background image

Lunar Fission Surface Power System Design and 

Implementation Concept 

 

John O. Elliott

1

, Kim Reh

2

, Duncan MacPherson

2

1

Systems Engineering Section, Jet Propulsion Laboratory, Pasadena, CA   91109 

Prometheus Project, Jet Propulsion Laboratory, Pasadena, CA   91109 

1

(818) 393-5992; jelliott@jpl.nasa.gov 

 

Abstract.

 At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was 

assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design 
and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System 
engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System 
(FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture.  As a result of this 
activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant 
number of trades associated with lunar surface power, all culminating in a recommended approach.  This paper presents 
the results of that study, including a recommended FSPS design and implementation concept. 

Keywords:

  Prometheus Project, Fission Power, Lunar Base. 

PACS:

  89.20.Kk, 89.30.Gg 

INTRODUCTION 

The goal of sustained human presence on the surface of the moon and other solar system destinations will require 
the development of reliable high performance surface power systems well beyond the capabilities of any fielded thus 
far.  One potential solution is the application of the technologies and infrastructure developed in the Prometheus 
Project to a configuration that could support a lunar base architecture.  In May of 2005 a team was assembled within 
Prometheus at the behest of NASA’s Exploration Systems Architecture Study (ESAS) to investigate the design and 
implementation of a Fission Surface Power System (FSPS) that could be included as part of an initial Lunar Base 
architecture.  Upon completion of work for the ESAS the Prometheus team continued its study to complete a 
concept for an FSPS that could be integrated into a variety of potential lunar exploration architectures.  This paper 
describes the results of this work from inception through August of 2005. 

Trades 

The development and implementation of nuclear fission power systems on the lunar surface brings with it many 
challenges that differ from those in a deep space-based application.  The presence of gravity, dust, and surrounding 
regolith all combine to complicate the design, especially when placed in the context of a crewed lunar base 
architecture.  Constraints and initial assumptions included: 

 

2019 flight system availability  

 

10 year lifetime  

 

Maximum lander capability of 15 metric tons down-mass (payload to the surface).  

 

50 kWe FSPS total power available to the user 

background image

While early in the study these constraints were subject to frequent revision, the above list was established to provide 
a baseline for the study activities to represent reasonable basic design features for an initial Lunar Base FSPS. 

In the course of developing an FSPS design and implementation concept, the team investigated a wide variety of 
options.  Major architecture trades addressed are shown in Table 1.  The implementation of an overall lunar base 
architecture intimately affects the outcome of many of these trades.  It may not be possible to finalize an optimum 
point design for the FSPS independent of final base and exploration architecture decisions. 

TABLE 1

. FSPS Trades. 

Trades Implementation 

Advantages Disadvantages 

On lander 

Low risk emplacement 

Inhibits use of in-situ shielding 
Limits lander options 

Power Plant 
Placement 

On surface 

Facilitates regolith shielding 
options 

Some separation options are massive 
or difficult 

Mobile Power Plant 

Minimizes constraints on 
architecture manifesting 

Implementation is massive with dubious 
practicality 

Power Plant 
Mobility 

Stationary Power Plant 

Lower mass 
Lower risk 

Requires precision landing and site 
information 

Manufactured Shield Only 

Low risk implementation 
Minimizes constraints on 
architecture 

Requires massive manufactured shield 

Use Natural Topography without 
Regolith Reconfiguration 

Lowers delivered mass 
Essentially eliminates dose at 
base 

Limits site selection 
Substantial manufactured shield still 
needed 

Shielding 

Regolith shielding 

Lowest delivered mass 
Enables maximum shielding 

Requires regolith moving equipment 
Requires time and risk to emplace 

1st Base landing  

Power is available for 
subsequent landings 

Uncertainty in landing site 
characteristics 
Requires fully autonomous activation 

FSPS Phasing 

Landing after minimal Base 
infrastructure in place 

Base assets available for FSPS 
deployment 

Requires base to be energy-sufficient 
prior to FSPS landing 

None 

Minimizes constraints on 
architecture  

Complicates deployments 
Increases risk 

Crew Assistance 

Yes Simplifies 

deployments 

Reduces risk 

Requires human landing at site prior to 
commissioning 

Horizontal None 

identified 

Complex 

deployment 

Higher mass  

Radiator 
Configuration 

Vertical Simplest 

deployment 

Lowest mass 

May be more difficult to deploy at high 
power levels 

Findings 

During the course of the study the Team concluded a series of “findings” that help to narrow the trade space and 
guide the optimization of an FSPS design.   

1.

 

Providing mobility to the reactor portion of the FSPS is a mass intensive, operationally risky endeavor due 
to the reactor’s mass and importance to the lunar base architecture.  The preferred option in any 
implementation is to land the reactor directly at its emplacement site, relocating only those electronics 
elements that need to be located at the lunar base site. 

2.

 

Other than mobility, risk is not inherently a discriminator in most implementation options.  Most options 
have at least one low-risk implementation, albeit with additional consequences. 

3.

 

Human presence prior to operation during deployment and In-Situ Resource Utilization (ISRU) greatly 
enhance the practicality of implementing an FSPS.  The use of local regolith resources to provide reactor 
shielding can significantly minimize landed mass when compared to all-manufactured shielding.  Likewise, 
risk to crew from exposure to radiation from the reactor during operation can be minimized by keeping 

background image

radiation exclusion zones around the power plant very small through substantial shielding.  This can only 
be accomplished through the use of local materials.  Further, the participation of humans in the construction 
of regolith-based shielding greatly simplifies the shield construction process, increasing robustness and 
decreasing risk. 

4.

 

Related to human presence, the FSPS design and implementation would benefit from pre-emplacement 
missions to the lunar base site.  These missions could allow early “site surveys”, including detailed 
evaluation of local topography, geology and regolith composition.  Pre-emplacement establishment of 
photovoltaic power and minimal ISRU and transportation assets can also be enabling for the participation 
of humans in the establishment of the FSPS. 

5.

 

Configurations developed in the study are compatible with current Lunar Surface Access Module (LSAM) 
lander concepts.  The FSPS team worked with personnel at Langley Research Center to ensure packaging 
and deployment compatibility with LSAM concepts being considered by ESAS.  Two basic orientations are 
being considered for the LSAM; vertical and horizontal.  It was found that the FSPS concept can be 
successfully integrated with either concept, however the horizontal lander configuration greatly simplifies 
FSPS egress and emplacement on the lunar surface in a manner that is compatible with the practical use of 
regolith shielding. 

6.

 

Decommissioning through in-place abandonment appears to be a feasible option, especially in the case of a 
regolith-shielded FSPS.  Radiation dose levels fall off very quickly after reactor shutdown, and in the 
regolith shielded configuration the post-shutdown radiation exclusion zones would have minimal impact on 
lunar base operations. 

These major findings and the other trades performed during the study have resulted in the identification of potential 
implementation options as well as a “recommended” concept for an optimal implementation of an FSPS in a lunar 
base architecture 

CONCEPT DESCRIPTION 

The Fission Surface Power System (FSPS) is comprised of three major components, based on location (Figure 1).  
They are the Power Plant, Local Electronics (LE), and the Station Control Electronics (SCE). 

 

Local 

Electronics

Station Control 
Electronics

200 m

10 m

Power Plant

Low Voltage 
Reactor Cable

HV Transmission Lines

29.2 m

5.5 m

9.1 m

 

FIGURE 1.

  FSPS Components – Pre-operational (Regolith Shield Not Shown For Clarity). 

The Power Plant is that portion of the FSPS that comprises the Reactor, Shield, Power Conversion, and Heat 
Rejection Segments.  Also included are the structural elements necessary to support the Power Plant through launch, 
landing, deployment and operations. 

background image

The Local Electronics (LE) consists of the reactor controller electronics, signal multiplexer unit and transmission 
line voltage transformers.  The LE is located 10 m from the Power Plant, a distance sufficient to reduce the total 
dose to Local Electronics from the reactor to less than 100 krad over the planned 10 year operating life of the FSPS.  
The electronics are connected to the Power Plant by a single cable incorporating redundant power and signal lines. 

The bulk of the FSPS electronic subsystems are located at the site of the Lunar Base in an element designated the 
Station Control Electronics (SCE).  The SCE is packaged as a self-contained unit and incorporates the C&DH, 
Telecom, and Power Conditioning and Distribution electronics which provide the interface with the base power 
distribution architecture.  Also included in the SCE are deployable appendages that support radiators for the PCAD 
electronics, and the Parasitic Load Radiator, which is used to maintain a constant load on the Power Plant.  The 
Parasitic Load Radiator is elevated on a mast in order to prevent its high temperature radiating elements from 
presenting a hazard to Lunar Base personnel and equipment.  The SCE is connected to the Local Electronics by dual 
redundant high voltage (7000 Vac) transmission lines.   

Power Plant 

A representative Gas-Cooled Reactor concept using Brayton power conversion was adopted for use in the study in 
the absence of participation by the Naval Reactors Prime Contract Team (NRPCT), whose involvement in work on 
surface reactors for extraterrestrial applications had not yet been authorized.  The concept is consistent with the 
reactor coolant and power conversion type chosen by the NRPCT for the Prometheus Project NEP application, 
which was selected in part for extensibility to surface power applications.  The specific reactor design used for the 
study is based on an earlier concept developed by Sandia National Laboratory

 

(Wright and Lipinski, 2003).   This 

reactor, shown in Figure 2, has a relatively favorable geometry for minimization of shield mass associated with the 
circumferential and axial shielding required in surface systems.  The reactor provides an 1144 K turbine inlet 
temperature to enable high conversion efficiency but is able to maintain a superalloy outer boundary, minimizing 
concerns of material interactions with the oxidizing lunar regolith.  While the gas-cooled reactor was chosen for the 
study it should be noted that the reactor type, while a very important design consideration, was not found to be a 
critical driver in the FSPS architecture in this study.  Other reactor types designed for operation in this temperature 
range could be incorporated with minimal impact on the overall configuration. 

 

1.032 m

0.334 m

                         

Reactor

Braytons

Reactor Shield

Radiator

Low Voltage
Cable

3 m

4.2 m

 

FIGURE 2.

 Conceptual Reactor and Power Plant Configuration. 

The Power Plant configuration is also shown in Figure 2, which illustrates the packaging of the reactor and Brayton 
power conversion units.  This figure illustrates the vertical orientation of the reactor vessel within its manufactured 
shield.  Gas lines run from the reactor vessel in a serpentine fashion to dual, redundant Brayton Turboalternator-
Compressor (TAC) units.  Each of the two Brayton units is rated at 55 kWe output.  Only one Brayton operates at a 
time, the second serves as a redundant spare.  The Braytons reject heat through a gas cooler to the heat rejection 
system radiators. 

background image

The Heat Rejection Segment (HRS) contains the main radiator panels, secondary fluid lines, pumps, and the radiator 
support jacks.  These radiators, shown deployed in Figure 3, employ a pumped water secondary cooling loop to 
distribute heat to water heat pipes embedded in Carbon-Carbon radiator panels.  Secondary loop piping is provided 
with foam micrometeoroid protection along its entire length.  The radiator area provided for the 50 kWe FSPS is 
~230 m

2

, sized to support continuous full power operation at maximum insolation and IR backload at any latitude.  

It should be noted that radiator area is a driving consideration in the FSPS design.  The combination of the gas 
cooled Brayton power system operating at high temperature and a vertical radiator orientation enables a relatively 
compact HRS design that is compatible with projected lander and payload fairing envelopes in its stowed 
configuration.  The use of lower temperature power system designs, while potentially attractive from a reactor 
development standpoint, generally results in significantly larger radiator area requirements which serve to greatly 
complicate issues associated with deployment and packaging.  

 

FIGURE 3.

 Radiators Deployed (Power Plant Shown With Regolith Shield In Place). 

Local Electronics 

The items in this section include the Reactor Cable and Reel as well as the Local Electronics.  These items are 
attached to the Base Plate in the launch and landing configurations and are deployed by the astronauts when they 
arrive.  The Reactor Cable is attached to the output of the Brayton turbo alternators on one end and the Local 
Electronics at the other.  It is deployed by having it unreel from a spool.  The astronauts would move it from the 
Base Plate to its final location, approximately 10 m from the reactor. 

Station Control Electronics 

The Station Control Electronics (SCE) contains the PCAD subsystem, High Voltage Distribution, C&DH 
Subsystem, Telecom Subsystem, Two Boxes of Cable, Trencher, Shunt Radiator, and Electronics Radiator.  All 
these components are placed on a pallet near one end of the base plate in the landed configuration.  It is intended for 
the astronauts to remove the pallet before the Power System begins the standup operation.  The pallet is relocated to 
the Base area for use.  Baseline is to have the SCE delivered with the FSPS, but its relatively small size and mass 
would allow it to be carried and pre-emplaced on an earlier landing if desired.  Figure 4 shows the SCE deployed 
with all the components labeled. 

To Power Plant

Trencher

Parasitic Load Radiator

PCAD 

Electronics 

Radiators

Cable Boxes

Telecom &
C&DH Assembly

Aux Power 
Distribution 
Assembly

High Voltage

Distribution 

Assembly

Low Gain Antenna

High Gain

Antenna

 

FIGURE 4.

 SCE Components. 

background image

Mass Summary 

The Master Equipment List (MEL) for the FSPS is shown in Table 2.  Note that masses are shown with values for 
current best estimate (CBE), with 20% contingency (1.2 x CBE), and with the standard JPL mass margin of 30%, 
which equates to CBE/0.7. 

TABLE 2.

  FSPS Mass Summary. 

Element Mass 

CBE (kg) 

 

1.2 x CBE (kg) 

 

CBE/0.7 (kg) 

Power Plant Elements 

   

   

 

Reactor 1060 

 

1272 

 

1514 

Reactor Shield 

2402 

 

2882 

 

3431 

Power Conversion 

442 

 

530 

 

631 

Heat Rejection 

722 

 

866 

 

1031 

Mechanical/Thermal/EIS 833 

 

1000 

 

1190 

Power Plant Total 

5459   

6551 

 

7799 

Other FSPS Elements 

   

   

 

SCE (w/o Transmission Line) 

216 

 

259 

 

308 

LE 122 

 

146 

 

174 

HV Cable and Transformers 

164 

 

197 

 

234 

Cable Deployment 

70 

 

84 

 

100 

Bag Filler and Bags 

450 

 

540 

 

643 

FSPS Total 

6481   

7777 

 

9258 

SHIELDING ISSUES 

Shielding is a central concern for any reactor design, particularly those which must operate in proximity to humans. 
It is critical that reactor shielding be capable of attenuating the radiation dose to an appropriate level for the crewed 
lunar base. While definitive requirements have not been developed for all environmental components of radiation 
exposure to base inhabitants, a maximum allowable dose rate contribution from the FSPS at the lunar base has been 
assumed for this study to be 5 rem/yr.  Shielding concepts developed in the course of the study have been designed 
to assure a reactor-generated dose rate of less than 5 rem/yr at the lunar base, and results presented herein are based 
on this assumption.   

The salient feature of the recommended FSPS design is the use of In-Situ Resource Utilization (ISRU) assets to 
support construction of the power plant radiation shield. In most concepts investigated in the course of the studies, 
the implementation of radiation shielding was found to be, by far, the largest mass contributor to the power system. 
By using a minimal circumferential shield and maintaining a full top shield the total system mass can be vastly 
reduced while ensuring a tolerable lifetime radiation dose to components of the Brayton power conversion system 
and reactor control drives. Lunar regolith gathered locally from the area surrounding the reactor emplacement site 
may be used to provide the additional circumferential radiation protection needed to lower radiation dose levels 
from the operating reactor to less than 5 rem/year at the base.  The thickness of the regolith shield determines at 
what distance this dose rate can be achieved, but given the ready availability of shielding material in this 
implementation and relative ease of shield construction, a distance of 200 m from the FSPS was chosen as a baseline 
for the study.  This distance is sufficiently small that it should not significantly impede exploration activities, and 
entails a reasonable thickness of regolith shielding that does not impose overly strenuous work-hour requirements on 
the crew.  One of the major features of the use of regolith for shielding is that the shielding design is no longer 
driven only by providing a tolerable dose rate at the lunar base, but can also consider minimizing impact of the FSPS 
on base exploration and future plans for power plant augmentation or replacement. 

The reference design for the FSPS uses 3.5 m effective thickness of regolith shield to attenuate the reactor dose rate 
to 5 rem/year at 200 m distance from the reactor, as seen in Figure 5. This significantly eases implementation 
relative to options that only use manufactured shielding. Use of manufactured shielding (without regolith 
augmentation) results in a requirement for the reactor to be placed 2-3 km away from the lunar base to achieve a 
comparable dose rate with acceptable mass. The regolith shield is built using “sandbags” filled with lunar regolith 
gathered from the local area surrounding the FSPS emplacement site. The sandbag shield 2 m high and 3.5 m thick 
around the reactor can achieve the dose rates shown in the figure. 

background image

1.00

10.00

100.00

1000.00

0

25

50

75

100

125

150

175

200

225

250

Distance From Power Station - m

Radi

a

ti

on D

o

s

e Rate - re

m/

y

ear

5 rem/yr @ 200 m

50 rem/yr @ 63 m

 

FIGURE 5.

 Radiation Dose during Operation Using 3.5 m (Effective Thickness) Regolith Shield. 

Due to the radiation field of the FSPS, manned operations would be restricted by the size and geometry of the 
“exclusion zone”, or region surrounding the reactor where the radiation dose is greater than 5 rem/yr.  Areas 
between the 5 rem/year boundary and the 50 rem/year exclusion zone could be entered for short periods of time such 
as traverses which pass through the area. It is desirable to keep the exclusion zone as small as possible in order to 
limit restrictions on lunar exploration. The regolith shielding implementation recommended for the FSPS design 
dramatically reduces this zone when compared to all-manufactured shielding designs. 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Manufactured 5 rem/yr

Manufactured 50 rem/yr

Regolith 5 rem/yr

Regolith 50 rem/yr

Manufactured 5 rem/yr

Manufactured 50 rem/yr

Regolith 5 rem/yr

Regolith 50 rem/yr

Base for Manufactured 
Case at 2.1 km

Base for Regolith Case 
at 0.21 km

 

FIGURE 6.

 Radiation Dose Contours During Operation. 

background image

During operation of the reactor, the radiation field limits the astronaut’s access to the surrounding area. Figure 6 
shows the affected area resulting from the regolith shielding implementation with a 3.5 m effective thickness 
regolith shield located 200 m from the lunar base habitat compared to the all-manufactured shield implementation 
placed 2000 m from the habitat. 

In order to reduce the mass of the manufactured shield implementation to acceptable levels it was necessary to 
design a tailored shield which exhibits preferential shielding in the direction of the habitat.  This shield design, 
developed and evaluated earlier in the study, provides a 5 rem/yr dose rate at a habitat separation distance of 2 km in 
the direction of the habitat, and 50 rem/yr at 2 km in all other directions.  It is clear that the regolith shielding 
implementation results in dramatically less restriction on overall lunar base operations. With the all-manufactured 
shield case the exclusion zone covers 11.5 km2 compared to the recommended FSPS’s 0.0125 km2. The 
recommended FSPS opens up over 920 times more area for operations than the all-manufactured shield 
implementation. The notched shape for the all-manufactured shield case minimizes the mass needed to shield down 
to the 5 rem/year level at the base, but would have a significant impact on operations around the FSPS due to limited 
access corridor produced by the notch. Traverses past the FSPS would have to follow a path around the high 
radiation portion of the zone adding significant time to exploration trips. Conversely the small radiation exclusion 
zone for the regolith shielded case makes bypassing its footprint a relatively simple task for astronauts. 

REGOLITH SHIELD IMPLEMENTATION  

The implementation recommended by the study team would utilize telerobotically controlled equipment that is pre-
emplaced for In-Situ Resource Utilization (ISRU).  These assets are used to harvest loose surface regolith and 
collect it in bags so that it can be easily transported and positioned as shielding material.  The filled and sealed 
regolith bags would be stockpiled at the site where shielding is needed, all remotely controlled by operators on 
Earth.  The final emplacement of the regolith bags to form the desired shield would be performed by astronauts who 
would arrive at a later time. 

This implementation is considered to be a minimum risk approach for ISRU shielding, since it can largely be 
performed by lightweight equipment which is teleoperated from Earth.  It is also an approach which is easily testable 
on Earth prior to deployment on the Moon.  Robust radiation shielding (i.e. thick shielding) can be constructed since 
the available ISRU resources are effectively limitless.  The necessary infrastructure could be put in place with a 
relatively minimal landed mass. 

The collection and filling of the regolith bags could be performed on a timescale of weeks and does not require the 
presence of astronauts on the Moon.  The final emplacement of the bags to form the shield is estimated to entail only 
a moderate construction time, depending on level of robotic assistance that is available to the astronauts. 

In order to establish an acceptable location for the FSPS, and to reduce risk, it is recommended that the FSPS 
landing be preceded by a site evaluation mission.  This would allow for topographic mapping and regolith 
characterization.  Photovoltaic (PV) and ISRU infrastructure elements could be pre-emplaced by the site evaluation 
mission, or could be delivered with the FSPS landing mission, depending on the down-mass availability on these 
missions. 

Figure 7 depicts a baseline scenario for delivery, deployment, and commissioning of the FSPS.  This approach has 
been designed to minimize the work time required of the astronauts and to maximize the efficiency of their time. 

The regolith shielding concept has been quantified by estimates of the driving parameters and appears to be a 
feasible approach.  This quantification is preliminary, but believed reasonably conservative.  The regolith bag 
concept for ISRU is robust to changes in estimates of the key parameters and there are many feasible fallback 
approaches available.  The details of this implementation may change after further study, and the design margins 
need to be reviewed and assessed.  The option suggested here is only representative of a larger trade space.  

background image

Legend:

Reactor

Shield

Power 
Converters

Radiator 
Panel

Lunar Exploration 
Lander

Protective 
Cover

Small Mobile 
Platform

Step 1

– Land 

Power Station

Station Local 
Electronics

Step 2

– Lander 

flies away

Step 3

– Erect 

Power Station on 
pallet

Step 8

– Deploy 

radiators

Step 7

– Eject 

protective cover

Power Sta-
tion Pallet

Teleoperated 
Bag-Filler

Step 4

– Tele-

operated Bag-Filler 
caches sandbags 
near Power Station

~10 m

Step 5

– Astronauts 

deploy Local Electronics 
and cable to 10 m 
location

Step 6

– Astronauts 

stack sandbags to build 
shield

Step 10

Commission 
Power Station

Step 9

Astronauts deploy 
transmission line 
and SCE to base

 

FIGURE 7.

  Establishment Scenario. 

TRANSMISSION LINE AND POWER CONDITIONING AND DISTRIBUTION 

SUBSYSTEM (PCAD) SUBSYSTEM 

The key trade drivers in the Transmission Line and PCAD subsystem architecture are the distance to the Lunar Base, 
power level, fault tolerance and deployment.  The recommended architecture was developed to reduce mass, 
enhance deployability and enable future trades for optimization as the requirements mature. A Power Transfer Block 
Diagram of the recommended architecture is shown in Figure 8. 

 

LE

SCE

User Interface # 1

Brayton

TAC

# 1

Brayton

TAC

# 1

Brayton

TAC

# 2

Brayton

TAC

# 2

User Interface # 2

User Interface # 3

Power Interface 
with Brayton is 
based on existing 
alternator design 

Baseline: 440 Vac

Transmission Line 
subsystem has 
been optimized for 
50kW at 200m

Baseline: 7kVac

User interface has 
been selected to 
provide fault 
protection with 
existing equipment

Baseline: 220 Vac

 

FIGURE 8.

 Power Transfer Block Diagram. 

background image

The Power Transfer Block Diagram displays how the power delivery function was broken up into segments that can 
be optimized based on the requirements. The Lunar Surface Power Plant requires two closed Brayton engines (one 
operating, one in standby) to be single fault tolerant. A Local Electronics (LE) function was added to separate the 
output of the Brayton alternators from the transmission line function. The separation of the alternator voltage from 
the transmission line voltage enables the transmission line voltage level to be optimized for power and distance, and 
the alternator voltage can be optimized for performance. The LE also provides isolated fault containment regions for 
the Brayton alternators and the transmission line function. The alternator voltage was selected at 440Vac based on 
the information from Prometheus and the model of the alternator that was used on Prometheus.  The transmission 
line function is block redundant in order to accommodate the single fault tolerant design of the Brayton alternators, 
and allow for delivery of power from either alternator. The LE and Station Control Electronics (SCE) provide cross 
strapping of the two transmission lines. The transmission line fault containment region includes the step up and step 
down transformers. 

With the fault containment and redundancy approach defined, the next trade was to determine the optimum 
transmission line voltage for the delivery of power to the base habitat. The key drivers in the transmission line 
voltage trade are the power level, line length and deployment approach.  As depicted in Figure 9, the transmission 
line length quickly becomes a driver in the FSPS architecture as the distance increases beyond a few hundred meters 
even at relatively high voltages.  This non-linearity in growth of transmission line mass reflects a significant growth 
in cable diameter to support the greater transmission distances with acceptable losses.  The growth in cable diameter 
itself represents a major issue in terms of deployment, whether autonomous or crew-assisted, as cable mass and 
minimum bend radius complicate transportation and line-laying operations.   

100

1000

10000

100000

100

1000

10000

Distance (m)

Tr

a

ns

m

is

s

ion L

ine

 Se

gm

e

nt

 M

a

s

s

 (

k

g)

 50 kW, 7 kVac,
28 AWG,
Redundant
System

50 kW, 50 kVac,
28 AWG,
Redundant
System

 

FIGURE 9.

  Transmission Line Mass.  

Previous trades determined that the power level and the distance are a result of the user needs and regolith shielding. 
It was assumed that 2.5% power losses were acceptable in the transmission line based on thermal and overall power 
delivery capability. To enhance deployability and determine the optimum voltage, the lowest allowable gauge wire 
was selected (28 AWG) and multiple conductors were added for current density based on voltage. Insulation 
thickness was varied as a function of voltage to determine the area and volume of the cable. The results of this trade 
are shown in Figure 10. 

background image

0

40

80

120

160

200

3000

4000

5000

6000

7000

8000

9000

10000

Transmission Line Voltage (Volts)

Cabl

e or Transformers Mass (kg)

0

4

8

12

16

20

Conductors/

p

er phase or bundl

di

ameter (mm)

Cable Mass

Transformers Mass

Number of Conductors per Phase

Estimated Bundle Diameter

Discontinuity is due 
to minimum wire 
insulation thickness

 

FIGURE 10.

  Transmission Line Voltage Trade (50 kW, 2.5% Loss, 200m, 28 AWG, Single Line). 

The figure shows the mass of the cable including signal lines, the mass of the transformers, the number of 28 AWG 
conductors required per phase and the diameter of the wire bundle. The transformer mass and cable mass are 
relatively insensitive to voltages greater than 3000 volts. The number of conductors and insulation thickness 
determines the bundle diameter, which drives the deployment function. There is a manufacturing constraint for 
minimum thickness of about 5 mils of Kapton, which is shown in the figure as a discontinuity around 5000 volts. A 
7000-volt transmission line with four conductors per phase was selected as the recommended approach based on 
mass and bundle diameter.   

CONCLUSIONS 

The Prometheus FSPS study provided an in-depth assessment of the systems engineering challenges associated with 
practical incorporation of fission power into a sustained lunar base architecture.  Major conclusions reached in the 
study include the realization that shielding design for a long-life Lunar Base is driven by radiation dose rate 
constraints on lunar exploration accessibility, rather than simply by dose rate constraints at the base.  Following 
from this, it was found that the practical achievement of satisfactory radiation dose rate constraints requires the 
employment of regolith for shielding.  The most practical means of using regolith would necessitate some pre-
emplaced infrastructure, as well as astronaut support.  As an additional benefit of this robust shielding approach, the 
practical implementation of power transmission from the FSPS to the users is greatly facilitated. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the efforts of the design team responsible for the detailed development of this 
FSPS concept. This collaboration included Bill Allen, Greg Carr, Beverly Cook, David Hansen, Shawn Kang, Chris 
Landry, Bill MacAlpine, Romic Masehian, Robert Miyake, Victor Moreno, Brian Okerlund, Hoppy Price, Alma 
Rico, Joseph Riendeau, Timothy Schriener, Joseph Smith, Frank Tillman, and Brian Wilcox of JPL; Rudy Saucillo 
of NASA’s Langley Research Center; and Paul Schmitz, Lee Mason, Dick Shaltens, and Dave Hoffman of NASA’s 
Glenn Research Center.   The research described in this publication was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and Space Administration.   

REFERENCES 

Wright, S. A., and Lipinski, R. J.,

 

“Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion,” in proceedings of 

Space 

Technology and Applications International Forum (STAIF-2003)

, edited by M.S. El-Genk, American Institute of Physics, 

Melville, NY, 2003.` 


Document Outline