : ID only (1 ch) 

Atomic Oxygen Monitor 
(AOM) 

Measuring range : 3 x 10

17

 to 3 x 10

21

 atoms/ cm

2

   

Resolution : 3 x 10

17

 atoms/ cm

2

Electronic Device 
Evaluation Equipment 
(EDEE) 

Memory (1MSRAM) 
Micro-Processor Unit (V70-MPU) 
Power MOSFET 

Sensor and 
Electronic 
Device 

Micro-Particles Capturer 
(MPAC) and Space 
Environment Exposure 
Device (SEED) 

Micro-particle capture :   
Silica-aerogel (34 mm x 34 mm x 9 pcs) 
Golden plate (119 mm x 60 mm x 2 pcs   
            76 mm x 25.5 mm x 1 pcs) 
  SEED onboard sample : Scheduled to be selected prior to launch     

 

background image

Kibo HANDBOOK 

6.4 Utilization 

Plan 

6.4.1 Overall Schedule 

With the exception of the GHF, all of the experiment payloads, as shown in section 6.3.1, will be installed in 

the SAIBO Rack or the RYUTAI Rack.  The SAIBO Rack and RYUTAI Rack will be stored in Kibo’s 

Experiment Logistics Module-Pressurized Section (ELM-PS).    The ELM-PS is scheduled for launch during 

Japan Fiscal Year 2007. 

Both racks will be transferred from the ELM-PS to Kibo’s Pressurized Module (PM), and will be installed at 

the locations as shown in Figure 6.3.1-2 and Figure 6.3.1-5, respectively.    After functions of the two racks are 

verified on orbit, experiments using these two racks will commence, based on the schedule as shown in Figure 

6.4.1-1.  Transfer method of the GHF in the KOBAIRO Rack is currently under consideration. The 

KOBAIRO Rack may be launched on-board the HTV toward the ISS. 

The SEDA-AP and MAXI will be launched aboard the space shuttle, and will be attached onto Kibo’s 

Exposed Facility (EF) on orbit.   

The SMILES is currently planned for launch on-board the HTV. 

 

(July 2007 updated) 

Development has completed. 
Preparing for launch and on-
board operation 

Development is completed

Assembling flight hardware

Both rack will be install in 
ELM-PS at NASA Kennedy 
Space Center.

FY2008 FY2009 

FY2010

February, 2008
JEM ELM-PS

FY2008
JEM-Exposed Facility 
& ELM-ES

FY 2009
HTV#1 launch

April, 2008
JEM-PM

KOBIRO Rack

SMILES

SEDA-AP

MAXI

SAIBO Rack

RYUTAI Rack

FY 2010
HTV#2 launch

In the ELM-PS

In Pressurized Logistics 
Carrier (PLC) of HTV

Assembling flight hardware

MAXI

SEDA-AP

On  the Unpressurized 
Logistics Carrier (ULC)
of HTV. 

On the ELM-ES

FY2007

Figure 6.4.1-1 Major Milestone (tentative) for Experiment Payload Launches 

 

6-21

 

background image

6. Kibo Utilization 

6-22

 

6.4.2 Utilization Fields 

The period of two-and-half years starting after Kibo launch until the completion of the ISS construction, 

scheduled for the middle of 2010, is defined as the First Utilization Phase (Initial Utilization Phase).    Toward 

the First Utilization Phase, the following preparation tasks for Kibo utilization are in progress.   

 

Scientific Research   

 

Preparations of the 16 experiment themes related to Life Science and Material Science, which were 

selected from domestic or international applications, and will be conducted in the PM, are progressing.   

 

Development of the three Exposed Facility (EF) experiment payloads (SEDA-AP, SMILES and MAXI) 

to be conducted on Kibo’s EF are progressing.   

 

Preparations of the three Life Science and space-medicine experiment themes, which were selected 

from international applications, and will be using ISS facilities (non Kibo facilities), are progressing.   

 

Applied Research 

 

Research activities related to protein crystallization and nano application study are under consideration 

at the Application Research Center.   

 

Space Medicine and Human Space Technology 

 

Researches focusing on medical risk mitigation for long-duration manned space exploration are 

progressing. (Telemedicine, reducing bone and muscle atrophy, etc.) 

 

Diversified Utilization, including Education and Culture 

 

Educational missions targeted for students and on-orbit scientific educational experiments are being 

planned.  

 

Ten experiments have been selected as pilot studies for the Art field with preparations currently in 

process. 

 

Utilization by the Asia Pacific Region   

 

Utilization of Kibo facilities is being proposed at the Asia-Pacific Regional Space Agency Forum 

(APRSAF). Feasibility assessment of Kibo experiments after 2010 is in process.   

 

Commercial Utilization (fee base) 

 

Supporting the Private sector businesses through commercializing the results from application 

researches or Space Open Lab Program.     

 

Using Kibo facilities for a fee are currently under consideration. 

 

background image

Kibo HANDBOOK 

6.4.3 Experiment Themes 

The scientific experiment themes, which will be conducted in Kibo’s Pressurized Module (PM), were 

domestically solicited in 1992. The preliminary selections of the domestic experiments were conducted in 

August 1993.  Life Science and microgravity-science experiment themes that will be conducted in Kibo’s 

Pressurized Module (PM), were also solicited internationally.    Preparations of the selected experiment themes 

from domestic and international applications have been in progress as part of the collaborative activities 

between the themes’ principal investigators and Japan Aerospace Exploration Agency (JAXA).  The 

preparations include preparations of the experiment plans (protocols), refinement of the specifications for the 

payloads, evaluations on the experiment operational tasks, and pilot studies on experiments using the space 

shuttles.  Through these activities, the required techniques and methods for conducting experiments utilizing 

Kibo facilities have been accumulated.   

Table 6.4.3-1 shows the experiment themes of Kibo (Material Science and Life Science) that will utilize 

Kibo’s Pressurized Module (PM) during the First Utilization Phase.  Table 6.4.3-2 shows the experiment 

themes that will utilize Kibo’s Exposed Facility (EF) or other ISS facilities (non-Kibo facilities).     

Table 6.4.3-3 shows the utilization themes currently under consideration from such diverse fields as, 

application research, space medicine, manned space exploration, culture and education.   

 

 

6-23

 

background image

6. Kibo Utilization 

6-24

 

Table 6.4.3-1 Scientific Experiment Themes (Material Science & Life Science)   

Kibo’s Pressurized Module (PM) 

Fields Title 

Material 
Science 

 

Spatio-temporal Flow Structure in Marangoni Convection (Marangoni1; 
Yasushi Takeda, Hokkaido University) 

 

Chaos, Turbulence and its Transition Process in Marangoni Convection 
(Marangoni2; Hiroshi kawamura, Science University of Tokyo) 

 

Investigation on Mechanism of Faceted Cellular Array Growth (Facet; Yuko 
Inatomi, JAXA) 

 

Study on micro-gravity effect for pattern formation of dendritic crystal by a 
method of in-situ observation (Ice Crystal; Yoshinori Furukawa, Hokkaido 
University) 

 

Experimental Assessment of Dynamic Surface Deformation Effects in 
Transition to Oscillatory Thermo capillary Flow in Liquid Bridge of High 
Prandtl Number Fluid (Marangoni3; Satoshi Matsumoto, JAXA) 

 

Interfacial Stability under Microgravity (Succinonitrile; Yasunori Miyata, 
Nagaoka University of Technology) 

 

Role of the short range order on the self-and impurity diffusion of group 
14(IVB) elements with a different degree of complexity* (Diffusion; Toshio 
Itami, Hokkaido University/JAXA) 

 

Growth of Homogeneous In0.3Ga0.7As Single Crystals in Microgravity* 
(Hicari; Kyoichi Kinoshita, JAXA) 

Pressurized 
Module 

Life 
Science 

 

Control of cell differentiation and morphogenesis of amphibian culture cells 
(Dome Gene; Makoto Asashima, Tokyo University) 

 

Biological effects of space radiation and microgravity on mammalian cells 
(Neuro Rad; Hideyuki Majima, Kagoshima University) 

 

Detection of Changes in LOH Profile of TK mutants of Human Cultured 
Cells (LOH; Fumio Yatagai, RIKEN) 

 

Gene expression of p53-regulated Genes in Mammalian Cultured Cells after 
Exposure to Space Environment

 

   (Rad Gene; Takeo Ohnishi, Nara 

Medical University) 

 

Cbl-Mediated Protein Ubiquitination Downregulates the Response of Skeletal 
Muscle Cells to Growth Factors in Space

 

(Myo Lab; Takeshi Nikawa, T 

University of Tokushima) 

 

Regulation by Gravity of Ferulate Formation in Cell Walls of Wheat 
Seedlings

 

(Ferulate; Kazuyuki Wakabayashi, Osaka City University) 

 

Integrated assessment of long-term cosmic radiation through biological 
responses of the silkworm, Bombyx mori, in space (Rad Silk; Toshiharu 
Furusawa, Kyoto Institute of Technology) 

 

Life Cycle of Higher Plants under Microgravity Conditions

 

(Space Seed; 

Seiichiro Kamisaka, Toyama University) 

 

RNA interference and protein phosphorylation in space environment using 
the nematode Caenorhabditis elegans

 

(CERISE; Atsushi Higashitani, 

Tohoku University) 

 

background image

Kibo HANDBOOK 

Table 6.4.3-2 Scientific Experiment Themes 

  Kibo’s Exposed Facility (EF) or other ISS facilities 

Fields Title 

Exposed Facility 

 

Monitoring the Space Environment and Research on Its Effects on Parts & 
Materials (SEDA; Tateo Goka, JAXA) 

 

Experimental Observation of Atmosphere Using ”SMILES” (SMILES; 
Masato Shiotani, Kyoto University) 

 

Research on Long-and Short-Term Variations of ALL Sky A-ray Sources 
(MAXI; Masaru Matsuoka, JAXA) 

Material 
Science 

 

Effect of Material Properties on Wire Flammability in a Weak Ventilation of 
Spacecraft    (Osamu Fujita, Hokkaido University) 

 

Containerless Crystallization of Silicon in Microgravity (CCSM; Kazuhiko 
Kuribayashi, JAXA) 

Life 
Science 

 

Role of Microtubule-Membrane-Cell Wall Continuum in Gravity Resistance 
in Plants (Cell-Wall; Takayuki Hoson, Osaka City University ) 

 

Reverse genetic approach to exploring genes responsible for cell-wall 
dynamics in supporting tissues of Arabidopsis under gravity conditions. 
(Resist-Wall; Kazuhiko Nishitani, Tohoku University) 

 

Effects of Microgravity and Neuromuscular Activity on Skeletal Muscle 
Fibers (Akihiko Ishihara, Kyoto University) 

 

The Effect of Microgravity on Vestibular Neurotransmission (Shinichi Usami, 
Shinshu University) 

 

Hydrotropism and auxin-inducible gene expression in roots grown in 
microgravity conditions (Hydro Tropi; Hideyuki Takahashi, Tohoku 
University) 

Other 
Module 

Space 
Medicine

 

Preflight zoledronate infusion as an effective countermeasure for 
spaceflight-induced bone loss and renal stone formation (Bisphosphonates; 
Toshio Matsumoto, University of Tokushima) 

 

6-25

 

background image

6. Kibo Utilization 

6-26

 

Table 6.4.3-3 Utilization Themes other than scientific experiments (tentative) 

Fields Title 

Applied 
research 

 

Protein Crystallization (Osaka University) 

 

Nano-material (Nagoya Institute of Technology) 

 

Dynamics of Interfaces (Tokyo University of Science) 

Space 
Medicine 
Human 
Space 
Technology

 

Physiological Countermeasure; Prevention of bone loss and urinary stone, 
Countermeasure for muscle atrophy 

 

Psychological Support; Psychological monitoring for adaptation of isolation 
and human interaction, Cross-cultural Issue 

 

Radiation; Bio-dosimetry, Personal dosimetry (advanced type) 

 

Medical System; Small and Portable Medical data monitoring equipment 
(Tele-medicine), Autonomous Diagnostic Medical equipment 

 

Environment; Gas monitoring and analyzing system (advanced type) 

 

Habitation Technology(Japanese Space Foods, e.t.c.) 

JEM 
utilization 
by Asia 
Pacific 
region 

 

Research collaboration with Asia Pacific region 

 

Educational program using ISS/JEM 

Pressurized 
Module 

Commercial 
utilization 

 

Protein Crystallization   

 

3 Dimensional Photonic Crystallization 

 

High Definition Video filing 

 

background image

Kibo HANDBOOK 

6.4.4 Utilization Plan 

For the First Phase Utilization, which will continue for three years from the beginning of the Kibo operations 

until 2010, the detailed operations plans have been deliberated at the ISS/Kibo Utilization Promotion 

Committee, which is an external advisory committee to JAXA.    The allocation of the utilization resources per 

study field or the experiment payloads that will be loaded on Kibo, or the experiment themes that are targeted 

for international coordination in 2008, were arranged in 2005.   

For international coordination, the allocation of the ISS utilization resources and optimization of the ISS 

overall resources are currently being evaluated based on the ISS overall logistics plan and the ISS overall 

operations plan.   

Figure 6.4.4-1 shows the tentative schedule for the First Utilization Phase 

 

 

 

(July 2007 updated) 

HTV

2J/A

FY

FY2009

FY2008

FY2010

RYUTAI Rack

SAIBO Rack

KOBAIRO Rack

Inc. 15

FY2007

1J/A

SMILES

SEDA

MAXI

1J

Marangoni1

Marangoni2 

Marangoni13

Facet

Ice Crystal

Succinonitrile

Rad Gene

Diffusion

Hicari

LOH

Dome Gene

Rad Silk

CERISE

Neuro Rad

Space Seed

Myo Lab

Ferulate

Cell Wall / Resist Wall

JEM Pressurized Module

CBEF
CB

HD Cam/Small devices 

JEM Exposed Facility

Other Module (IAO)

PCRF

GHF

FPEF

SCOF

Inc. 16

Inc. 17

Inc. 18

Inc. 19

Inc. 20

Inc. 21

Inc. 22

Inc. 23

US Lab

Russian
Module

HD Cam

3DPC #2
Protein  #2

Protein  #3

Bisphosphonates (Pre/Post flight)

Education/Culture

HD Cam

Matryoshka/ARTCLISS/Space ICCHIBAN

Figure 6.4.4-1 Schedule for the First Utilization Phase (tentative) 

6-27

 

background image

6. Kibo Utilization 

6-28

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 

 

background image

Kibo HANDBOOK 

7.  H-II Transfer Vehicle (HTV) Overview 

7-1

 

background image

7. H-II Transfer Vehicle (HTV) Overview 

7-2

 

7.1 Summary 

The H-II Transfer Vehicle (HTV), designed and being built in Japan, is an unmanned cargo transfer 

spacecraft that will deliver supplies to the International Space Station (ISS). 

The HTV will be launched from the Tanegashima Space Center in Japan aboard an H-IIB Launch Vehicle 

(currently under development).  When the HTV approaches close proximity to the ISS, the Space Station 

Remote Manipulator System (SSRMS), also known as "Canadarm2," will grapple the HTV and berth it to the 

ISS.  The HTV will deliver up to 6,000 kg of supplies, including food, clothing and several types of 

experiment payloads to the ISS.    After the supplies are unloaded, the HTV will then be loaded with waste 

materials, including used payloads or used clothing. Afterward, the HTV will undock and depart from the ISS, 

and will de-orbit and reenter the atmosphere.    While the HTV is berthed to the ISS, the ISS crew members 

will be able to enter and remove supplies from the HTV Pressurized Logistics Carrier (PLC). 

Figure 7.1-1 shows an image of the HTV on-orbit. 

 

Figure 7.1-1 Image of HTV during Flight 

The HTV will be utilized for delivering supplies to the ISS as with the Russian Progress cargo spacecraft, the 

U.S. space shuttle, and the Automated Transfer Vehicle (ATV) developed and built by the European Space 

Agency (ESA),.    The HTV can carry both pressurized (for inside use) and un-pressurized (for outside use) 

cargo, and this is a unique special feature of the HTV. 

The launch of the HTV "Technical Demonstration Vehicle" (initial flight vehicle) is scheduled during Japan’s 

fiscal year 2009 (JFY 2009).    Thereafter, one or two HTVs per year are planned for launch. 

background image

Kibo HANDBOOK 

7.1.1 HTV Components 

The H-II Transfer Vehicle (HTV) consists of two logistic carriers: Pressurized Logistics Carrier (PLC) and 

Un-pressurized Logistics Carrier (UPLC) which carries an Exposed Pallets (EP), and an Avionics Module and a 

Propulsion Module. 

Proximity Communication System (PROX), antennas and reflectors which enable inter-orbit 

communications between Kibo and the HTV, are installed on Kibo, and will be utilized when the HTV 

approaches the ISS.    Table 7.1.1-1 shows the HTV specifications. 

 

 

Un-pressurized Logistics 
Carrier (UPLC) 

Avionics Module

Propulsion Module

PLC will carry supplies that will be
used aboard ISS.  ISS crew will be
able to enter and work inside PLC 

Avionics Module contains navigation, 
communication and electrical equipment 

Exposed Pallet

EP

Exposed Pallet will carry 
un-pressurized payloads 

Common Berthing 

Mechanism

CBM

 

Pressurized Logistics Carrier (PLC) 

UPLC will carry an Exposed Pallet 

Propellants, necessary to generate 
propulsion for rendezvous, 
attitude control and de-orbit, are 
stored in Propulsion Module’s 
propellant tanks 

Figure 7.1.1-1 HTV Configuration Diagram 

 

Table 7.1.1-1 HTV Specifications 

Items Specifications 

Length 

10 m (including thrusters) 

Diameter 4.4 

 

Mass (weight) 

10,500 kg (exclude cargo mass) 

Cargo capacity (supplies) 

6,000 kg   
  -Pressurized cargo: 4,500 kg 
  -Un-pressurized cargo: 1,500 kg 

Cargo capacity (waste) 

6,000 kg 

Target orbit to ISS 

Altitude: 350 km to 460 km 
Inclination: 51.6 degrees 

Maximum duration of a mission 

Solo flight: 100 hours 
Stand-by (on-orbit): More than a week 
Berthed with the ISS: Maximum 30 days 

7-3

 

background image

7. H-II Transfer Vehicle (HTV) Overview

ehicle (HTV) Overview 

7-4

 

(1)  Pressurized Logistic Carrier (PLC) 

ll carry cargo, including International Standard Payload Racks 

(ISPR), drinking water, and clothes that will be used aboard the ISS.  The PLC's internal air pressure is 

m

d Logistic Carrier (UPLC) 

arry an Exposed Pallet (EP) (Please refer to (3)) 

(3

will carry EF payloads, as well as, the ISS battery Orbital Replacement Units 

(ORU).  There are two different types of Exposed Pallets, Type I and Type III. To meet different and 

sp

 pallet will be attached 

Type III: 

s Mobile Base System (MBS).    Up to six battery ORUs can be delivered. 

 

Figure 7.1.1-2 Exposed Pallets (EP) (left: Type I, right: Type III) 

 

7-4

 

(1)  Pressurized Logistic Carrier (PLC) 

ll carry cargo, including International Standard Payload Racks 

(ISPR), drinking water, and clothes that will be used aboard the ISS.  The PLC's internal air pressure is 

m

d Logistic Carrier (UPLC) 

arry an Exposed Pallet (EP) (Please refer to (3)) 

(3

will carry EF payloads, as well as, the ISS battery Orbital Replacement Units 

(ORU).  There are two different types of Exposed Pallets, Type I and Type III. To meet different and 

sp

 pallet will be attached 

Type III: 

s Mobile Base System (MBS).    Up to six battery ORUs can be delivered. 

 

Figure 7.1.1-2 Exposed Pallets (EP) (left: Type I, right: Type III) 

The Pressurized Logistics Carrier (PLC) wi

The Pressurized Logistics Carrier (PLC) wi

aintained at one atmospheric pressure (1atm).    Temperature inside the HTV is controlled until it is berthed 

to the ISS.  After the HTV is berthed to the ISS, the PLC’s and the ISS’s internal air will be circulated 

throughout the ISS using fans.    While the HTV is berthed to the ISS, the ISS crew will be able to enter the 

PLC to unload the supplies.  After the supplies are unloaded, the HTV will de-orbit and reenter the 

atmosphere carrying the waste materials.  The HTV's berthing port is equipped with a Common Berthing 

Mechanism (CBM). 

(2)  Un-pressurize

aintained at one atmospheric pressure (1atm).    Temperature inside the HTV is controlled until it is berthed 

to the ISS.  After the HTV is berthed to the ISS, the PLC’s and the ISS’s internal air will be circulated 

throughout the ISS using fans.    While the HTV is berthed to the ISS, the ISS crew will be able to enter the 

PLC to unload the supplies.  After the supplies are unloaded, the HTV will de-orbit and reenter the 

atmosphere carrying the waste materials.  The HTV's berthing port is equipped with a Common Berthing 

Mechanism (CBM). 

(2)  Un-pressurize

The Un-pressurized Logistic Carrier (UPLC) will c

The Un-pressurized Logistic Carrier (UPLC) will c

)  Exposed Pallet (EP) 

)  Exposed Pallet (EP) 

The Exposed Pallets (EPs) 

The Exposed Pallets (EPs) 

ecialized purposes, development of other types of Exposed Pallets, in addition to Type I and Type III, are 

under consideration.    An outline of the Exposed Pallets is shown in Figure 7.1.1-2. 

Type I:    This type of pallet carries the Exposed Facility (EF) payloads that will be used on Kibo's Exposed 

Facility (EF).    Two or three EF payloads per flight can be delivered.    This

ecialized purposes, development of other types of Exposed Pallets, in addition to Type I and Type III, are 

under consideration.    An outline of the Exposed Pallets is shown in Figure 7.1.1-2. 

Type I:    This type of pallet carries the Exposed Facility (EF) payloads that will be used on Kibo's Exposed 

Facility (EF).    Two or three EF payloads per flight can be delivered.    This

to the EF. 

This type of pallet carries the US ORUs, such as the battery ORU.    This pallet will be attached to 

the station'

to the EF. 

This type of pallet carries the US ORUs, such as the battery ORU.    This pallet will be attached to 

the station'

Battery ORU

EF payload

Exposed Pallet

FRGF

A Battery ORU can be 

temporarily attached 

FRGF 

FRGF:  Flight Releasable Grapple Fixture. JEMRMS grapples here. 
PVGF:  Power Video Grapple Fixture. Canadarm2 grapples here. 
PIU: 

Payload Interface Unit (Passive part of EEU). For detail, please refer to Chapter 4 Section 4.3   

PVGF 

Type I

Type III

PIU

background image

Kibo HANDBOOK 

(4) Avionics 

Module 

The Avionics Module contains guidance navigation & control, communication and electrical power systems.   

The Avionics Module controls and navigates the HTV’s remote-controlled flight by receiving commands from 

the ground or by HTV autonomous flight.  In addition, the Avionics Module distributes power to each 

component of the HTV. 

(5) Propulsion 

Module 

The Propulsion Module has four propellant tanks. These tanks supply propellant to the HTV thrusters.    The 

propulsion for orbital adjustment or attitude control will be produced by commands sent from the Avionics 

Module.    The HTV has 32 thrusters installed.    Specifications of the HTV thrusters are shown in Table 7.1.1-2.   

Locations of the thrusters are shown in Figure 7.1.1-3 
 
 

Table 7.1.1-2 HTV thruster specifications 

Specifications 

Items 

Main thruster 

Attitude Control Thruster 

Number of units 

4 units 

14 units x 2 string (redundant structure) 

*Of 28 units, 12 units are installed on the 

Pressurized Logistics Carrier (PLC) 

Thrust (per unit) 

490N 

110N 

 

 

Figure 7.1.1-3 Location of HTV thrusters 

Main Thruster 

Attitude Control Thruster
 

Attitude Control Thruster

7-5

 

background image

7. H-II Transfer Vehicle (HTV) Overview

ehicle (HTV) Overview 

7-6

 

 

 

 

 

 

   

HTV approaches the ISS from the

 of the reflectors, please refer 

to Figure 7.1.1-4 

 

Figure 7.1.1-4 PROX and Reflectors 

 

7-6

 

(6)  Proximity Communication System (PROX) 

The Proximity Communication System (PROX), which is installed in Kibo, consists of PROX antennas, 

PROX-GPS antennas, PROX communication equipment, and a Hardware Command Panel (HCP).    With the 

exception of the PROX antennas, the PROX-GPS antennas and the HCP, the PROX related equipments are 

installed in the Inter-orbit Communication System (ICS) rack, which is one of the JEM system racks installed 

in the JEM Pressurized Module (PM).   

When the HTV approaches in close proximity to the ISS, the PROX antenna will initiate communications 

with the HTV.    This antenna contains GPS receivers.    The ISS's orbital location and speed will immediately 

be relayed to the HTV through the PROX.    At the same time, data from the HTV will be relayed to the ISS.   

In addition, the antenna will relay commands sent from the ground to the HTV. 

(7) Reflector 

The reflectors are installed on the nadir (bottom) side of Kibo.    The reflectors will reflect the lasers that are 

beamed from the HTV's Rendezvous Sensor (RVS) when the HTV is in ISS Proximity Operations and as th

HTV approaches the ISS from the

 of the reflectors, please refer 

to Figure 7.1.1-4 

 

Figure 7.1.1-4 PROX and Reflectors 

(6)  Proximity Communication System (PROX) 

The Proximity Communication System (PROX), which is installed in Kibo, consists of PROX antennas,

PROX-GPS antennas, PROX communication equipment, and a Hardware Command Panel (HCP).    With th

exception of the PROX antennas, the PROX-GPS antennas and the HCP, the PROX related equipments are

installed in the Inter-orbit Communication System (ICS) rack, which is one of the JEM system racks installed

in the JEM Pressurized Module (PM).   

When the HTV approaches in close proximity to the ISS, the PROX antenna will initiate communications

with the HTV.    This antenna contains GPS receivers.    The ISS's orbital location and speed will immediately

be relayed to the HTV through the PROX.    At the same time, data from the HTV will be relayed to the ISS.

In addition, the antenna will relay commands sent from the ground to the HTV. 

(7) Reflector 

The reflectors are installed on the nadir (bottom) side of Kibo.    The reflectors will reflect the lasers that ar

beamed from the HTV's Rendezvous Sensor (RVS) when the HTV is in ISS Proximity Operations and as the 

 nadir side (direction of earth).    For locations

 nadir side (direction of earth).    For locations

PROX GPS Antenna 

Communications & Data 
Handling/Electrical Power/GPS 
equipment  
(Installed in the ICS rack in the PM) 

Reflector 

Hardware Command 
Panel (HCP) 

PROX antenna (Installed 
on the outside of the PM) 

background image

Kibo HANDBOOK 

7.2 HTV 

Operations 

The HTV will be operated in the following sequence.    An outline of the HTV operations is shown in Figure 

7.2-1 

 

1.

 

Launch  

2.

 

Rendezvous with the International Space Station (ISS)   

3.

 

Berthing with the ISS   

4.

 

Operations while berthed with the ISS   

5.

 

Undock/Departure from the ISS/Reentry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Max. 30 days

TDRSS 

TDRSS 

ISS Proximity 
Operations Phase

Rendezvous  

Phase 

H-IIB/HTV 

Se

4 min. after 

paration

ISS Departure 

launch

 

 

Figure 7.2-1 HTV Operations 

 

T egashima  

an

Space Center 

 

Phase

Approx. 3 days 

De-orbit 
Phase

Reentry 

H-IIA/B 
-CC 

Control 

Center 

SSCC 

HTV-CC

NASA White Sands 
Ground Station 

NASA
Space Center 

 Johnson 

(JSC)

Tsukuba Space Center (TKSC) 

US 

Japan 

7-7

 

background image

7. H-II Transfer Vehicle (HTV) Overview

ehicle (HTV) Overview 

7-8

 

7.2.1 Launch 

The HTV will be 

a Space Center aboard an H-IIB launch vehicle (Figure 

e).    The 

nch op

ty will 

 onc

the HTV’s launch time has to be 

adjusted and scheduled for when the 

an is passin

 the Tanegashima Space Center launch 

site. 

 

Figure 7.2.1-1 HTV Launch Image (above) and HTV/H-IIB Separation Image (below) 

 

7-8

 

7.2.1 Launch 

The HTV will be 

a Space Center aboard an H-IIB launch vehicle (Figure 

e).    The 

nch op

ty will 

 onc

the HTV’s launch time has to be 

adjusted and scheduled for when the 

an is passin

 the Tanegashima Space Center launch 

site. 

 

Figure 7.2.1-1 HTV Launch Image (above) and HTV/H-IIB Separation Image (below) 

launched fro

HTV’s lau

launched fro

HTV’s lau

the Tanegashim

the Tanegashim

7.2.1-1 abov

7.2.1-1 abov

portuni

portuni

be

be

e a day, since 

g over

e a day, since 

g over

ISS’s orbital pl

ISS’s orbital pl

HTV mounted 

inside 

HTV

H-IIB Launch Vehicle 
(Second Stage) 

background image

Kibo HANDBOOK 

Following the launch phase, the HTV will be inserted into an elliptical orbit with an altitude of 200 km 

(perigee) x 300 km (apogee) and a inclination of 51.6 degree.     

After separating from the H-IIB launch vehicle, 1) the HTV will automatically activate the HTV subsystems, 

2) maintain its attitude,3) perform a self-check on the HTV’s components, and 4) initiate communications with 

the HTV Control Center (HTV-CC) at Tsukuba Space Center (TKSC). 

 

 

7.2.2 Rendezvous 

After separating from the H-IIB launch vehicle, the HTV will approach the ISS in the following sequence as 

described below.    Figure 7.2.2-1 shows the HTV Rendezvous Flight profile that depicts how the HTV will 

approach the ISS, by boosting (adjusting) the HTV’s orbital altitude. 
 

1.

 

After separating from the H-IIB launch vehicle, the HTV will automatically activate HTV’s 

communication system and initiate communications with NASA's Tracking and Data Relay Satellite 

(TDRS).  

2.

 

The HTV status will be monitored from the ground.  Next, the HTV will then start orbital flight 

towards the ISS. 

3.

 

After three days of orbital flight, the HTV will reach close proximity to the ISS. 

4.

 

The HTV will reach the proximity "Communication Zone" (23 km from the ISS), at which point the 

HTV can directly communicate with the ISS 

5.

 

The HTV will establish communications with the Proximity Communication System (PROX).   

6.

 

While communicating with PROX, the HTV will approach the ISS, guided by GPS signals (Relative 

GPS Navigation), until the HTV reaches the “Approach Initiation (AI) Point, 7 km behind the ISS .   

At this point, the HTV will maintain this distance from the ISS. 

 

Altitude 

Time

Rendezvous Launch 

Reentry 

Proximity  
operations 

Departure

ISS

Adjusting orbital 
altitude and phase 

Apogee 

Perigee

 

Figure 7.2.2-1 HTV Rendezvous Flight Profile 

7-9

 

background image

7. H-II Transfer Vehicle (HTV) Overview 

7-10

 

7.2.3  Berthing with the ISS (Proximity Operation Phase) 

oach the ISS from the nadir (bottom) side of the ISS (from the direction of Earth).   

The HTV will then be grappled by the Canadarm2 and berthed to the ISS. 

 

Figure 7.2.3-1 HTV Proximity Operations 

 

The HTV's approach to the ISS during the Proximity Operation Phase is as follows. 

 

1.

 

The HTV will move from the Approach Initiation (AI) Point to a point 500 meters below the ISS, as 

guided by Relative GPS Navigation 

2.

 

Using a laser radar called “Rendezvous Sensor (RVS)”, the HTV will approach closer to the ISS. Laser 

reflectors are installed on Kibo (This is called “RVS Navigation”)   

3.

 

The HTV will slowly and gradually approach the ISS.    The HTV will hold its approach twice, when 

reaching the following points: HTV will stop 300 m below the ISS (hold point), and will stop 30 m 

below the ISS (Parking Point). 

4.

 

Eventually, the HTV will approach a proximity area called “Berthing Point”.    This point is set 10 m 

below the ISS, and is in a predetermined area which is called ”Berthing Box”. Next, while at the 

Berthing Point, the HTV will maintain its distance from the ISS   

 

The HTV’s approach speed during the RVS Navigation phase is 1 to 10 meters per minute.    During the 

 "ABORT" to the HTV.    In 

addition, if an emergency occurs and further approach can not be permitted, the HTV will be controlled to 

de

The HTV will slowly appr

 

approach, the ISS crew can send commands including "HOLD," "RETREAT" or

part from the ISS orbit.   

AI Point 

Direction of travel

D

Op

eparture 

erations 

Sepa

an

ration 

M

euver 

Final Approach 

Parking Point

Approach 
Initiation

R-bar approach 
Rendezvous Sensor Navigation

RGPS Navigation

500 m from 

the ISS 

ISS Proximity Sc

Drawing 

ale 

7 km behind the ISS 

RGPS Navigation: Relative GPS navigation 
R-bar Approach: Approach from the direction of earth 

background image

Kibo HANDBOOK 

 

igure 7.2.3-2 Images of HTV approaching the ISS (above) and HTV Berthing to the ISS (below) 

HTV

Canadarm2

HTV 

Canadarm2

F

n be berthed to the ISS (Figure 7.2.3-2 below). 

 

Once the HTV Control Center (HTV-CC) at the TKSC confirms that the HTV’s approach and distance from 

the ISS is within the Berthing Box, the ISS crew will inhibit the HTV thrusters (Figure 7.2.3-2 above).    Next, 

the Canadarm2 will grapple the HTV and berth the HTV to the CBM located at the nadir side (earth side) of the 

Node 2.    The HTV will the

7-11

 

background image

7. H-II Transfer Vehicle (HTV) Overview 

7-12

 

7.2.4  Operations while berthed to the ISS 

Once the HTV is berthed to the ISS, the lights in the PLC will be powered up and the air pressure in the PLC 

will be adjusted by ISS crew or the HTV-CC for ingress preparation.   After completing these preparatory 

tasks, both the HTV and ISS hatches will be opened.    The temperature inside of the PLC will be maintained at 

15.6 

°

C (degrees Celsius) before the ISS crew enters the PLC.    This is a preemptive measure to hinder the 

possible formation of dew upon the crew entering the PLC. While the HTV is berthed to the ISS, power will be 

supplied from the ISS to the HTV. 

After the hatches between the ISS and HTV opened, the ISS crew will start transferring the supplies (ISPRs, 

drinking water, clothes, etc.) from the PLC to the ISS.    After the supplies are transferred, the HTV will be 

loaded with waste from the ISS. 

In addition, in order to unload the supplies from the Exposed Pallet (EP), the EP will be removed from the 

HTV’s Unpressurized Logistics Carrier (UPLC) and will be attached to the ISS Mobile Base System (MBS) or 

Kibo's Exposed Facility (EF).    An example of the EP Type I transfer procedure is as follows.   

 

1.

 

The Canadarm2 will grapple the EP, and remove the EP from the UPLC (Figure 7.2.4-1) 

2.

 

The EP will be handed from the Canadarm2 to the JEMRMS, Kibo’s robotic arm (Figure 7.2.4-2 (2)) 

3.

 

The EP will be attached to Kibo’s Exposed Facility (EF) by the JEMRMS (Figure 7.2.4-2 (4)) 

 

background image

Kibo HANDBOOK 

 

Figure 7.2.4-1 Image of EP being removed from UPLC 

 

Figure 7.2.4-2 Image of EP attached to EF 

HTV

Canadarm2 

Exposed Pallet

HTV

Canadarm2 

Exposed Pallet

EF

JEMRMS 

(  ) 

( )

(  ) 

( )

7-13

 

background image

7. H-II Transfer Vehicle (HTV) Overview 

7-14

 

7.2.5  Departure from the ISS and Reentry 

After being loaded with waste, the HTV will undock and depart from the ISS. The HTV will be destroyed 

while reentring the atmosphere.    The procedures for the HTV’s undocking and departure from the ISS are as 

follows. 

 

1.

 

The hatch of the HTV will be closed and the power supply will be switched to the HTV’s internal 

power supply by the ISS crew 

2.

 

The Canadarm2 will grapple the HTV 

3.

 

The Common Berthing Mechanism will be disengaged 

4.

 

The Canadarm2 will move the HTV to the release point 

5.

 

The Canadarm2 will release the HTV 

6.

 

The HTV thrusters will be activated by the ISS crew.   

7.

 

The HTV will depart from the ISS 

 

 

Figure 7.2.5-1 Image of HTV reentering the atmosphere 

background image

Kibo HANDBOOK 

 

Figure 7.2.5-2 HTV Debris Falling Permissible (Allowed or Expected) Areas and HTV’s Orbit (Red lines) 

Visible window

Visible window 

Debris Falling 

Permissible / 

Expected Areas 

 

Debris Falling 

Permissible / 

Expected Areas

7-15

 

background image

7. H-II Transfer Vehicle (HTV) Overview 

7-16

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This page intentionally left blank. 

background image

Kibo HANDBOOK 

Appendix  Acronyms and Abbreviations 

i

 

background image

Appendix  Acronyms and Abbreviations 

ii

 

Acronym/Abbreviation

Name 

ACBM     

Active Common Berthing Mechanism  

AEFBM 

Active Exposed Facility Berthing Mechanism 

AI Approach 

Initiation 

AOM Atomic 

Oxygen 

Monitor 

AOS Acousto-optical 

Spectrometer 

APRSAF 

Asia-Pacific Regional Space Agency Forum 

ASCR 

Assured Safe Crew Return 

ATCS 

Active Thermal Control System 

ATF Astronaut 

Training Facility (TKSC) 

ATU Audio 

Terminal 

Unit 

ATV 

Automated Transfer Vehicle 

BBND 

Bonner Ball Neutron Detector 

C&C MDM 

Command and Control Multiplexer/Demultiplexer 

C&DH 

Command and Data Handling 

C&T Communication 

and 

Tracking 

CB Clean 

Bench 

CBEF Cell 

Biology 

Experiment Facility 

CBM   

Common Berthing Mechanism  

CDR  

Critical Design Review  

CGSE 

Common Gas Supply Equipment 

CMG   

Control Moment Gyro  

Col-CC 

Columbus Control Center 

CSA  

Canadian Space Agency  

CSS 

Crew Support System   

DC Docking 

Compartment 

DMS 

Data Management System 

DRTS 

Data Relay Test Satellite 

ECLSS Environmental 

Control and Life Support System 

ECU 

Electronic Control Unit 

EDEE 

Electronic Device Evaluation Equipment 

EEU Equipment 

Exchange 

Unit 

EF Exposed 

Facility 

EFBM 

Exposed Facility Berthing Mechanism 

EFU 

Exposed Facility Unit 

ELM-ES Experiment 

Logistics Module-Exposed Section 

ELM-PS Experiment 

Logistics 

Module-Pressurized Section 

background image

Kibo HANDBOOK 

Acronym/Abbreviation

Name 

E-ORU 

Extravehicular activity Orbital Replacement Unit 

EPS 

Electrical Power System 

ERA 

European Robotic Arm 

ESS 

Experiment Support System 

EVA Extravehicular 

Activity 

 

FCIT 

Flight Crew Interface Test 

FIB 

Scintillation Fiber Detector 

FSA 

Federal Space Agency 

FPEF 

Fluid Physics Experiment Facility 

FRGF 

Flight Releasable Grapple Fixture 

GHF 

Gradient Heating Furnace 

GPS   

Global Positioning System 

GSC 

Gas Slit Camera 

HCP 

Hardware Command Panel 

HEPA 

High Efficiency Particulate Air 

HIT 

Heavy Ion Telescope 

HOSC 

Huntsville Operations Support Center 

HREL 

Hold and Release Electronics Unit 

HTV 

H-II Transfer Vehicle 

HTV-CC 

HTV Control Center 

ICS 

Inter-orbit Communication System 

ICS-EF 

ICS Exposed Facility Subsystem 

ICS-PM 

ICS Pressurized Module Subsystem 

IFHX 

Interface Heat Exchanger 

ISPR   

International Standard Payload Rack 

ISS 

International Space Station 

JAXA Japan 

Aerospace 

Exploration Agency 

JCP 

JEM Control Processor 

JEM Japanese 

Experiment Module 

JEMRMS Japanese 

Experiment Module Remote Manipulator System 

JFY Japan’s 

fiscal 

year 

JSC  

Johnson Space Center  

LCD 

Liquid Crystal Display 

LTL 

Low Temperature Loop 

LVLH   

Local Vertical Local Horizontal 

MA 

Main Arm (JEMRMS) 

iii

 

background image

Appendix  Acronyms and Abbreviations 

iv

 

Acronym/Abbreviation

Name 

MAXI 

Monitor of All-sky X-ray Image 

MBS 

Mobile Base System or MRS(Mobile Remote System) Base System 

MCC  

Mission Control Center 

MCC-M 

Mission Control Center - Moscow 

MCR 

Mission Control Room (TKSC) 

MEIT Multi-Element 

Integration 

Test 

MLM 

Multi-Purpose Laboratory Module 

MOU 

Memorandum of Understanding 

MPAC&SEED Micro-Particles 

Capturer 

and Space Environment Exposure Device 

MSFC   

Marshall Space Flight Center     

MTL Moderate 

Temperature 

Loop 

NASA     

National Aeronautics and Space Administration                           

NASDA National 

Space 

Development Agency of Japan 

NEM Neutron 

Monitor 

OBSS 

Orbiter Boom Sensor System 

OCS 

Operation Control System (TKSC) 

ODS 

Orbiter Docking System   

OPR 

Operations Planning Room (TKSC) 

ORR 

Operations Rehearsal Room (TKSC) 

PAM Payload 

Attach 

Mechanism 

PCBM   

Passive Common Berthing Mechanism     

PCRF 

Protein Crystallization Research Facility 

PDB 

Power Distribution Box   

PDR   

Preliminary Design Review 

PDU 

Power Distribution Unit 

PEFBM 

Passive Exposed Facility Berthing Mechanism   

PIU 

Payload Interface Unit 

PLAM Plasma 

Monitor 

PLC 

Pressurized Logistics Carrier (HTV) 

PM Pressurized 

Module 

PMA   

Pressurized Mating Adapter 

POIC 

Payload Operations and Integration Center 

PROX 

Proximity Communication System 

PTCS 

Passive Thermal Control System 

PVGF 

Power & Video Grapple Fixture 

RM Research 

Module 

background image

Kibo HANDBOOK 

Acronym/Abbreviation

Name 

R-ORU Robot 

essential 

Orbital Replacement Unit 

RUR 

Reference Update Review 

RVS Rendezvous 

Sensor 

SCOF 

Solution Crystallization Observation Facility 

SDOM Standard 

Dose 

Monitor 

SEDA-AP 

Space Environment Data Acquisition equipment 

 Attached Payload 

SEL 

Space Experiment Laboratory (TKSC) 

SFA 

Small Fine Arm (JEMRMS) 

SFU 

Space Flyer Unit 

SLM Structure 

Latch 

Mechanism 

SLT System 

Laptop 

Terminal 

SMILES 

Superconducting Submilimeter-Wave Limb-Emission Sounder 

SPCF 

Solution/Protein Crystal Growth Facility 

SRMS  

Shuttle Remote Manipulator System     

SSC Solid-state 

Slit 

Camera 

SSCC 

Space Station Control Center 

SSE 

Small Fine Arm Storage Equipment   

SSIPC 

Space Station Integration and Promotion Center 

SSOF 

Space Station Operations Facility (TKSC) 

SSRMS 

Space Station Remote Manipulator System 

TCS 

Thermal Control System 

TDRS 

Tracking and Data Relay Satellite 

TKSC Tsukuba 

Space 

Center 

UCM 

Umbilical Connector Mechanism 

UOA 

User Operations Area (TKSC) 

UPLC Un-pressurized 

Logistics 

Carrier 

 

URM 

Unit Replacement Mechanism 

WET 

Weightless Environment Test Building (TKSC) 

 

v

 


Document Outline