background image

JPL Publication 08-1 

 

 
Pasadena, California 

January 2008 

 

background image

JPL Publication 08-1 

Assessment of Alternative Europa Mission 
Architectures

  

 
Jerry Langmaier 
John Elliott 
 
Contributors 
Karla Clark 
Robert Pappalardo 
Kim Reh 
Tom Spilker 
Jet Propulsion Laboratory 
 
Approved By: 

 
 
 

 

Kim 

Reh 

   

Study Manager 

National Aeronautics and 
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

January 2008

 

 

 

background image

ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This research was carried out at the Jet Propulsion Laboratory, California 
Institute of Technology, under a contract with the National Aeronautics and 
Space Administration. The work was performed by JPL’s Solar System 
Exploration Directorate and supported by the JPL Strategic Studies 
program. 
 
Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not constitute or 
imply its endorsement by the United States Government or the Jet 
Propulsion Laboratory, California Institute of Technology. 

background image

iii 

 

Table of Contents 

1.

 Executive 

Summary 

................................................................................................................ 1 

2.

 Background 

............................................................................................................................. 2 

3.

  Summary of Historical Europa Mission Concept Studies ...................................................... 2 

3.1 

Europa Orbiter (1996) ..................................................................................................... 4 

3.2 

Europa Orbiter; Pluto S/C Option Study (1996) ............................................................. 4 

3.3 

Europa Sample Return (1996) ........................................................................................ 4 

3.4 

Europa Orbiter, All Solar (1997) .................................................................................... 4 

3.5 

Europa Orbiter, All Solar (1998 IOM) ........................................................................... 4 

3.6 

Europa Orbiter (2001) ..................................................................................................... 5 

3.7 

Europa Orbiter Alternative Missions Study (2001) ........................................................ 5 

3.8 

Europa Orbiter Competitive (2002) ................................................................................ 5 

3.9 

Jupiter Icy Moons Tour (JIMT) Studies (2002) .............................................................. 5 

3.9.1 Reactor 

Options 

...................................................................................................... 

3.9.2 Non-Reactor 

Option 

................................................................................................ 

3.10  Jupiter Icy Moons Orbiter (JIMO) .................................................................................. 7 
3.11  Europa Geophysical Explorer (2005) ............................................................................. 7 
3.12  Europa Explorer (2006) .................................................................................................. 8 
3.13  Enhanced Europa Geophysical Explorer (2006) ............................................................. 8 
3.14  Europa Explorer Solar Array Feasibility Study (2006) .................................................. 8 
3.15  Europa Explorer Flagship Study (2007) ......................................................................... 8 
3.16  Solar-Powered Europa Orbiter Design Study (2007) ..................................................... 9 
3.17  Europa Lander Studies .................................................................................................... 9 
3.18  Science Goals and Objectives ......................................................................................... 9 

4.

  Assessment of Alternative Europa Mission Architectures ................................................... 11 

4.1 

Moon Orbiter, Plus Lander or “Dumb” Impactor ......................................................... 13 

4.2 Multiple 

Moon-Orbiting Platforms ............................................................................... 14 

4.3 Multiple 

Flybys 

............................................................................................................. 14 

4.4 Single 

Flyby 

.................................................................................................................. 15 

4.5 Stand-Alone 

Lander 

...................................................................................................... 

15 

4.6 Sample 

Return 

............................................................................................................... 16 

4.7 

Most Appropriate Architecture ..................................................................................... 16 

5.

 Conclusions 

........................................................................................................................... 17 

6.

 References 

............................................................................................................................. 18 

7.

 Glossary 

................................................................................................................................ 20 

8.

  Europa Quick-Look Statistics ............................................................................................... 21 

 

background image

 

 

1.

 

Executive Summary 

The purpose of this study was to assess the science merit, technical risk and qualitative 
assessment of relative cost of alternative architectural implementations as applied to a first 
dedicated mission to Europa. The objective was accomplished through an examination of 
mission concepts resulting from previous and ongoing studies. Key architectural elements that 
were considered include moon orbiters, flybys (single flybys like New Horizons and multiple 
flybys similar to the ongoing Jupiter System Observer study), sample return and 

in situ

 landers 

and penetrators.  
Science merit was assessed relative to the 2007 Europa Explorer (EE) Science Definition Team 
(SDT) science objectives, which focus on global characterization. An orbital remote observation 
type of mission is a natural fit to global characterization rather than the single location of a 
lander or limited coverage of a few, even many, flybys. The most recent 2007 EE Flagship study 
concluded that a dedicated moon orbiter would be the lowest cost and risk architecture that 
would fully achieve all of the science objectives identified by the SDT. This is consistent with 
the conclusions of previous studies. 
An examination of multiple and single flyby missions indicates poor science value when 
compared to a dedicated moon orbiter. A single flyby mission would yield very little in terms of 
Priority 1 science objectives. A spacecraft in orbit around Jupiter that makes multiple flybys past 
Europa, similar to the recently defined Jupiter System Observer mission with more than 6 low-
altitude (100–200 km) flybys of Europa, would provide significant science for some of the key 
objectives; however, it falls short of achieving most top-priority science objectives. Because 
flyby missions would not be in orbit around Europa and thus spend much less time in the near 
vicinity of Europa, even the most favorable implementation would accomplish less than 50% of 
the Priority 1 science objectives. 
While landers have the potential to return significant new science from Europa’s surface, the 
science results would be limited to only a single site. As a result, a lander-only mission falls far 
short of achieving Priority 1 science objectives. In addition, due to the uncertainties in today’s 
limited understanding of Europa’s surface features, a first dedicated mission at Europa consisting 
only of a single lander would be characterized as having high risk. Data from a predecessor 
Europa orbiter would greatly reduce the risk for subsequent implementation of an 

in situ

 mission.  

The combination of a dedicated moon orbiter and a lander would clearly provide more science 
return than an orbiter alone, but it would require more resources (fiscal and possibly technical) 
than are currently anticipated to be practical in the near future. 
The study concludes that a dedicated moon orbiter would provide the greatest science value at 
lowest risk and cost for a first dedicated mission to Europa. This conclusion is consistent with 
the conclusions of previous studies. 

background image

 

2.

 

Background 

Over the last decade there have been a number of mission and system studies that have defined 
science objectives, mission architectures and implementation approaches applicable to a 
dedicated mission at Europa. Over that period of time, variations in the programmatic and 
technical environments have significantly influenced the results. For example, the Europa 
Orbiter (EO) study of 2001 had a severe pressure on cost and flight time. This resulted in a 
~$1.2B mission with less than 30 kg of science instrumentation delivered by a direct Earth-to-
Jupiter trajectory into Europa orbit. This was followed in the 2002–2005 timeframe with a focus 
on breakthrough capability for solar system exploration (i.e., nuclear electric propulsion and 
power) and expanded goals for Jupiter system science (multiple destinations: Ganymede, 
Callisto, Europa). This resulted in the Phase A conceptual design of a nuclear electric Jupiter Icy 
Moons Orbiter (JIMO) mission that was estimated to cost greater than $10B. In the current era, 
following the success of Cassini/Huygens, serious consideration is being given to preparing for 
the next outer planet flagship mission in a fiscally constrained environment. Current Flagship 
Mission studies have targeted a total mission cost in the $2–3B range. This assessment of 
alternative architecture options was undertaken to ensure that the science value of a Europa 
flagship mission would be maximized relative to the currently defined science objectives at an 
acceptable level of risk. 
The approach to assessing alternatives has been to review what has been learned to date from 
past studies and evaluate those results in context of the currently evolved science objectives and 
programmatic/technical constraints. The 2007 EE science objectives resulted from over a decade 
of community input and debate. The resulting objectives focus on understanding the global 
aspects of Europa. 
The balance of this report provides an historical summary of previous studies as well as an 
assessment of alternative Europa mission architectures. A summary of conclusions is provided at 
the end of this document. 

3.

 

Summary of Historical Europa Mission Concept Studies 

In the last decade (spanning from April 1996 to present) more than a dozen Europa Mission 
concepts have been studied at JPL to varying degrees. They are listed in chronological order in 
Table 1. Brief highlights and references from those studies are included. This section provides a 
summary of the studies in this table. 

Table 1: Historical Europa Mission Studies 

Study Name 

Power 
Source 

Key Features 

Ref 

Europa Orbiter 
(1996) 

RPS, Solar 

Series of studies by Team X of simple, low-cost 
Europa orbiter mission. Looked at solar and RTG 
options 

Europa Orbiter; 
Pluto S/C Option 
Study (1996) 

RPS, Solar 

Study to look at adopting new technologies being 
used on then-current Pluto mission study. Included 
RTG, AMTEC and solar options 

Europa Sample 
Return (1996) 

Solar 

Study for potential Discovery proposal to fly 
Stardust-type capture and return of sample 
blasted from Europa surface by small impactor. 

background image

 

Study Name 

Power 
Source 

Key Features 

Ref 

Europa Orbiter, All 
Solar (1997) 

Solar 

Delta-V Earth Gravity Assist trajectory, Titan IV 
(SRMU)/Centaur, payload 42 kg 

Europa Orbiter, All 
Solar (1998 IOM) 

Solar 

Revisit of 1997 All Solar study. Venus-Earth-Earth 
Gravity Assist (VEEGA) trajectory, STS/IUS, 
payload 20 kg, mass margin 

−

15 kg, solar array 

235 kg 

Europa Orbiter 
(2001)  

 

RPS 

Direct trajectory, science payload 27 kg 

Europa Orbiter 
Alternative 
Missions Study 
(2001)  

RPS 

Various trajectories, many options 

Europa Orbiter 
Competitive (2002) 

RPS 

Look at low cost Europa orbiter mission for 
potential New Frontiers proposal 

Jupiter Icy Moons 
Tour (2002) 

Reactor 

Flagship Mission, science payload 490 kg 

Non-Fission Icy 
Moons Tour (2002) 

RPS 

Two S/C mission to all Galilean satellites, science 
payload 273 kg, plus two landers (Callisto and 
Ganymede) 

10 

Jupiter Icy Moons 
Orbiter (2005) 

Reactor 

Flagship Mission, science payload 1,500 kg 

11 

Europa 
Geophysical 
Explorer (2005)  

RPS 

VEEGA trajectory, science payload 153 kg plus 
additional margin 853 kg (additional 853 kg 
probably too optimistic, ~340 kg is a more likely 
figure) 

12 

Europa Explorer 
(2006) 

RPS 

VEEGA trajectory, science payload 180 kg plus 
unallocated margin of 340 kg 

13 

Europa Explorer 
Solar Array 
Feasibility Study 
(2006) 

Solar 

Attempt at an all-solar implementation of Europa 
Explorer science mission; found to be not 
practical. 

14 

Enhanced Europa 
Geophysical 
Explorer (2006) 

RPS 

Broad architectural assessment for single orbiter. 
VEEGA trajectory, science payload 150 kg plus 
additional margin 340 to 1200 kg (additional 
margin due to advanced RPS, larger LV and later 
launch dates) 

15 

2007 Europa 
Explorer Flagship 
Study 

RPS NASA-funded 

flagship study. Numerous 

architectures considered with focus on single 
orbiter. VEEGA trajectory, ~205 kg science 
payload (includes contingency), mass margins 982 
kg including 185 kg “unallocated” margin 

16 

2007 Solar Europa 
Feasibility Study 

Solar 

Investigation of an all-solar implementation of 
Europa Explorer science mission; focused on 
achieving floor science objectives of 2007 EE 
Study. 

17 

 

background image

 

3.1

 

Europa Orbiter (1996) 

This represents the first study performed by Team X to investigate a mission to Europa. The 
initial study was performed in April of 1996 aimed at developing a very simple, single 
instrument (radar) mission to orbit Europa. Options explored included solar power and use of 
one half of a General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS RTG) 
to meet low power requirements (less than 150W). A series of updates to the original study were 
performed through May of 1996, ending up with design using one full GPHS RTG and 
incorporating technologies assumed for a concurrent Pluto mission study. Further options were 
investigated including benefits of Solar Electric Propulsion (SEP) (not found to be of significant 
value). 

3.2

 

Europa Orbiter; Pluto S/C Option Study (1996) 

The purpose of this study was to further develop the Europa mission concept using the then-
current Pluto spacecraft hardware design, taking full advantage of the advanced technologies 
being considered for that mission. Three design options were investigated: one using a single 
GPHS RTG, one using the Alkalai Metal Thermoelectric Converter (AMTEC) RPS then in 
development, and a solar option.  

3.3

 

Europa Sample Return (1996) 

This study evaluated a possible candidate for a Discovery-class mission that would use the 
Stardust spacecraft architecture to capture and return a surface sample from Europa. The concept 
would have delivered a projectile to the surface of Europa to eject a plume through which the 
spacecraft would fly at ~ 50 km altitude, capturing plume particles in aerogel for return to Earth. 
Mission duration was estimated to be ~10 years. The mission was envisioned to be solar 
powered, using a “hibernation” mode to conserve power at large sun ranges.  

3.4

 

Europa Orbiter, All Solar (1997) 

This study was performed by Team X in 1997 to develop a point design for an all-solar mission 
to Europa. The study looked at a launch in late 2004 on a Titan IV launch vehicle followed by a 
4.6-year flight to Jupiter using an Earth gravity assist. Wet mass for this concept was 3530 kg, 
leaving a margin of 1952 kg for launch on the Titan IV. Payload mass was 42 kg (including a 
15-kg surface package). Solar arrays were estimated at 159 kg. 

3.5

 

Europa Orbiter, All Solar (1998 IOM) 

This IOM reassessed the feasibility of designing an all-solar mission to Europa. The work 
revisited the previous study performed by Team X in June 1997 by reexamining some spacecraft 
assumptions and by considering the possible use of a Shuttle with an Inertial Upper Stage. The 
combination of these two assumptions with the Team X study conclusions resulted in some 
increased performance as compared to the Team X conclusion but not nearly enough to change 
the ultimate conclusion that a Titan IVB launch vehicle would be required to attempt the mission 
without using an RPS for a power source. Launch date for this reanalysis was October 2005. 
Launch mass was decreased to 2925 kg and payload allocation was reduced to 20 kg. Solar array 
mass was sized to accommodate 135 W of extra heater power to avoid the need for Radioisotope 
Heater Units (RHUs).  Even with the reduced capability and lower flight system wet mass, the 
study was not able to achieve a positive margin for launch on the Shuttle. 

background image

 

 

Figure 1. 2001 Europa Orbiter Flight System.

3.6

 

Europa Orbiter (2001)  

This was the first rigorously developed point 
design for a Europa mission. The development 
effort spanned several years and resulted in a 
Radioisotope Power System (RPS)-based flight 
system design (Figure 1) constrained to a direct 
Earth-Jupiter trajectory. The science mission 
duration of 30 days in Europa orbit was determined 
by the SDT to be the minimum time required to 
meet the science objectives. This concept 
accommodated a modest science payload of 27 kg. 
Wet mass of this design was~1790 kg and power 
was to have been provided by two GPHS RTGs. 
Driving science requirements included the category 
1A objectives defined by the SDT: 

•

 

Determine the presence or absence of a subsurface ocean 

•

 

Characterize the 3D distribution of any subsurface liquid water and its overlying ice layers 

•

 

Understand the formation of surface features, including sites of recent or current activity, and 

identify candidate sites for future lander missions 

The work performed in this study provided insights into the issues associated with 
implementation of Europa missions, including a full assessment of the radiation environment and 
technologies for accommodating operations in that environment. 

3.7

 

Europa Orbiter Alternative Missions Study (2001)  

This report assessed alternative approaches to the EO mission in an effort to investigate lower 
cost options. Primary trades investigated included; an assessment of trajectory options including 
both direct and indirect trajectories, flight system trades between the EO baseline and minimum 
mass implementations, and endgame science mission options at Europa including an assessment 
of orbiters and flyby missions. Mission architectures were developed that addressed subsets of 
the full EO science objectives based on temporal or spatial observations. Alternative 
architectures resulted in some cost savings, but at the expense of full science. 

3.8

 

Europa Orbiter Competitive (2002) 

This study investigated the possibility of developing a simple, low-cost (less than $1B) mission 
to Europa that could potentially be developed as a New Frontiers proposal. The mission was 
envisioned to use a single GPHS RTG for power and had a limited payload of six instruments: a 
radar and a five-element Europa Integrated Science package totaling ~17 kg. Mission length was 
30 days in orbit.  

3.9

 

Jupiter Icy Moons Tour (JIMT) Studies (2002) 

Three mission concepts were studied by independent teams: A reactor-powered mission 
employing a single launch vehicle to deliver the flight system to space, a second reactor-powered 
option employing multiple launches to low-Earth orbit (LEO) and using on-orbit assembly 

background image

 

techniques to construct the final flight system, and a third non-reactor–powered option consisting 
of one or more flight systems to meet the same science objectives. All mission studies were 
completed as directed.  

3.9.1

 

Reactor Options 

The reactor options fall into a unique category. They would utilize nuclear fission power systems 
and advanced ion propulsion to enable exploration of multiple targets in a single mission. These 
studies also offered greatly enhanced science payload mass and power. The single launch option 
of the JIMT study had a science payload allocation of 490 kg and a total flight system launch 
mass of 21,000 kg. It would have been delivered to LEO by a single Delta-IVH launch vehicle, 
from which point it would have activated its nuclear electric propulsion (NEP) system to spiral 

out to its Jupiter trajectory. The on-orbit 
assembly option was similar to the single 
launch option, but would have launched the 
fuel tank and science module first on a heavy 
Evolved Expendable Launch Vehicle (EELV), 
to be followed by a shuttle launch of the 
power and propulsion module which would 
have been mated to the previously launched 
elements in LEO. Large solar arrays were to 
be used to provide solar-electric propulsion 
for the initial spiral-out from LEO. Total 
launch mass of this option would be about 
23,000 kg with a payload allocation of 500 kg. 

3.9.2

 

Non-Reactor Option 

The non-reactor JIMT team was asked to create a mission concept that (a) would achieve, as a 
minimum, the Europa Orbiter Level 1 science objectives at Europa, Ganymede and Callisto, 
(b) could be implemented for launch by the end of the decade, (c) would cost not more than 
$4.5B, and (d) could be implemented without use of fission power. A large number of possible 
mission architectures was quickly reduced to five options for further study:  
1.

 

Jupiter orbital flotilla consisting of three identical spacecraft in orbit around Jupiter with 

multiple flybys of the three ice moons.  

2.

 

Icy moon flotilla consisting of a dedicated 
orbiter to each of the three icy moons.  

3.

 

Single large cruiser that would sequentially 
orbit each of the three icy moons for several 
weeks before moving on to the next.  

4.

 

Dual identical cruisers that would sequentially 
orbit each of two of the moons.  

5.

 

SEP/Radioisotope Electric Propulsion (REP) 
mother ship that would deliver a dedicated 
orbiter to each of the icy moons.  

The fourth option was chosen for development in 
the study. Dual, identical twin spacecraft (Fig. 3) 

 

Figure 2. JIMT Single Launch Option.

 

Figure 3. Non-Fission Option Orbital 

Configuration. 

background image

 

would be deployed to the Jovian system to provide full redundancy for Europa. Cruiser 1 would 
be deployed to Callisto first, for 12 weeks of detailed mapping and deployment of a small lander. 
It would then be flown into orbit around Europa for Europa science and end of mission. Cruiser 2 
would be deployed to Ganymede into a 10-week mapping orbit, then into orbit around Io for its 
end of mission. Redundancy for Europa would be provided by phasing Cruiser 2 flight time to 
allow diversion to Europa in event of problems with Cruiser 1.  
The flight system design took advantage of existing and a few high-value new technologies to 
lower mission risk and cost. A 100-kW SEP system (beginning of life power) with NASA 
Evolutionary Xenon Thrusters and Square Rigger Photovoltaic solar arrays was baselined. The 
Science Mission Module would use radiation-hard avionics and three 250-W advanced RPSs. A 
sixteen-instrument, 273-kg payload was accommodated on each spacecraft. One 132-kg lander 
was also carried on each spacecraft for delivery to Callisto and Ganymede. Landers each carried 
six instruments. 

3.10

 

Jupiter Icy Moons Orbiter (JIMO)  

The JIMO project mission and flight system designs evolved directly from the single launch 
option of the JIMT study. Requirements expanded over the course of this study and both the 
flight system and payload allocation grew. The payload allocation for JIMO (Fig. 4) was 
1,500 kg and the total launch mass was more than 36,000 kg. While the capabilities of the JIMO 
flight system would have 
revolutionized the approach to outer 
planets science missions, the estimated 
cost of developing the project was 
deemed too large; the programmatic 
priorities changed at Headquarters, 
and, after successfully completing 
Phase A, further effort was 
indefinitely deferred. For this reason 
the Jupiter Icy Moons studies will not 
be included in further assessments 
contained in this report. 

3.11

 

Europa Geophysical 
Explorer (2005) 

The Europa Geophysical Explorer 
(EGE) study, funded by NASA’s Planetary Program Support task and the NASA RPS Mission 
Systems Engineering Office, returned to the concepts of inner solar system gravity assists and 
conventional chemical propulsion for a mission to Europa, using radioisotope power in the form 
of the newly developed RPSs. This study made use of a Venus-Earth-Earth Gravity Assist 
(VEEGA) trajectory to increase delivered mass over previous studies, resulting in a launch mass 
capability of ~7230 kg using a Delta IVH launch vehicle. A payload allocation of 150 kg was 
baselined. The payload was sufficient to meet all newly defined science objectives in a Europa 
orbital mission phase of 30 days. 

Electric Propulsion 
Thruster Pods

High Gain Antenna

High Power 
Electronics 
Radiator 

Bus Radiator

Heat Rejection 
Subystem radiator 
panels

Shunt Radiator panels

Reactor

Brayton Power 
Conversion

Main Boom 
Assembly

Xenon Tank Structure

Bus Compartment

Radiation 
Shield

Boom Hinge (3)

Spacecraft Docking Adapter

Stowed Spaceship

Figure 4. JIMO Configuration. 

 

background image

 

3.12

 

Europa Explorer (2006) 

The EE study, which was internally funded by JPL, involved a detailed analysis of a Europa 
orbital mission. It took advantage of recent technology developments and additional knowledge 
gained from past studies to develop a highly capable mission aimed at meeting current science 
objectives for Europa. This study developed a flight system (Fig. 5) with a wet mass of 6988 kg. 
Science payload allocation was ~180 kg, with an additional 340 kg “unallocated mass” 
potentially available for a lander or other science payload. The orbital phase of the mission was 
extended to 90 days in collaboration with the 
science team. The improvements over past study 
results were made achievable by significant 
advances in radiation-hardened component 
technologies, now-proven larger launch 
capabilities and well-established gravity assist 
trajectory options, and better characterized 
radiation environment around Europa. The 
concept relies on traditional chemical 
propulsion system (similar to Cassini and 
Galileo), Multi-Mission Radioisotope 
Thermoelectric Generators (MMRTGs - as are 
to be employed by Mars Science Laboratory) 
and a real-time continuous data downlink. 

3.13

 

Enhanced Europa Geophysical Explorer (2006) 

The Enhanced Europa Geophysical Explorer (EEGE) study was performed in 2006 to update the 
original EGE concept and assess the mass impacts associated with using different existing and 
advanced radioisotope power systems. Also studied were the mass implications associated with 
choosing different launch dates, interplanetary trajectories, and launch vehicles. The output was 
a detailed trade space analysis that could be used to assess the enabling and potentially cost-
saving capabilities of using advanced RPS systems for a Europa mission. As expected, mass and 
power gains were realized when using the most advanced RPSs and most capable launch 
vehicles. EEGE was funded by NASA’s RPS office. 

3.14

 

Europa Explorer Solar Array Feasibility Study (2006) 

This study, which was internally funded by JPL, evaluated the potential for replicating the EE 
2006 science mission using solar power instead of RPSs. The study looked at the issues involved 
with the use of solar arrays in the Europa environment, considering radiation degradation and 
low solar intensity. The very large size of the arrays needed to accommodate Europa eclipses and 
the large gimbals and reaction wheels needed for this implementation led to the conclusion that 
this approach was not practical within the EE mission orbital constraints. 

3.15

 

Europa Explorer Flagship Study (2007) 

The NASA-commissioned 2007 EE Flagship Study has recently been completed. For this study 
NASA appointed an SDT to develop science objectives in light of the advances in understanding 
made by the JIMO SDT and refined by subsequent studies and science advisory groups. A 
further development of the mission and flight system developed in the EE 2006 study, it 

Figure 5. EE Orbital Configuration. 

background image

 

accommodated 205 kg of science payload (maintaining 185 kg of unallocated margin) while 
refining the design (lower telecom power and sequencing of instruments) to allow reduction in 
the number of MMRTGs from eight to six. This study looked at a baseline implementation, 
achieving all of the objectives of the Europa SDT, and a floor mission that would achieve many 
of the SDT objectives at a lower total mission cost. Results were thoroughly reviewed by NASA-
appointed independent science and technical, management and cost panels. 

3.16

 

Solar-Powered Europa Orbiter Design Study (2007) 

In parallel with the 2007 EE Study, a 
solar-powered Europa Orbiter Design 
Study, which was internally funded by 
JPL, was carried out to take another 
look at the possibility of using solar 
arrays to provide power to a Europa 
mission (Fig. 6). This fairly high-level 
study directly addressed the issues 
raised by the 2006 EE solar study by 
changing the science orbit at Europa 
to one with continuous illumination, 
thus greatly reducing the excess solar 
array area needed to accommodate 
frequent eclipses and enabling a 
configuration with fixed solar arrays. A single-session Team X study was performed to evaluate 
the feasibility of such a mission that could accommodate the floor science objectives as defined 
by the 2007 EE SDT. Preliminary results indicate that such a mission might be viable and 
warrants further study. 

3.17

 

Europa Lander Studies 

In addition to the orbital missions studied over the last decade a number of studies have been 
carried out to investigate designs for Europa landers. These studies have looked at a wide range 
of capabilities ranging from simple penetrators to very capable landers with cryobots and 
submarine vehicles capable of exploring the Europan ocean. A summary of the design 
parameters for some of these past studies is presented in Table 2.  
None of the Europa mission studies ended up baselining a lander vehicle as part of their mission 
architecture. Each mission study concluded that the accommodation of a Europa landed package 
of some form would provide significant science above that required to meet the science 
objectives. The reluctance to baseline such a package has come from a combination of the 
estimated cost and risk impact that such an auxiliary element would have on the overall mission. 

3.18

 

Science Goals and Objectives 

The mission and spacecraft conceptual designs for exploration of Europa have significantly 
progressed over the years in detail and maturity. In parallel, the Europa science goals and 
objectives have evolved into a more comprehensive set of Priority 1 Objectives. Over the last 
decade several key advisory groups have considered and recommended sets of science objectives 

Figure 6. Solar Powered Europa Concept. 

background image

10 

 

Table 2. Past Europa Lander Studies (ref. 18). 

Study title  

Wet 

Dry 

Propellant 

Landing 

Power  

Europa Lander (Baseline, 
1997) 

886 kg 

338 kg 

549 kg 

Soft 

AMTEC RPS  

Europa Lander (Microtech, 
1997) 

828 kg 

279 kg 

549 kg 

Soft 

AMTEC RPS  

Europa Path

fi

nder (2001) 

221 kg 

Solid Propulsion 

Airbag 

Battery + RHU  

Europa Lander (1999)  

487 kg 

228 kg 

259 kg 

Soft 

AMTEC RPS  

Europa Lander + Cyobot+ 
Submarine (1998)  

1502 kg 

646 kg 

856 kg 

Soft 

AMTEC RPS  

Scout Lander (2000)  

3451 kg 

1502.1 kg 

2340.2 kg 

Multi 

AMTEC ARPS  

Europa Impactor (2000) 

4

×

7kg

N/A N/A 

Impactor 

Battery 

 

Cadmus (Ga Tech, 2004) 

558 kg 

248 kg 

310 kg 

Soft 

MMRTG  

EGReSS (Ga Tech, 2004) 

1575 kg 

440 kg 

1135 kg 

Soft 

MMRTG  

JuIcy (Ga Tech, 2004) 

1211 kg 

511 kg 

700 kg 

Soft 

Undefined RTG  

Europa Surface Science 
Package (2004) 

379 kg

44 kg 

143 kg

Soft 

Modified RTG 

Jupiter Icy Moons Lander 
(2006) 

390 kg

362 kg 

22 kg

Soft 

Battery 

 
 
for the exploration of Europa (Table 3). The lineage of Europa science objectives traces back to 
the EO SDT, whose “Group 1” (highest priority) and “Group 2” (second priority) objectives 
were subsequently endorsed by the NASA Campaign Science Working Group on Prebiotic 
Chemistry in the Solar System, and then by the National Research Council’s Solar System 
Exploration Survey (“Planetary Science Decadal Survey”). The Decadal Survey explicitly stated 
that a flagship-class mission should address both the Europa Orbiter Group 1 and Group 2 
objectives, in addition to Jupiter system science during its Jupiter orbiting phase. 
Subsequent to the recommendations of the Decadal Survey, the JIMO SDT expanded the scope 
of Europa objectives and included additional objectives relevant to the whole Jupiter system. 
Following NASA’s indefinite postponement of the ambitious JIMO mission, the Outer Planets 
Assessment Group honed the objectives for Europa exploration. These objectives were iterated 
by the Europa Focus Group of the NASA Astrobiology Institute, and then codified by OPAG 
[2006] in its Scientific Goals and Pathways document. This codification was subsequently 
reflected in the 2006 Solar System Exploration Roadmap for NASA’s Science Mission 
Directorate. The EE 2007 SDT reviewed and updated the 2006 objectives and relative priorities 
for use in their study. It is these Europa objectives that form the basis of the latest EE mission 
studies. 

background image

11 

 

Table 3. Heritage of Europa Science Objectives. 

Committee 

Report Title

Ref.

Europa Orbiter Science Definition 
Team 

Europa Orbiter Mission and Project Description 

19 

Committee on Planetary and Lunar 
Exploration (COMPLEX) 

A Science Strategy for the Exploration of Europa 

20 

NASA Campaign Science Working 
Group on Prebiotic Chemistry in the 
Solar System 

Europa and Titan: Preliminary Recommendations 
of the Campaign Science Working Group on 
Prebiotic Chemistry in the Outer Solar System 

21 

Solar System Exploration 
(“Planetary Science Decadal”) 
Survey 

New Frontiers in the Solar System: An Integrated 
Exploration Strategy 

22 

Jupiter Icy Moons Orbiter (JIMO) 
Science Definition Team 

Report of the NASA Science Definition Team for 
the Jupiter Icy Moons Orbiter (JIMO) 

23 

Europa Focus Group of the NASA 
Astrobiology Institute 

Europa Science Objectives 

24 

Outer Planets Assessment Group 
(OPAG) 

Scientific Goals and Pathways for Exploration of 
the Outer Solar System 

25 

NASA Solar System Exploration 
Strategic Roadmap Committee 

2006 Solar System Exploration Roadmap for 
NASA’s Science Mission Directorate 

26 

Europa Explorer 2007 Science 
Definition Team 

2007 Europa Explorer Mission Study: Final Report 

16 

 

4.

 

Assessment of Alternative Europa Mission Architectures 

In the course of studying concepts for missions to Europa a number of candidate architectures 
have been considered, as shown in Figure 7. These include both single-element and multiple-
element types. Single-element missions might consist of an orbiter around Europa, a Jupiter 
orbiter that makes multiple close passes by Europa during its mission, or a single flyby 
spacecraft, as in the Voyager and New Horizons missions. Architectures involving a single 
capable lander-only mission delivered by a simple cruise stage and communicating directly to 
Earth have not been studied yet in detail, for reasons given later in this section. Multiple-element 
missions might add a lander to an orbiter or flyby spacecraft, with the lander design ranging from 
a fully instrumented soft lander, to a more limited hard lander, to a simple impactor; multiple 
orbiting platforms might also be possible, maybe even sample return missions, but they have not 
been studied in detail, again for reasons given later in this section. One platform type, an aerial 
vehicle (e.g., a balloon), is rejected after only cursory consideration. The Europan atmosphere is 
so tenuous it is difficult even to 

detect

 with all but the most sensitive of instruments. Its mass 

density is orders of magnitude too small to cause detectable aerodynamic drag on orbiting 
spacecraft or impactors, let alone support any kind of aerial vehicle, so it need not be considered. 
 

background image

12 

 

 

Europa Miss

io

n

Moon Orbiter 

with or without 

in-situ element

Jupiter Orbiter 

Single Flyby

In-situ Only

Europa orbiter + Lander

Europa orbiter only

Jupiter orbiter multiple Europa flybys

Single Europa Flyby

Europa Lander

Architectural Options

Option Selection Rationale

Relative to 2007 EE SDT Science Objectives

Provides enhanced science return, however likely high cost and risk

Meets all science objectives, and has been the focus of majority of studies

Cannot meet most of key Europa science objectives

Unlikely to yield sufficient new information in any Priority 1 science cat.

Cannot provide global characterization, high cost and risk

Europa orbiter + dumb impactor

Investigation indicates the impactor may decrease overall science value

Preferred Mission Architecture

Sample Return

Landed Sample Return

Cannot provide global characterization, high cost and risk

Impactor with Sample Return

Cannot meet most key science objectives.  High risk

 

Figure 7. Architecture Options. 

Note: risk refers to Cost, Schedule and Mission Success

background image

13 

 

Previous studies have examined all these applicable options, with varying science objectives and 
in greatly varying levels of detail. Reviewing the implications of these architectures in light of 
current Europa science objectives, as summarized in Table 4 [16], and considering technological 
readiness, cost and risk, the choice of optimal mission architecture quickly narrows to a 
dedicated Europa orbiter mission. The EE mission concept, such a dedicated orbiter mission, 
fully addresses all of the science objectives defined by the 2007 EE SDT and has been the focus 
of most of the recent studies for Europa exploration. The remainder of this section addresses the 
characteristics of the multiple-element architectures, and then the alternative single-element 
architectures, that make them less attractive than the single-orbiter-only option for a first 
dedicated mission to Europa. Further assessment would need to be done to address the impact of 
planetary protection requirements on mission cost, design, mass, and schedule for landers and 
sample return missions, as this study does not address planetary protection considerations. 

Table 4. Architectures considered and rated against the Priority 1 Europa 

Science Objectives. 

(after Pappalardo et al., 2007)

 

 

 

A.  

Ocean

 

 B.  

Ice

 

C.  

Chemistry

 

D.  

Geology

 

E. External 

Environment 

Europa Explorer

 

5

 

5

 

5

 

5

 

5

 

Europa Explorer + 
Simple Lander

 

6

 

6

 

6

 

6

 

5

 

Europa Multiple 
Fly-bys

 

2

 

2

 

2

 

3

 

3

 

Capable Lander (No 
Orbiter)

 

3

 

2

 

4

 

2

 

1

 

 
 
 
 
 
 
 

4.1

 

Moon Orbiter, Plus Lander or “Dumb” Impactor 

The addition of a simple instrumented lander to a Europa orbiter mission would provide even 
greater science return, exceeding the EE SDT’s science objectives in all but one category [16] 
(see Table 4, row 2). Such a mission architecture would enable global remote sensing with 
ground truth for at least one site on the surface, and science measurements not possible from an 
orbiter. Given the likelihood of significant Europan tidal flexing, levels of seismic activity 
should be of sufficient magnitude that 

in situ

 measurements would provide unique geophysical 

insight into the subsurface and interior. Although costs have not been accurately modeled for any 
landed systems, the EE study determined that the cost for an orbiter with even a simple soft 
lander would likely exceed the expected resources available [16]. Moreover, the inferred low 

NOTES: 

•  Multiple fly-bys means a dedicated Europa fly-by 

mission. 

•  Orbiter + lander implies a simple lander, carrying a 

seismometer, imager, composition experiment.  

•  Capable Lander is stand-alone (no orbiter), modeled 

after the Europa Astrobiology Lander.

 

Exceeds science objectives. 

Fully addresses all science objectives. 

Addresses most science objectives. 

Addresses some science objectives. 

May address partial science objectives. 

Touches on science objectives. 

Does not address science objectives. 

background image

14 

 

technology readiness of a simple hard lander, especially one landing on a surface whose 
topography is not well characterized, suggests a high risk to schedule and cost. 
Multiple design teams have concluded that the only practical means of reducing the risk of safe 
landing on Europa, in a time frame consistent with implementation of the lander, is high-
resolution imaging characterization of the surface, especially potential landing sites, from a 
precursor orbiter mission. Imaging of the candidate landing sites from an orbiter that delivers the 
lander is not useful, since the new information is not available for the design of the lander, and 
there is no guarantee that an orbiter with a lander designed for specific surface characteristics 
will find any scientifically interesting area, or any area at all, with those characteristics. It is an 
appropriate role for an orbiter mission to provide the information that enables subsequent lander 
missions with acceptable levels of risk. 
A simple “dumb” impactor added to a Europa orbiter or flyby mission could allow remote 
measurement of elemental composition from the impact flash, and would excavate material from 
the shallow subsurface that might not have been radiolytically processed, for remote analysis 
later. However, a preliminary assessment by the EE team of the impact energies for reasonable 
masses and velocities suggest that the crater formed would be too small to yield significant 
compositional measurements, and might be too small to locate [16]. Instruments optimized for 
the Europa Priority 1 science objectives are different from the specialized instrumentation 
needed to observe an impact flash and plume, implying additional cost and/or the loss of other 
science. 

4.2

 

Multiple Moon-Orbiting Platforms 

Multiple orbiting platforms, in the form of an orbiting subsatellite deployed from a primary 
orbiting spacecraft, have several avenues for augmenting the science from a single orbiter, but 
would have significant impact on the resources available for the primary orbiter. At Europa, as 
elsewhere, simultaneous measurements from multiple spacecraft improve magnetospheric 
investigations. But according to the EE SDT, the greatest science gain would stem from 
formation-flying gravity measurements [16] as done by the GRACE mission at Earth [27]. Such 
investigations would primarily target the high-degree and -order (short spatial scale) gravity field 
components. But the measurable tidal signal of an internal Europan ocean is low-order 
(degree 2), and the most likely sources of non-isostatically–compensated gravity field anomalies 
are sufficiently deep, below the icy shell and ocean, that the higher-order signal levels would be 
quite feeble at orbital altitudes. Thus, the science gain from such a subsatellite would be limited. 
But the impact on resources for the primary orbiter would be substantial: the subsatellite would 
have to duplicate many of the subsystems of the primary orbiter, such as power, attitude 
determination and control, communications, command and control, etc., in addition to the 
subsatellite’s payload. Resources devoted to the subsatellite, especially mass and cost, would 
subtract from those available to the primary orbiter and its payload. The EE SDT determined that 
a subsatellite’s science did not justify the added cost and complexity [16]. 

4.3

 

Multiple Flybys 

A Jupiter orbiter with multiple close flybys of Europa could provide significant science return to 
address some of the key science objectives for Europa. However, important measurements 
related to the ocean and other objectives cannot be achieved except from orbit. A flyby mission 
cannot provide 1) gravity and altimetry data of the requisite accuracy measured at appropriate 

background image

15 

 

phases of the tidal cycle, addressing the ocean objective; 2) significant areal coverage by an ice-
penetrating radar for the ice shell objective; 3) global and targeted spectral imaging coverage at 
high resolution for the chemistry and geology objectives; and 4) sufficient temporal and spatial 
coverage for the external environment objective [16]. The Jupiter System Observer (JSO) 
flagship mission concept, studied by another team in parallel with the 2007 EE study, would do 
Europa science in the multiple-flyby fashion, with a many-flyby tour of the Galilean satellites 
that would include 6 or more Europa flybys. The 2007 EE SDT reviewed the JSO approach’s 
performance in achieving its Europa science objectives and concluded that JSO would do a 
“poor” job, addressing less than 50% of the high-priority objectives. 
Some have wondered if a Juno-like spacecraft and mission could perform Europa flyby science. 
But the JSO mission would provide far better science than would a Juno-like mission. To provide 
the best science possible by keeping encounter velocities low, the JSO mission concept’s orbit 
would be fairly narrowly constrained to Jupiter’s equatorial plane, with only small excursions to 
adjust flyby geometries. Of the many JSO flybys, the best for science occur in low-eccentricity 
orbits with low flyby V-infinities. The Juno mission’s highly eccentric polar orbit [28] will be 
much less amenable to satellite science. It is such an orbit that will keep Juno’s radiation dose 
relatively low for the first 20 (or so) orbits, despite a perijove within about 1.1 Jovian radii. Near 
perijove, that orbit will thread an axially aligned, roughly cylindrical “clear zone” between the 
planet and the inside edge of the main radiation belts, then recross the equatorial plane well 
outside the roughly toroidal (“doughnut-shaped”) radiation belts. Jupiter’s oblateness, notably 
the large J

2

 component of its gravity field, will cause the eccentric polar orbit’s line of apsides to 

rotate with each perijove pass, such that eventually the “long sides” of the ellipse will pass 
briefly near each of the Galilean satellites. But the flyby V-infinities for such an approach to 
Europa will be far greater than would be for JSO, more than 20 km/s compared to JSO’s less 
than 10 km/s. Attempting to decrease the flyby velocities by rotating the Juno orbit into the 
equatorial plane would thwart the “threading” approach and result in radiation fluxes even 
greater than JSO would receive during its orbit insertion maneuver, just inside Io’s orbit. The 
Juno spacecraft is not designed to survive this increased radiation level. For multiple reasons, the 
Juno approach is not suitable for a Europa mission. 

4.4

 

Single Flyby 

The single-flyby option was dismissed from further consideration because it is unlikely to yield 
significant new information in 

any

 of the highest-priority Europa science objective categories. 

This conclusion is consistent with a similar conclusion by the “Billion Dollar Box” study [29] of 
potential missions to Saturnian icy satellites Titan and Enceladus. The general conclusion that it 
is difficult to justify a single-flyby mission at a satellite already visited multiple times by a well-
instrumented spacecraft orbiting the satellite’s primary would not be a surprise. In the case of 
Europa, multiple Galileo flybys “raise the bar” for significant science there. 

4.5

 

Stand-Alone Lander 

A large stand-alone lander carrying a full suite of instruments for surface science could provide 
significant new results for Europa, especially if it were long-lived (more than 5 eurosols or 18 
days). While the science return from a capable surface lander could be high, a lander would 
characterize only one location on Europa, which would not necessarily be representative of the 
satellite as a whole. At the current stage of Europa exploration, science priorities focus on global 

background image

16 

 

characterization, which would not be provided by a lander at a single location. Thus, a capable 
lander without a supporting orbiter does not address the Europa Explorer SDT’s science 
objectives well. Moreover, the technology readiness of such a lander is quite low, and the surface 
topography of Europa is unknown at scales of concern to landers, posing significant problems for 
a safe landing. A capable lander is anticipated to have a high risk and cost. 

4.6

 

Sample Return 

Planetary scientists have emphasized for decades the benefits of bringing samples of extra-
terrestrial materials to Earth, where the full power and flexibility of huge ground-based 
laboratories can be brought to bear on the analyses of the samples. The role of the Apollo 
samples in unraveling the origin of Earth’s moon is a prime example. But despite the potential 
paradigm-altering science return, sample return missions to outer solar system destinations must 
contend with three significant hurdles: long mission durations for a round-trip to a distant 
location; risk that the required samples might not be collected or delivered to a useful location 
such as a curation facility on Earth; and high cost. Note that these are common challenges, and a 
specific mission could also face other challenges. 
The proposed Europa Ice Clipper [30] mission is a sample return mission concept based on an 
interesting variation on the single flyby spacecraft. In this architecture a flyby spacecraft would 
release an impactor on approach to Europa. The impactor would create a crater and plume of 
debris through which the spacecraft would fly, collecting debris samples as it passes through. 
The samples would then be returned to Earth. While such a mission has the potential for 
returning unique results, it has problems with both science value and technical risk: it can 
address only a limited number of Europa science objectives at a single impact site, and is 
generally considered high risk for a number of reasons, including a low probability of obtaining 
an acceptable sample coupled with extremely demanding navigation requirements. The closer to 
Europa’s surface the sample collecting spacecraft flies in an effort to increase the (small) chance 
of acquiring a usable sample, the tighter are the navigation requirements to prevent a catastrophic 
impact of the spacecraft on Europa’s surface. 
A more “conventional” landed sample return mission, one that places a soft-lander on the surface 
to collect and document samples, suffers greatly from the mission duration and cost problems. 
Compared to the Ice Clipper architecture, the landed sample return mission involves much more 
delta-V and thus more mass, time, and cost, and a much more complex flight system that is far 
more costly. A previous study by Woodcock [31], and preliminary results of a current study by 
some of this study’s authors [32], of the utility of the proposed Ares launch vehicles for solar 
system exploration indicate that launching a landed outer solar system sample return mission 
appears to be a job for an Ares V launch vehicle, with an anticipated unit cost over $1B. It is 
clear that this type of sample return mission would far exceed the fiscal resources expected to be 
available for a flagship mission in the relatively near future. 

4.7

 

Most Appropriate Architecture 

A single Europa orbiter with no lander, impactor, or subsatellite is the architecture of choice for a 
first dedicated mission to Europa, since it fully addresses the science objectives at the lowest risk 
and cost, and since it provides the information needed to enable a future Europa lander with 
acceptable risk. 
 

background image

17 

 

5.

 

Conclusions 

The objective of this study, 

to assess the science merit, technical risk and qualitative assessment 

of relative cost of alternative architectural implementations as applied to a first dedicated 
mission to Europa,

 was accomplished by 1) reviewing results from previous and current studies 

and 2) examining alternative architectural options relative to the science objectives defined by 
the 2007 EE SDT. This report summarizes a number of Europa mission and system concepts 
studied over the last decade as well as the results from assessing alternative architectural options 
in light of current science requirements. Based on this work, the study arrived at the following 
conclusions: 
1.

 

A dedicated orbiter mission to Europa provides the greatest science value (as measured by 
the 2007 EE SDT science objectives) at lowest risk. This conclusion is consistent with the 
conclusions of previous studies. 
 

2.

 

Varying programmatic constraints and evolving prioritization of science objectives affected 
the details of studies over the last decade but not the high-level conclusions. 

 

background image

18 

 

6.

 

References 

[1] 

“Europa Orbiter”, Team X Final Report, July 12, 1996. (JPL internal document) 

[2] 

“Europa Orbiter, Pluto Spacecraft Option”, Team X Final Report, July 12, 1996. (JPL 
internal document) 

[3] 

“Europa Sample Return”, Team X Final Report, June 25, 1996. (JPL internal document)   

[4] 

"Europa Orbiter, All Solar," Advanced Projects Design Team (Team X), Final Report, 2 
June 1997. (JPL internal document)

  

[5] 

Europa All-Solar Revisit, JPL IOM 311.1/98-5, May 29, 1998NS. (JPL internal 
document) 

[6] 

Europa Orbiter Overview 7-9-01 (ppt). (JPL internal document) 

[7] 

Europa Orbiter Alternative Missions Study, JPL Advanced Mission Studies 
Office, 8-15-01. (JPL internal document) 

[8] 

“Europa Orbiter Competitive”, Team X Final Report, October, 2002. (JPL 
internal document) 

[9] 

Jovian Icy Moons Tour Mission Studies, Final Report, February 28, 2003. (JPL 
internal document) 

[10]  Nuclear Systems Initiative (NSI) Jovian Icy Moon Tour Mission Study Non-

Fission Dual Cruisers to the Jovian Moons Flight System, January 27, 2003.  

[11]  Prometheus Project Final Report, Doc No. 982-R120461, October 1, 2005. (JPL 

internal document) 

[12]  (a) Europa Geophysical Explorer Mission Concept Study, JPL internal document 

D-32355, September 30, 2005 (b)Europa Explorer Design Team Report, JPL 
internal document D-34109, April 27, 2006. 

[13]  Europa Explorer Study Report, JPL internal document D-34054, March 10, 2006. 

[14]  Europa Explorer Solar Array Feasibility Report, August 30, 2006. (JPL internal 

document) 

[15]  Enhanced Europa Geophysical Explorer Study (EEGE) utilizing Advanced 

Radioisotope Power System, October 2006.  (JPL internal document) 

[16]  2007 Europa Explorer Mission Study: Final Report, JPL internal document 

D-41283, 1 November, 2007. Cleared for external release. 

[17]  Solar-Powered Europa Orbiter Design Study (2007), JPL internal document 

D-40344, September 28, 2007. Cleared for external release as JPL Pub 08-2, 
January 2008. 

[18]  Europa Surface Science Package Feasibility Assessment, JPL internal document 

D-30050, September, 2004. 

[19]  NASA AO: 99-OSS-04, Europa Orbiter Mission and Project Description, 1999. 

background image

19 

 

[20] COMPLEX, 

Committee 

on Planetary and Lunar Exploration (1999), National 

Research Council, 

A Science Strategy for the Exploration of Europa

, National 

Academy Press, Washington, DC. 

[21]  Chyba, C. F., W. B. McKinnon, A. Coustenis, R. E. Johnson, R. L. Kovach, K. 

Khurana, R. Lorenz, T. B. McCord, G. D. McDonald, R. T. Pappalardo, M. Race, 
and R. Thomson (1999), Europa and Titan: Preliminary recommendations of the 
Campaign Science Working Group on Prebiotic Chemistry in the Outer Solar 
System. 

Lunar Planet. Sci. Conf

., 

XXX

, abstract #1537, Lunar and Planetary 

Institute, Houston (CD-ROM), 1999. 

[22]  SSES, Solar System Exploration Survey (2003), Space Studies Board, National 

Research Council, New Frontiers in the Solar System: An Integrated Exploration 
Strategy, National Academy Press, Washington, D.C.  

[23]  JIMO SDT, Report of the NASA Science Definition Team for the Jupiter Icy 

Moons Orbiter (JIMO) (2004), NASA, Washington, D.C., 2004. 
<

http://www.lpi.usra.edu/opag/resources.html

[24]  Pappalardo, R. (2006), Europa Science Objectives, NAI Europa Focus Group 

(Report to OPAG), 
<

http://www.lpi.usra.edu/opag/may_06_meeting/agenda.html

>. 

[25]  OPAG, Outer Planets Assessment Group (2006), Scientific Goals and Pathways 

for Exploration of the Outer Solar System, <

http://www.lpi.usra.edu/opag

>. 

[26]  SSER, Solar System Exploration Roadmap (2006), NASA Science Mission 

Directorate. 
<http://solarsystem.nasa.gov/multimedia/downloads/SSE_RoadMap_2006_Repor
t_FC-A_med.pdf> 

[27]  NASA, “Gravity Recovery and Climate Experiment”, Science@NASA website, 

<http://science.hq.nasa.gov/missions/satellite_19.htm> 

[28]  Matousek, Steve, “The Juno New Frontiers Mission”, 

Acta Astronautica

Volume 61, Issue 10, November 2007, Pages 932–939. 

[29]  Reh, K. R. et al., Titan and Enceladus $1B Mission Feasibility Study, Prepared 

for NASA’s Planetary Sciences Division, Performed at JPL, Final Report JPL 
D-37401B posted on the OPAG website: 
<http://www.lpi.usra.edu/opag/announcements.html> as “$1B Box Studies”, 
January 30 (2007). 

[30]  â€œEuropa Ice Clipper Summary”, excerpt from 1997 Discovery Proposal, posted on 

the Astrobiology Web site: 
<http://www.astrobiology.com/europa/clipper/index.html>  

[31]  Woodcock, G., Ares Report, Prepared for David B. Smith (Boeing Company), 

PowerPoint presentation, December 13 (2007). 

[32]  â€œAres V: Application to Solar System Scientific Exploration”, JPL D-41883, 

December 12, 2007. Cleared for external release as JPL Pub 08-3. 

background image

20 

 

7.

 

Glossary 

AMTEC 

 

Alkali Metal Thermal to Electric Converter 

ARPS 

  Advanced 

Radioisotope 

Power 

Systems 

BOL 

  Beginning 

of 

Life 

COMPLEX   

Committee on Planetary and Lunar Exploration 

Delta IVH 

 

Delta IV Heavy 

Delta-V   Delta 

Velocity 

EDL   

 

Entry, Descent and Landing 

EE 

  Europa 

Explorer 

EEGE   

 

Enhanced Europa Geophysical Explorer 

EGE 

  Europa 

Geophysical 

Explorer 

EIS 

 

 

Europa Integrated Science package 

EO 

  Europa 

Orbiter 

GPHS   

 

General Purpose Heat Source 

GRACE 

 

Gravity Recovery and Climate Experiment 

IUS 

  Inertial 

Upper 

Stage 

JIMO 

  Jupiter 

Icy 

Moons 

Orbiter 

JIMT 

  Jupiter 

Icy 

Moons 

Tour 

JSO 

  Jupiter 

System 

Observer 

LEO 

  Low 

Earth 

Orbit 

LV 

  Launch 

Vehicle 

MMRTG   Multi-Mission 

Radioisotope Thermoelectric Generator 

NEP 

  Nuclear 

Electric 

Propulsion 

NEXT  

 

NASA Evolutionary Xenon Thruster 

NSI 

  Nuclear 

Systems 

Initiative 

OPAG  

 

Outer Planets Assessment Group 

REP 

  Radioisotope 

Electric 

Propulsion 

RHU 

  Radioisotope 

Heater 

Unit 

RPS 

  Radioisotope 

Power 

System 

 

RTG 

  Radioisotope 

Thermoelectric 

Generator 

S/C 

  Spacecraft 

SDT 

  Science 

Definition 

Team 

SEP 

  Solar 

Electric 

Propulsion 

SMM 

  Science 

Mission 

Module 

SRMU  

 

Solid Rocket Motor Upgrade 

STS   

 

Space Transportation System (Space Shuttle) 

Team X 

 

JPL’s Advanced Projects Design Team (concurrent engineering) 

VEEGA 

 

Venus Earth Earth Gravity Assist 

background image

21 

 

8.

 

Europa Quick-Look Statistics 

Discovery 

Jan 7, 1610 by Galileo Galilei 

Diameter (km) 

3,138  

Mass (kg) 

4.8e22 kg  

Mass (Earth = 1)  

0.0083021 

Surface Gravity (Earth = 1) 

0.135  

Mean Distance from Jupiter (km) 

670,900  

Mean Distance From Jupiter (Rj) 

9.5  

Mean Distance from Sun (AU) 

5.203 

Orbital period (days) 

3.551181 

Rotational period (days) 

3.551181  

Density (gm/cmÂł)  

3.01  

Orbit Eccentricity 

0.009 

Orbit Inclination (degrees) 

0.470 

Orbit Speed (km/s):  

13.74 

Escape velocity (km/s) 

2.02  

Visual Albedo  

0.64 

Surface Composition 

Water Ice 

 

http://www2.jpl.nasa.gov/galileo/europa/