background image

John E. Foster, Tom Haag, and Michael Patterson
Glenn Research Center, Cleveland, Ohio

George J. Williams, Jr.
Ohio Aerospace Institute, Brook Park, Ohio

James S. Sovey
Alpha-Port, Inc., Cleveland, Ohio

Christian Carpenter
QSS Group, Inc., Cleveland, Ohio

Hani Kamhawi, Shane Malone, and Fred Elliot
Glenn Research Center, Cleveland, Ohio

The High Power Electric Propulsion
(HiPEP) Ion Thruster

NASA/TM—2004-213194

September 2004

AIAA–2004–3812

background image

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

•

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

•

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

•

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

•

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

•

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

•

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

•

Access the NASA STI Program Home Page
at 

http://www.sti.nasa.gov

•

E-mail your question via the Internet to
help@sti.nasa.gov

•

Fax your question to the NASA Access
Help Desk at 301–621–0134

•

Telephone the NASA Access Help Desk at
301–621–0390

•

Write to:

           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076

background image

John E. Foster, Tom Haag, and Michael Patterson
Glenn Research Center, Cleveland, Ohio

George J. Williams, Jr.
Ohio Aerospace Institute, Brook Park, Ohio

James S. Sovey
Alpha-Port, Inc., Cleveland, Ohio

Christian Carpenter
QSS Group, Inc., Cleveland, Ohio

Hani Kamhawi, Shane Malone, and Fred Elliot
Glenn Research Center, Cleveland, Ohio

The High Power Electric Propulsion
(HiPEP) Ion Thruster

NASA/TM—2004-213194

September 2004

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
40th Joint Propulsion Conference and Exhibit
cosponsored by the AIAA, ASME, SAE, and ASEE
Fort Lauderdale, Florida, July 11–14, 2004

AIAA–2004–3812

background image

Acknowledgments

The authors would like to acknowledge the technical assistance and dedication of Robert Roman, John Miller,

Luis Pinero, George Soulas, and Don Fong to this project. The authors also thank Thomas Doehne for the layout

and generation of thruster design drawings. Their tireless efforts on thruster fabrication and power console

optimization contributed greatly to flow of the project.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

Available electronically at 

http://gltrs.grc.nasa.gov

background image

 

NASA/TM—2004-213194 

1

The High Power Electric Propulsion (HiPEP) Ion Thruster 

John E. Foster, Tom Haag, and Michael Patterson 

National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

George J. Williams, Jr. 

Ohio Aerospace Institute 

Brook Park, Ohio 44142  

James S. Sovey

 

Alpha-Port, Inc. 

Cleveland, Ohio 44135 

Christian Carpenter 

QSS, Inc. 

Cleveland, Ohio 44135 

Hani Kamhawi, Shane Malone, and Fred Elliot 

National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Practical implementation of the proposed Jupiter Icy Moon Orbiter (JIMO) mission, 

which would require a total delta V of approximately 38 km/s, will require the development 
of a high power, high specific impulse propulsion system. Initial analyses show that high 
power gridded ion thrusters could satisfy JIMO mission requirements. A NASA GRC-led 
team is developing a large area, high specific impulse, nominally 25 kW ion thruster to 
satisfy both the performance and the lifetime requirements for this proposed mission. The 
design philosophy and development status as well as a thruster performance assessment are 
presented.  

I.

 

Introduction 

igh power nuclear electric propulsion (NEP) systems are an enabling technology that has the potential to allow 
for the intensive exploration of the outer planets. Additionally, ample power for mission science and 

communications would be available via the nuclear power source. This on-board power source eliminates the solar 
flux penalty that limits the practical reach of solar electric propulsion to the inner solar system. The ample power of 
a NEP system would allow for continuous thrusting over the period of the expected life of the reactor, which for 
liquid metal cooled systems such as the SP-100 ranges between 7 and 10 years.

1

  

The present state of the art in high efficiency, high specific impulse, electric propulsion systems is embodied in 

the NASA’s Solar Electric Propulsion Application Readiness (NSTAR) ion thruster. This thruster operated for over 
16,000 hours in space and over 30,000 hours during an extended life test (ELT).

2

 While significant in its own regard, 

the use of NSTAR technology, is insufficient to satisfy life and performance requirements for long duration missions 
to the outer planets. Depending on the mission, required high specific impulse engine thrusting times can be a 
significant fraction of the lifetime of the reactor. For example, the proposed Jupiter Icy Moon Orbiter mission has a 
delta-V requirement of at least 38 km/s. Ion thruster systems used for such an application will be required to operate 
continuously for perhaps as long as 7-14 years.

3-5 

Such long continuous operation times place stringent lifetime 

requirements on thruster components and subsystems.  

background image

 

NASA/TM—2004-213194 

2

In an effort to develop the engine technology capable of satisfying the demanding performance and lifetime 

requirements for NEP class mission, a NASA Research Announcement (NRA) was issued. The NRA called for the 
development of a long life, high power, high specific impulse propulsion system that could satisfy requirements for 
nuclear-electric propulsion missions to the outer planets and beyond. The initial requirements as defined by the NRA 
are listed below: 

 

• Specific impulse = 6000 to 9000 seconds 

• Thruster Efficiency >65% 

• NEP system specific mass = 30 kg/kW 

• Propellant throughput = 100 kg/kW 

 

Thruster requirements have since changed becoming more stringent with power, specific impulse, and 

throughput/life so as to satisfy Jupiter Icy Moon Orbiter (JIMO) mission requirements.

This translates into very 

long thrusting times (7-14 yrs) depending of specific impulse.  

The research announcement has led to the development of two gridded ion thruster systems. The High Power 

Electric Propulsion (HiPEP) project led by NASA Glenn Research Center (GRC) and the Nuclear Electric Xenon 
Ion Thruster System (NEXIS) project led by NASA’s Jet Propulsion Laboratory (JPL) responded to NASA’s 
research announcement to develop such a propulsion system. The NEXIS thruster system approach was to leverage 
the heritage embodied in the NSTAR and the NASA Evolutionary Xenon Ion Thruster (NEXT) thruster.

6,7 

The 

HiPEP approach infuses technologies such as a rectangular discharge chamber, long life grid materials, and flexible 
discharge plasma production (DC or microwave electron cyclotron resonance). This approach addresses the primary 
thruster failure modes. The development of these technologies was seen as necessary since the life requirements will 
require significant hurdles over the state of the art. As such, the development of these technologies is focused on 
mitigating both cost and schedule risk.  

The focus of this report is to give a general description of the HiPEP thruster, addressing the philosophy of the 

approach, the implementation, and analysis of data to date characterizing engine operation. Details regarding HiPEP 
project structure and overall scope may be found in the companion reference.

8

 

Based on findings from mission analysis for 8000 s specific impulse, a 25 kW design point was chosen as the 

baseline operation point. In order to respond to potential changes in the JIMO specific impulse requirement, a 6000 s 
specific impulse, 25 kW was selected as a secondary design point.  

II.

 

Design Considerations 

In general, thruster lifetime is limited by essentially five potential failure modes: 1.) discharge cathode failure, 

2.) neutralizer cathode failure, 3.) electron backstreaming, 4.) erosion induced structural failure of the ion extraction 
grids, and 5) formation of an unclearable short between grids. The failure mechanism of the cathode assembly is 
multi-faceted in that subcomponents such as heater failure and keeper assembly erosion can ultimately lead to 
component failure. Cathode failure modes can be loosely grouped into two general areas: physical erosion via 
sputtering and emitter element depletion of low work function material. Physical sputter erosion of the cathode 
assembly occurs because the cathode is constantly subjected to ion bombardment from the surrounding discharge 
plasma. Emitter failure is related to thermo-chemical processes that render the cathode incapable of supplying 
electrons even if other conditions such as thermal environment and pressure are adequate. Provided gas cleanliness 
protocols are followed (eliminates emitter poisoning), emitter failure occurs after long operation times because of 
the depletion of work function lowering impregnates at the emission sites. Additionally, the high temperature 
formation of inert or emitter pore-plugging compounds also effectively reduce the supply of work function lowering 
impregnates. Conventional ion thruster hollow cathodes have a demonstrated lifetimes of order 28,000-30,000

2,9 

hours. Longer hollow cathode lifetimes need to be demonstrated for these components to be compatible with those 
missions requiring continuous thruster operation in excess of that demonstrated to date. Failure mode 3 is related to 
electron backstreaming which occurs when accelerator grid apertures widen (at fixed accelerator grid voltage) due to 
erosion. When the aperture is sufficiently large, the positive potential associated with the screen grid can “leak†
downstream of the ion optics assembly. When this occurs, electrons from the beam plasma can actually backstream 
into the engine achieving energies approximately equal to the beam voltage. This energetic beam of electrons can 
quickly overheat or damage the discharge cathode. Failure mode 4 is associated with severe grid erosion. Sputter 
erosion of the ion extraction grids can ultimately lead to thruster failure. Erosion of these components occurs 
primarily by charge exchange erosion. If the beamlets are not well focused, erosion due to direct impingement can 
also occur. Over time, these ion milling processes lead to structural degradation of the ion optics assembly, leading 
to poorer discharge performance over time and ultimately the cantilevering of one electrode into the other, giving 

background image

 

NASA/TM—2004-213194 

3

rise to a short and thereby terminating beam extraction. One potential solution to this problem is the use of a 
magnetic grid.

10

 Potential design solutions also exist for increasing the lifetime of the ion optics by using different 

electrode materials such as titanium

11 

or carbon

12-13

 or by simply increasing the electrode thickness.

14 

Failure mode 5 

involves unclearable shorts between the grids. The formation of large conducting flakes formed either from the 
erosion of the ion optics electrodes or by erosion of the discharge cathode assembly also can lead to ion optics 
failure. If the conducting flake were to bridge the gap between the high voltage ion optics grids, the resulting short 
would also terminate beam extraction. Another grid shorting mechanism is caused by unattached debris from 
spacecraft surfaces shorting the grids. This event has the highest probability of occurring during the launch phase.  

As mentioned, the primary failure modes of the thruster are associated failure of the discharge cathode and the 

ion optics. As lifetime is the key parameter, the HiPEP approach necessarily focuses on greatly exceeding the state 
of the art for the various ion thruster component technologies. The HiPEP thruster design and development effort 
focuses on the elimination of failure modes. 

A.

 

Plasma Production 

The HiPEP project approaches the main discharge plasma production issue with a two prong approach: DC 

hollow cathode and microwave electron cyclotron resonance (ECR) plasma generation. Both DC and microwave 
approaches have been developed. The DC plasma generator is the HiPEP thruster baseline approach. The DC 
approach utilizes a NEXT-like discharge cathode.

13

 Discharge current requirements for the 8000 s specific impulse 

design point are consistent with the operating range of the NEXT thruster discharge cathode assembly. This 
discharge cathode emitter is significantly larger than the NSTAR emitter insert. The larger emitter increases device 
lifetime by virtue of the fact that the impregnate reservoir is larger. The larger insert and orifice size accommodate 
higher emission current densities than the NSTAR design, with emission currents in excess of 40 A. This emission 
current range provides significant margin at the 8000 s specific impulse operating point. The discharge cathode 
keeper, which serves as a cathode physical shield against sputtering ions, is subject to erosion and can give rise to 
potential failure mechanisms such as formation of large, conducting flakes. Complete erosion of the keeper face 
plate, as was observed in the NSTAR 30,000 hr extended life test.

In order to minimize cathode assembly erosion 

due to physical sputtering, the main discharge cathode will utilize a graphite keeper. Because the sputter threshold of 
xenon ions on graphite is greater than the energies of the expected ion flux (discharge voltage~25 V), the use of the 
graphite keeper should eliminate this failure mechanism.

15

  

The backup plasma generation approach involves the complete replacement of the hollow cathode assembly 

with an electrodeless plasma production. 
Microwave ECR has been investigated under the 
HiPEP project as an approach to eliminate the 
potential discharge cathode failure mechanisms. 
This technology has been demonstrated as a viable 
plasma production option.

 16-20

 Indeed, ECR ion 

thruster technology has been used as the primary 
propulsion for the MUSES-C asteroid rendezvous 
mission.

19-20

 This electrodeless plasma production 

approach, depicted in Fig. 1 utilizes microwaves 
that heat electrons resonantly in the presence of a 
magnetic field. At this resonance, the electrons can 
gain energy continuously. This resonant process 
takes place on surfaces of constant magnetic field 
that are established by the magnetic circuit. The 
hot electrons produced during this process ionize 
neutral gas, thereby generating the discharge 
plasma completely electrodelessly. The process 
takes place away from discharge chamber walls, 
thereby minimizing wall erosion. Plasma potentials 
associated with ECR plasmas are typically 
significantly less than conventional hollow cathode 
devices.

16

 In this regard, the sputtering of the 

upstream surface of the screen grid can be virtually 
eliminated as the ions will strike the grid at 
energies associated with the Bohm speed.  

Figure 1. Conceptual depiction of electron cyclotron 
resonance heating. Resonance occurs when the microwave 
frequency 

ω

f

 is equal to the electron cyclotron frequency, 

ω

c

.  

Magnetic field lines 

Microwaves 

f

c

ω

=

ω

background image

 

NASA/TM—2004-213194 

4

The implementation of the microwave ECR approach for HiPEP employs the use of a slotted antenna. The 

slotted antenna affords the opportunity for distributed plasma production. Distributed plasma production yields 
uniform plasma density profiles at the optics exit plane, resulting in very flat beam profiles. Recall flat beam profiles 
are desirable in that they circumvent issues such as a reduced perveance limit and accelerated, localized accelerator 
grid wear on centerline. The microwave energy source proposed by HiPEP for the thruster application is a klystron. 
It is expected that the klystron should have lifetimes of order that of space qualified tubes such as the traveling wave 
tube (TWT). TWTs have demonstrated on-orbit lifetimes in excess of 144 kHrs.

21-23

 

The HiPEP main discharge chamber is rectangular in geometry and is designed to accommodate either the 

baseline hollow cathode plasma production approach or microwave plasma production. The target plasma 
production efficiency for the HiPEP engine < 200 W/A while the design discharge chamber propellant utilization 
target is > 90%. Both plasma production approaches have been demonstrated with the rectangular discharge 
chamber. The thruster, shown in Fig. 2(a), is large, with an ion extraction exit plane measuring 41 x 91 cm. The 
large ion extraction area allows the thruster discharge chamber to operate at a lower current density than 
contemporary thrusters. Reduced beam current density reduces grid wear rates. 

To achieve the target discharge chamber efficiency and propellant utilization goals, magnetic field calculation 

software was used to guide in the design and optimization of the ring cusp magnetic field geometry chosen. Ring 
cusp magnetic circuit electron containment schemes have been shown to be very efficient.

24

 In the case of the HiPEP 

thruster, the shape of the magnetic rings range from circular to hybrid circular-rectangular to rectangular. Such ring 
geometries are necessary to accommodate the discharge chamber shape. The discharge chamber itself is made of 
non-ferrous steel. High field strength, rare earth magnets comprise the magnetic circuit. The magnetic circuit design 
accommodates the large volume plasma 
production necessary for thruster operation at 
the design points. Regions of low magnetic 
field strength, away from the walls, comprise 
a significant fraction of the internal discharge 
chamber volume. The termination plane of 
the discharge chamber is relatively field free 
and thus offers ease of flow of plasma ions to 
the ion extraction grids. 

B.

 

Discharge Chamber Shape, an Aside 

It should be pointed out that the 

rectangular shape of the discharge chamber 
and associated plasma screen is well shaped 
for multiple thruster installations. Many 
thrusters can be installed adjacent to each 
other, forming a dense cluster of aligned ion 
beams. For multi-megawatt spacecraft, close 
packing may be desirable in order to 
consolidate structural mass, and minimize 
spacecraft appendages. Close packing may 
also enable collective beam neutralization, 
either with redundant neutralizers, or a few 
high capacity plasma contactors. Thermal 
management issues associated with close 
packing of engines can be addressed by 
simply mounting the thrusters in a manner 
such that the back-plate of the engines is 
exposed to the vacuum of space, thereby 
allowing the engines to freely radiate out of 
this plane. Fig. 2(b) depicts an artist 
conception of a possible HiPEP packing 
approach for rectangular geometry ion 
engines. 

From a power processing standpoint, a 

primary attribute of the rectangular geometry 

 

(a) 

HiPEP Thruster 

Neutralizer

 

(b) 

Figure 2. (a) HiPEP rectangular thruster featuring large area 
ion optics. (b) Conceptual depiction of HiPEP thruster pod: 
Rectangular thruster geometry is particularly amenable to 
“pack and stack†integration. 

background image

 

NASA/TM—2004-213194 

5

is scalability. The ability of the thruster discharge chamber to grow in size to accommodate higher power operation 
is an important thruster attribute in that it provides the flexibility to accommodate changes as mission requirements 
vary. Such flexibility also allows the engine to be applicable to a range of missions requiring different power levels. 
The rectangular geometry can accommodate significant increases in cross sectional area by simply increasing its 
lateral dimension. Because the internal magnetic circuit is rectangular in geometry as well, all that is required of the 
magnetic circuit to be consistent with increasing of the lateral dimension is simple lateral “stretching.†In this 
respect the local magnetic field environment away from the ends of the rectangular ring does not change. In other 
words, the discharge plasma experiences virtually the same magnetic environment as its smaller area counterpart. 
This insensitivity of the magnetic environment to lateral growth (particularly in the case of the microwave plasma 
production approach) is in sharp contrast with cylindrical devices where the curvature of each magnet ring and thus 
the local magnetic field changes appreciably with changes in diameter. In this regard, magnetic circuit re-design is 
necessary to assure comparable performance in cylindrical devices as it is scaled up in diameter.   

C.

 

Ion Extraction Electrodes  

Like the discharge chamber, the ion optics electrodes are also of rectangular geometry. The 2-grid ion extraction 

system is manufactured from flat, pyrolytic graphite sheet. The pyrolytic graphite sheet has a significantly lower 
sputter yield at relevant energies than molybdenum, which is used for the NSTAR and NEXT thrusters. For 
example, the sputter yield of xenon ions on carbon is 1/5 that of xenon on molybdenum at 500 eV. Additionally, the 
grids are large in cross-sectional area—over 5 times that of the NSTAR thruster. The large grid extraction surface 
area allows reduction in beam current density, which in turn contributes to reduced charge exchange erosion rates. 
To increase the beam extraction area of a conventional circular thruster, the ion optics diameter must increase. The 
grid span to gap ratio increases proportionally, resulting in a more challenging mechanical design. With grid gap 
controlled by electrical standoffs located only around the perimeter, the mid-span region may be subject to 
significant gap variability. Deformation due to electrostatic attraction, thermal strain, and launch vibration become 
worse as the unsupported span increases in length. This is unfortunate since typically for hollow cathode driven ion 
thruster discharges, the center region often has the highest beam current density and thus highest thermal load. With 
a rectangular ion optics geometry, the maximum length of unsupported span is bounded by the rectangle width. Ion 
beam extraction area can be increased significantly by increasing thruster length, but the grid gap remains closely 
controlled across its width.  

The aforementioned ion optics attributes give the HiPEP thruster significant life margin. Indeed, the baseline 

grid geometry accommodates a 100 kg/kW throughput with margin at both the 8000 s and 6000 s specific impulse 
design points. Further details regarding ion optics performance may be found in reference 25.  

D.

 

The Neutralizer 

The HiPEP neutralizer must satisfy a number of stringent requirements:  

 

1.

 

Provide up to 6-9 A of electron emission current necessary for beam neutralization. 

a.

 

Demonstrate growth potential electron emission currents in excess of 9 A. 

b.

 

The neutralizer must be capable of supplying 6-9 A continuously for periods 7-14 years  

c.

 

Erosion processes must be well understood and appropriately addressed by both model and 
extended wear tests.  

d.

 

Electron extraction voltages must be sufficiently low (ideally less than threshold sputter energy). 

e.

 

Multiply-charged ion fractions must be minimized to reduce the erosion of neutralizer surfaces.  

f.

 

Electron emitting temperature and chemistry must be well understood to ensure there will be no 
migration of materials to the vicinity of the cathode orifice.  

2.

 

The neutralizer design must attempt to minimize mass, volume and gas flow requirements with the NEXT 
neutralizer as a baseline reference. 

a.

 

HiPEP thruster design points are optimized such that flow allotment for the neutralizer at 3.5 A 
beam is approximately 5 sccm and 7 sccm at 6 A beam current. Neutralizer flow rate optimization 
impacts total propellant efficiency, specific impulse, and total thruster efficiency. (A beam current 
of about 3.5 A is required for operation at 25 kW and 8000 s specific impulse.) 

 

Two different neutralizer approaches are being investigated under the HiPEP project. The baseline approach 

utilizes a conventional hollow cathode. This baseline approach was selected because conventional hollow cathode-
based neutralizers are 1) capable of supplying the required electron flux at acceptable expenditure of power and 
xenon flow, and 2) the neutralizer assembly undergoes reduced erosion relative to the discharge cathode.

26

 This 

background image

 

NASA/TM—2004-213194 

6

latter point is bolstered by observed state of the 
ELT NSTAR thruster neutralizer determined after 
termination of the wear test.

26

 After over 30,000 

hours of testing, with the exception of the 
underside of the keeper tube that faces the beam, 
the neutralizer’s condition was fairly pristine. 
Indeed, the neutralizer continued to operate 
nominally over the duration of the wear test. The 
reason for the apparent immunity to degradation 
resides in the fact that the neutralizer is not 
immersed in a dense plasma. Additionally, the 
potential of the neutralizer and the local space 
potential is typically less than the sputter threshold 
for neutralizer materials.  

 The presence of the keeper tube underside 

erosion determined post ELT suggests direct 
impingement or enhanced charge exchange 
erosion. Fabrication of the keeper from graphite 
would address enhanced charge exchange erosion 
occurring between the beam plasma and the 
neutralizer plasma. It, however, does not address 
potential erosion driven by extreme off-axis beam 
ions. This issue can be practically addressed by 
optimizing the neutralizer’s position. Such an 
optimization study is necessary in order to avoid off-axis direct impingement, which over test durations much longer 
than the NSTAR ELT could be a potential life limiter.  

The above-mentioned issues address erosion issues associated with physical sputtering. In addition to physical 

sputtering, the neutralizer lifetime is also a function of emitter condition. Barium depletion for all practical purposes 
represents emitter end-of-life. Provided the physical sputtering issue is solved via position optimization and the 
integration of a graphite keeper, two approaches are considered to extend neutralizer system life. First, design 
criteria, life models, and supporting neutralizer test data will be obtained to validate the lifetime of conventional 
hollow cathodes meeting or exceeding JIMO requirements. Secondly, multiple neutralizers may be employed. The 
number of neutralizers required is determined by the defined life per neutralizer. The product of the life per 
neutralizer and the total number of neutralizers can be optimized such that it exceeds the mission lifetime 
requirement by approximately 1.5 (for margin.)  

A microwave neutralizer is also being developed under the HiPEP activity. The basis of this activity is primarily 

risk mitigation. Microwave neutralizers have been used successfully for at least one deep space mission—MUSES 
C.

27-28

 In the strictest sense, the microwave neutralizer is essentially a plasma cathode. This concept is illustrated in 

Fig. 3. Electrons are extracted from the boundary of a very dense discharge plasma.

29

 Extracted electrons can also 

generate additional electrons via collisions with gas exiting the neutralizer. This plasma bridge reduces impedance 
and thereby reduces the neutralizer extraction voltage. Integration of a microwave neutralizer with a microwave 
main discharge plasma generator in addition to providing extended life, also simplifies power supply and feed 
system requirements and eliminates gas cleanliness protocols. Both internal antenna and slotted antenna approaches 
are viable options for neutralizer plasma generation that have been actively pursued under the HiPEP project.

 30 

III.

 

Thruster Evolution  

From a manufacturing standpoint, the rectangular prism shape of the discharge chamber and the planar 

rectangular grid electrodes make fabrication fairly straightforward. Indeed, involved manufacturing processes such 
as spin-forming, typical of cylindrical geometries and ion optics dishing, are not required. The discharge chamber 
itself is consists of flat stainless steel panels to which flake containment mesh is attached. Assembly of the panels 
using angle bracket or the like is relatively straightforward. Magnets are mounted on the outside of the rectangular 
discharge chamber. The magnets are attached to the outer shell via stainless steel channel retainers. Mounting the 
magnets on the outside reduces the heat load to an individual magnet ring. Integration of the plasma generation 
approach, be it hollow cathode or microwave, is also straightforward. 

Plasma

+

+

+

+

Electrons

Power Supply

-

-

Discharge 
Chamber

Collector electrode

(physical or virtual,  eg. Beam)

Plasma

+

+

+

+

Electrons

Power Supply

-

-

Discharge 
Chamber

Collector electrode

(physical or virtual,  eg. Beam)

Figure 3. Generalization of a plasma cathode electron 
source. Electron current is extracted from a dense 
plasma formed within the discharge cavity. Cavity 
plasma is generated via ECR . 

background image

 

NASA/TM—2004-213194 

7

The test objectives of the laboratory version of the HiPEP thruster are to map out performance and provide 

insight into optimization. These goals include: 1) optimize discharge performance (discharge losses, propellant 
utilization, and plasma uniformity (beam flatness), 2) optimize grid performance (perveance margin and 
backstreaming limit), and 3) evaluate neutralizer performance. 

Based on results of this optimization process the overall engine design will evolve by incorporating 

performance improving changes to the geometry and magnetic circuit. Early on, a first generation laboratory model 
was fabricated and tested. Lessons learned from this model were used to fabricate a second generation laboratory 
model. The development model that will be wear-tested incorporates performance improving changes ascertained in 
the second generation laboratory model. This process of building on successive generations of thrusters improves 
overall design and reliability by incorporating lessons learned and establishing heritage. Thermal and structural 
optimization is also incorporated during the design evolution process. These modifications are guided by actual test 
data and modeling such that the end product of is a high fidelity, development model thruster. 

IV.

 

Thruster Wear Test 

A preliminary assessment of the thruster’s performance over time is planned for the HiPEP thruster. The 

duration of the test will be 2000 hrs. In addition to assessing the thruster’s performance over time, another function 
of the test will be to determine any previously unknown failure modes. Though the wear test duration is 
considerably short relative to the required lifetime of the thruster system (~10 years), some insight regarding lifetime 
is expected to be gleaned from the test. For example the issue of flake containment, neutralizer keeper and discharge 
cathode keeper erosion, and unexpected grid erosion can be assessed from such a test. Findings from the wear test 
will be utilized in the JPL–led JIMO thruster life evaluation task. 

For wear test results to be meaningful, the wear test facility has to have sufficient pumping speed as well as 

sufficiently low backsputter rate. Poor background pressure enhances charge exchange erosion and affects thruster 
performance and wear. High backsputter rates give rise to deposition that could mask any erosion accumulated over 
the 2000 hrs. Vacuum facility 6 at NASA GRC will be the HiPEP wear test cell. The tank measures 7.6 m by 21m 
with a pumping speed of approximately 300 kl/s on xenon.

31

 Expected backsputter rates at the 25 kW, 8000 s 

specific impulse operating point should be of order 1-2 micron/kh. Baseline diagnostics to be utilized in the wear 
test include cameras, beam probes and deposition sensors (quartz crystal microbalance, witness plates, pinhole 
cameras).  

V.

 

Thruster Performance and Development Status 

To date the HiPEP thruster has been operated using two plasma generation approaches. The DC plasma 

generation approach was selected as the primary plasma generation approach because it offered the lowest risk to 
schedule. The primary objective of the backup microwave effort was to have a fully developed, high performance 
microwave plasma generator available if in the event, life limitations or implementation issues associated with 
hollow cathode technology enhances risk to the project. The first HiPEP engine beam extraction test was conducted 
at beam powers up to 16 kW using 2.45 GHz microwaves. The design microwave frequency for the HiPEP engine is 
actually 5.85 GHz. In the early test, 2.45 GHz was used because it was available and provided a low risk 
demonstration of the concept. The higher frequency operating design point significantly increases the plasma density 
and thus propellant utilization as well as maximum extractable beam current. Specific impulse for 2.45 GHz test 
ranged between 4500s to 5500s. The test illustrated that large volume, uniform plasma could be generated using 
microwave ECR. Figure 4 illustrates microwave thruster in operation along with an ion beam profile. Beam flatness 
(the ratio of average to peak current density) of over 0.82 was measured with microwave ECR, demonstrating the 
ability to produce uniform plasma profiles at the ion extraction plane. The test represented the largest (size and 
power) ECR ion source ever operated. Subsequent microwave engine testing was done at 5.85 GHz, the thruster 
design frequency. These higher frequency tests were aimed at discharge performance optimization. Microwave 
thruster discharge testing at 5.85 GHz demonstrated the higher plasma production capacity as compared to  
2.45 GHz. At this higher frequency, simulated ion grid currents over 4 A were measured, well above that which is 
needed for the 8000 s design point.  

The DC HiPEP engine has been performance characterized at power levels up to 40 kW. A photograph of the 

engine operating at 34 kW is shown in Fig. 5. Table I presents typical thruster performance over a power range 
between 10 and 40 kW. The data shown in the table has been corrected for ingested flow. The nominal specific 
impulse is approximately 8000 s, the primary design point. As can be seen here, there thruster performs well over a 
specific impulse range between 6000 and 10000 s. Total thruster efficiencies in excess of 75% were achievable at 
the higher power levels as indicated in the table. 

background image

 

NASA/TM—2004-213194 

8

 

Table I. DC HiPEP Thruster Performance 

Power, kW

Flow Rate, 
mg/s

Efficiency

Thrust, 
mN

Specific 
Impulse

9.7

4.0

0.72

240

5970

15.9

4.9

0.74

340

7020

20.2

5.6

0.75

410

7500

24.4

5.6

0.76

460

8270

29.6

6.2

0.80

540

8900

34.6

6.6

0.77

600

9150

39.3

7.0

0.80

670

9620

 

 
 
 

 

 
 

 

(a) 

 

 

(b) 

 
Figure 4. Photograph of HiPEP engine operating with microwave ECR as the plasma production 
approach. (b) Beam profile at a beam current of 1.64 A. 

background image

 

NASA/TM—2004-213194 

9

Discharge chamber performance 

was assessed for the 8000 s specific 
impulse design point by plotting the 
discharge losses versus the discharge 
propellant utilization efficiency as 
shown in Fig. 6. Here the beam current 
and discharge voltage were fixed as 
flow rates and discharge current are 
adjusted to vary the discharge 
propellant utilization efficiency. 
Discharge losses were plotted as a 
function of utilization efficiency for 
two different discharge voltages. The 
discharge voltage at a given internal 
discharge chamber pressure determines 
the nature of the electron energy 
distribution function. In this respect, 
the discharge voltage will affect 
ionization efficiency for a given input 
total flow. The doubly charged xenon 
fraction typically increases at high 
propellant utilizations and associated 
high discharge losses. It is desirable to 
operate in the knee of the utilization 
curve because it is here where the 
required discharge power expenditure 
for a given beam current is minimized. 
It was observed that beyond the knee, 
at the higher propellant utilization 
efficiencies (>0.85), discharge losses 
were lower at the higher discharge 
voltage. This is likely related to 
improved ionization efficiency at the 
higher discharge voltage. For example, 
at 28 V, the discharge losses for 
operation at propellant efficiencies of 
0.90 and 0.92 are 188 and 196 W/A, 
respectively. This is to be contrasted 
with the 25 V data in which discharge 
losses were greater 200 W/A for 
propellant efficiencies greater than 
0.90. Because discharge power is a 
small fraction of total thruster power, operating at the 28 V discharge does not significantly impact performance. An 
assessment of the fraction of doubly charge ions will be necessary to determine if erosion is an issue for operation at 
28 V.  

Figure 7 illustrates the range and growth capacity for the ion thruster. Here thruster efficiency and specific 

impulse are plotted as a function of thruster power. For each curve, the propellant utilization efficiency and beam 
current were held fixed. The beam voltage was then varied to throttle in power. In general, under the conditions of 
fixed beam current and utilization, the specific impulse should increase as the square-root of the thruster power, 
provided the discharge power is a small fraction of the total input power (a situation which prevails here.) As can be 
seen here, the specific impulse increases as expected monotonically with increasing power (beam voltage). To verify 
the square-root dependence, a function of the form 

b

x

a

y

â‹…

=

, where a and b are fitting parameters, was fit to each 

power throttling curve. The constant b should be approximately 0.5, indicating the expected square root relationship 
with power. For the data shown here, b was found to be approximately 0.53, which is in good agreement with the 
expected scaling.  

0.70

0.75

0.80

0.85

0.90

0.95

1.00

160

170

180

190

200

210

220

230

240

 Discharge Voltage = 25 V
 Discharge Voltage = 28 V

Dis

charg

e

 Lo

ssess,

 W/

A

Discharge Propellant Utilization Efficiency

 

Figure 6. HiPEP engine discharge losses at the 8000 s design point.

 

Figure 5. Photograph of the DC HiPEP engine operating at 34 kW. 

background image

 

NASA/TM—2004-213194 

10

Thruster efficiencies greater than 

65 % (NRA requirement) were 
demonstrated even for power levels 
as low as 6 kW as indicated in Fig. 7. 
Here, the solid line indicates the 
NRA efficiency requirement. The 
thruster efficiency indicates a small 
positive slope as beam voltage 
(thruster power) is increased. Strictly 
speaking, if ion extraction efficiency 
does not vary, the thruster efficiency 
should be essentially flat or constant 
over the power range. The small 
deviation is most likely attributed to 
an increase in screen grid 
transparency which typically 
increases with increasing beam 
voltage.

32

 This increase results in a 

slightly reduced discharge power 
requirement for a given beam current, 
thereby resulting in an improvement 
in thruster efficiency with increasing 
thruster power. Power levels up to 
nearly 40 kW are also illustrated in 
Fig. 7. Power levels above 40 kW 
were limited only by power supply 
output capacity. In all cases, 
discharge propellant utilization 
efficiency was ~0.9 or better. Over 
this power range, specific impulse 
values of 7000 s to 9000 s were 
demonstrated. The family of curves 
in Fig. 7 illustrates the growth 
potential and overall range of the 
thruster. 

Thrust as a function of input 

power at a nominal specific impulse 
centered at 8000 s is illustrated in 
Fig. 8. The beam voltage is 
essentially fixed for the data 
presented in the figure. Under these 
conditions, thrust should be a linear 
function of thruster input power. This 
functional relationship is illustrated  
in the figure. For all data points 
illustrated in the figure, the average 
thruster efficiency was greater 

 

than 75%.  

Presently, a development model thruster is being prepared for wear testing. It will be nearly identical to the 

previous generation thruster used in performance tests with a few notable exceptions: 1) magnet rings will be 
attached to the outside of the discharge chamber 2) flake containment mesh will be installed on discharge chamber 
inner surfaces 3) ion optics mount system will be of higher fidelity from a structural standpoint, and 4) the discharge 
cathode will feature a graphite keeper electrode. The objective of the wear test will be to measure the thruster’s 
capacity to operate reliably over extended duration, reveal yet unidentified failure mechanisms, and make a limited 
assessment on thruster life. 

15

20

25

30

35

40

45

300

400

500

600

700

800

Specific Impulse ~ 8000 s

Thru

st, mN

Thruster Input Power, kW

 

Figure 8. HiPEP thruster thrust variations as a function of thruster 
input power.  

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

5000

6000

7000

8000

9000

10000

Thruster Power, kW

Specif

ic

 Impulse,

 s

 Specific Impulse

0.0

0.2

0.4

0.6

0.8

1.0

NRA efficiency requirement

Th
ru

st

er Ef

fici

en
cy

 Thruster Efficiency

Figure 7. HiPEP engine power throttling range demonstrates high 
efficiency over a wide power range. 

background image

 

NASA/TM—2004-213194 

11

VI.

 

Concluding Remarks 

The HiPEP project was one of three research efforts selected to develop a high power electric propulsion system 

to satisfy thruster requirements for NEP missions, in particular the proposed JIMO mission. The HiPEP project 
selected a large area, rectangular thruster geometry to address the requirements of high power and long life. The 
HiPEP project thruster has been fabricated and tested. The engine’s design includes the integration of technologies 
aimed at increasing life well above to the state of the art by a factor of 3. These technologies include rectangular, 
pyrolytic graphite grids, large area discharge chamber and a discharge cathode assembly with a graphite keeper 
electrode. Microwave ECR plasma generation technologies are also being developed to mitigate risk. Performance 
testing confirms thruster growth potential to power levels well beyond the targeted 25 kW operating point. 
Efficiencies in excess of 0.75 have been measured over a range of thruster powers (20-40 kW). Presently a HiPEP 
development model thruster is being prepared for a 2000 hour wear test. The objective of the wear test is to 
demonstrate reliable extended duration operation as well as provide insight into wear mechanisms. 

References 

1

El-Genk, M.S., ed., A Critical Review of Space Nuclear Propulsion: 1984-1993, AIP Press, NY, 1994, pp. 22-23. 

2

Sengupta, A., et al, “Status of the Extended Life Test of the Deep Space 1 Flight Spare Ion Engine after 30,000 hours of 

Operation,†AIAA Paper 2003-4558, July 2003. 

3

Patterson, M.J., Roman, R.F., and Foster, J.E., "Ion Engine Development for Interstellar Precursor Missions," AIAA Paper 

2000-3811, July 2000. 

4

Oleson, S., â€œElectric Propulsion Technology Development for the Jupiter Icy Moon Orbiter Project,†AIAA Paper 2004-

3449, July 2004. 

5

Rawlin, V.K, Williams, G.W., Pinero, L.R., and Roman, R. F., “Status of Ion Engine Development for High Power, High 

Specific Impulse Missions,†IEPC Paper 2001-096, October 2001. 

6

Polk, J.E, et al, â€œAn Overview of the NEXIS Program,†AIAA Paper 2003-4713, July 2003. 

7

Patterson, M.J., Foster, J.E., Haag, T., Soulas, G.C., Pastel, M.R., and Roman, R.F.,“NEXT: NASA’s Evolutionary Xenon 

Thruster Development Status,†AIAA Paper 2003-4862, July 2003. 

8

Foster, J.E. et al, “An Overview of the HiPEP Project,†AIAA Paper 2004-3453, July 2004. 

9

Kovaleski, S.D., Patterson, M.J., Soulas, G.C., and Verhey, T.R., â€œA Review of Hollow Cathode Testing for the 

International Space Station Plasma Contactor,†IEPC Paper 01-271, October 2000.  

10

Foster, J.E., Roman, R., Soulas, G.S., and Patterson, M.J., “Magnetic Grid for Electron Backstreaming Mitigation,†IEPC 

Paper 01-221, October 2001. 

11

Soulas, G.C., Foster, J.E., and Patterson, M.J., “Performance of Titanium Optics on a NASA 30 cm Ion Thruster,†AIAA 

Paper 2000-3814, July 2000. 

12

Shotwell, R., “Carbon-Carbon Grid Development for Ion Propulsion Systems,†IEPC Paper 2001-093, October 2001.

 

 

13

Haag, T., Patterson, M.J., and Soulas, G.C., “Carbon-Based Ion Optics Development at NASA GRC,†IEPC Paper 2001-

094, October 2001. 

14

Soulas, G.C., “Improving Total Impulse Capability of the NSTAR Ion Thruster with Thick-Accelerator –Grid Ion Optics, 

IEPC Paper 01-081, October 2001. 

15

Yamamura, Y. and Tawara, H., “Energy Dependence of Ion-induced Sputtering Yields from Monatomic Solids at Normal 

Incidence,†Atomic Data and Nuclear Data Tables , Vol. 62, 149-253, 1996. 

16

Foster, J.E. and Patterson, M.J., “Discharge Characterization of 40 cm-Microwave ECR Ion Source and Neutralizer,†AIAA 

Paper 2002– 5012, July 2002. 

17

Divergilio, W.F., Goede, H., and Fosnight, V.V., “High Frequency Plasma Generators,†NASA CR-167957, November 

1981. 

18

Toki, H., Fujita, H., Nishiyama, K., Hitoshi, K., and Funaki, I., “Performance Test of Various Discharge Configurations for 

ECR Discharge Ion Thruster,†IEPC Paper 01-107, October 2001. 

19

Kuninaka, H., Satori, S., Funaki, I., Shimizu, Y., and Toki, K., “Endurance Test of Microwave Discharge Ion Thruster 

System for Asteroid Sample Return Mission MUSES-C,†IEPC Paper 92-137, December 1997. 

20

Toki, K., et al., “Technological Readiness of Microwave Ion Engine System for MUSES-C Mission,†IEPC 01-174, 

October 2001. 

21

Park, S.S. et al., â€œReliability Analysis of Klystron-Modulator System,†

Proceedings of the Second Asian Particle 

Accelerator Conference

, Beijing, China, 2001. 

22

Hansen, J.W., â€œUS TWTs from 1 to 100 GHz,†

Microwave Journal

, 1989, Vol. 32, pp. 179-183. 

23

Dieumegard, D. et al, “Life Test Performance of Thermionic Cathodes,†

Applied Surface Science

, Vol. 111, February, 

1997, pp. 84-89. 

24

Sovey, J.S., “Improved Ion Containment using a Ring-Cusp Ion Thruster,†

Journal of Spacecraft and Rockets

, Vol. 21, 

Sept.-Oct. 1984, pp. 488-495. 

25

Williams, G.W. , Sovey, J., and Haag, T., “Performance Characterization of HiPEP Ion Optics,†AIAA Paper 2004-3627, 

July 2004. 

background image

 

NASA/TM—2004-213194 

12

26

Sengupta, A., Brophy, J.R., Garner, C.E., and Anderson, J.A., â€œAn Overview of the Results from the 30,000 Hour Life Test 

of the Deep Space One Flight Spare Ion Engine,†AIAA Paper 2004-3608, July 2004. 

27

Toki, K, Kuninaka, H., Nishiyama, K., Shimizu, Y., and Funaki, I., “Technological Readiness of Microwave Ion Engine 

system for Muses-C mission,†IEPC 01-120, October 2001. 

28

Satori, S, Kuninaka, H., Ohtaki, M, and Ishikawa, Y., “Operational Characteristics of Microwave Discharge Neutralizer,†

IEPC Paper 97-05, December 1997. 

29

Oaks, E. M., “ Physics and Techniques of Plasma Electron Sources,†

Plasma Sources Sci. Technol

., Vol. 1, 1992, pp. 249-

255. 

30

Kamhawi, H., Foster, J., and Patterson, M.J., “Parametric investigation of an ECR cathode,†AIAA Paper 2004-3819, July 

2004. 

31â€

ElectricPropulsionLaboratory:Facility Capabilities,†http://facilities.grc.nasa.gov/epl/epl_caps.html. 

32

Soulas, G.C., Domonkos, M.T., and Patterson, M.J., “Performance Evaluation of the NEXT Ion Engine,†AIAA Paper 

2003-5278, July 2003. 

 

background image
background image

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION

 OF ABSTRACT

18. SECURITY CLASSIFICATION

 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION

 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT 

(Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION

 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified

Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135 â€“ 3191

1. AGENCY USE ONLY

 (

Leave blank)

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546– 0001

Available electronically at 

http://gltrs.grc.nasa.gov

September 2004

NASA TM—2004-213194
AIAA–2004–3812

E–14693

WBS–22–982–10–02

18

The High Power Electric Propulsion (HiPEP) Ion Thruster

John E. Foster, Tom Haag, Michael Patterson, George J. Williams, Jr.,
James S. Sovey, Christian Carpenter, Hani Kamhawi, Shane Malone,
and Fred Elliot

Nuclear electric propulsion; Ion thruster; Electric propulsion; Specific impulse; Microwave
plasma; Hollow cathode

Unclassified - Unlimited
Subject Category: 20

Distribution:   Nonstandard

Prepared for the 40th Joint Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE, and ASEE, Fort
Lauderdale, Florida, July 11–14, 2004. John E. Foster, Tom Haag, Michael Patterson, Hani Kamhawi, Shane Malone, and
Fred Elliot, NASA Glenn Research Center; George J. Williams, Jr., Ohio Aerospace Institute, Brook Park, Ohio 44142;
James S. Sovey, Alpha-Port, Inc., Cleveland, Ohio 44135; and Christian Carpenter, QSS Group, Inc., Cleveland, Ohio
44135. Responsible person, John E. Foster, organization code 5430, 216–433–6131.

Practical implementation of the proposed Jupiter Icy Moon Orbiter (JIMO) mission, which would require a total delta V
of approximately 38 km/s, will require the development of a high power, high specific impulse propulsion system. Initial
analyses show that high power gridded ion thrusters could satisfy JIMO mission requirements. A NASA GRC-led team
is developing a large area, high specific impulse, nominally 25 kW ion thruster to satisfy both the performance and the
lifetime requirements for this proposed mission. The design philosophy and development status as well as a thruster
performance assessment are presented.

background image
background image