background image

This information is pre-decisional and for discussion purposes only.

1

Europa Lander Mission

Robert Dean Abelson, Ph.D, 

James H. Shirley, Ph.D.

NASA Jet Propulsion Laboratory

Robert Dean Abelson, Ph.D, 

James H. Shirley, Ph.D.

NASA Jet Propulsion Laboratory

Small RPS-Enabled Europa Lander Mission

Space Technologies and Applications International Forum

(STAIF 2005)

13 February 2005

Albuquerque, NM

Small RPS-Enabled Europa Lander Mission

Space Technologies and Applications International Forum

(STAIF 2005)

13 February 2005

Albuquerque, NM

background image

This information is pre-decisional and for discussion purposes only.

2

Europa Lander Mission

This is a conceptual mission study intended to demonstrate the 

range of possible missions and applications that could be enabled 

were a new generation of Small Radioisotope Power Systems to be 

developed by NASA and DOE. While such systems are currently 
being considered by NASA and DOE, they do not currently exist. 

This study is one of several small RPS-enabled mission concepts 

that were studied and presented in the NASA/JPL document 

“Enabling Exploration with Small Radioisotope Power Systems” 

available at:

http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

background image

This information is pre-decisional and for discussion purposes only.

3

Europa Lander Mission

ELM Team Members and Acknowledgements

Science

Ellis Miner

Jim Shirley

Tom Spilker

RPS Systems

Bob Carpenter

Bill Nesmith

Mission Design

Erik  Nilsen

Batteries

Rao Surampudi

Radiation Environment

Insoo Jun

JIMO Information

John Elliott

Europa Pathfinder (EPF) Team

Jacklyn R. Green

Wayne Zimmerman

Eric Archer

Alok Chatterjee

Savio Chau

Mona Delitsky

Wai Chi Fang

Jeff  Hall

Ron Hall

Don Hunter

Lonne Lane

Bill Nesmith

Jagdish Patel/Elizabeth Kolawa

Adam Steltzner

Brian Sullivan

Leslie Tamppari

Ben Thoma

Marcus Traylor

background image

This information is pre-decisional and for discussion purposes only.

4

Europa Lander Mission

Why Europa?

background image

This information is pre-decisional and for discussion purposes only.

5

Europa Lander Mission

Europa is the single

highest-priority target

for future flagship-class 

missions to the

outer solar system.

Solar System Exploration

Decadal Survey

(National Research Council)

background image

This information is pre-decisional and for discussion purposes only.

6

Europa Lander Mission

Why Land on 

Europa?

Because 

life

may 

exist within Europa’s 

icy crust or in a  

subsurface ocean.

background image

This information is pre-decisional and for discussion purposes only.

7

Europa Lander Mission

Requirements for sustaining life as we know it:

1) 

An energy source

:  Geothermal, geochemical, and gravitational

heating caused by other Jovian moons

2) 

Biologically significant

chemicals

(E.g., C, H, O, N, P, K,..)

3) 

Water

Europa satisfies these requirements

Europa satisfies these requirements

background image

This information is pre-decisional and for discussion purposes only.

8

Europa Lander Mission

Potential Scientific Objectives for ELM

– To search for signatures of 

biological activity

.

– To assess the 

chemical and physical habitability

.

– To measure Europa's seismicity ("icequakes") to help 

understand the interior structure and crustal dynamics

.

– To provide 

"ground truth"

for remote measurements of surface 

composition, radiation levels, and temperatures.

– To obtain 

close-up images

of Europa surface features and 

geology.

Source:  From discussions at the JIMO Forum, Lunar and Planetary Institute, 2003

background image

This information is pre-decisional and for discussion purposes only.

9

Europa Lander Mission

Proposed Mission Objectives for ELM

– To land on Europa to 

take in-situ measurements

for a 

minimum of 

30 Earth days

(8.5 Europa days) that 

meet the 

science objectives

– Measurements include 

surface imagery, spectroscopy, 

seismometry, radiation

and 

temperature trending

.

background image

This information is pre-decisional and for discussion purposes only.

10

Europa Lander Mission

Europa Orbital and Physical Parameters

– Orbital Period about Jupiter: 3.55 Earth days

(85.2 Earth hours)

– Eclipse Period: 1.78 Earth days

(42.6 Earth hours)

– Semi Major Axis: 671,000 km
– Orbital Eccentricity: 0.0101
– Orbital Velocity: 13.74 km/sec
– Orbital Inclination: 0.464 deg. To Jupiter’s equator

– Diameter (Mean): 3,121 km
– Mass: 4.8E22 kg (0.8035% of Earth mass)

– Gravitational Acceleration at Surface: 1.315 m/s

2

(13.4% of Earth)

– Escape Velocity: 2.026 km/s (at surface)

– Sun Insolation at Surface relative to Earth: 3.7%

– Daytime Temperature of Surface: 124K
– Nighttime Temperature of Surface: 85K

– Average Temperature of Surface (Avg over one day): 103K
– Radiation Environment on Surface: ~14 kRad per Earth Day

Assumes 100 mils of aluminum shielding

background image

This information is pre-decisional and for discussion purposes only.

11

Europa Lander Mission

Mission Architecture Overview

– The Europa Lander Mission (ELM) is derived from the Europa Pathfinder 

(EPF) study and 

takes advantage of RPS technology

to enable a 30 day 

surface mission (EPF baseline was battery-limited at 3.5 days).

– ELM is assumed to ride as payload on the proposed 

Jupiter Icy Moons 

Orbiter (JIMO)

and arrive at Europa per the nominal JIMO timeline.

– JIMO acts as the 

communication 

relay

between ELM and Earth.

– The ELM landing site would be 

selected to 

maximize science 

returns

and 

minimize landing risk

.  

– The 

landing site could be 

updated in-flight

if JIMO identified 

higher-priority landing areas 
during Europa approach.

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

12

Europa Lander Mission

ELM Mounting to Mother Spacecraft

Europa Lander 

(ELM)

Europa Lander 

(ELM)

Mother Spacecraft

Mother Spacecraft

ELM to Mother S/C 

Communication 

System

ELM to Mother S/C 

Communication 

System

ELM to Mother S/C 

Mounting Adapter

ELM to Mother S/C 

Mounting Adapter

Mother S/C to Earth 

Communication 

System

Mother S/C to Earth 

Communication 

System

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

13

Europa Lander Mission

Mission Architecture Overview (Continued)

– The baseline JIMO science orbit around Europa is assumed to be 

100 km (circular) at 45 degrees inclination for 30 days. 

– Once in orbit, ELM would separate from the JIMO bus and spin-stabilize 

in preparation for two separate entry burns.  

The burns are used to 

perform a “stop and drop” maneuver

.  

– The first entry burn (22 m/s) changes the lander orbit from 100km 

elevation to 

100 km x 1.5 km (elliptical)

using a Star 5 engine.

– The second entry burn (1458 m/s) is performed at periapse (1.5km 

elevation) using a Star 17 engine.  

This stops all forward motion, 

causing the lander to “fall” into Europa

background image

This information is pre-decisional and for discussion purposes only.

14

Europa Lander Mission

Burn#2: 1458 m/s Delta-V

Burn#1: 22 m/s Delta-V

Spin vector

After release from JIMO, 
solid motors spin up the 
Lander/EDL system.

Impact velocity: 63 m/s
Drop Time: 48 sec

Orbit altitude at periapse 
burn ~1.5 km

Orbit altitude at 
apoapse burn ~100 km

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

15

Europa Lander Mission

Mission Architecture Overview (Continued)

– Aeroshells and parachutes are ineffective

on Europa due to its 

negligible atmosphere. Must use other methods for landing.

– A low periapse orbit (1.5km) is selected to reduce the impact velocity to 

63 m/s

while maintaining enough elevation margin to handle insertion-

errors (i.e., Isp, rocket burn times, angle errors, etc.)  

– Airbags

are used to reduce impact accelerations to 

<600g

.  

– After landing, the 

pressurized air bags are separated and bounce away 

from the lander

.  This allows the lander to drop to the surface and 

make 

direct contact with Europa

.

– The surface mission starts following lander contact with the surface.

background image

This information is pre-decisional and for discussion purposes only.

16

Europa Lander Mission

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

17

Europa Lander Mission

ELM External Configuration

Omni Antenna

Instrument port

Radiator Panels

Ortho View

Top View

Side View

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

18

Europa Lander Mission

Technology Applicability Trade Studies

– A trade study was conducted for 

three different power systems

for ELM 

(2 conventional and 1 RPS).

The conclusions are summarized below.

Option 1: Solar Power 

Option 2: Primary Batteries

Option 3: RPS

Not F

easib

le

Not F

easib

le

Enab

ling

Enab

ling

Not F

easib

le

Not F

easib

le

background image

This information is pre-decisional and for discussion purposes only.

19

Europa Lander Mission

Option #1 – Solar Power 

Trade Study 

Facts:

– Europa is ~5 AU distant from the sun; 

receives 3.7% of the Earth insolation

– At high latitudes (~45 degrees), the solar flux received by a lander with fixed solar 

arrays 

peaks at 34 W/m2

. (Does not consider blockage of sun by Jupiter)

– Europa’s rotational period has 

42.6 hours (1.775 days) of shadow per Europa Day

.

– Natural radiation over JIMO’s 

13 year mission 

significantly 

degrades solar cells

.

– Lander needs to 

operate right-

side up or upside-down

– Europa is cold

–nighttime 

surface temp ~ 85K.

– Significant thermal power is 

required to 

maintain operating 

temperatures

.

background image

This information is pre-decisional and for discussion purposes only.

20

Europa Lander Mission

Option #1 - Solar Power Trade Study (Cont’d)

Results:

– Required 

Solar Array (SA) size is drastically larger

(order of 

magnitude) than the size of the entire lander.

• Would need extensible/deployable arrays that add additional 

mass and complexity.

Mass of SA and battery is significantly heavier

than an 

equivalent RPS system (is heavier than entire lander).

– Need 

additional power source

to operate lander and keep it 

warm 

during 13 year cruise phase

.

Size

 an

d M

ass

 

Pro

hib

itive

Size

 an

d M

ass

 

Pro

hib

itive

background image

This information is pre-decisional and for discussion purposes only.

21

Europa Lander Mission

Option #2 - Batteries Trade Study 

Results:

Heater power 

required to keep the 

large batteries at 

operating temperature 

(>-40C) in the

frigid Europan 

environment 

(as low as -188C)

is prohibitive.  

Mass and volume of battery is significantly larger 

than an 

equivalent RPS system.

Need additional power source

to operate lander and keep it 

warm 

during 13 year cruise phase 

(i.e., for health, status 

and comm. checks).

Ma

ss 

Pro

hibi

tive

Ma

ss 

Pro

hibi

tive

background image

This information is pre-decisional and for discussion purposes only.

22

Europa Lander Mission

Option #3 - RPS Analysis (Continued)

Results:

RPS has the lightest mass 

of all three options.

RPS is drastically smaller than the solar+battery option

, and 

measurably smaller than the battery-only option.

The RPS option produces extra heat that can be used to keep 
electronics, batteries and critical systems warm

during the entire 13 

year cruise and 30 day surface missions. 

The RPS is a self-contained system

, requiring no external recharging 

or alternate power connectivity with the JIMO spacecraft during cruise.

RPS is an Enabling Power Technology for the 

ELM Mission

RPS is an Enabling Power Technology for the 

ELM Mission

background image

This information is pre-decisional and for discussion purposes only.

23

Europa Lander Mission

RPS Characteristics and Assumptions

One GPHS module

using a 

5% efficient thermoelectric (TE) converter

is 

assumed to provide 250 Wt (thermal) /12.5 We (electric) at BOM.

Conversion efficiency numbers are conservative.  May be able to achieve >7.5% efficiency with 
segmented PbTe-TAGS/BiTe thermoelectrics (more with CPA designs) per DOE/OSC analyses.

Small RPS configuration based on work of DOE/OSC/Analytix

– Assume 

Pu283 decay

decreases thermal power output by 

0.8%/year

.

– Assume 

TE decay

decreases electrical power by another 

0.8%/year

.

– The 

End-of-Mission

power output after 

13 years

is 

calculated at 

225 Wt / 10.1 We

.

– Medium temperature TEs (e.g., PbTe/TAGS) are 

assumed in baseline design for conservatism.

Cold shoe temp. ~155

o

C

.

– The RPS is assumed capable of surviving high 

acceleration loads 

(max of 600 g)

associated with 

the ELM landing system. 

– The RPS is packaging is a 

short cylinder

with the 

TEs arranged radially

(i.e., TE cold shoes / heat 

rejection is via the sides).

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

24

Europa Lander Mission

RPS Installation and Orientation within ELM

GPHS Module (Grey)

GPHS Module (Grey)

Thermoelectric 
Converters (Red)

Thermoelectric 
Converters (Red)

Thermal Insulation / 
RPS Canister (Green)

Thermal Insulation / 
RPS Canister (Green)

Conceptual Only

Note: Radiator panels, antennas and internal subsystems (other than RPS) not shown.

background image

This information is pre-decisional and for discussion purposes only.

25

Europa Lander Mission

Mission Design and Constraints*

– Mission Dates

Earliest Availability: 

Assumed 2015 via JIMO

; Earlier using Delta/Atlas (requires Europa Orbiter).

– Delivery Vehicle

Planned delivery vehicle: JIMO Spacecraft (

1500 kg total science payload capability)

– Lifetime

Transit duration: 

TBD – Assumed 13 years total

for power system sizing.

9 years to Jupiter system, 4 more years to Europa

Active measurement duration: 

30 days on Europa surface

Total: ~

13 years 

(Assumed for power system sizing)

– Delta-V Requirements (Independent of Delivery Vehicle)

Delta-V: 

1480 m/s

for ELM Stop and Drop maneuver.

– Constraints

JIMO would stay in orbit around Europa for 30 days and 

provide the communications link between the 

Lander and Earth.

Orbital Parameters: 

JIMO is in a circular 100 km altitude orbit

during the 30 day lander mission.

Operational Constraints: 

JIMO would need to be oriented

such that the JIMO-to-Lander comm. system 

can 

point towards the lander

during each comm. period to receive the omni-directional signal.

* JIMO information has not been finalized by the JIMO program office – Indicated values are study assumptions only.

background image

This information is pre-decisional and for discussion purposes only.

26

Europa Lander Mission

ELM Communications Architecture

Conceptual Only

background image

This information is pre-decisional and for discussion purposes only.

27

Europa Lander Mission

ELM Communication Architecture

– The 

frequency and duration 

of communication periods from ELM to 

JIMO 

drives the communications architecture

.

– The 

frequency and duration

of communication events is 

highly 

dependent upon the latitude

of the ELM landing site.

0

o

Lander latitude

~

17 Comm. Cycles (Total mission)

5 Comm. Periods / Cycle (83 total) 
710 min. of Comm. (Total)
~43 min. of Comm. / Cycle (Avg)
43 hours of eclipse / Cycle

0

o

Lander latitude

~

17 Comm. Cycles (Total mission)

5 Comm. Periods / Cycle (83 total) 

710 min. of Comm. (Total)
~43 min. of Comm. / Cycle (Avg)

43 hours of eclipse / Cycle

45

o

Lander latitude

~

8 Cycles (Total mission)

14 Comm. periods / Cycle (111 Total)
1050 min. of Comm. (Total)
130 min. of Comm / Cycle (Avg)
84 hours of Eclipse / Cycle

45

o

Lander latitude

~

8 Cycles (Total mission)

14 Comm. periods / Cycle (111 Total)
1050 min. of Comm. (Total)
130 min. of Comm / Cycle (Avg)

84 hours of Eclipse / Cycle

– The ELM bandwidth requirement is driven by the short communication 

duration (42.7 min/cycle) of the 0

o

latitude case.

– The ELM data storage requirement is driven by the long eclipse period 

(84 hours/cycle) of the 45

latitude case.

– The ELM 

bandwidth requirement

is driven by the short communication 

duration (42.7 min/cycle) of the 

0

o

latitude case

.

– The ELM

data storage requirement

is driven by the long eclipse period 

(84 hours/cycle) of the 

45

latitude case

.

background image

This information is pre-decisional and for discussion purposes only.

28

Europa Lander Mission

LOS Periods at 45 deg Latitude 

(14 Comm. Periods per Cycle)

LOS Periods at 0 deg Latitude 

(5 Comm. Periods per Cycle)

5 degree Minimum LOS for Communications Event

Europa Day #1

Europa Day #2

Elevation Line-of-Site (LOS) Angle from Lander to JIMO Over 

Two Europa Days (~7 Earth days)

LOS Angle (Degrees)

background image

This information is pre-decisional and for discussion purposes only.

29

Europa Lander Mission

Baseline Instrumentation Suite

background image

This information is pre-decisional and for discussion purposes only.

30

Europa Lander Mission

Instruments

Data Rate 

(kbits / msmt)

# of 

Instruments

#Measuremts 

per Europa 

Day

Measuremt 

Frequency 

(# / Earth Hr)

Accumulated Data 

Volume per Europa 

Day (kbits)

Accumulated 

Data Volume per 

Europa Day 

(Mbits)

Imager

2600

16

85

1

219762

220

Microseismometer

1

3

304286

3600

912858

913

Raman Spectrometer

10

1

85

1

845

0.85

LIBS

10

1

42

1

423

0.42

Temperature Sensors

0.016

16

169

2

43

0.04

Radiation Sensors

0.016

4

304286

3600

19474

19

Engineering Data

0.100

1

5071

60

507

0.51

1154

3407

0.47

1.40

195%

1154

1385

Margin in Uplink Capability (Also Have 3dB margin)

Data Storage Reqt Based on Longest Eclipse (Mbits)

Total Accumulated Data Volume / Euro Day (Mbits)

Uplink Capability / Euro Day (Mbits)

Req'd Uplink Rate (Mbit/s)

Available Uplink Rate (Mbit/s)

Design Data Storage w/ 20% Margin (Mbits)

Data Requirements

Data uplink requirement is 1.4 Mbit/s – Draws 6 We Peak Power.

– Comm. design has uplink margin of ~200%

Data storage requirement is 1.4 Gb – Draws 3 We Peak Power.

Data uplink requirement is 1.4 Mbit/s –

Draws 6 We Peak Power.

– Comm. design has uplink margin of ~200%

Data storage requirement is 1.4 Gb –

Draws 3 We Peak Power.

background image

This information is pre-decisional and for discussion purposes only.

31

Europa Lander Mission

Data Taking Schedule

Measurements Stop During All Comm. Events

Measurements Stop During All Comm. Events

Imager (8 ports)

(1 meas./hour)

Microseismometer

(Continuous)

Raman (8 ports)

(1 meas./hour)

LIBS (8 ports)

(1 meas./hour – days)

Temp. sensors

(1 meas./30 min)

Radiation sensors

(Continuous)

Engineering Data

(1 meas./min)

Day (~42.6 hrs)

Night (~42.6 hrs)

Day (~42.6 hrs)

Daytime #1

Nighttime #1

Daytime #2

Time 

background image

This information is pre-decisional and for discussion purposes only.

32

Europa Lander Mission

ELM Duty Cycles and Subsystem Power Levels

Qty

Power Draw 

(W / unit)

Power Draw All 

Units (W)

Duty Cycle

Avg Power Draw per 

Europa Day (W)

Operating Time 
per Europa Day 

(Hrs)

  Command Data and Handeling

System Flight Computer

1

2.60

2.60

0.30

0.78

85.20

Peripheral Subsystem Intf (PSI)

1

1.00

1.00

0.30

0.30

85.20

  Power Distribution

DC/DC Converter Card

1

3.00

3.00

0.30

0.90

85.20

Power Distribution Slice

1

2.20

2.20

0.30

0.66

85.20

  Science Instruments

Imager

1

0.20

0.20

1.00

0.20

0.23

Microseismometer

3

0.14

0.42

1.00

0.42

84.52

Raman Spectrometer

1

5.00

5.00

1.00

5.00

2.82

LIBS

1

5.00

5.00

1.00

5.00

2.82

Temperature Sensors

16

0.10

1.60

1.00

1.60

0.47

Radiation Sensors

4

0.10

0.40

1.00

0.40

84.52

  Comm. Subsystem (JIMO Link)

Transceiver (2W RF Output, 33% 
Efficient)

1

6.00

6.00

1.00

6.00

0.68

Data Storage

Data Storage (SSR)

1

3.00

3.00

0.30

0.90

85.20

System

ELM Operating Modes and Durations are selected to Maximize 

Science Return while Meeting the Power Budget.

ELM Operating Modes and Durations are selected to Maximize 

Science Return while Meeting the Power Budget.

background image

This information is pre-decisional and for discussion purposes only.

33

Europa Lander Mission

Battery Requirements

ELM Operating Modes and Power Requirements

Maximum Power Draw: 17.8 W

Avg Power Draw: 4.5 W

RPS Power Output (EOM): 10.1 W

Req’d Battery Size: 63.1 W-Hr

Req’d Battery Mass: 0.53 kg

Maximum Power Draw: 

17.8 W

Avg Power Draw: 

4.5 W

RPS Power Output (EOM): 10.1 W

Req’d Battery Size: 

63.1 W-Hr

Req’d Battery Mass: 0.53 kg

Additional Peak NRG Req'd (W-Hr)

12.49

Battery Depth of Discharge (%)

33%

Battery Charging Efficiency (%)

90%

Battery Energy Density (W-Hr/kg)

120

Battery Energy Volume (W-Hr/liter)

200

Min. Reqd Batt. (W-Hr)

42.05

Batt w/ 50% Margin (W-Hr)

63.08

Batt Mass (kg)

0.526

Batt Volume (Liters)

0.315

background image

This information is pre-decisional and for discussion purposes only.

34

Europa Lander Mission

Power Levels for Each Operating Mode

0

5

10

15

20

Standby Mode

Basic Measmt Mode

Raman Mode

LIBS Mode

Comm. Mode

Operating Mode

Power Draw (W)

Average
Peak

0

5

10

15

20

Standby Mode

Basic Measmt Mode

Raman Mode

LIBS Mode

Comm. Mode

Operating Mode

Power Draw (W)

Average
Peak

GPHS Power Output 10.14W (EOM)

GPHS Power Output 10.14W (EOM)

17.8 W

17.3 W

17.3 W

12.3 W

11.8 W

B

a

tt

e

ry

 C

o

v

e

rs

P

e

a

k

 L

o

a

d

s

B

a

tt

e

ry

 C

o

v

e

rs

P

e

a

k

 L

o

a

d

s

7.5 W

9.1 W

9.1 W

4.1 W

1.5 W

Average Power Usage 4.5 W (EOM)

Average Power Usage 4.5 W (EOM)

background image

This information is pre-decisional and for discussion purposes only.

35

Europa Lander Mission

ELM Mass Requirements

Lander Mass: 38.7kg

Total S/C Mass: 232.7kg

Lander Mass: 38.7kg

Total S/C Mass: 232.7kg

Item

Qty

CBE (kg)

Uncertainty 

(kg)

Total CBE 

(kg)

Lander Payload

38.7

Command Data and handling 

1.84

      System Flight Computer

1

0.50

0.08

0.58

      Peripheral Subsystem Intf (PSI)

1

0.10

0.02

0.12

      Bus

1

1.00

0.15

1.15

Power Distribution

1.64

      Power Distribution Slice

1

0.49

0.05

0.54

      DC/DC Converter Card 

1

1.00

0.10

1.10

Power

11.16

GPHS RPS

1

5.00

5.00

10.00

   Batteries

1

0.33

0.17

0.50

   Packaging

1

0.63

0.03

0.66

Pyro and Valve Control

0.87

      Battery Charge Control

1

0.30

0.03

0.33

      Prop Drive

1

0.49

0.05

0.54

Science Instruments

9.30

      Seismometer

3

0.05

0.01

0.18

      Imagers

16

0.20

0.04

3.84

      Raman Spectrometer

1

2.00

0.40

2.40

      LIBS

1

2.00

0.40

2.40

      Radiation Sensor

4

0.10

0.02

0.48

      Temp sensors

16

0.01

0.00

0.17

Telecom - S-Band Subsystem

3.30

      Transceiver

1

0.30

0.03

0.33

      S-Band Antenna 

6

0.25

0.03

1.65

      Packaging

1

0.30

0.03

0.33

      Coax Cables to antennas

6

0.15

0.02

0.99

G & C Sensors

0.21

      Accelerometers

3

0.05

0.00

0.16

      3 axis gyro

1

0.05

0.00

0.05

Thermal

1.26

   Heater Elements

10

0.02

0.00

0.21

   Insulation

1

1.00

0.05

1.05

Mechanical Systems

10.00

      Structure

1

3.60

0.36

3.96

      Covers

6

0.10

0.01

0.66

      Misc (fasteners)

1

0.72

0.03

0.75

      Cabling

1

0.60

0.03

0.63

Radiation Shielding

1

2.00

2.00

4.00

Net Lander

38.7

Item

Qty

CBE (kg)

Uncertainty 

(kg)

Total CBE 

(kg)

Propulsion

111.4

Upper Desent Stage

13.7

   Support and Separation Mechanism

3

1.00

0.05

3.15

   Support structure

1

2.54

0.25

2.79

   ARC Solid KS40B Thrusters (spin-up)

2

0.38

0.02

0.80

   ARC Solid PAC-3 Thrusters (spin-down)

2

0.16

0.01

0.34

   Hydrazine trim system

1

1.80

0.09

1.89

   Star 5 rocket motor

1

4.50

0.23

4.73

Lower Desent Stage 

97.7

   Support and Separation Mechanism

3

1.00

0.05

3.15

   Support Structure

1

5.70

0.57

6.27

   Star 17 Motor

1

84.10

4.21

88.31

Thermal

2.2

   Thermal Blankets

1

1.00

0.05

1.05

   Temp sensors

10

0.01

0.00

0.11

   Misc

1

1.00

0.05

1.05

Mechanical Systems

13.9

  JIMO Attachment System

1

5.00

3.00

8.00

     Ballest

1

5.00

0.50

5.50

     Fasteners

1

0.40

0.01

0.41

Landing System

61.0

     NSI - Gas Generator

3

1.00

0.05

3.15

     Airbags

3

16.06

3.21

57.82

JIMO-Based Comm.system

5.5

Antenna

1

3.00

1.00

4.00

Gimbal

1

1.00

0.50

1.50

Net Spacecraft (EPF)

232.7

38.7

111.4

2.2

13.9
61.0

5.5

232.7

   Lander Mass (Total)

   Thermal Mass (Total)
   Mechanical Systems Mass (Total)

S/C subtotal

   Landing System Mass (Total)
JIMO-Based Comm. System

   Propulsion Mass (Total)

background image

This information is pre-decisional and for discussion purposes only.

36

Europa Lander Mission

ELM Thermal Requirements

Assumptions

– GPHS Thermal Power: 250 We (BOM) / 

225 We (EOM @ 13yrs)

– Thermoelectric Cold-Leg Temp.

155

o

C

Thermal Control is Accomplished via Multiple Approaches:

Conduction straps 

and 

thermal switches 

keep critical electronics, batteries and 

subsystems warm.

– Thermal radiation to space is performed through variable-emissivity

radiators

mounted on 

both surfaces of the lander

.  

• The 

emissivity

can be actively varied between 

~0.3 and 0.7

to maintain the 

desired lander temperature profile (Beasley, Kislov, Biter STAIF 2004).

– Heat rejection to the Europan surface is made via 

contact conduction

between 

the surface and lander structure. Thermal switches control heat flow.

The RPS Waste Heat is Used to Keep Critical 
Electronics and Subsystems Warm.

Variable emissivity radiators permit active thermal 
control using minimal power and no moving parts.

The 

RPS Waste Heat

is Used to Keep 

Critical 

Electronics and Subsystems Warm

.

Variable emissivity radiators

permit 

active thermal 

control

using minimal power and no moving parts.

background image

This information is pre-decisional and for discussion purposes only.

37

Europa Lander Mission

Radiation Environment

Externally Generated Radiation

ELM receives an external dose of 

~420 kRad during the 30 day surface mission

*.

The total received 

lifetime (13 year) dose is ~6 MRad

*.

Potential 

mitigation strategies

include housing ELM in a 

JIMO-mounted radiation 

shelter

, using 

spot shielding

around critical components, and employing 

rad-hard 

electronics 

with >1 MRad tolerance. 

Shelter and shielding could potentially reduce lifetime ELM external dose to <1 MRad.

ELM will capitalize off the JIMO radiation studies and technology

currently being 

studied, and will utilize similar or identical mitigation schemes. 

Internally Generated Radiation

Internally-generated radiation is produced by the 

GPHS module

.  

Intensity of 

radiation falls of quickly with distance

from the GPHS due to spatial and 

structural attenuation through the RPS and ELM structure.

GPHS

-generated radiation is 

significantly lower

than the 

natural radiation

dose (Can 

be made <100 kRad with proper design).

Judicious placement of electronic and lander structure can keep the 

total GPHS-

emitted dose to levels tolerable with existing technology

.

* Calculations extrapolated from those provided by Insoo Jun (JPL) and assume 100 mil aluminum shielding.

Radiation can be mitigated using a JIMO-mounted radiation 

shelter, spot shielding, and rad-hard parts.

Radiation can be mitigated using a JIMO-mounted radiation 

shelter, spot shielding, and rad-hard parts.

background image

This information is pre-decisional and for discussion purposes only.

38

Europa Lander Mission

Radiation Environment (Continued)*

*Radiation Data provided by Insoo Jun (JPL).

Total Radiation Dose vs. Distance from Center of GPHS 

Module for 13 year Duration

0.00

0.10

0.20

0.30

3

4

5

6

7

8

9

10

Unshielded Distance from GPHS Module Center, (cm)

Total Radiation Dose, (MRad)

Total Z-Axis Radiation for 13
years (MRads)
Total Y-Axis Radiation for 13
years (MRads)

4-pi spherical total dose depth curves

Breakdown by mission segments

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

10

100

1000

10000

aluminum spherical shell thickness, mils

rad

(Si)

TOTAL

301 days at Ganymede

120 days from Ganymede to Europa

113.5 days at Europa

Reactor dose

Earth Spiral-out from 1000km

4-pi spherical DDD depth curves based on GIRE model

Breakdown by mission segments

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

1.0E+14

1.0E+15

10

100

1000

10000

aluminum spherical shell thickness, mils

1 M

e

V

 ne

utro

ns

/cm

2

TOTAL

301 days at Ganymede

120 days from Ganymede to Europa

113.5 days at Europa

Reactor neutron

Earth spiral-out from 1000km

GPHS Module

background image

This information is pre-decisional and for discussion purposes only.

39

Europa Lander Mission

Alternate Power System Concepts

– Current ELM design uses one GPHS/TE RPS and a small battery to 

meet all power requirements.

Battery needed to supply peak power demands

during LIBS, Raman and Communication 

events (

max. of 17.8 Watts

).

– Could 

eliminate the need for a battery

using alternate power system 

architecture, including:

• Use 

Two GPHS RPSs

with baseline 5% TE Conversion Efficiency 

– Capable of generating 20.2W (EOL) –

meets all power modes

.

– Requires larger, more massive spacecraft –

redesign necessary

.

– Heat rejection

becomes a significant issue.

• Use 

Higher-Efficiency

Power Converters

– A 

9% efficient

TE converter could generate 

>17.8 W (EOM)

using one GPHS 

module.

– A small 

20% efficient Stirling

engine could generate >17.8 W (EOM) using just 

two 

GPHS Fuel Pellets

»

Stirling needs to be sufficiently vibration-free to prevent interference with 
microseismometer measurements.

Not r

ecom

men

ded

Not r

ecom

men

ded

background image

This information is pre-decisional and for discussion purposes only.

40

Europa Lander Mission

Summary and Conclusions

– The Europa Lander Mission (

ELM

) is designed to search for signatures 

of 

biological activity

and measure the 

chemical and physical properties

of Europa.

– ELM would ride 

“piggyback” 

on the proposed 

JIMO S/C 

during the ~13 

year cruise phase, and would land on Europa to perform its 

30 day 

science mission

.

– The ELM Mission is 

enabled 

by the 

RPS 

power system.

• A  single 

GPHS/TE RPS

powers ELM and provides 

126% energy margin

.

• A small 

63 W-Hr Li-Ion battery

is used to carry the 

peak loads

.

• The 

excess heat

is used to 

warm critical electronics, batteries and 

subsystems

in the frigid Europan environment.

– Higher-efficiency power converters 

could further optimize the system:

• Could 

eliminate

the need for the 

Li-Ion battery.

• Could 

reduce

the req’d amount of 

Pu238 fuel

. (Use 2 pellets vs. current 4)

.

background image

This information is pre-decisional and for discussion purposes only.

41

Europa Lander Mission

Additional RPS-Enabled Missions

– The 

ELM configuration

can be used for missions on 

Callisto and 

Ganymede

with 

minimal modification

.

• The ELM RPS configuration would be adequate for a 

60 day Callisto 

surface mission

, and a 

120 day Ganymede mission

– Durations are based on a preliminary JIMO mission timeline.

– Additional small RPS-enabled Lander mission could include:

• Small landers for 

outer solar system solid bodies

.

– Includes moons, Pluto, asteroids and comets.

Lunar human-precursor missions

– RPS enables operation through the 

14 day eclipse

, at 

poles

and in the 

shadows

of 

canyons and mountains

.

Mars Network

Scout Class

and 

Human Precursor Landers

– RPS permits 

continuous, long term missions

in 

polar regions

and other 

low-insolation areas

.


Document Outline