background image

S

eminaire

P

oinar

e

2

(2002)

93

{

125

S

eminaire

P

oina

r

e

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

Mar

Kne

h

t

Cen

tre

de

Ph

ysique

Th

eorique

CNRS-Lumin

y

,

Case

907

F-13288

Marseille

Cedex

9,

F

rane

1

In

tro

dution

In

F

ebruary

2001,

the

Muon

(g-2)

Collab

oration

of

the

E821

exp

erimen

t

at

the

Bro

okha

v

en

A

GS

released

a

new

v

alue

of

the

anomalous

magneti

momen

t

of

the

m

uon,

measured

with

an

unpree-

den

ted

auray

of

1.3

ppm.

This

announemen

t

has

aused

quite

some

exitemen

t

in

the

partile

ph

ysis

omm

unit

y

.

Indeed,

this

exp

erimen

tal

v

alue

w

as

laimed

to

sho

w

a

deviation

of

2.6

with

one

of

the

most

aurate

ev

aluation

of

the

anomalous

magneti

momen

t

of

the

m

uon

within

the

standard

mo

del.

It

w

as

subsequen

tly

sho

wn

that

a

sign

error

in

one

of

the

theoretial

on

tributions

w

as

resp

onsible

for

a

sizable

part

of

this

disrepany

,

whi

h

ev

en

tually

only

amoun

ted

to

1.6

.

Ho

w

ev

er,

this

ev

en

t

had

the

merit

to

dra

w

the

atten

tion

to

the

fat

that

lo

w

energy

but

high

preision

exp

erimen

ts

represen

t

real

p

oten

tialities,

omplemen

tary

to

the

high

energy

aelerator

programs,

for

evidening

p

ossible

new

degrees

of

freedom,

sup

ersymmetry

or

whatev

er

else,

b

ey

ond

those

desrib

ed

b

y

the

standard

mo

del

of

eletromagneti,

w

eak,

and

strong

in

terations.

Clearly

,

in

order

for

theory

to

mat

h

su

h

an

aurate

measuremen

t

[in

the

mean

time,

the

relativ

e

error

has

ev

en

b

een

further

redued,

to

0.7

ppmâ„„,

alulations

in

the

standard

mo

del

ha

v

e

to

b

e

pushed

to

their

v

ery

limits.

The

diÆult

y

is

not

only

one

of

ha

ving

to

ompute

higher

orders

in

p

erturbation

theory

,

but

also

to

orretly

tak

e

in

to

aoun

t

strong

in

teration

on

tributions

in

v

olving

lo

w-energy

sales,

where

non

p

erturbativ

e

eets

are

imp

ortan

t,

and

whi

h

therefore

represen

t

a

real

theoretial

hallenge.

The

purp

ose

of

this

aoun

t

is

to

giv

e

an

o

v

erview

of

the

main

features

of

the

theoretial

alulations

that

ha

v

e

b

een

done

in

order

to

obtain

aurate

preditions

for

the

anomalous

magneti

momen

ts

of

the

eletron

and

of

the

m

uon

within

the

standard

mo

del.

There

exist

sev

eral

exellen

t

reviews

of

the

sub

jet,

whi

h

the

in

terested

reader

ma

y

onsult.

As

far

as

the

situation

up

to

1990

is

onerned,

the

olletion

of

artiles

published

in

Ref.

[1â„„

oers

a

w

ealth

of

information,

on

b

oth

theory

and

exp

erimen

t.

A

v

ery

useful

aoun

t

of

earlier

theoretial

w

ork

is

presen

ted

in

Ref.

[2â„„.

Among

the

more

reen

t

reviews,

Refs.

[3

,

4,

5,

6

â„„

are

most

informativ

e.

I

shall

not

tou

h

on

the

sub

jet

of

the

study

of

new

ph

ysis

senarios

whi

h

migh

t

oer

an

explanation

for

a

p

ossible

deviation

b

et

w

een

the

standard

mo

del

predition

of

the

magneti

momen

t

of

the

m

uon

and

its

exp

erimen

tal

v

alue.

F

or

this

asp

et,

I

refer

the

reader

to

[7

â„„

and

to

the

artiles

quoted

therein,

or

to

[8

â„„.

2

General

onsiderations

In

the

on

text

of

relativisti

quan

tum

me

hanis,

the

in

teration

of

a

p

oin

tlik

e

spin

one-half

partile

of

harge

e

`

and

mass

m

`

with

an

external

eletromagneti

eld

A

(x)

is

desrib

ed

b

y

the

Dira

equation

with

the

minimal

oupling

presription,

i

h

 

t

=

h

i

h

r

e

`

A

+

m

`

2

+

e

`

A

0

i

 

:

(2.1)

background image

94

M.

Kne

h

t

S

eminaire

P

oinar

e

In

the

non

relativisti

limit,

this

redues

to

the

P

auli

equation

for

the

t

w

o-omp

onen

t

spinor

'

desribing

the

large

omp

onen

ts

of

the

Dira

spinor

 

,

i

h

'

t

=

(

i

h

r

(e

`

=)A)

2

2m

`

e

`

h

2m

`

B

+

e

`

A

0

'

:

(2.2)

As

is

w

ell

kno

wn,

this

equation

amoun

ts

to

asso

iate

with

the

partile's

spin

a

magneti

momen

t

M

s

=

g

`

e

`

2m

`

S

;

S

=

h

2

;

(2.3)

with

a

gyromagneti

ratio

predited

to

b

e

g

`

=

2.

In

the

on

text

of

quan

tum

eld

theory

,

the

resp

onse

to

an

external

eletromagneti

eld

is

desrib

ed

b

y

the

matrix

elemen

t

of

the

eletromagneti

urren

t

1

J

[spin

pro

jetions

and

Dira

indies

are

not

written

expliitlyâ„„

h`

(p

0

)jJ

(0)j`

(p)i

=

u(p

0

)

(p

0

;

p)u(p)

;

(2.4)

with

[k

p

0

p

â„„

(p

0

;

p)

=

F

1

(k

2

)

+

i

2m

`

F

2

(k

2

)

k

F

3

(k

2

)

5

k

:

(2.5)

This

expression

of

the

matrix

elemen

t

h`

(p

0

)jJ

(0)j`

(p)i

is

the

most

general

that

follo

ws

from

Loren

tz

in

v

ariane,

the

Dira

equation

for

the

t

w

o

spinors,

(6

p

m)u (p)

=

0,

u(p

0

)(6

p

0

m)

=

0,

and

the

onserv

ation

of

the

eletromagneti

urren

t,

J

)

(x)

=

0.

The

t

w

o

rst

form

fators,

F

1

(k

2

)

and

F

2

(k

2

),

are

kno

wn

as

the

Dira

(or

eletri)

form

fator

and

the

P

auli

(or

magneti)

form

fator,

resp

etiv

ely

.

Sine

the

eletri

harge

op

erator

Q

is

giv

en,

in

units

of

the

harge

e

`

,

b

y

Q

=

Z

dx

J

0

(x

0

;

x)

;

(2.6)

the

form

fator

F

1

(k

2

)

satises

the

normalization

ondition

F

1

(0)

=

1.

The

presene

of

the

form

fator

F

3

(k

2

)

requires

b

oth

parit

y

and

time

rev

ersal

in

v

ariane

to

b

e

brok

en.

It

is

therefore

absen

t

if

only

eletromagneti

in

terations

are

onsidered.

On

the

other

hand,

in

the

standard

mo

del,

the

w

eak

in

terations

violate

b

oth

parit

y

and

time

rev

ersal

symmetry

,

so

that

they

ma

y

indue

su

h

a

form

fator.

The

analyti

struture

of

these

form

fators

is

ditated

b

y

general

prop

erties

of

quan

tum

eld

theory

[ausalit

y

,

analytiit

y

,

and

rossing

symmetryâ„„.

They

are

real

funtions

of

k

2

in

the

spaelik

e

region

k

2

<

0.

In

the

timelik

e

region,

they

b

eome

omplex,

with

a

ut

starting

at

k

2

>

4m

2

`

.

A

t

k

2

=

0,

they

desrib

e

the

residue

of

the

s-

hannel

p

ole

in

the

S-matrix

elemen

t

for

elasti

`

+

`

sattering.

A

t

tree

lev

el,

i.e.

in

the

lassial

limit,

one

nds

F

tree

1

(k

2

)

=

1

;

F

tree

2

(k

2

)

=

0

;

F

tree

3

(k

2

)

=

0

:

(2.7)

In

order

to

obtain

non

zero

v

alues

for

F

2

(k

2

)

and

F

3

(k

2

)

already

at

tree

lev

el,

the

in

teration

of

the

Dira

eld

with

the

photon

eld

A

w

ould

ha

v

e

to

depart

from

the

minimal

oupling

presription.

F

or

instane,

the

mo

diation

[F

=

A

A

,

J

=

 

 

â„„

Z

d

4

xL

in

t

=

e

`

Z

d

4

xJ

A

!

!

Z

d

4

x

b

L

in

t

=

e

`

Z

J

A

+

h

4m

`

a

`

 

 

F

+

h

2e

`

d

`

 

i

5

 

F

=

e

`

Z

d

4

x

b

J

A

;

(2.8)

1

In

the

standard

mo

del,

J

denotes

the

total

eletromagneti

urren

t,

with

the

on

tributions

of

all

the

harged

elemen

tary

elds

in

presene,

leptons,

quarks,

eletro

w

eak

gauge

b

osons,...

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

95

with

2

b

J

=

J

h

2m

`

a

`

 

 

h

d

`

e

`

 

i

5

 

;

(2.9)

leads

to

b

F

tree

1

(k

2

)

=

1

;

b

F

tree

2

(k

2

)

=

a

`

;

b

F

tree

3

(k

2

)

=

d

`

=e

`

:

(2.10)

The

equation

satised

b

y

the

Dira

spinor

 

then

reads

i

h

 

t

=

i

hr

e

`

A

+

m

`

2

+

e

`

A

0

+

e

`

h

2m

`

a

`

(i

E

B)

hd

`

(

E

+

i

B)

 

;

(2.11)

and

the

orresp

onding

non

relativisti

limit

b

eomes

3

i

h

'

t

=

(

i

h

r

(e

`

=)A)

2

2m

`

e

`

h

2m

`

(1

+

a

`

)

B

E

+

e

`

A

0

+

'

:

(2.12)

Th

us

the

oupling

onstan

t

a

`

indues

a

shift

in

the

gyromagneti

fator,

g

`

=

2(1

+

a

`

),

while

d

`

giv

es

rise

to

an

eletri

dip

ole

momen

t.

The

mo

diation

(2.8)

of

the

in

teration

with

the

photon

eld

in

tro

dues

t

w

o

arbitrary

onstan

ts,

and

b

oth

terms

pro

dues

a

non

r

enormalizable

in

teration.

Non

onstan

t

v

alues

of

the

form

fators

ould

b

e

generated

at

tree

lev

el

up

on

in

tro

duing

[9

â„„

additional

non

renormalizable

ouplings,

in

v

olving

deriv

ativ

es

of

the

external

eld

of

the

t

yp

e

2

n

A

,

whi

h

preserv

e

the

gauge

in

v

ariane

of

the

orresp

onding

eld

equation

satised

b

y

 

.

In

a

renormalizable

framew

ork,

lik

e

QED

or

the

standard

mo

del,

alulable

non

v

anishing

v

alues

for

F

2

(k

2

)

and

F

3

(k

2

)

are

generated

b

y

the

lo

op

orretions.

In

partiular,

the

latter

will

lik

ewise

indue

an

anomalous

magneti

moment

a

`

=

1

2

(g

`

2)

=

F

2

(0)

(2.13)

and

an

eletri

dip

ole

momen

t

d

`

=

e

`

F

3

(0).

If

w

e

onsider

only

the

eletromagneti

and

the

strong

in

terations,

the

urren

t

J

is

gauge

in

v

ari-

an

t,

and

the

t

w

o

form

fators

symmetry

F

1

(k

2

)

and

F

2

(k

2

)

do

not

dep

end

on

the

gauges

hosen

in

order

to

quan

tize

the

photon

and

the

gluon

gauge

elds.

This

is

no

longer

the

ase

if

the

w

eak

in

ter-

ations

are

inluded

as

w

ell,

sine

J

no

w

transforms

under

a

w

eak

gauge

transformation,

and

the

orresp

onding

form

fators

in

general

dep

end

on

the

gauge

hoies.

As

w

e

ha

v

e

already

men

tioned

ab

o

v

e,

the

zero

momen

tum

transfer

v

alues

F

i

(0),

i

=

1;

2;

3

desrib

e

a

ph

ysial

S-matrix

elemen

t.

T

o

the

exten

t

that

the

p

erturbativ

e

S-matrix

of

the

standard

mo

del

do

es

not

dep

end

on

the

gauge

xing

parameters

to

an

y

order

of

the

renormalized

p

erturbation

expansion,

the

quan

tities

F

i

(0)

should

dene

b

ona

de

gauge-xing

indep

enden

t

observ

ables.

The

omputation

of

(p

0

;

p)

is

often

a

tedious

task,

esp

eially

if

higher

lo

op

on

tributions

are

onsidered.

It

is

therefore

useful

to

onen

trate

the

eorts

on

omputing

the

form

fator

of

in

terest,

e.g.

F

2

(k

2

)

in

the

ase

of

the

anomalous

magneti

momen

t.

This

an

b

e

a

hiev

ed

up

on

pro

jeting

out

the

dieren

t

form

fators

[10

,

11

â„„

using

the

follo

wing

general

expression

4

F

i

(k

2

)

=

tr

[

i

(p

0

;

p)(6

p

0

+

m

`

)

(p

0

;

p)(6

p

+

m

`

)â„„

;

(2.14)

with

1

(p

0

;

p)

=

1

4

1

k

2

4m

2

`

+

3m

`

2

1

(k

2

4m

2

`

)

2

(p

0

+

p)

2

The

urren

t

b

J

is

still

a

onserv

ed

four-v

etor,

therefore

the

matrix

elemen

t

h`

(p

0

)j

b

J

(0)j`

(p)i

also

tak

es

the

form

(2.4),

(2.5),

with

appropriate

form

fators

b

F

i

(k

2

).

3

T

erms

in

v

olving

the

gradien

ts

of

the

external

elds

E

and

B

or

terms

nonlinear

in

these

elds

are

not

sho

wn.

4

F

rom

no

w

on,

I

most

of

the

time

use

the

system

of

units

where

h

=

1,

=

1.

background image

96

M.

Kne

h

t

S

eminaire

P

oinar

e

2

(p

0

;

p)

=

m

2

`

k

2

1

k

2

4m

2

`

m

`

k

2

k

2

+

2m

2

`

(k

2

4m

2

`

)

2

(p

0

+

p)

r

ho

3

(p

0

;

p)

=

i

2k

2

1

k

2

4m

2

`

5

(p

0

+

p)

:

(2.15)

F

or

k

!

0,

one

has

2

(p;

p

0

)

=

1

4k

2

h

1

m

`

1

+

k

2

m

2

`

(p

+

1

2

k

)

+

i

;

(2.16)

and

(6

p

+

m

`

)

2

(p;

p

0

)(6

p

0

+

m

`

)

=

1

4

(6

p

+

m

`

)

h

k

k

2

+

(

p

m

`

)

6

k

k

2

+

i

:

(2.17)

The

last

expression

b

eha

v

es

as

1=k

as

the

external

photon

four

momen

tum

k

v

anishes,

so

that

one

ma

y

w

orry

ab

out

the

niteness

of

F

2

(0)

obtained

up

on

using

Eq.

(2.14).

This

problem

is

solv

ed

b

y

the

fat

that

(p

0

;

p)

satises

the

W

ard

iden

tit

y

(p

0

p)

(p

0

;

p)

=

0

;

(2.18)

follo

wing

from

the

onserv

ation

of

the

eletromagneti

urren

t.

Therefore,

the

iden

tit

y

(p

0

;

p)

=

k

k

(p

0

;

p)

(2.19)

pro

vides

the

additional

p

o

w

er

of

k

whi

h

ensures

a

nite

result

as

k

!

0.

The

presene

of

three

dieren

t

in

terations

in

the

standard

mo

del

naturally

leads

one

to

onsider

the

follo

wing

deomp

osition

of

the

anomalous

magneti

momen

t

a

`

:

a

`

=

a

QED

`

+

a

had

`

+

a

w

eak

`

:

(2.20)

By

a

QED

`

,

I

denote

all

the

on

tributions

whi

h

arise

from

lo

ops

in

v

olving

only

virtual

photons

and

leptons.

Among

these,

it

is

useful

to

distinguish

those

whi

h

in

v

olv

e

only

the

same

lepton

a

v

our

`

for

whi

h

w

e

wish

to

ompute

the

anomalous

magneti

momen

t,

and

those

whi

h

in

v

olv

e

lo

ops

with

leptons

of

dieren

t

a

v

ours,

denoted

olletiv

ely

as

`

0

[

e

2

=4

â„„,

a

QED

`

=

X

n1

A

n

n

+

X

n2

B

n

(`;

`

0

)

n

:

(2.21)

The

seond

t

yp

e

of

on

tribution,

a

had

`

in

v

olv

es

also

quark

lo

ops.

Their

on

tribution

is

far

from

b

eing

limited

to

the

short

distane

sales,

and

a

had

`

is

an

in

trinsially

non

p

erturbativ

e

quan

tit

y

.

F

rom

a

theoretial

p

oin

t

of

view,

this

represen

ts

a

serious

diÆult

y

.

Finally

,

at

some

lev

el

of

preision,

the

w

eak

in

terations

an

no

longer

b

e

ignored,

and

on

tributions

of

virtual

Higgs

or

massiv

e

gauge

b

oson

degrees

of

freedom

indue

the

third

omp

onen

t

a

w

eak

`

.

Of

ourse,

starting

from

the

t

w

o

lo

op

lev

el,

a

hadroni

on

tribution

to

a

w

eak

`

will

also

b

e

presen

t.

The

remaining

of

this

presen

tation

is

dev

oted

to

a

detailed

disussion

of

these

v

arious

on

tributions.

Before

starting

this

guided

tour

of

the

anomalous

magneti

momen

ts

of

the

massiv

e

harged

leptons

of

the

standard

mo

del,

it

is

useful

to

k

eep

in

mind

a

few

simple

and

elemen

tary

onsiderations:

The

anomalous

magneti

momen

t

is

a

dimensionless

quan

tit

y

.

Therefore,

the

o

eÆien

ts

A

n

ab

o

v

e

are

universal,

i.e.

they

do

not

dep

end

on

the

a

v

our

of

the

lepton

whose

anomalous

magneti

momen

t

w

e

wish

to

ev

aluate.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

97

The

on

tributions

to

a

`

of

degrees

of

freedom

orresp

onding

to

a

t

ypial

sale

M

m

`

deouple

[12

â„„,

i.e.

they

are

suppr

esse

d

b

y

p

o

w

ers

of

m

`

=

M

.

5

The

on

tributions

to

a

`

originating

from

ligh

t

degrees

of

freedom,

haraterized

b

y

a

t

ypial

sale

m

m

`

are

enhan

e

d

b

y

p

o

w

ers

of

ln(m

`

=m).

A

t

a

giv

en

order,

the

logarithmi

terms

that

do

not

v

anish

as

m

`

=m

!

0

an

often

b

e

omputed

from

the

kno

wledge

of

the

lesser

order

terms

and

of

the

funtion

through

the

renormalization

group

equations

[15

,

16

,

17

,

18

â„„.

These

general

prop

erties

already

allo

w

to

dra

w

a

few

elemen

tary

onlusions.

The

eletron

b

eing

the

ligh

test

harged

lepton,

its

anomalous

magneti

momen

t

is

dominan

tly

determined

b

y

the

v

alues

of

the

o

eÆien

ts

A

n

.

The

rst

on

tribution

of

other

degrees

of

freedom

omes

from

graphs

in

v

olving,

sa

y

,

at

least

one

m

uon

lo

op,

whi

h

o

urs

rst

at

the

t

w

o-lo

op

lev

el,

and

is

of

the

order

of

(m

2

e

=m

)

2

(=

)

2

10

10

.

The

hadroni

eets,

i.e.

\quark

and

gluon

lo

ops",

haraterized

b

y

a

sale

of

1

GeV,

or

eets

of

degrees

of

freedom

b

ey

ond

the

standard

mo

del,

whi

h

ma

y

app

ear

at

some

high

sale

M

,

will

b

e

felt

more

strongly

,

b

y

a

onsiderable

fator

(m

=m

e

)

2

40

000,

in

a

than

in

a

e

.

Th

us,

a

e

is

w

ell

suited

for

testing

the

v

alidit

y

of

QED

at

higher

orders,

whereas

a

is

more

appropriate

for

deteting

new

ph

ysis.

If

w

e

follo

w

this

line

reasoning,

a

w

ould

ev

en

b

e

b

etter

suited

for

nding

evidene

of

degrees

of

freedom

b

ey

ond

the

standard

mo

del.

Unfortunately

,

the

v

ery

short

lifetime

of

the

lepton

[

3

10

13

sâ„„

mak

es

a

suÆien

tly

aurate

measuremen

t

of

a

imp

ossible

at

presen

t.

3

Brief

o

v

erview

of

the

exp

erimen

tal

situation

3.1

Measuremen

ts

of

the

magneti

momen

t

of

the

eletron

The

rst

indiation

that

the

gyromagneti

fator

of

the

eletron

is

dieren

t

from

the

v

alue

g

e

=

2

predited

b

y

the

Dira

theory

ame

from

the

preision

measuremen

t

of

h

yp

erne

splitting

in

h

ydrogen

and

deuterium

[19

â„„.

The

rst

measuremen

t

of

the

gyromagneti

fator

of

free

eletrons

w

as

p

erformed

in

1958

[20

â„„,

with

a

preision

of

3.6%.

The

situation

b

egan

to

impro

v

e

with

the

in

tro

dution

of

exp

erimen

tal

setups

based

on

the

P

enning

trap.

Some

of

the

suessiv

e

v

alues

obtained

o

v

er

a

p

erio

d

of

fort

y

y

ears

are

sho

wn

in

T

able

1.

T

e

hnial

impro

v

emen

ts,

ev

en

tually

allo

wing

for

the

trapping

of

a

single

eletron

or

p

ositron,

pro

dued,

in

the

ourse

of

time,

an

enormous

inrease

in

preision

whi

h,

starting

from

a

few

p

eren

ts,

w

en

t

through

the

ppm

[parts

p

er

millionâ„„

lev

els,

b

efore

ulminating

at

4

ppb

[parts

p

er

billionâ„„

[21

â„„

in

the

last

of

a

series

of

exp

erimen

ts

p

erformed

at

the

Univ

ersit

y

of

W

ashington

in

Seattle.

The

same

exp

erimen

t

has

also

pro

dued

a

measuremen

t

of

the

magneti

momen

t

of

the

p

ositron

with

the

same

auray

,

th

us

pro

viding

a

test

of

C

P

T

in

v

ariane

at

the

lev

el

of

10

12

,

g

e

=g

e

+

=

1

+

(0:5

2:1)

10

12

:

(3.1)

An

extensiv

e

surv

ey

of

the

literature

and

a

detailed

desription

of

the

v

arious

exp

erimen

tal

asp

ets

an

b

e

found

in

[22

â„„.

The

earlier

exp

erimen

ts

are

review

ed

in

[23

â„„.

3.2

Measuremen

ts

of

the

magneti

momen

t

of

the

m

uon

The

anomalous

magneti

momen

t

of

the

m

uon

has

also

b

een

the

sub

jet

of

quite

a

few

exp

erimen

ts.

The

v

ery

short

lifetime

of

the

m

uon,

=

(2:19703

0:00004

)

10

6

s,

mak

es

it

neessary

to

pro

eed

in

a

ompletely

dieren

t

w

a

y

in

order

to

attain

a

high

preision.

The

exp

erimen

ts

onduted

at

CERN

during

the

y

ears

1968-1977

used

a

m

uon

storage

ring

[for

details,

see

[31

â„„

and

referenes

quoted

thereinâ„„.

The

more

reen

t

exp

erimen

ts

at

the

A

GS

in

Bro

okha

v

en

are

based

on

the

same

5

In

the

presene

of

the

w

eak

in

terations,

this

statemen

t

has

to

b

e

reonsidered,

sine

the

neessit

y

for

the

anellation

of

the

S

U

(2)

U

(1)

gauge

anomalies

transforms

the

deoupling

of,

sa

y

,

a

single

hea

vy

fermion

in

a

giv

en

generation,

in

to

a

somewhat

subtle

issue

[13,

14 â„„.

background image

98

M.

Kne

h

t

S

eminaire

P

oinar

e

T

able

1:

Some

exp

erimen

tal

determinations

of

the

eletron's

anomalous

magneti

momen

t

a

e

with

the

orresp

onding

relativ

e

preision.

0.001

19(5)

4.2%

[24

â„„

0.001

165(11)

1%

[25

â„„

0.001

116(40)

3.6%

[20

â„„

0.001

160

9(2

4)

2

100

ppm

[26

â„„

0.001

159

622(27)

23

ppm

[27

â„„

0.001

159

660(300)

258

ppm

[28

â„„

0.001

159

657

7(3

5)

3

ppm

[29

â„„

0.001

159

652

41(20)

172

ppb

[30

â„„

0.001

159

652

188

4(4

3)

4

ppb

[21

â„„

onept.

Pions

are

pro

dued

b

y

sending

a

proton

b

eam

on

a

target.

The

pions

subsequen

tly

dea

y

in

to

longitudinally

p

olarized

m

uons,

whi

h

are

aptured

inside

a

storage

ring,

where

they

follo

w

a

irular

orbit

in

the

presene

of

b

oth

a

uniform

magneti

eld

and

a

quadrup

ole

eletri

eld,

the

latter

serving

the

purp

ose

of

fo

using

the

m

uon

b

eam.

The

dierene

b

et

w

een

the

spin

preession

frequeny

and

the

orbit,

or

syn

hrotron,

frequeny

is

giv

en

b

y

!

s

!

=

e

m

a

B

a

1

1

2

^

E

:

(3.2)

Therefore,

if

the

Loren

tz

fator

is

tuned

to

its

\magi"

v

alue

=

p

1

+

1=a

=

29:3,

the

measuremen

t

of

!

s

!

and

of

the

magneti

eld

B

allo

ws

to

determine

a

.

The

spin

diretion

of

the

m

uon

is

determined

b

y

deteting

the

eletrons

or

p

ositrons

pro

dued

in

the

dea

y

of

the

m

uons

with

an

energy

greater

than

some

threshold

energy

E

t

.

The

n

um

b

er

of

eletrons

deteted

dereases

exp

onen

tially

in

time,

with

a

time

onstan

t

set

b

y

the

m

uon's

lifetime,

and

is

mo

dulated

b

y

the

frequeny

!

s

!

,

N

e

(t)

=

N

0

e

t=

f1

+

A

os

[(!

s

!

)t

+

â„„g

:

(3.3)

T

able

2:

Determinations

of

the

anomalous

magneti

momen

t

of

the

p

ositiv

ely

harged

m

uon

from

the

storage

ring

exp

erimen

ts

onduted

at

the

CERN

PS

and

at

the

BNL

A

GS.

0.001

166

16(31)

265

ppm

[32

â„„

0.001

165

895(27)

23

ppm

[33

â„„

0.001

165

911(11)

10

ppm

[34

â„„

0.001

165

925(15)

13

ppm

[35

â„„

0.001

165

9191(59)

5

ppm

[36

â„„

0.001

165

920

2(16)

1.3

ppm

[37

â„„

0.001

165

920

3(8)

0.7

ppm

[38

â„„

Sev

eral

exp

erimen

tal

results

for

the

anomalous

magneti

momen

t

of

the

p

ositiv

ely

harged

m

uon,

obtained

at

the

CERN

PS

or,

more

reen

tly

,

at

the

BNL

A

GS,

are

reorded

in

T

able

2.

Notie

that

the

relativ

e

errors

are

measured

in

ppm

units,

to

b

e

on

trasted

with

the

ppb

lev

el

of

auray

a

hiev

ed

in

the

eletron

ase.

The

four

last

v

alues

in

T

able

2

w

ere

obtained

b

y

the

E821

exp

erimen

t

at

BNL.

They

sho

w

a

remark

able

stabilit

y

and

a

steady

inrease

in

preision,

and

no

w

ompletely

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

99

dominate

the

w

orld

a

v

erage

v

alue.

F

urther

data,

for

negativ

ely

harged

m

uons

6

are

presen

tly

b

eing

analyzed.

The

aim

of

the

Bro

okha

v

en

Muon

(g

-

2)

Collab

oration

is

to

rea

h

a

preision

of

0.35

ppm,

but

this

will

dep

end

on

whether

the

exp

erimen

t

will

reeiv

e

nanial

supp

ort

to

ollet

more

data

or

not.

3.3

Exp

erimen

tal

b

ounds

on

the

anomalous

magneti

momen

t

of

the

lepton

As

already

men

tioned,

the

v

ery

short

lifetime

of

the

preludes

a

measuremen

t

of

its

anomalous

magneti

momen

t

follo

wing

an

y

of

the

te

hniques

desrib

ed

ab

o

v

e.

Indiret

aess

to

a

is

pro

vided

b

y

the

reation

e

+

e

!

+

.

The

results

obtained

b

y

OP

AL

[39

â„„

and

L3

[40

â„„

at

LEP

only

pro

vide

v

ery

lo

ose

b

ounds,

0:052

<

a

<

0:058

(95%C :L:)

0:068

<

a

<

0:065

(95%C :L:)

;

(3.4)

resp

etiv

ely

.

W

e

shall

no

w

turn

to

w

ards

theory

,

in

order

to

see

ho

w

the

standard

mo

del

preditions

ompare

with

these

exp

erimen

tal

v

alues.

Only

the

ases

of

the

eletron

and

of

the

m

uon

will

b

e

treated

in

some

detail.

The

theoretial

asp

ets

as

far

as

the

anomalous

magneti

momen

t

of

the

are

onerned

are

disussed

in

[41

â„„.

4

The

anomalous

magneti

momen

t

of

the

eletron

W

e

start

with

the

anomalous

magneti

momen

t

of

the

ligh

test

harged

lepton,

the

eletron.

Sine

the

eletron

mass

m

e

is

m

u

h

smaller

than

an

y

other

mass

sale

presen

t

in

the

standard

mo

del,

the

mass

indep

enden

t

part

of

a

QED

e

dominates

its

v

alue.

As

men

tioned

b

efore,

non

v

anishing

on

tributions

app

ear

at

the

lev

el

of

the

lo

op

diagrams

sho

wn

in

Fig.

1.

=

+

+

+ ...

QED

Figure

1:

The

p

erturbativ

e

expansion

of

(p

0

;

p)

in

single

a

v

our

QED.

The

tree

graph

giv

es

F

1

=

1,

F

2

=

F

3

=

0.

The

one

lo

op

v

ertex

orretion

graph

giv

es

the

o

eÆien

t

A

1

in

Eq.

(2.21).

The

ross

denotes

the

insertion

of

the

external

eld.

4.1

The

lo

w

est

order

on

tribution

The

one

lo

op

diagram

giv

es

(p

0

;

p)

1

lo

op

=

(

ie)

2

Z

d

4

q

(2

)

4

(6

p

0

+

6

q

+

m

e

)

(6

p+

6

q

+

m

e

)

i

(p

0

+

q

)

2

m

2

e

i

(p

+

q

)

2

m

2

e

(

i)

q

2

:

(4.1)

6

The

CERN

exp

erimen

t

had

also

measured

a

=

0:001

165

937(12)

with

a

10

ppm

auray

,

giving

the

a

v

erage

v

alue

a

=

0:001

165

924(8:5),

with

an

auray

of

7

ppm.

background image

100

M.

Kne

h

t

S

eminaire

P

oinar

e

The

form

fator

F

2

(k

2

)

is

obtained

b

y

using

Eqs.

(2.14)

and

(2.15)

and,

up

on

ev

aluating

the

orresp

onding

trae

of

Dira

matries,

one

nds

F

2

(k

2

)

1

lo

op

=

ie

2

32m

2

e

k

2

(k

2

4m

2

e

)

2

Z

d

4

q

(2

)

4

1

(p

0

+

q

)

2

m

2

e

1

(p

+

q

)

2

m

2

e

1

q

2

3k

2

(p

q

)

2

+

2k

2

m

2

e

(p

q

)

+

k

2

m

2

e

q

2

m

2

e

(k

q

)

2

:

(4.2)

Then

follo

w

the

usual

steps

of

in

tro

duing

t

w

o

F

eynman

parameters,

of

p

erforming

a

trivial

hange

of

v

ariables

and

a

symmetri

in

tegration

o

v

er

the

lo

op

momen

tum

q

,

so

that

one

arriv

es

at

F

2

(k

2

)

1

lo

op

=

ie

2

64m

2

e

(k

2

4m

2

e

)

2

Z

1

0

dxx

Z

1

0

dy

Z

d

4

q

(2

)

4

1

(q

2

R

2

)

3

2x(1

x)m

4

e

3

4

x

2

y

2

(k

2

)

2

+

m

2

e

k

2

x

3xy

y

+

1

2

x

 

=

e

2

2

2m

2

e

(k

2

4m

2

e

)

2

Z

1

0

dxx

Z

1

0

dy

1

R

2

2x(1

x)m

4

e

3

4

x

2

y

2

(k

2

)

2

+

m

2

e

k

2

x

3xy

y

+

1

2

x

 

;

(4.3)

with

R

2

=

x

2

y

(1

y

)(2m

2

e

k

2

)

+

x

2

y

2

m

2

e

+

x

2

(1

y

)

2

m

2

e

:

(4.4)

As

exp

eted,

the

limit

k

2

!

0

an

b

e

tak

en

without

problem,

and

giv

es

a

e

j

1

lo

op

F

2

(0)

1

lo

op

=

1

2

:

(4.5)

Let

us

stress

that

although

the

in

tegral

(4.1)

div

erges,

w

e

ha

v

e

obtained

a

nite

result

for

F

2

(k

2

),

and

hene

for

a

e

,

without

in

tro

duing

an

y

regularization.

This

is

of

ourse

exp

eted,

sine

a

di-

v

ergene

in,

sa

y

,

F

2

(0)

w

ould

require

that

a

oun

terterm

of

the

form

giv

en

b

y

the

seond

term

in

b

L

in

t

,

see

Eq.

(2.8),

b

e

in

tro

dued.

This

w

ould

in

turn

sp

oil

the

renormalizabilit

y

of

the

theory

.

In

fat,

as

is

w

ell

kno

wn,

the

div

ergene

lies

in

F

1

(0),

and

is

absorb

ed

in

to

the

renormalization

of

the

eletron's

harge.

+

sym

+

sym

Figure

2:

The

F

eynman

diagrams

whi

h

on

tribute

to

the

o

eÆien

t

A

2

in

Eq.

(2.21).

4.2

Higher

order

mass

indep

enden

t

orretions

The

previous

alulation

is

rather

straigh

tforw

ard

and

amoun

ts

to

the

result

A

1

=

1

2

(4.6)

rst

obtained

b

y

S

h

winger

[42

â„„.

S

h

winger's

alulation

w

as

so

on

follo

w

ed

b

y

a

omputation

of

A

2

[43

â„„,

whi

h

requires

the

ev

aluation

of

7

graphs,

represen

ting

v

e

distint

top

ologies,

and

sho

wn

in

Fig.

2.

Historially

,

the

result

of

Ref.

[43

â„„

w

as

imp

ortan

t,

b

eause

it

pro

vided

the

rst

expliit

example

of

the

realization

of

the

renormalization

program

of

QED

at

t

w

o

lo

ops.

Ho

w

ev

er,

the

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

101

v

alue

for

A

2

w

as

not

giv

en

orretly

.

The

orret

expression

of

the

seond

order

mass

indep

enden

t

on

tribution

w

as

deriv

ed

in

[44

,

45

,

46

â„„

(see

also

[47

,

48

â„„)

and

reads

7

A

2

=

197

144

+

1

2

3

ln

2

(2)

+

3

4

(3)

=

0:328

478

965:::

(4.7)

with

(p)

=

1

X

n=1

1=n

p

,

(2)

=

2

=6.

The

o

urrene

of

transenden

tal

n

um

b

ers

lik

e

zeta

funtions

or

p

olylogarithms

is

a

general

feature

of

higher

order

alulations

in

p

erturbativ

e

quan

tum

eld

theory

.

The

pattern

of

these

transenden

tals

in

p

erturbation

theory

has

also

b

een

put

in

relationship

with

other

mathematial

strutures,

lik

e

knot

theory

.

The

analyti

ev

aluation

of

the

three-lo

op

mass

indep

enden

t

on

tribution

to

the

anomalous

magneti

momen

t

required

quite

some

time,

and

is

mainly

due

to

the

dediation

of

E.

Remiddi

and

his

o

w

ork

ers

during

the

p

erio

d

1969-1996.

There

are

no

w

72

diagrams

to

onsider,

in

v

olving

man

y

dieren

t

top

ologies,

see

Fig.

3.

6

20

12

24

4

6

Figure

3:

The

72

F

eynman

diagrams

whi

h

mak

e

up

the

o

eÆien

t

A

3

in

Eq.

(2.21).

The

alulation

w

as

ompleted

[49

â„„

in

1996,

with

the

analytial

ev

aluation

of

a

last

lass

of

diagrams,

the

non

planar

\triple

ross"

top

ologies.

The

result

reads

8

A

3

=

87

72

2

(3)

215

24

(5)

+

100

3

a

4

+

1

24

ln

4

2

1

24

2

ln

2

2

239

2160

4

+

139

18

(3)

298

9

2

ln

2

+

17101

810

2

+

28259

5184

=

1:181

241

456:::

(4.8)

7

Atually

,

the

exp

erimen

tal

result

of

Ref.

[25â„„

disagreed

with

the

v

alue

A

2

=

2:973

obtained

in

[43â„„,

and

prompted

theoretiians

to

reonsider

the

alulation.

The

result

obtained

b

y

the

authors

of

Refs.

[44,

45,

46 â„„

reoniled

theory

with

exp

erimen

t.

8

The

ompletion

of

this

three-lo

op

program

an

b

e

follo

w

ed

through

Refs.

[50â„„-[55â„„

and

[49 â„„.

A

desription

of

the

te

hnial

asp

ets

related

to

this

w

ork

and

an

aoun

t

of

its

status

up

to

1990,

with

referenes

to

the

orresp

onding

literature,

are

giv

en

in

Ref.

[56â„„.

background image

102

M.

Kne

h

t

S

eminaire

P

oinar

e

where

9

a

p

=

1

X

n=1

1

2

n

n

p

.

The

n

umerial

v

alue

extrated

from

the

exat

analytial

expression

giv

en

ab

o

v

e

an

b

e

impro

v

ed

to

an

y

desired

order

of

preision.

In

parallel

to

these

analytial

alulations,

n

umerial

metho

ds

for

the

ev

aluation

of

the

higher

order

on

tributions

w

ere

also

dev

elop

ed,

in

partiular

b

y

Kinoshita

and

his

ollab

orators

(for

details,

see

[57

â„„).

The

n

umerial

ev

aluation

of

the

full

set

of

three

lo

op

diagrams

w

as

a

hiev

ed

in

sev

eral

steps

[58

â„„-[64

â„„.

The

v

alue

quoted

in

[64

â„„

is

A

3

=

1:195(26),

where

the

error

omes

from

the

n

umerial

pro

edure.

In

omparison,

let

us

quote

the

v

alue

[65

,

57

â„„

A

3

=

1:176

11

(42)

obtained

if

only

a

subset

of

21

three

lo

op

diagrams

out

of

the

original

set

of

72

is

ev

aluated

n

umerially

,

relying

on

the

analytial

results

for

the

remaining

51

ones,

and

reall

the

v

alue

A

3

=

1:181

241

456:::

obtained

from

the

full

analytial

ev

aluation.

The

error

indued

on

a

e

due

to

the

n

umerial

unertain

t

y

in

the

seond,

more

aurate,

v

alue

is

still

(a

e

)

=

5:3

10

12

,

whereas

the

exp

erimen

tal

error

is

only

(a

e

)j

exp

=

4:3

10

12

.

This

disussion

sho

ws

that

the

analytial

ev

aluations

of

higher

lo

op

on

tributions

to

the

anomalous

magneti

momen

t

of

the

eletron

ha

v

e

a

strong

pratial

in

terest

as

far

as

the

preision

of

the

theoretial

predition

is

onerned,

and

whi

h

go

es

w

ell

b

ey

ond

the

mere

in

telletual

satisfation

and

te

hnial

skills

in

v

olv

ed

in

these

alulations.

10

A

t

the

four

lo

op

lev

el,

there

are

891

diagrams

to

onsider.

Clearly

,

only

a

few

of

them

ha

v

e

b

een

ev

aluated

analytially

[66

,

67

â„„.

The

omplete

n

umerial

ev

aluation

of

the

whole

set

ga

v

e

[65

â„„

A

4

=

1:434(138).

The

dev

elopmen

t

of

omputers

allo

w

ed

subsequen

t

reanalyzes

to

b

e

more

aurate,

i.e.

A

4

=

1:557(70)

[68

â„„,

while

the

\latest

of

[theseâ„„

onstan

tly

impro

ving

v

alues"

is

[4â„„

A

4

=

1:509

8(38

4)

:

(4.9)

Needless

to

sa

y

,

so

far

the

v

e

lo

op

on

tribution

A

5

is

unkno

wn

territory

.

On

the

other

hand,

(=

)

5

7

10

14

,

so

that

one

ma

y

reasonably

exp

et

that,

in

view

of

the

presen

t

exp

erimen

tal

situation,

its

kno

wledge

is

not

y

et

required.

4.3

Mass

dep

enden

t

QED

orretions

W

e

no

w

turn

to

the

QED

lo

op

on

tributions

to

the

eletron's

anomalous

magneti

momen

t

in-

v

olving

the

hea

vier

leptons,

and

.

The

lo

w

est

order

on

tribution

of

this

t

yp

e

o

urs

at

the

t

w

o

lo

op

lev

el,

O

(

2

),

and

orresp

onds

to

a

hea

vy

lepton

v

auum

p

olarization

insertion

in

the

one

lo

op

v

ertex

graph,

f.

Fig.

4.

Quite

generally

,

the

on

tribution

to

a

`

arising

from

the

insertion,

in

to

the

one

lo

op

v

ertex

orretion,

of

a

v

auum

p

olarization

graph

due

to

a

lo

op

of

lepton

`

0

,

reads

[69

,

70

â„„

11

B

2

(`;

`

0

)

=

1

3

Z

1

4m

2

`

0

dt

r

1

4m

2

`

0

t

t

+

2m

2

`

0

t

2

Z

1

0

dx

x

2

(1

x)

x

2

+

(1

x)

t

m

2

`

:

(4.10)

If

m

`

0

m

`

,

the

seond

in

tegrand

an

b

e

appro

ximated

b

y

x

2

m

2

`

=t,

and

one

obtains

[72

â„„

B

2

(`;

`

0

)

=

1

45

m

`

m

`

0

2

+

O

"

m

`

m

`

0

3

#

;

m

`

0

m

`

:

(4.11)

9

The

rst

three

v

alues

are

kno

wn

to

b

e

a

1

=

ln

2,

a

2

=

Li

2

(1=2)

=

(

(2)

ln

2

2)=2,

a

3

=

7

8

(3)

1

2

(2)

ln

2

+

1

6

ln

3

2

[56â„„.

10

It

is

only

fair

to

p

oin

t

out

that

the

n

umerial

v

alues

that

are

quoted

here

orresp

ond

to

those

giv

en

in

the

original

referenes.

It

is

to

b

e

exp

eted

that

they

w

ould

impro

v

e

if

to

da

y's

n

umerial

p

ossibilities

w

ere

used.

11

A

trivial

hange

of

v

ariable

on

t

brings

the

expression

(4.10)

in

to

the

form

giv

en

in

[69,

70â„„.

F

urthermore,

the

analytial

result

obtained

up

on

p

erforming

the

double

in

tegration

is

a

v

ailable

in

[71 â„„.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

103

e

e

µ

e

µ

µ

Figure

4:

The

insertion

of

a

m

uon

v

auum

p

olarization

lo

op

in

to

the

eletron

v

ertex

orretion

(left)

or

of

an

eletron

v

auum

p

olarization

lo

op

in

to

the

m

uon

v

ertex

orretion

(righ

t).

Numerially

,

this

translates

in

to

[3

â„„

[m

e

=

0:51099907(15)

MeV,

m

=m

e

=

206:768273(24),

m

=

1

777:05(26)â„„

B

2

(e;

)

=

5:197

10

7

B

2

(e;

)

=

1:838

10

9

:

(4.12)

F

or

later

use,

it

is

in

teresting

to

briey

disuss

the

struture

of

Eq.

(4.10).

The

quan

tit

y

whi

h

app

ears

under

the

in

tegral

is

related

to

the

ross

setion

for

the

sattering

of

a

`

+

`

pair

in

to

a

pair

(`

0

)

+

(`

0

)

at

lowest

or

der

in

QED,

(`

+

`

!(`

0

)

+

(`

0

)

)

QE

D

(s)

=

4

2

3s

2

r

1

4m

2

`

0

s

(s

+

2m

2

`

0

)

;

(4.13)

so

that

B

2

(`;

`

0

)

=

1

3

Z

1

4m

2

`

0

dtK

(t)R

(`

0

)

(t)

;

(4.14)

where

K

(t)

=

Z

1

0

dx

x

2

(1

x)

x

2

+

(1

x)

t

m

2

`

;

(4.15)

and

R

(`

0

)

(t)

is

the

lowest

or

der

QED

ross

setion

(`

+

`

!(`

0

)

+

(`

0

)

)

Q E

D

(s)

divided

b

y

the

asymptoti

form

of

the

ross

setion

of

the

reation

e

+

e

!

+

for

s

m

2

,

(e

+

e

!

+

)

1

(s)

=

4

2

3s

.

The

three

lo

op

on

tributions

with

dieren

t

lepton

a

v

ours

in

the

lo

ops

are

also

kno

wn

analytially

[73

,

74

â„„.

It

is

on

v

enien

t

to

distinguish

three

lasses

of

diagrams.

The

rst

group

on

tains

all

the

diagrams

with

one

or

t

w

o

v

auum

p

olarization

insertion

in

v

olving

the

same

lepton,

or

,

of

the

t

yp

e

sho

wn

in

Fig.

5.

The

seond

group

onsists

of

the

leptoni

ligh

t-b

y-ligh

t

sattering

insertion

diagrams,

Fig.

6.

Finally

,

sine

there

are

three

a

v

ours

of

massiv

e

leptons

in

the

standard

mo

del,

one

has

also

the

p

ossibilit

y

of

ha

ving

graphs

with

t

w

o

hea

vy

lepton

v

auum

p

olarization

insertions,

one

made

of

a

m

uon

lo

op,

the

other

of

a

lo

op.

This

giv

es

B

3

(e;

`)

=

B

(v.p.

)

3

(e;

)

+

B

(v.p.)

3

(e;

)

+

B

(LL)

3

(e;

)

+

B

(LL)

3

(e;

)

+

B

(v.p.)

3

(e;

;

)

:

(4.16)

The

analytial

expression

for

B

(v.p.)

3

(e;

)

an

b

e

found

in

Ref.

[73

â„„,

whereas

[74

â„„

giv

es

the

orre-

sp

onding

result

for

B

(LL)

3

(e;

).

F

or

pratial

purp

oses,

it

is

b

oth

suÆien

t

and

more

on

v

enien

t

to

use

their

expansions

in

p

o

w

ers

of

m

e

=m

,

B

(v.p.)

3

(e;

)

=

m

e

m

2

23

135

ln

m

m

e

2

45

2

+

10117

24300

background image

104

M.

Kne

h

t

S

eminaire

P

oinar

e

+

m

e

m

4

19

2520

ln

2

m

m

e

14233

132300

ln

m

m

e

+

49

768

(3)

11

945

2

+

2976691

296352000

+

O

"

m

e

m

6

#

=

0:000

021

768:::

(4.17)

12

6

Figure

5:

Three

lo

op

QED

orretions

with

insertion

of

a

hea

vy

lepton

v

auum

p

olarization

whi

h

mak

e

up

the

o

eÆien

t

B

(v.p.)

3

(e;

).

and

[74â„„

B

(LL)

3

(e;

)

=

m

e

m

2

3

2

(3)

19

16

+

m

e

m

4

161

810

ln

2

m

m

e

16189

48600

ln

m

m

e

+

13

18

(3)

161

9720

2

831931

972000

+

O

"

m

e

m

6

#

=

0:000

014

394

5:::

(4.18)

6

Figure

6:

The

three

lo

op

QED

orretion

with

the

insertion

of

a

hea

vy

lepton

ligh

t-b

y-ligh

t

sat-

tering

subgraph,

orresp

onding

to

the

o

eÆien

t

B

(LL)

3

(e;

).

The

expressions

for

B

(v.p.)

3

(e;

)

and

B

(LL)

3

(e;

)

follo

w

up

on

replaing

the

m

uon

mass

m

b

y

m

.

This

again

giv

es

a

suppression

fator

(m

=m

)

2

,

whi

h

mak

es

these

on

tributions

negligible

at

the

presen

t

lev

el

of

preision.

F

or

the

same

reason,

B

(v.p.)

3

(e;

;

)

an

also

b

e

disarded.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

105

4.4

Other

on

tributions

to

a

e

In

order

to

mak

e

the

disussion

of

the

standard

mo

del

on

tributions

to

a

e

omplete,

there

remains

to

men

tion

the

hadroni

and

w

eak

omp

onen

ts,

a

had

e

and

a

w

eak

e

,

resp

etiv

ely

.

Their

features

will

b

e

disussed

in

detail

b

elo

w,

in

the

on

text

of

the

anomalous

magneti

momen

t

of

the

m

uon.

I

therefore

only

quote

the

n

umerial

v

alues

12

a

had

e

=

1:67(3)

10

12

;

(4.19)

and

[75â„„

a

w

eak

e

=

0:030

10

12

(4.20)

4.5

Comparison

with

exp

erimen

t

and

determination

of

Summing

up

the

v

arious

on

tributions

disussed

so

far

giv

es

the

standard

mo

del

predition

[3

,

4,

7

â„„

a

SM

e

=

0:5

0:328

478

444

00

2

+

1:181

234

017

3

1:509

8(38

4)

4

+

1:70

10

12

:

(4.21)

In

order

to

obtain

a

n

um

b

er

that

an

b

e

ompared

to

the

exp

erimen

tal

result,

a

suÆien

tly

aurate

determination

of

the

ne

struture

onstan

t

is

required.

The

b

est

a

v

ailable

measuremen

t

of

the

latter

omes

from

the

quan

tum

Hall

eet

[76

â„„,

1

(q

H

)

=

137:036

003

00(2

70

)

(4.22)

and

leads

to

a

SM

e

(q

H

)

=

0:001

159

652

153

5(24

0

)

;

(4.23)

ab

out

six

times

less

aurate

than

the

latest

exp

erimen

tal

v

alue

[21

â„„

a

exp

e

=

0:001

159

652

188

4

(4

3)

:

(4.24)

On

the

other

hand,

if

one

exludes

other

on

tributions

to

a

e

than

those

from

the

standard

mo

del

onsidered

so

far,

and

b

eliev

es

that

all

theoretial

errors

are

under

on

trol,

then

the

ab

o

v

e

v

alue

of

a

exp

e

pro

vides

the

b

est

determination

of

to

date,

1

(a

e

)

=

137:035

999

58(52)

:

(4.25)

5

The

anomalous

magneti

momen

t

of

the

m

uon

In

this

setion,

w

e

disuss

the

theoretial

asp

ets

onerning

the

anomalous

magneti

momen

t

of

the

m

uon.

Sine

the

m

uon

is

m

u

h

hea

vier

than

the

eletron,

a

will

b

e

more

sensitiv

e

to

higher

mass

sales.

In

partiular,

it

is

a

b

etter

prob

e

for

p

ossible

degrees

of

freedom

b

ey

ond

the

standard

mo

del,

lik

e

sup

ersymmetry

.

The

dra

wba

k,

ho

w

ev

er,

is

that

a

will

also

b

e

more

sensitiv

e

to

the

non

p

erturbativ

e

strong

in

teration

dynamis

at

the

1

GeV

sale.

12

I

repro

due

here

the

v

alues

giv

en

in

[3,

4â„„,

exept

for

the

fat

that

I

ha

v

e

tak

en

in

to

aoun

t

the

hanges

in

the

v

alue

of

the

hadroni

ligh

t-b

y-ligh

t

on

tribution

to

a

,

see

b

elo

w,

for

whi

h

I

tak

e

a

(LL )

=

+8(4)

10

10

,

and

whi

h

translates

in

to

a

(LL )

e

a

(LL )

(m

e

=m

)

2

=

0:02

10

12

.

background image

106

M.

Kne

h

t

S

eminaire

P

oinar

e

5.1

QED

on

tributions

to

a

As

already

men

tioned

b

efore,

the

mass

indep

enden

t

QED

on

tributions

to

a

are

desrib

ed

b

y

the

same

o

eÆien

ts

A

n

as

in

the

ase

of

the

eletron.

W

e

therefore

need

only

to

disuss

the

o

eÆien

ts

B

n

(;

`

0

)

asso

iated

with

the

mass

dep

enden

t

orretions.

F

or

m

`

0

m

`

,

Eq.

(4.10)

giv

es

[69

,

70

,

71

â„„

B

2

(`;

`

0

)

=

1

3

ln

m

`

m

`

0

25

36

+

3

2

m

`

m

`

0

(2)

4

m

`

m

`

0

2

ln

m

`

m

`

0

+

3

m

`

m

`

0

2

+

O

"

m

`

m

`

0

3

#

;

(5.1)

whi

h

translates

in

to

the

n

umerial

v

alues

[3â„„

B

2

(;

e)

=

1:094

258

294(37)

(5.2)

B

2

(;

)

=

0:00

078

059(23)

:

(5.3)

Although

these

n

um

b

ers

follo

w

from

an

analytial

expression,

there

are

unertain

ties

atta

hed

to

them,

indued

b

y

those

on

the

orresp

onding

v

alues

of

the

ratios

of

the

lepton

masses.

The

three

lo

op

QED

orretions

deomp

ose

as

B

3

(;

`)

=

B

(v.p.

)

3

(;

e)

+

B

(v.p.)

3

(;

)

+

B

(LL)

3

(;

e)

+

B

(LL)

3

(;

)

+

B

(v.p.)

3

(;

e;

)

:

(5.4)

with

[73

,

74

â„„

B

(v.p.

)

3

(;

e)

=

2

9

ln

2

m

m

e

+

(3)

2

3

2

ln

2

+

1

9

2

+

31

27

ln

m

m

e

+

11

216

4

2

9

2

ln

2

2

8

3

a

4

1

9

ln

4

2

3

(3)

+

5

3

2

ln

2

25

18

2

+

1075

216

+

m

e

m

13

18

3

16

9

2

ln

2

+

3199

1080

2

+

m

e

m

2

10

3

ln

2

m

m

e

11

9

ln

m

m

e

14

3

2

ln

2

2

(3)

+

49

12

2

131

54

+

m

e

m

3

4

3

2

ln

m

m

e

+

35

12

3

16

3

2

ln

2

5771

1080

2

+

m

e

m

4

25

9

ln

3

m

m

e

1369

180

ln

2

m

m

e

+[

2

(3)

+

4

2

ln

2

269

144

2

7496

675

â„„

ln

m

m

e

43

108

4

+

8

9

2

ln

2

2

+

80

3

a

4

+

10

9

ln

4

2

411

32

(3)

+

89

48

2

ln

2

1061

864

2

274511

54000

+

O

m

e

m

5

;

(5.5)

B

(LL)

3

(;

e)

=

2

3

2

ln

m

m

e

+

59

270

4

3

(3)

10

3

2

+

2

3

+

m

e

m

4

3

2

ln

m

m

e

196

3

2

ln

2

+

424

9

2

+

m

e

m

2

2

3

ln

3

m

m

e

+

(

2

9

20

3

)

ln

2

m

m

e

[

16

135

4

+

4

(3)

32

9

2

+

61

3

â„„

ln

m

m

e

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

107

+

4

3

(3)

2

61

270

4

+

3

(3)

+

25

18

2

283

12

+

m

e

m

3

10

9

2

ln

m

m

e

11

9

2

+

m

e

m

4

7

9

ln

3

m

m

e

+

41

18

ln

2

m

m

e

+

13

9

2

ln

m

m

e

+

517

108

ln

m

m

e

+

1

2

(3)

+

191

216

2

+

13283

2592

+

O

m

e

m

5

;

(5.6)

while

B

(v.p.

)

3

(;

)

and

B

(LL)

3

(;

)

are

deriv

ed

from

B

(v.p.)

3

(;

)

and

from

B

(LL)

3

(;

),

resp

e-

tiv

ely

,

b

y

trivial

substitutions

of

the

masses.

F

urthermore,

the

graphs

with

mixed

v

auum

p

olar-

ization

insertions,

one

eletron

lo

op,

and

one

lo

op,

are

ev

aluated

n

umerially

using

a

disp

ersiv

e

in

tegral

[51

,

73

,

77

â„„.

Numerially

,

one

obtains

(w

e

quote

here

the

n

umerial

v

alues

up

dated

in

[3â„„)

B

(v.p.)

3

(;

e)

=

1:920

455

1(2)

B

(LL)

3

(;

e)

=

20:947

924

6(7)

B

(v.p.)

3

(;

)

=

0:001

782

2(4)

B

(LL)

3

(;

)

=

0:002

142

8(7)

B

(v.p.)

3

(;

e;

)

=

0:000

527

6(2)

:

(5.7)

Notie

the

large

v

alue

of

B

(LL)

3

(;

e),

due

to

the

o

urrene

of

terms

in

v

olving

fators

lik

e

ln(m

=m

e

)

5

and

p

o

w

ers

of

.

5.2

Hadroni

on

tributions

to

a

On

the

lev

el

of

F

eynman

diagrams,

hadroni

on

tributions

arise

through

lo

ops

of

virtual

quarks

and

gluons.

These

lo

ops

also

in

v

olv

e

the

soft

sales,

and

therefore

annot

b

e

omputed

reliably

in

p

erturbativ

e

QCD.

W

e

shall

deomp

ose

the

hadroni

on

tributions

in

to

three

subsets:

hadroni

v

auum

p

olarization

insertions

at

order

2

,

at

order

3

,

and

hadroni

ligh

t-b

y-ligh

t

sattering,

a

had

=

a

(h.v.p.

1)

+

a

(h.v.p.

2)

+

a

(h.

LL)

(5.8)

5.2.1

Hadroni

v

auum

p

olarization

W

e

rst

disuss

a

(h.v.p.

1)

,

whi

h

arises

at

order

O

(

2

)

from

the

insertion

of

a

single

hadroni

v

auum

p

olarization

in

to

the

lo

w

est

order

v

ertex

orretion

graph,

see

Fig.

7.

The

imp

ortane

of

this

on

tribution

to

a

is

kno

wn

sine

long

time

[78

,

79

â„„.

There

is

a

v

ery

on

v

enien

t

disp

ersiv

e

represen

tation

of

this

diagram,

similar

to

Eq.

(4.10)

a

(h.v.p.

1)

=

Z

1

4M

2

dt

t

K

(t)

1

Im(t)

=

1

3

2

Z

1

4M

2

dt

t

K

(t)R

had

(t)

;

(5.9)

Here,

(t)

denotes

the

hadr

oni

omp

onen

t

of

the

v

auum

p

olarization

funtion,

dened

as

13

(q

q

q

2

)(Q

2

)

=

i

Z

d

4

xe

iq

x

hjTfj

(x)j

(0)gji

;

(5.10)

13

Atually

,

(t)

dened

this

w

a

y

has

an

ultra

violet

div

ergene,

pro

dued

b

y

the

QCD

short

distane

singularit

y

of

the

hronologial

pro

dut

of

the

t

w

o

urren

ts.

Ho

w

ev

er,

it

only

aets

the

real

part

of

(t).

A

renormalized,

nite

quan

tit

y

is

obtained

b

y

a

single

subtration,

(t)

(0).

background image

108

M.

Kne

h

t

S

eminaire

P

oinar

e

H

Figure

7:

The

insertion

of

the

hadroni

v

auum

p

olarization

in

to

the

one

lo

op

v

ertex

orretion,

orresp

onding

to

a

(h.v.p.

1)

.

with

j

the

hadroni

omp

onen

t

of

the

eletromagneti

urren

t,

Q

2

=

q

2

0

for

q

spaelik

e,

and

ji

the

QCD

v

auum.

The

funtion

K

(t)

w

as

dened

in

Eq.

(4.15),

and

R

had

(t)

stands

no

w

for

the

ross

setion

of

e

+

e

!

hadrons

,

at

lowest

or

der

in

,

divided

b

y

(e

+

e

!

+

)

1

(s)

=

4

2

3s

.

A

rst

priniple

omputation

of

this

strong

in

teration

on

tribution

is

far

b

ey

ond

our

presen

t

abilities

to

deal

with

the

non

p

erturbativ

e

asp

ets

of

onning

gauge

theories.

This

last

relation

is

ho

w

ev

er

v

ery

in

teresting

b

eause

it

expresses

a

(h.v.p.

1)

through

a

quan

tit

y

that

an

b

e

measured

exp

erimen

tally

.

In

this

resp

et,

t

w

o

imp

ortan

t

prop

erties

of

the

funtion

K

(t)

deserv

e

to

b

e

men

tioned.

First,

it

app

ears

from

the

in

tegral

represen

tation

(4.15)

that

K

(t)

is

p

ositiv

e

denite.

Sine

R

e

+

e

is

also

p

ositiv

e,

one

dedues

that

a

(h.v.p.

1 )

itself

is

p

ositiv

e.

Seond,

the

funtion

K

(t)

dereases

as

m

2

=3t

as

t

gro

ws,

so

that

it

is

indeed

the

lo

w

energy

region

whi

h

dominates

the

in

tegral.

Expliit

ev

aluation

of

a

(h.v.p.

1)

using

a

v

ailable

data

atually

rev

eals

that

more

than

80%

of

its

v

alue

omes

from

energies

b

elo

w

1.4

GeV.

Finally

,

the

v

alues

obtained

this

w

a

y

for

a

(h.v.p.

1)

ha

v

e

ev

olv

ed

in

time,

as

sho

wn

in

T

able

3.

This

ev

olution

is

mainly

driv

en

b

y

the

a

v

ailabilit

y

of

more

data,

and

is

still

going

on,

as

the

last

en

tries

of

T

able

3

sho

w.

In

order

to

mat

h

the

preision

rea

hed

b

y

the

latest

exp

erimen

tal

measuremen

t

of

a

,

a

(h.v.p.

1)

needs

to

b

e

kno

wn

at

1%.

Besides

the

v

ery

reen

t

high

qualit

y

e

+

e

data

obtained

b

y

the

BES

Collab

oration

[80

â„„

in

the

region

b

et

w

een

2

to

5

GeV,

and

b

y

the

CMD-2

ollab

oration

[81

â„„

in

the

region

dominated

b

y

the

resonane,

the

latest

analyses

sometimes

also

inlude

or

use,

in

the

lo

w-energy

region,

data

obtained

from

hadroni

dea

ys

of

the

b

y

ALEPH

[82

â„„,

and,

more

reen

tly

,

b

y

CLEO

[83

â„„.

W

e

ma

y

notie

from

T

able

3

that

the

preision

obtained

b

y

using

e

+

e

data

alone

has

b

eome

omparable

to

the

one

a

hiev

ed

up

on

inluding

the

data.

Ho

w

ev

er,

one

of

the

latest

analyses

rev

eals

a

troubling

disrepany

b

et

w

een

the

e

+

e

and

ev

aluations.

Additional

w

ork

is

ertainly

needed

in

order

to

resolv

e

these

problems.

F

urther

data

are

also

exp

eted

in

the

future,

from

the

KLOE

exp

erimen

t

at

the

D

APHNE

e

+

e

ma

hine,

or

from

the

B

fatories

BaBar

and

Belle.

F

or

additional

omparativ

e

disussions

and

details

of

the

v

arious

analyses,

w

e

refer

the

reader

to

the

literature

quoted

in

T

able

3.

Let

us

briey

men

tion

here

that

it

is

quite

easy

to

estimate

the

order

of

magnitude

of

a

(h.v.p.

1)

.

F

or

this

purp

ose,

it

is

on

v

enien

t

to

in

tro

due

still

another

represen

tation

[93

â„„,

whi

h

relates

a

(h.v.p.

1)

to

the

hadroni

Adler

funtion

A(Q

2

),

dened

as

14

A(Q

2

)

=

Q

2

(Q

2

)

Q

2

=

Z

1

0

dt

Q

2

(t

+

Q

2

)

2

1

Im (t)

;

(5.11)

b

y

a

(h.v.p.

1)

=

2

2

2

Z

1

0

dx

x

(1

x)(2

x)A

x

2

1

x

m

2

:

(5.12)

14

Unlik

e

(t)

itself,

A(Q

2

)

if

free

from

ultra

violet

div

ergenes.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

109

T

able

3:

Some

of

the

reen

t

ev

aluations

of

a

(h.v.p.

1)

10

11

from

e

+

e

and/or

-dea

y

data.

7024(153)

[84

â„„

e

+

e

7026(160)

[85

â„„

e

+

e

6950(150)

[86

â„„

e

+

e

7011(94)

[86

â„„

,

e

+

e

,

6951(75)

[87

â„„

,

e

+

e

,

QCD

6924(62)

[88

â„„

,

e

+

e

,

QCD

[89

â„„

QCD

sum

rules

7036(76)

[41

â„„

,

e

+

e

,

QCD

7002(73)

[90

â„„

e

+

e

,

F

6974(105)

[91

â„„

e

+

e

,

inl.

BES-I

I

data

6847(70)

[92

â„„

e

+

e

,

inl.

BES-I

I

and

CMD-2

data

7019(62)

[92

â„„

,

e

+

e

6831(62)

[94

â„„

e

+

e

A

simple

represen

tation

of

the

hadroni

Adler

funtion

an

b

e

obtained

if

one

assumes

that

Im(t)

is

giv

en

b

y

a

single,

zero

width,

v

etor

meson

p

ole,

and,

ab

o

v

e

a

ertain

threshold

s

0

,

b

y

the

QCD

p

erturbativ

e

on

tin

uum

on

tribution,

1

Im(t)

=

2

3

f

2

V

M

2

V

Æ

(t

M

2

V

)

+

2

3

N

C

12

2

[1

+

O

(

s

)â„„

(t

s

0

)

(5.13)

The

justiation

[95

â„„

for

this

t

yp

e

of

minimal

hadroni

ansatz

an

b

e

found

within

the

framew

ork

of

the

large-N

C

limit

[96

,

97

â„„

of

QCD,

see

Ref.

[95

â„„

for

a

general

disussion

and

a

detailed

study

of

this

represen

tation

of

the

Adler

funtion.

The

threshold

s

0

for

the

onset

of

the

on

tin

uum

an

b

e

xed

from

the

prop

ert

y

that

there

is

no

on

tribution

in

1=Q

2

in

the

short

distane

expansion

of

A(Q

2

),

whi

h

requires

[95

â„„

2f

2

V

M

2

V

=

N

C

12

2

s

0

1

+

3

8

s

(s

0

)

+

O

(

2

s

)

:

(5.14)

This

then

giv

es

[98

â„„

a

(h.v.p.

1)

(570

170)

10

10

,

whi

h

ompares

w

ell

with

the

more

elab

orate

data

based

ev

aluations

in

T

able

3,

ev

en

though

this

simple

estimate

annot

laim

to

pro

vide

the

required

auray

of

ab

out

1%.

H

H

H

+...

+

Figure

8:

Higher

order

orretions

on

taining

the

hadroni

v

auum

p

olarization

on

tribution,

or-

resp

onding

to

a

(h.v.p.

2)

.

background image

110

M.

Kne

h

t

S

eminaire

P

oinar

e

W

e

no

w

ome

to

the

O

(

3

)

orretions

in

v

olving

hadroni

v

auum

p

olarization

subgraphs.

Besides

the

on

tributions

sho

wn

in

Fig.

8,

another

one

is

obtained

up

on

inserting

a

lepton

lo

op

in

one

of

the

t

w

o

photon

lines

of

the

graph

sho

wn

in

Fig.

7.

These

an

again

b

e

expressed

in

terms

of

R

had

[99

,

2

,

77

â„„

a

(h.v.p.

2)

=

1

3

3

Z

1

4M

2

dt

t

K

(2)

(t)R

had

(t)

:

(5.15)

Unlik

e

K

(t),

the

funtion

K

(2)

(t)

is

not

p

ositiv

e

denite,

so

that

the

sign

of

a

(h.v.p.

2)

is

not

xed

on

the

basis

of

general

onsiderations.

The

v

alue

obtained

for

this

quan

tit

y

is

[77

â„„

a

(h.v.p.

2)

10

11

=

101

6.

5.2.2

Hadroni

ligh

t-b

y-ligh

t

sattering

W

e

no

w

disuss

the

so

alled

hadroni

ligh

t-b

y-ligh

t

sattering

graphs

of

Fig.

9.

Atually

,

there

is

another

O

(

3

)

orretion

in

v

olving

the

amplitude

for

virtual

ligh

t-b

y-ligh

t

sattering,

namely

the

one

obtained

b

y

adding

an

additional

photon

line

atta

hed

to

the

hadroni

blob

in

Fig.

7.

This

on

tribution

is

usually

inluded

in

the

ev

aluations

rep

orted

on

in

T

able

3

[see

the

disussion

in

[92

â„„â„„,

otherwise,

it

has

b

een

added.

The

reason

for

that

is

due

to

the

fat

that

the

measured

e

+

e

data

on

tain

QED

eets,

and

do

not

orresp

ond

to

the

ross

setion

of

e

+

e

!

hadrons

restrited

to

the

lowest

or

der

in

.

It

is

p

ossible

to

ompute

and

subtrat

a

w

a

y

QED

orretions

in

v

olving

the

leptoni

v

ertex,

but

there

still

remain

radiativ

e

orretions

b

et

w

een

the

nal

state

hadrons,

or

whi

h

aet

b

oth

the

initial

and

the

nal

states.

These

annot

b

e

ev

aluated

in

a

mo

del

indep

enden

t

w

a

y

,

and

are

not

ompletely

desrib

ed

b

y

atta

hing

a

photon

lo

op

to

the

hadroni

blob

in

Fig.

7.

H

+

permutations

Figure

9:

The

hadroni

ligh

t-b

y-ligh

t

sattering

graphs

on

tributing

to

a

(h.

LL)

.

Coming

ba

k

to

the

diagram

of

Fig.

9,

the

on

tribution

to

(p

0

;

p)

of

relev

ane

here

is

the

ma-

trix

elemen

t,

at

lo

w

est

non

v

anishing

order

in

the

ne

struture

onstan

t

,

of

the

ligh

t

quark

eletromagneti

urren

t

j

(x)

=

2

3

(

u

u)(x)

1

3

(

d)(x)

1

3

(

s)(x)

(5.16)

b

et

w

een

states,

(

ie)

u(p

0

)

(h.

LL)

(p

0

;

p)u(p)

h

(p

0

)j(ie)j

(0)j

(p)i

=

Z

d

4

q

1

(2

)

4

Z

d

4

q

2

(2

)

4

(

i)

3

q

2

1

q

2

2

(q

1

+

q

2

k

)

2

i

(p

0

q

1

)

2

m

2

i

(p

0

q

1

q

2

)

2

m

2

(

ie)

3

u(p

0

)

(6

p

0

6

q

1

+

m)

(6

p

0

6

q

1

6

q

2

+

m)

u(p)

(ie)

4

(q

1

;

q

2

;

k

q

1

q

2

)

;

(5.17)

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

111

with

k

=

(p

0

p)

and

(q

1

;

q

2

;

q

3

)

=

Z

d

4

x

1

Z

d

4

x

2

Z

d

4

x

3

e

i(q

1

x

1

+q

2

x

2

+q

3

x

3

)

h

j

T

fj

(x

1

)j

(x

2

)j

(x

3

)j

(0)g

j

i

(5.18)

the

fourth-rank

ligh

t

quark

hadroni

v

auum-p

olarization

tensor,

j

i

denoting

the

QCD

v

auum.

Sine

the

a

v

our

diagonal

urren

t

j

(x)

is

onserv

ed,

the

tensor

(q

1

;

q

2

;

q

3

)

satises

the

W

ard

iden

tities

fq

1

;

q

2

;

q

3

;

(q

1

+

q

2

+

q

3

)

g

(q

1

;

q

2

;

q

3

)

=

0

:

(5.19)

This

en

tails

that

15

u(p

0

)

(h.

LL)

(p

0

;

p)u(p)

=

u (p

0

)

F

(h.

LL)

1

(k

2

)

+

i

2m

k

F

(h.

LL)

2

(k

2

)

u(p)

;

(5.20)

as

w

ell

as

(h.

LL)

(p

0

;

p)

=

k

(h.

LL)

(p

0

;

p)

with

u(p

0

)

(h.

LL)

(p

0

;

p)u(p)

=

ie

6

Z

d

4

q

1

(2

)

4

Z

d

4

q

2

(2

)

4

1

q

2

1

q

2

2

(q

1

+

q

2

k

)

2

1

(p

0

q

1

)

2

m

2

1

(p

0

q

1

q

2

)

2

m

2

u(p

0

)

(6

p

0

6

q

1

+

m)

(6

p

0

6

q

1

6

q

2

+

m)

u(p)

k

(q

1

;

q

2

;

k

q

1

q

2

)

:

(5.21)

F

ollo

wing

Ref.

[58

â„„

and

using

the

prop

ert

y

k

k

u (p

0

)

(h.

LL)

(p

0

;

p)u(p)

=

0,

one

dedues

that

F

(h.

LL)

1

(0)

=

0

and

that

the

hadroni

ligh

t-b

y-ligh

t

on

tribution

to

the

m

uon

anomalous

magneti

momen

t

is

equal

to

a

(h.

LL)

F

(h.

LL )

2

(0)

=

1

48m

tr

n

(6

p

+

m)[

;

â„„(6

p

+

m)

(h.

LL)

(p;

p)

o

:

(5.22)

This

is

ab

out

all

w

e

an

sa

y

ab

out

the

QCD

four-p

oin

t

funtion

(q

1

;

q

2

;

q

3

).

Unlik

e

the

hadroni

v

auum

p

olarization

funtion,

there

is

no

exp

erimen

tal

data

whi

h

w

ould

allo

w

for

an

ev

aluation

of

a

(h.

LL)

.

The

existing

estimates

regarding

this

quan

tit

y

therefore

rely

on

sp

ei

mo

dels

in

order

to

aoun

t

for

the

non

p

erturbativ

e

QCD

asp

ets.

A

few

partiular

on

tributions

an

b

e

iden

tied,

see

Fig.

10.

F

or

instane,

there

is

a

on

tribution

where

the

four

photon

lines

are

atta

hed

to

a

losed

lo

op

of

harged

mesons.

The

ase

of

the

harged

pion

lo

op

with

p

oin

tlik

e

ouplings

is

atually

nite

and

on

tributes

4

10

10

to

a

[100

â„„.

If

the

oupling

of

harged

pions

to

photons

is

mo

died

b

y

taking

in

to

aoun

t

the

eets

of

resonanes

lik

e

the

,

this

on

tribution

is

redued

b

y

a

fator

v

arying

b

et

w

een

3

[100

,

102

â„„

and

10

[101

â„„,

dep

ending

on

the

resonane

mo

del

used.

Another

lass

of

on

tributions

onsists

of

those

in

v

olving

resonane

ex

hanges

b

et

w

een

photon

pairs

[100

,

101

,

102

,

103

â„„.

Although

here

also

the

results

dep

end

on

the

mo

dels

used,

there

is

a

onstan

t

feature

that

emerges

from

all

the

analyses

that

ha

v

e

b

een

done:

the

on

tribution

oming

from

the

ex

hange

of

the

pseudosalars,

0

,

and

0

giv

es

pratially

the

nal

result.

Other

on

tributions

[

harged

pion

lo

ops,

v

etor,

salar,

and

axial

resonanes,...â„„

tend

to

anel

among

themselv

es.

Some

of

the

results

obtained

for

a

(h.

LL)

10

11

ha

v

e

b

een

gathered

in

T

able

4.

Lea

ving

aside

the

rst

result

[99

,

2â„„

sho

wn

there,

whi

h

is

aeted

b

y

a

bad

n

umerial

on

v

ergene

[100

â„„,

one

noties

that

the

sign

of

this

on

tribution

has

hanged

t

wie.

The

rst

hange

resulted

from

a

mistak

e

15

W

e

use

the

follo

wing

on

v

en

tions

for

Dira's

-matries:

f

;

g

=

2

,

with

the

at

Mink

o

wski

spae

metri

of

signature

(+

),

=

(i=2)[

;

â„„,

5

=

i

0

1

2

3

,

whereas

the

totally

an

tisymmetri

tensor

"

is

hosen

su

h

that

"

0123

=

+1.

background image

112

M.

Kne

h

t

S

eminaire

P

oinar

e

H

H

=

Ï€

0

Ï€

3

+

+...

+

Figure

10:

Some

individual

on

tributions

to

hadroni

ligh

t-b

y-ligh

t

sattering:

the

neutral

pion

p

ole

and

the

harged

pion

lo

op.

There

are

other

on

tributions,

not

sho

wn

here.

in

Ref.

[100

â„„,

that

w

as

orreted

for

in

[101

â„„.

The

min

us

sign

that

resulted

w

as

onrmed

b

y

an

indep

enden

t

alulation,

using

the

ENJL

mo

del,

in

Ref.

[102

â„„.

A

subsequen

t

reanalysis

[103

â„„

ga

v

e

additional

supp

ort

to

a

negativ

e

result,

while

also

getting

b

etter

agreemen

t

with

the

v

alue

of

Ref.

[102

â„„.

T

able

4:

V

arious

ev

aluations

of

a

(h.

LL)

10

11

and

of

the

pion

p

ole

on

tribution

a

(h.

LL;

0

)

10

11

.

{260(100)

onstituen

t

quark

lo

op

[99

,

2

â„„

+60(4)

onstituen

t

quark

lo

op

[100

â„„

+49(5)

lo

op,

0

and

resonane

p

oles,

a

(h.

LL;

0

)

=

65(6)

[100

â„„

{52(18)

lo

op,

0

and

resonane

p

oles,

and

quark

lo

op

a

(h.

LL;

0

)

=

55:60(3)

[101

â„„

{92(32)

ENJL,

a

(h.

LL ;

0

+

+

0

)

=

85(13)

[102

â„„

{79.2(15.4)

lo

op,

0

p

ole

and

quark

lo

op,

a

(h.

LL;

0

)

=

55:60(3)

[103

â„„

+83(12)

0

,

and

0

p

oles

only

[104

â„„

+89.6(15.4)

lo

op,

0

p

ole

and

quark

lo

op,

a

(h.

LL;

0

)

=

+55:60(3)

[105

â„„

+83(32)

ENJL,

a

(h.

LL ;

0

+

+

0

)

=

85(13)

[106

â„„

Needless

to

sa

y

,

these

ev

aluations

are

based

on

hea

vy

n

umerial

w

ork,

whi

h

has

the

dra

wba

k

of

making

the

nal

results

rather

opaque

to

an

in

tuitiv

e

understanding

of

the

ph

ysis

b

ehind

them.

W

e

16

therefore

deided

to

impro

v

e

things

on

the

analytial

side,

in

order

to

a

hiev

e

a

b

etter

understanding

of

the

relev

an

t

features

that

led

to

the

previous

results.

T

aking

adv

an

tage

of

the

observ

ation

that

the

pion

p

ole

on

tribution

a

(h.

LL;

0

)

w

as

found

to

dominate

the

nal

v

alues

obtained

for

a

(h.

LL)

,

w

e

onen

trated

our

eorts

on

that

part,

that

I

shall

no

w

desrib

e

in

greater

detail.

F

or

a

detailed

aoun

t

on

ho

w

the

other

on

tributions

to

a

(h.

LL)

arise,

I

refer

the

reader

to

the

original

w

orks

[100

â„„-[103

â„„.

The

on

tributions

to

(q

1

;

q

2

;

q

3

)

arising

from

single

neutral

pion

ex

hanges,

see

Fig.

11,

read

(

0

)

(q

1

;

q

2

;

q

3

)

=

i

F

0

(q

2

1

;

q

2

2

)

F

0

(q

2

3

;

(q

1

+

q

2

+

q

3

)

2

)

(q

1

+

q

2

)

2

M

2

"

q

1

q

2

"

q

3

(q

1

+

q

2

)

+i

F

0

(q

2

1

;

(q

1

+

q

2

+

q

3

)

2

)

F

0

(q

2

2

;

q

2

3

)

(q

2

+

q

3

)

2

M

2

"

q

1

(q

2

+

q

3

)

"

q

2

q

3

16

A.

Nyeler

and

m

yself,

in

Ref.

[104â„„.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

113

+

i

F

0

(q

2

1

;

q

2

3

)

F

0

(q

2

2

;

(q

1

+

q

2

+

q

3

)

2

)

(q

1

+

q

3

)

2

M

2

"

q

1

q

3

"

q

2

(q

1

+

q

3

)

:

(5.23)

Figure

11:

The

pion-p

ole

on

tributions

to

ligh

t-b

y-ligh

t

sattering.

The

shaded

blobs

represen

t

the

form

fator

F

0

.

The

rst

and

seond

graphs

giv

e

rise

to

iden

tial

on

tributions,

in

v

olving

the

funtion

T

1

(q

1

;

q

2

;

p)

in

Eq.

(5.25),

whereas

the

third

graph

giv

es

the

on

tribution

in

v

olving

T

2

(q

1

;

q

2

;

p).

The

form

fator

F

0

(q

2

1

;

q

2

2

),

whi

h

orresp

onds

to

the

shaded

blobs

in

Fig.

11,

is

dened

as

i

Z

d

4

xe

iq

x

h

jT

fj

(x)j

(0)gj

0

(p)i

=

"

q

p

F

0

(q

2

;

(p

q

)

2

)

;

(5.24)

with

F

0

(q

2

1

;

q

2

2

)

=

F

0

(q

2

2

;

q

2

1

).

Inserting

the

expression

(5.23)

in

to

(5.21)

and

omputing

the

orresp

onding

Dira

traes

in

Eq.

(5.22),

w

e

obtain

a

(h.

LL;

0

)

=

e

6

Z

d

4

q

1

(2

)

4

Z

d

4

q

2

(2

)

4

1

q

2

1

q

2

2

(q

1

+

q

2

)

2

[(p

+

q

1

)

2

m

2

â„„[(p

q

2

)

2

m

2

â„„

F

0

(q

2

1

;

(q

1

+

q

2

)

2

)

F

0

(q

2

2

;

0)

q

2

2

M

2

T

1

(q

1

;

q

2

;

p)

+

F

0

(q

2

1

;

q

2

2

)

F

0

((q

1

+

q

2

)

2

;

0)

(q

1

+

q

2

)

2

M

2

T

2

(q

1

;

q

2

;

p)

;

(5.25)

where

T

1

(q

1

;

q

2

;

p)

and

T

2

(q

1

;

q

2

;

p)

denote

t

w

o

p

olynomials

in

the

in

v

arian

ts

p

q

1

,

p

q

2

,

q

1

q

2

.

Their

expressions

an

b

e

found

in

Ref.

[104

â„„.

The

former

arises

from

the

t

w

o

rst

diagrams

sho

wn

in

Fig.

11,

whi

h

giv

e

iden

tial

on

tributions,

while

the

latter

orresp

onds

to

the

third

diagram

on

this

same

gure.

A

t

this

stage,

it

should

also

b

e

p

oin

ted

out

that

the

expression

(5.23)

do

es

not,

stritly

sp

eaking,

represen

t

the

on

tribution

arising

from

the

pion

p

ole

only

.

The

latter

w

ould

require

that

the

n

umerators

in

(5.23)

b

e

ev

aluated

at

the

v

alues

of

the

momen

ta

that

orresp

ond

to

the

p

ole

indiated

b

y

the

orresp

onding

denominators.

F

or

instane,

the

n

umerator

of

the

term

prop

ortional

to

T

1

(q

1

;

q

2

;

p)

in

Eq.

(5.25)

should

rather

read

F

0

(q

2

1

;

(q

2

1

+

2q

1

q

2

+

M

2

)

F

0

(M

2

;

0)

with

q

2

2

=

M

2

.

Ho

w

ev

er,

Eq.

(5.25)

orresp

onds

to

what

previous

authors

ha

v

e

alled

the

pion

p

ole

on

tribution,

and

for

the

sak

e

of

omparison

I

shall

adopt

the

same

denition.

From

here

on,

information

on

the

form

fator

F

0

(q

2

1

;

q

2

2

)

is

required

in

order

to

pro

eed.

The

simplest

mo

del

for

the

form

fator

follo

ws

from

the

W

ess-Zumino-Witten

(WZW)

term

[107

,

108

â„„

that

desrib

es

the

Adler-Bell-Ja

kiw

anomaly

[109

,

110

â„„

in

hiral

p

erturbation

theory

.

Sine

in

this

ase

the

form

fator

is

onstan

t,

one

needs

an

ultra

violet

uto,

at

least

in

the

on

tribution

to

Eq.

(5.25)

in

v

olving

T

1

,

the

one

in

v

olving

T

2

giv

es

a

nite

result

ev

en

for

a

onstan

t

form

fa-

tor

[100

â„„.

Therefore,

this

mo

del

annot

b

e

used

for

a

reliable

estimate,

but

at

b

est

serv

es

only

background image

114

M.

Kne

h

t

S

eminaire

P

oinar

e

illustrativ

e

purp

oses

in

the

presen

t

on

text.

17

Previous

alulations

[100

,

101

,

103

â„„

ha

v

e

also

used

the

usual

v

etor

meson

dominane

form

fator

[see

also

Ref.

[111

â„„â„„.

The

expressions

for

the

form

fator

F

0

based

on

the

ENJL

mo

del

that

ha

v

e

b

een

used

in

Ref.

[102

â„„

do

not

allo

w

a

straigh

t-

forw

ard

analytial

alulation

of

the

lo

op

in

tegrals.

Ho

w

ev

er,

ompared

with

the

results

obtained

in

Refs.

[100

,

101

,

103

â„„,

the

orresp

onding

n

umerial

estimates

are

rather

lose

to

the

VMD

ase

[within

the

error

attributed

to

the

mo

del

dep

endeneâ„„.

Finally

,

represen

tations

of

the

form

fator

F

0

,

based

on

the

large-N

C

appro

ximation

to

QCD

and

that

tak

es

in

to

aoun

t

onstrain

ts

from

hiral

symmetry

at

lo

w

energies,

and

from

the

op

erator

pro

dut

expansion

at

short

distanes,

ha

v

e

b

een

disussed

in

Ref.

[112

â„„

.

They

in

v

olv

e

either

one

v

etor

resonane

[lo

w

est

meson

dom-

inane,

LMDâ„„

or

t

w

o

v

etor

resonanes

(LMD+V),

see

[112

â„„

for

details.

The

four

t

yp

es

of

form

fators

just

men

tioned

an

b

e

written

in

the

form

[F

is

the

pion

dea

y

onstan

tâ„„

F

0

(q

2

1

;

q

2

2

)

=

F

3

f

(q

2

1

)

X

M

V

i

1

q

2

2

M

2

V

i

g

M

V

i

(q

2

1

)

:

(5.26)

F

or

the

VMD

and

LMD

form

fators,

the

sum

in

Eq.

(5.26)

redues

to

a

single

term,

and

the

orresp

onding

funtion

is

denoted

g

M

V

(q

2

).

It

dep

ends

on

the

mass

M

V

of

the

v

etor

resonane,

whi

h

will

b

e

iden

tied

with

the

mass

of

the

meson.

F

or

our

presen

t

purp

oses,

it

is

enough

to

onsider

only

these

t

w

o

last

ases,

along

with

the

onstan

t

WZW

form

fator.

The

orresp

onding

funtions

f

(q

2

)

and

g

M

V

(q

2

)

are

displa

y

ed

in

T

able

5.

T

able

5:

The

funtions

f

(q

2

)

and

g

M

V

(q

2

)

of

Eq.

(5.26)

for

the

dieren

t

form

fators.

N

C

is

the

n

um

b

er

of

olors,

tak

en

equal

to

3,

and

F

=

92:4

MeV

is

the

pion

dea

y

onstan

t.

F

urthermore,

V

=

N

C

4

2

M

4

V

F

2

.

f

(q

2

)

g

M

V

(q

2

)

W

Z

W

N

C

4

2

F

2

0

V

M

D

0

N

C

4

2

F

2

M

4

V

q

2

M

2

V

LM

D

1

q

2

M

2

V

q

2

+

M

2

V

V

q

2

M

2

V

W

e

ma

y

no

w

ome

ba

k

to

Eq.

(5.25).

With

a

represen

tation

of

the

form

(5.26),

the

angular

in

tegrations

an

b

e

p

erformed,

using

for

instane

standard

Gegen

bauer

p

olynomial

te

hniques

(h

yp

erspherial

approa

h),

see

Refs.

[113

,

114

,

56

â„„.

This

leads

to

a

t

w

o-dimensional

in

tegral

repre-

sen

tation:

a

(h.

LL;

0

)

=

3

h

a

(

0

;1)

+

a

(

0

;2)

i

;

(5.27)

a

(

0

;1)

=

Z

1

0

dQ

1

Z

1

0

dQ

2

"

w

f

1

(Q

1

;

Q

2

)

f

(1)

(Q

2

1

;

Q

2

2

)

+

w

g

1

(M

V

;

Q

1

;

Q

2

)

g

(1)

M

V

(Q

2

1

;

Q

2

2

)

#

;

(5.28)

17

In

the

on

text

of

an

eetiv

e

eld

theory

approa

h,

the

pion

p

ole

with

WZW

v

erties

represen

ts

a

hirally

suppressed,

but

large-N

C

dominan

t

on

tribution,

whereas

the

harged

pion

lo

op

is

dominan

t

in

the

hiral

expansion,

but

suppressed

in

the

large-N

C

limit.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

115

a

(

0

;2)

=

Z

1

0

dQ

1

Z

1

0

dQ

2

"

X

M

=M

;M

V

w

g

2

(M

;

Q

1

;

Q

2

)

g

(2)

M

(Q

2

1

;

Q

2

2

)

#

:

(5.29)

The

funtions

f

(1)

(Q

2

1

;

Q

2

2

),

g

(1)

M

V

(Q

2

1

;

Q

2

2

),

g

(2)

M

(Q

2

1

;

Q

2

2

)

and

g

(2)

M

V

(Q

2

1

;

Q

2

2

)

are

expressed

in

terms

of

the

funtions

giv

en

in

T

able

5,

see

Ref.

[104

â„„,

where

the

univ

ersal

[for

the

lass

of

form

fators

that

ha

v

e

a

represen

tation

of

the

t

yp

e

sho

wn

in

Eq.

(5.26)â„„

w

eigh

t

funtions

w

in

Eqs.

(5.28)

and

(5.29)

an

also

b

e

found.

The

latter

are

plotted

in

Fig.

12.

0

0.5

1

1.5

0

0.5

1

1.5

0

2

4

6

Q

1

 [GeV]

w

f

1

(Q

1

,Q

2

)

Q

2

 [GeV]

0

0.5

1

1.5

0

0.5

1

1.5

0

2

4

6

Q

1

 [GeV]

w

g

1

(M

V

,Q

1

,Q

2

)

Q

2

 [GeV]

0

1

2

0

1

2

−0.5

0

0.5

1

Q

1

 [GeV]

w

g

2

(M

Ï€

,Q

1

,Q

2

)

Q

2

 [GeV]

0

1

2

0

1

2

−0.04

−0.02

0

0.02

0.04

0.06

Q

1

 [GeV]

w

g

2

(M

V

,Q

1

,Q

2

)

Q

2

 [GeV]

Figure

12:

The

w

eigh

t

funtions

app

earing

in

Eqs.

(5.28)

and

(5.29).

Note

the

dieren

t

ranges

of

Q

i

in

the

subplots.

The

funtions

w

f

1

and

w

g

1

are

p

ositiv

e

denite

and

p

eak

ed

in

the

region

Q

1

Q

2

0:5

GeV.

Note,

ho

w

ev

er,

the

tail

in

w

f

1

in

the

Q

1

-diretion

for

Q

2

0:2

GeV.

The

funtions

w

g

2

(M

;

Q

1

;

Q

2

)

and

w

g

2

(M

V

;

Q

1

;

Q

2

)

tak

e

b

oth

signs,

but

their

magnitudes

remain

small

as

ompared

to

w

f

1

(Q

1

;

Q

2

)

and

w

g

1

(M

V

;

Q

1

;

Q

2

).

W

e

ha

v

e

used

M

V

=

M

=

770

MeV.

The

funtions

w

f

1

and

w

g

1

are

p

ositiv

e

and

onen

trated

around

momen

ta

of

the

order

of

0:5

GeV.

This

feature

w

as

already

observ

ed

n

umerially

in

Ref.

[102

â„„

b

y

v

arying

the

upp

er

b

ound

of

the

in

tegrals

[an

analogous

analysis

is

on

tained

in

Ref.

[101

â„„â„„.

Note,

ho

w

ev

er,

the

tail

in

w

f

1

in

the

background image

116

M.

Kne

h

t

S

eminaire

P

oinar

e

Q

1

diretion

for

Q

2

0:2

GeV.

On

the

other

hand,

the

funtion

w

g

2

has

p

ositiv

e

and

negativ

e

on

tributions

in

that

region,

whi

h

will

lead

to

a

strong

anellation

in

the

orresp

onding

in

tegrals,

pro

vided

they

are

m

ultiplied

b

y

a

p

ositiv

e

funtion

omp

osed

of

the

form

fators

[see

the

n

umerial

results

b

elo

wâ„„.

As

an

b

e

seen

from

the

plots,

and

he

k

ed

analytially

,

the

w

eigh

t

funtions

v

anish

for

small

momen

ta.

Therefore,

the

in

tegrals

are

infrared

nite.

The

b

eha

viors

of

the

w

eigh

t

funtions

for

large

v

alues

of

Q

1

and/or

Q

2

an

also

b

e

w

ork

ed

out

analytially

.

F

rom

these,

one

an

dedue

that

in

the

ase

of

the

WZW

form

fator,

the

orresp

onding,

div

ergen

t,

in

tegral

for

a

(

0

;1)

b

eha

v

es,

as

a

funtion

of

the

ultra

violet

ut

o

,

as

a

(

0

;1)

C

ln

2

,

with

[104

â„„

C

=

3

N

C

12

2

m

F

2

=

0:0248

:

(5.30)

The

log-squared

b

eha

vior

follo

ws

from

the

general

struture

of

the

in

tegral

(5.28)

for

a

(

0

;1)

in

the

ase

of

a

onstan

t

form

fator,

as

p

oin

ted

out

in

[5â„„.

The

expression

(5.30)

of

the

o

eÆien

t

C

has

b

een

deriv

ed

indep

enden

tly

,

in

Ref.

[115

â„„,

through

a

renormalization

group

argumen

t

in

the

eetiv

e

theory

framew

ork.

T

able

6:

Results

for

the

terms

a

(

0

;1)

,

a

(

0

;2)

and

for

the

pion

ex

hange

on

tribution

to

the

anoma-

lous

magneti

momen

t

a

h.

LL;

0

aording

to

Eq.

(5.27)

for

the

dieren

t

form

fators

onsidered.

In

the

WZW

mo

del

w

e

used

a

uto

of

1

GeV

in

the

rst

on

tribution,

whereas

the

seond

term

is

ultra

violet

nite.

F

orm

fator

a

(

0

;1)

a

(

0

;2)

a

h.

LL;

0

10

10

WZW

0.095

0.0020

12.

2

VMD

0.044

0.0013

5.6

LMD

0.057

0.0014

7.3

In

the

ase

of

the

other

form

fators,

the

in

tegration

o

v

er

Q

1

and

Q

2

is

nite

and

an

no

w

b

e

p

erformed

n

umerially

.

18

F

urthermore,

sine

b

oth

the

VMD

and

LMD

mo

del

tend

to

the

WZW

onstan

t

form

fator

as

M

V

!

1,

the

results

for

a

(

0

;1)

in

these

mo

dels

should

sale

as

C

ln

2

M

2

V

for

a

large

resonane

mass.

This

has

b

een

he

k

ed

n

umerially

,

and

the

v

alue

of

the

o

eÆien

t

C

obtained

that

w

a

y

w

as

in

p

erfet

agreemen

t

with

the

v

alue

giv

en

in

Eq.

(5.30).

The

results

of

the

in

tegration

o

v

er

Q

1

and

Q

2

are

displa

y

ed

in

T

able

6.

They

denitely

sho

w

a

sign

dierene

when

ompared

to

those

obtained

in

Refs.

[100

,

101

,

103

,

111

â„„,

although

in

absolute

v

alue

the

n

um

b

ers

agree

p

erfetly

.

After

the

results

of

T

able

6

w

ere

made

publi

[104

â„„,

previous

authors

he

k

ed

their

alulations

and

so

on

diso

v

ered

that

they

had

made

a

sign

mistak

e

at

some

stage

[105

,

106

â„„.

Almost

sim

ultaneously

,

the

results

presen

ted

in

T

able

6

and

in

Refs.

[104

,

115

â„„

also

reeiv

ed

indep

enden

t

onrmations

[117

,

116

â„„.

The

analysis

of

[104

â„„

leads

to

the

follo

wing

estimates

a

h.

LL;

0

=

5:8(1:0)

10

10

;

(5.31)

and

a

h.

LL;

0

e

=

5:1

10

14

:

(5.32)

T

aking

in

to

aoun

t

the

other

on

tributions

omputed

b

y

previous

authors,

and

adopting

a

onser-

v

ativ

e

attitude

to

w

ards

the

error

to

b

e

asrib

ed

to

their

mo

del

dep

endenes,

the

total

on

tribution

to

a

oming

from

the

hadroni

ligh

t-b

y-ligh

t

sattering

diagrams

amoun

ts

to

a

h.

LL

=

8(4)

10

10

:

(5.33)

18

In

the

ase

of

the

VMD

form

fator,

an

analytial

result

is

no

w

also

a

v

ailable

[116â„„.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

117

5.3

Eletro

w

eak

on

tributions

to

a

Eletro

w

eak

orretions

to

a

ha

v

e

b

een

onsidered

at

the

one

and

t

w

o

lo

op

lev

els.

The

one

lo

op

on

tributions,

sho

wn

in

Fig.

13,

ha

v

e

b

een

w

ork

ed

out

some

time

ago,

and

read

[118

â„„-[122

â„„

a

W(1)

=

G

F

p

2

m

2

8

2

"

5

3

+

1

3

1

4

sin

2

W

2

+

O

 

m

2

M

2

Z

log

M

2

Z

m

2

!

+

O

 

m

2

M

2

H

log

M

2

H

m

2

!

#

;

(5.34)

where

the

w

eak

mixing

angle

is

dened

b

y

sin

2

W

=

1

M

2

W

=

M

2

Z

.

νν

H

W

W

W

Z

0

µ

Figure

13:

One

lo

op

w

eak

in

teration

on

tributions

to

the

anomalous

magneti

momen

t.

Numerially

,

with

G

F

=

1:16639(1)

10

5

GeV

2

and

sin

2

W

=

0:224,

a

W(1)

=

19:48

10

10

;

(5.35)

It

is

on

v

enien

t

to

separate

the

t

w

o{lo

op

eletro

w

eak

on

tributions

in

to

t

w

o

sets

of

F

eynman

graphs:

those

whi

h

on

tain

losed

fermion

lo

ops,

whi

h

are

denoted

b

y

a

EW(2);f

,

and

the

others,

a

EW(2);b

.

In

this

notation,

the

eletro

w

eak

on

tribution

to

the

m

uon

anomalous

magneti

momen

t

is

a

EW

=

a

W(1)

+

a

EW(2);f

+

a

EW(2);b

:

(5.36)

I

shall

review

the

alulation

of

the

t

w

o{lo

op

on

tributions

separately

.

5.3.1

Tw

o

lo

op

b

osoni

on

tributions

The

leading

logarithmi

terms

of

the

t

w

o{lo

op

eletro

w

eak

b

osoni

orretions

ha

v

e

b

een

extrated

using

asymptoti

expansion

te

hniques,

see

e.g.

Ref.

[123

â„„.

In

the

appro

ximation

where

sin

2

W

!

0

and

M

H

M

W

these

alulations

simplify

onsiderably

and

one

obtains

a

EW(2);b

=

G

F

p

2

m

2

8

2

65

9

ln

M

2

W

m

2

+

O

sin

2

W

ln

M

2

W

m

2

 

:

(5.37)

In

fat,

these

on

tributions

ha

v

e

no

w

b

een

ev

aluated

analytially

,

in

a

systemati

expansion

in

p

o

w

ers

of

sin

2

W

,

up

to

O

[(sin

2

W

)

3

â„„

;

where

ln

M

2

W

m

2

terms,

ln

M

2

H

M

2

W

terms,

M

2

W

M

2

H

ln

M

2

H

M

2

W

terms,

M

2

W

M

2

H

terms

and

onstan

t

terms

are

k

ept

[75â„„.

Using

sin

2

W

=

0:224

and

M

H

=

250

GeV

;

the

authors

of

Ref.

[75

â„„

nd

a

EW(2);b

=

G

F

p

2

m

2

8

2

5:96

ln

M

2

W

m

2

+

0:19

=

G

F

p

2

m

2

8

2

(

79:3)

;

(5.38)

sho

wing,

in

retrosp

et,

that

the

simple

appro

ximation

in

Eq.

(5.37)

is

rather

go

o

d.

background image

118

M.

Kne

h

t

S

eminaire

P

oinar

e

5.3.2

Tw

o

lo

op

fermioni

on

tributions

The

disussion

of

the

t

w

o{lo

op

eletro

w

eak

fermioni

orretions

is

more

deliate.

First,

it

on

tains

a

hadroni

on

tribution.

Next,

b

eause

of

the

anellation

b

et

w

een

lepton

lo

ops

and

quark

lo

ops

in

the

eletro

w

eak

U

(1)

anomaly

,

one

annot

separate

hadroni

eets

from

leptoni

eets

an

y

longer.

In

fat,

as

disussed

in

Refs.

[124

,

125

â„„,

it

is

this

anellation

whi

h

eliminates

some

of

the

large

logarithms

whi

h,

inorretly

w

ere

k

ept

in

Ref.

[126

â„„.

It

is

therefore

appropriate

to

separate

the

t

w

o{lo

op

eletro

w

eak

fermioni

orretions

in

to

t

w

o

lasses:

One

is

the

lass

arising

from

F

eynman

diagrams

on

taining

a

lepton

or

a

quark

lo

op,

with

the

external

photon,

a

virtual

photon

and

a

virtual

Z

0

atta

hed

to

it,

see

Fig.

14.

19

The

quark

lo

op

of

ourse

again

represen

ts

non

p

erturbativ

e

hadroni

on

tributions

whi

h

ha

v

e

to

b

e

ev

aluated

using

some

mo

del.

This

rst

lass

is

denoted

b

y

a

EW(2);f

(`;

q

).

It

in

v

olv

es

the

QCD

orrelation

funtion

W

(q

;

k

)

=

Z

d

4

x

e

iq

x

Z

d

4

y

e

i(k

q

)y

h

jTfj

(x)A

(Z

)

(y

)j

(0)gji

;

(5.39)

with

k

the

inoming

external

photon

four-momen

tum

asso

iated

with

the

lassial

external

mag-

neti

eld.

As

previously

,

j

denotes

the

hadroni

part

of

the

eletromagneti

urren

t,

and

A

(Z

)

is

the

axial

omp

onen

t

of

the

urren

t

whi

h

ouples

the

quarks

to

the

Z

0

gauge

b

oson.

The

other

lass

is

dened

b

y

the

rest

of

the

diagrams,

where

quark

lo

ops

and

lepton

lo

ops

an

b

e

treated

separately

,

and

is

alled

a

EW(2);f

(residual

).

Z

Z

p

q

+

p'

p'

p

p

p'

-

q

γ

γ

γ

γ

µ

µ

Figure

14:

Graphs

with

hadroni

on

tributions

to

a

EW(2);f

(`;

q

)

and

in

v

olving

the

QCD

three

p

oin

t

funtion

W

(q

;

k

).

The

on

tribution

from

a

EW(2);f

(residual)

brings

in

fators

of

the

ratio

m

2

t

=

M

2

W

.

It

has

b

een

esti-

mated,

to

a

v

ery

go

o

d

appro

ximation,

in

Ref.

[125

â„„,

with

the

result

a

EW(2);f

(residual

)

=

G

F

p

2

m

2

8

2

1

2

sin

2

W

5

8

m

2

t

M

2

W

log

m

2

t

M

2

W

7

3

+

Higgs

;

(5.40)

where

Higgs

denotes

the

on

tribution

from

diagrams

with

Higgs

lines,

whi

h

the

authors

of

Ref.

[125

â„„

estimate

to

b

e

Higgs

=

5:5

3:7

;

(5.41)

and

therefore,

a

EW(2);f

(residual

)

=

G

F

p

2

m

2

8

2

[

21(4)â„„

:

(5.42)

19

If

one

w

orks

in

a

renormalizable

gauge,

the

on

tributions

where

the

Z

0

is

replaed

b

y

the

neutral

unph

ysial

Higgs

should

also

b

e

inluded.

The

nal

result

do

es

not

dep

end

on

the

gauge

xing

parameter

Z

,

if

one

w

orks

in

the

lass

of

't

Ho

oft

gauges.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

119

Let

us

nally

disuss

the

on

tributions

to

a

EW(2);f

(`;

q

).

Here,

it

is

on

v

enien

t

to

treat

the

on

tri-

butions

from

the

three

generations

separately

.

The

on

tribution

from

the

third

generation

an

b

e

alulated

in

a

straigh

tforw

ard

w

a

y

,

with

the

result

[124

,

125

â„„

a

EW(2);f

(

;

t;

b)

=

G

F

p

2

m

2

8

2

3

ln

M

2

Z

m

2

ln

M

2

Z

m

2

b

8

3

ln

m

2

t

M

2

Z

+

8

3

+

O

M

2

Z

m

2

t

ln

m

2

t

M

2

Z

=

G

F

p

2

m

2

8

2

(

30:6)

:

(5.43)

In

fat

the

terms

of

O

M

2

Z

m

2

t

ln

m

2

t

M

2

Z

and

O

M

2

Z

m

2

t

ha

v

e

also

b

een

alulated

in

Ref.

[125

â„„.

There

are

in

priniple

QCD

p

erturbativ

e

orretions

to

this

estimate,

whi

h

ha

v

e

not

b

een

alulated,

but

the

result

in

Eq.

(5.43)

is

go

o

d

enough

for

the

auray

required

at

presen

t.

The

on

tributions

of

the

remaining

harged

standard

mo

del

fermions

in

v

olv

e

the

ligh

t

quarks

u

and

d,

as

w

ell

as

the

seond

generation

s

quark,

for

whi

h

non

p

erturbativ

e

eets

tied

to

the

sp

on

taneous

breaking

of

hiral

symmetry

are

imp

ortan

t

[124

,

127

â„„.

The

on

tributions

from

the

rst

and

seond

generation

are

th

us

most

on

v

enien

tly

tak

en

together,

with

the

result

a

EW(2);f

(e;

;

u;

d;

s;

)

=

G

F

p

2

m

2

8

2

3

ln

M

2

Z

m

2

5

2

3

ln

M

2

Z

m

2

+

4

ln

M

2

Z

m

2

11

6

+

8

9

2

8

+

"

4

3

ln

M

2

Z

m

2

+

2

3

+

O

 

m

2

M

2

Z

ln

M

2

Z

m

2

!

#

1:38(35)

+

0:06(2)

)

(5.44)

=

G

F

p

2

m

2

8

2

[

34:5(4)â„„

;

(5.45)

where

the

rst

line

sho

ws

the

result

from

the

e

lo

op

and

the

seond

line

the

result

from

the

lo

op

and

the

quark,

whi

h

is

treated

as

a

hea

vy

quark.

The

term

b

et

w

een

bra

k

ets

in

the

third

line

is

the

one

indued

b

y

the

anomalous

term

in

the

hadroni

three

p

oin

t

funtion

W

(q

;

k

)

The

other

on

tributions

ha

v

e

b

een

estimated

on

the

basis

of

an

appro

ximation

to

the

large-N

C

limit

of

QCD,

similar

to

the

one

disussed

for

the

t

w

o-p

oin

t

funtion

(Q

2

)

after

Eq.

(5.12),

see

Ref.

[127

â„„

for

details.

The

result

in

Eq.

(5.44)

for

the

on

tribution

from

the

rst

and

seond

generations

of

quarks

and

leptons

is

oneptually

v

ery

dieren

t

to

the

orresp

onding

one

prop

osed

in

Ref.

[125

â„„,

a

EW(2);f

(`;

q

)(e;

;

u;

d;

s;

)

=

G

F

p

2

m

2

8

2

3

ln

M

2

Z

m

2

+

4

ln

M

2

Z

m

2

u

ln

M

2

Z

m

2

d

5

2

6

o

3

ln

M

2

Z

m

2

+

4

ln

M

2

Z

m

2

ln

M

2

Z

m

2

s

11

6

+

8

9

2

6

(5.46)

=

G

F

p

2

m

2

8

2

(

31:9)

:

(5.47)

where

the

ligh

t

quarks

are,

arbitr

arily,

treated

the

same

w

a

y

as

hea

vy

quarks,

with

m

u

=

m

d

=

0:3

GeV

;

and

m

s

=

0:5

GeV

:

Although,

n

umerially

,

the

t

w

o

results

turn

out

not

to

b

e

to

o

dif-

feren

t,

the

result

in

Eq.

(5.46)

follo

ws

from

an

hadroni

mo

del

whi

h

is

in

on

tradition

with

basi

prop

erties

of

QCD.

This

is

at

the

origin

of

the

spurious

anellation

of

the

ln

M

Z

terms

in

Eq.

(5.46).

background image

120

M.

Kne

h

t

S

eminaire

P

oinar

e

Putting

together

the

n

umerial

results

in

Eqs.

(5.38),

(5.42),

(5.43)

with

the

new

result

in

Eq.

(5.44),

w

e

nally

obtain

the

v

alue

a

EW

=

G

F

p

2

m

2

8

2

5

3

+

1

3

1

4

sin

2

W

2

(165:4(4:0)

=

15:0(1)

10

10

;

(5.48)

whi

h

sho

ws

that

the

t

w

o{lo

op

orretion

represen

ts

indeed

a

redution

of

the

one{lo

op

result

b

y

an

amoun

t

of

23%.

The

nal

error

here

do

es

not

inlude

higher

order

eletro

w

eak

eets

[128

â„„.

5.4

Comparison

with

exp

erimen

t

W

e

ma

y

no

w

put

all

the

piees

together

and

obtain

the

v

alue

for

a

predited

b

y

the

standard

mo

del.

W

e

ha

v

e

seen

that

in

the

ase

of

the

hadroni

v

auum

p

olarization

on

tributions,

the

latest

ev

aluation

[92

â„„

sho

ws

a

disrepany

b

et

w

een

the

v

alue

obtained

exlusiv

ely

from

e

+

e

data

and

the

v

alue

that

arises

if

data

are

also

inluded.

This

giv

es

us

the

t

w

o

p

ossibilities

a

SM

(e

+

e

)

=

(11

659

169:1

7:5

4:0

0:3)

10

10

a

SM

(

)

=

(11

659

186:3

6:2

4:0

0:3)

10

10

;

(5.49)

where

the

rst

error

omes

from

hadroni

v

auum

p

olarization,

the

seond

from

hadroni

ligh

t-b

y-

ligh

t

sattering,

and

the

last

from

the

QED

and

w

eak

orretions.

When

ompared

to

the

presen

t

exp

erimen

tal

a

v

erage

a

exp

=

(11

659

203

8)

10

10

(5.50)

there

results

a

dierene,

a

exp

a

SM

(e

+

e

)

=

33:9(11:2)

10

10

;

a

exp

a

SM

(

)

=

16:7(10:7)

10

10

;

whi

h

represen

ts

3.0

and

1.6

standard

deviations,

resp

etiv

ely

.

Although

exp

erimen

t

and

theory

ha

v

e

no

w

b

oth

rea

hed

the

same

lev

el

of

auray

,

8

10

10

or

0:7

ppm,

the

presen

t

disrepany

b

et

w

een

the

e

+

e

and

based

ev

aluations

mak

es

the

in

terpretation

of

the

ab

o

v

e

results

a

deliate

issue

as

far

as

evidene

for

new

ph

ysis

is

onerned.

Other

ev

aluations

of

omparable

auray

[88

,

90

,

41

â„„

o

v

er

a

similar

range

of

v

ariation

in

the

dierene

b

et

w

een

exp

erimen

t

and

theory

.

One

p

ossibilit

y

to

ome

to

a

onlusion

w

ould

b

e

to

ha

v

e

the

exp

erimen

tal

result

still

more

aurate,

so

that

ev

en

the

dierene

a

exp

a

SM

(

)

w

ould

b

eome

suÆien

tly

signian

t.

In

this

resp

et,

it

is

ertainly

v

ery

imp

ortan

t

that

the

Bro

okha

v

en

exp

erimen

t

is

giv

en

the

means

to

impro

v

e

on

the

v

alue

of

a

exp

,

bringing

its

error

do

wn

to

4

10

10

or

0:35

ppm.

F

urthermore,

the

v

alue

obtained

for

a

SM

(e

+

e

)

relies

strongly

on

the

lo

w-energy

data

obtained

b

y

the

CMD-2

exp

erimen

t,

with

none

of

the

older

data

able

to

he

k

them

at

the

same

lev

el

of

preision.

In

this

resp

et,

the

prosp

ets

for

additional

high

statistis

data

in

the

future,

either

from

KLOE

or

from

BaBar,

are

most

w

elome.

On

the

other

hand,

if

the

presen

t

disrepany

in

the

ev

aluations

of

the

hadroni

v

auum

p

olarization

nds

a

solution

in

the

future,

and

if

the

exp

erimen

tal

error

is

further

redued,

b

y

,

sa

y

,

a

fator

of

t

w

o,

then

the

theoretial

unertain

t

y

on

the

hadroni

ligh

t-b

y-ligh

t

sattering

will

onstitute

the

next

serious

limitation

on

the

theoretial

side.

It

is

ertainly

w

orth

while

to

dev

ote

further

eorts

to

a

b

etter

understanding

of

this

on

tribution,

for

instane

b

y

nding

w

a

ys

to

feed

more

onstrain

ts

with

a

diret

link

to

QCD

in

to

the

desriptions

of

the

four-p

oin

t

funtion

(q

1

;

q

2

;

q

3

).

6

Conluding

remarks

With

this

review,

I

hop

e

to

ha

v

e

on

vined

the

reader

that

the

sub

jet

of

the

anomalous

magneti

momen

ts

of

the

eletron

and

of

the

m

uon

is

an

exiting

and

fasinating

topi.

It

pro

vides

a

go

o

d

example

of

m

utual

stim

ulation

and

strong

in

terpla

y

b

et

w

een

exp

erimen

t

and

theory

.

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

121

The

anomalous

magneti

momen

t

of

the

eletron

onstitutes

a

v

ery

stringen

t

test

of

QED

and

of

the

pratial

w

orking

of

the

framew

ork

of

p

erturbativ

ely

renormalized

quan

tum

eld

theory

at

higher

orders.

It

tests

the

v

alidit

y

of

QED

at

v

ery

short

distanes,

and

pro

vides

at

presen

t

the

b

est

determination

of

the

ne

struture

onstan

t.

The

anomalous

magneti

momen

t

of

the

m

uon

represen

ts

the

b

est

ompromise

b

et

w

een

sensitivit

y

to

new

degrees

of

freedom

desribing

ph

ysis

b

ey

ond

the

standard

mo

del

and

exp

erimen

tal

feasibil-

it

y

.

Imp

ortan

t

progress

has

b

een

a

hiev

ed

on

the

exp

erimen

tal

side

during

the

last

ouple

of

y

ears,

with

the

results

of

the

E821

ollab

oration

at

BNL.

The

exp

erimen

tal

v

alue

of

a

is

no

w

kno

wn

with

an

auray

of

0.7ppm.

Hop

efully

,

the

Bro

okha

v

en

exp

erimen

t

will

b

e

giv

en

the

opp

ortunit

y

to

rea

h

its

initial

goal

of

a

hieving

a

measuremen

t

at

the

0.35

ppm

lev

el.

As

an

b

e

inferred

from

the

examples

men

tioned

in

this

text,

the

sub

jet

onstitutes,

from

a

theo-

retial

p

oin

t

of

view,

a

diÆult

and

error

prone

topi,

due

to

the

te

hnial

diÆulties

enoun

tered

in

the

higher

lo

op

alulations.

The

theoretial

preditions

ha

v

e

rea

hed

a

preision

omparable

to

the

exp

erimen

tal

one,

but

unfortunately

there

app

ears

a

disrepany

b

et

w

een

the

most

reen

t

ev

aluations

of

the

hadroni

v

auum

p

olarization

aording

to

whether

data

are

tak

en

in

to

a-

oun

t

or

not.

Hadroni

on

tributions,

esp

eially

from

v

auum

p

olarization

and

from

ligh

t-b

y-ligh

t

sattering,

are

resp

onsible

for

the

bulk

part

of

the

nal

unertain

t

y

in

the

theoretial

v

alue

a

SM

.

F

urther

eorts

are

needed

in

order

to

bring

these

asp

ets

under

b

etter

on

trol.

A

kno

wledgmen

ts

I

wish

to

thank

A.

Nyeler,

S.

P

eris,

M.

P

errottet,

and

E.

de

Rafael

for

stim

ulating

and

v

ery

pleas-

an

t

ollab

orations,

and

for

sharing

man

y

insigh

ts

on

this

v

ast

sub

jet

and

on

related

topis.

Most

of

the

gures

app

earing

in

this

text

w

ere

kindly

pro

vided

b

y

M.

P

errottet,

to

whom

I

am

also

most

grateful

for

a

areful

and

ritial

reading

of

the

man

usript.

Finally

,

I

wish

to

thank

B.

Duplan

tier

and

V.

Riv

asseau

for

the

in

vitation

to

giv

e

a

presen

tation

at

the

\S

eminaire

P

oinar

e".

This

w

ork

is

supp

orted

in

part

b

y

the

EC

on

trat

No.

HPRN-CT-2002-00311

(EURIDICE).

Referenes

[1â„„

Quantum

Ele

tr

o

dynamis,

T.

Kinoshita

Ed.,

W

orld

Sien

ti

Publishing

Co.

Pte.

Ltd.,

1990.

[2â„„

J.

Calmet,

S.

Narison,

M.

P

errottet

and

E.

de

Rafael,

Rev.

Mo

d.

Ph

ys.

49,

21

(1977).

[3â„„

A.

Czarne

ki

and

W.

J.

Mariano,

Nul.

Ph

ys.

B

(Pro

.

Suppl.)

76,

245

(1998).

[4â„„

V.

W.

Hughes

and

T.

Kinoshita,

Rev.

Mo

d.

Ph

ys.

71,

S133

(1999).

[5â„„

K.

Melnik

o

v,

In

t.

J.

Mo

d.

Ph

ys.

A

16,

4591

(2001).

[6â„„

E.

de

Rafael,

arXiv:hep-ph/0208251.

[7â„„

A.

Czarne

ki

and

W.

J.

Mariano,

Ph

ys.

Rev.

D

64,

013014

(2001).

[8â„„

A

list

of

reen

t

pap

ers

on

the

sub

jet

an

b

e

found

under

the

URL

h

ttp://www.sla.stanford.edu/spires/nd/hep/www?=PRL

T

A,86,222

7.

[9â„„

L.

L.

F

oldy

,

Ph

ys.

Rev.

87,

688

(1952);

Rev.

Mo

d.

Ph

ys.

30,

471

(1958).

[10â„„

S.

J.

Bro

dsky

and

J.

D.

Sulliv

an,

Ph

ys.

Rev.

156,

1644

(1967).

[11â„„

R.

Barbieri,

J.

A.

Mignao

and

E.

Remiddi,

Nuo

v

o

Cimen

to

11A,

824

(1972).

background image

122

M.

Kne

h

t

S

eminaire

P

oinar

e

[12â„„

T.

App

elquist

and

J.

Carazzone,

Ph

ys.

Rev.

D

11,

2856

(1975).

[13â„„

T.

Sterling

and

M.

J.

V

eltman,

Nul.

Ph

ys.

B

189,

557

(1981).

[14â„„

E.

d'Hok

er

and

E.

F

arhi,

Nul.

Ph

ys.

B

248,

59,

77

(1984).

[15â„„

T.

Kinoshita,

Nuo

v

o

Cimen

to

51B,

140

(1967).

[16â„„

B.

E.

Lautrup

and

E.

de

Rafael,

Nul.

Ph

ys.

B

70,

317

(1974).

[17â„„

E.

de

Rafael

and

J.

L.

Rosner,

Ann.

Ph

ys.

(N.

Y.)

82,

369

(1974).

[18â„„

T.

Kinoshita

and

W.

J.

Mariano,

The

ory

of

the

Muon

A

nomalous

Magneti

Moment,

in

[1

â„„,

p.

419.

[19â„„

J.

E.

Nafe,

E.

B.

Nelson

and

I.

I.

Rabi,

Ph

ys.

Rev.

71,

914

(1947).

[20â„„

H.

G.

Dehmelt,

Ph

ys.

Rev.

109,

381

(1958).

[21â„„

R.

S.

V

an

Dy

k,

P

.

B.

S

h

win

b

erg

and

H.

G.

Dehmelt,

Ph

ys.

Rev.

Lett.

59,

26

(1987).

[22â„„

R.

S.

V

an

Dy

k,

A

nomalous

Magneti

Moment

of

Single

Ele

tr

ons

and

Positr

ons:

Exp

eriment,

in

[1â„„,

p.

322.

[23â„„

A.

Ri

h

and

J.

C.

W

esley

,

Rev.

Mo

d.

Ph

ys.

44,

250

(1972).

[24â„„

P

.

Kus

h

and

H.

M.

F

o

wley

,

Ph

ys.

Rev.

72,

1256

(1947).

[25â„„

P

.

A.

F

rank

en

and

S.

Lieb

es

Jr.,

Ph

ys.

Rev.

104,

1197

(1956).

[26â„„

A.

A.

S

h

upp

e,

R.

W.

Pidd,

and

H.

R.

Crane,

Ph

ys.

Rev.

121,

1

(1961).

[27â„„

D.

T.

Wilkinson

and

H.

R.

Crane,

Ph

ys.

Rev.

130,

852

(1963).

[28â„„

G.

Gr

a,

E.

Klempt

and

G.

W

erth,

Z.

Ph

ys.

222,

201

(1969).

[29â„„

J.

C.

W

esley

and

A.

Ri

h,

Ph

ys.

Rev.

A

4,

1341

(1971).

[30â„„

R.

S.

V

an

Dy

k,

P

.

B.

S

h

win

b

erg

and

H.

G.

Dehmelt,

Ph

ys.

Rev.

Lett.

38,

310

(1977).

[31â„„

F.

J.

M.

F

arley

and

E.

Piasso,

The

Muon

g

-

2

Exp

eriments,

in

[1â„„,

p.

479.

[32â„„

J.

Bailey

et

al.,

Ph

ys.

Lett.

B28,

287

(1968).

[33â„„

J.

Bailey

et

al.,

Ph

ys.

Lett.

B55,

420

(1975).

[34â„„

J.

Bailey

et

al.

[CERN-Mainz-Daresbury

Collab

orationâ„„,

Nul.

Ph

ys.

B

150,

1

(1979).

[35â„„

R.

M.

Carey

et

al.,Ph

ys.

Rev.

Lett.

82,

1632

(1999).

[36â„„

H.

N.

Bro

wn

et

al.

[Muon

(g

-

2)

Collab

orationâ„„,

Ph

ys.

Rev.

D

62,

091101(R)

(2000).

[37â„„

H.

N.

Bro

wn

et

al.

[Muon

(g

-

2)

Collab

orationâ„„,

Ph

ys.

Rev.

Lett.

86,

2227

(2001).

[38â„„

G.

W.

Bennett

et

al.

[Muon

(g

-

2)

Collab

orationâ„„,

Ph

ys.

Rev.

Lett.

89,

101804

(2002);

Erratum-ibid.

89,

129903

(2002).

[39â„„

K.

A

k

ersta

et

al.

[OP

AL

Collab

orationâ„„,

Ph

ys.

Lett.

B431,

188

(1998).

[40â„„

M.

Aiarri

et

al.

[L3

Collab

orationâ„„,

Ph

ys.

Lett.

B434,

169

(1998).

[41â„„

S.

Narison,

Ph

ys.

Lett.

B513,

53

(2001);

Erratum-ibid.

B526,

414

(2002).

[42â„„

J.

S

h

winger,

Ph

ys.

Rev.

73,

413

(1948);

76,

790

(1949).

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

123

[43â„„

R.

Karplus

and

N.

M.

Kroll,

Ph

ys.

Rev.

77,

536

(1950).

[44â„„

A.

P

eterman,

Helv.

Ph

ys.

Ata

30,

407

(1957).

[45â„„

C.

M.

Sommereld,

Ph

ys.

Rev.

107,

328

(1957).

[46â„„

C.

M.

Sommereld,

Ann.

Ph

ys.

(N.Y.)

5,

26

(1958).

[47â„„

G.

S.

Adkins,

Ph

ys.

Rev.

D

39,

3798

(1989).

[48â„„

J.

S

h

winger,

Partiles,

Sour

es

and

Fields,

V

olumeIII,

Addison-W

esley

Publishing

Compan

y

,

In.,

1989.

[49â„„

S.

Lap

orta

and

E.

Remiddi,

Ph

ys.

Lett.

B379,

283

(1996).

[50â„„

R.

Barbieri

and

E.

Remiddi,

Nul.

Ph

ys.

B

90,

233

(1975).

[51â„„

M.

A.

Sam

uel

and

G.

Li,

Ph

ys.

Rev.

D

44,

3935

(1991).

[52â„„

S.

Lap

orta

and

E.

Remiddi,

Ph

ys.

Lett.

B265,

181

(1991).

[53â„„

S.

Lap

orta,

Ph

ys.

Rev.

D

47,

4793

(1993).

[54â„„

S.

Lap

orta,

Ph

ys.

Lett.

B343,

421

(1995).

[55â„„

S.

Lap

orta

and

E.

Remiddi,

Ph

ys.

Lett.

B356,

390

(1995).

[56â„„

R.

Z.

Roskies,

E.

Remiddi

and

M.

J.

Levine,

A

nalyti

evaluation

of

sixth-or

der

ontributions

to

the

ele

tr

on

's

g

fator,

in

[1â„„,

p.

162.

[57â„„

T.

Kinoshita,

The

ory

of

the

anomalous

magneti

moment

of

the

ele

tr

on

{

Numeri

al

Ap-

pr

o

ah,

in

[1â„„,

p.

218.

[58â„„

J.

Aldins,

S.

J.

Bro

dsky

,

A.

Dufner,

and

T.

Kinoshita,

Ph

ys.

Rev.

Lett.

23,

441

(1970);

Ph

ys.

Rev.

D

1,

2378

(1970).

[59â„„

S.

J.

Bro

dsky

and

T.

Kinoshita,

Ph

ys.

Rev.

D

3,

356

(1971).

[60â„„

J.

Calmet

and

M.

P

errottet,

Ph

ys.

Rev.

D

3,

3101

(1971).

[61â„„

J.

Calmet

and

A.

P

eterman,

Ph

ys.

Lett.

B47,

369

(1973).

[62â„„

M.

J.

Levine

and

J.

W

righ

t,

Ph

ys.

Rev.

Lett.

26,

1351

(1971);

Ph

ys.

Rev.

D

8,

3171

(1973).

[63â„„

R.

Carroll

and

Y.

P

.

Y

ao,

Ph

ys.

Lett.

B48,

125

(1974).

[64â„„

P

.

Cvitano

vi

and

T.

Kinoshita,

Ph

ys.

Rev.

D

10,

3978,

3991,

4007

(1974).

[65â„„

T.

Kinoshita

and

W.

B.

Lindquist,

Ph

ys.

Rev.

D

27,

867,

877,

886

(1983);

D

39,

2407

(1989);

D

42,

636

(1990).

[66â„„

M.

Cao,

S.

T

urrini,

and

E.

Remiddi,

Ph

ys.

Rev.

D

30,

483

(1984).

[67â„„

E.

Remiddi

and

S.

P

.

Sorella,

Lett.

Nuo

v

o

Cim.

44,

231

(1985).

[68â„„

T.

Kinoshita,

IEEE

T

rans.

Instrum.

Meas.

44,

498

(1995).

[69â„„

H.

Suura

and

E.

Wi

hmann,

Ph

ys.

Rev.

105,

1930

(1957).

[70â„„

A.

P

eterman,

Ph

ys.

Rev.

105,

1931

(1957).

[71â„„

H.

H.

Elend,

Ph

ys.

Lett.

20,

682

(1966);

Erratum-ibid.

21,

720

(1966).

[72â„„

B.

E.

Lautrup

and

E.

de

Rafael,

Ph

ys.

Rev.

174,

1835

(1968).

background image

124

M.

Kne

h

t

S

eminaire

P

oinar

e

[73â„„

S.

Lap

orta,

Nuo

v

o

Cimen

to

106A,

675

(1993).

[74â„„

S.

Lap

orta

and

E.

Remiddi,

Ph

ys.

Lett.

B301,

440

(1993).

[75â„„

A.

Czarne

ki,

B.

Krause

and

W.

J.

Mariano,

Ph

ys.

Rev.

Lett.

76,

3267

(1996).

[76â„„

P

.

J.

Mohr

and

B.

N.

T

a

ylor,

Rev.

Mo

d.

Ph

ys.

72,

351

(2000).

[77â„„

B.

Krause,

Ph

ys.

Lett.

B390,

392

(1997).

[78â„„

C.

Bou

hiat

and

L.

Mi

hel,

J.

Ph

ys.

Radium

22,

121

(1961).

[79â„„

L.

Durand

I

I

I,

Ph

ys.

Rev.

128,

441

(1962);

Erratum-ibid.

129,

2835

(1963).

[80â„„

J.

Z.

Bai

et

al.

[BES

Collab

orationâ„„,

Ph

ys.

Rev.

Lett.

84,

594

(2000);

Ph

ys.

Rev.

Lett.

88,

101802

(2000).

[81â„„

R.

R.

Akhmetshin

et

al.

[CMD-2

Collab

orationâ„„,

Ph

ys.

Lett.

B527,

161

(2002).

[82â„„

R.

Barate

et

al.

[ALEPH

Collab

orationâ„„,

Z.

Ph

ys.

C

2,

123

(1997).

[83â„„

S.

Anderson

et

al.

[CLEO

Collab

orationâ„„,

Ph

ys.

Rev.

D

61,

112002

(2000).

[84â„„

S.

Eidelman

and

F.

Jegerlehner,

Z.

Ph

ys.

C

67,

585

(1995).

[85â„„

D.

H.

Bro

wn

and

W.

A.

W

orstell,

Ph

ys.

Rev.

D

54,

3237

(1996).

[86â„„

R.

Aleman

y

,

M.

Da

vier

and

A.

H

o

k

er,

Eur.

Ph

ys.

J.

C

2,

123

(1998).

[87â„„

M.

Da

vier

and

A.

H

o

k

er,

Ph

ys.

Lett.

B419,

419

(1998).

[88â„„

M.

Da

vier

and

A.

H

o

k

er,

Ph

ys.

Lett.

B435,

427

(1998).

[89â„„

G.

Cv

eti,

T.

Lee

and

I.

S

hmidt,

Ph

ys.

Lett.

B513,

361

(2001).

[90â„„

J.

F.

de

T

ro

oniz

and

F.

J.

Yndur

ain,

Ph

ys.

Rev.

D

65,

093001

(2002).

[91â„„

F.

Jegerlehner,

arXiv:hep-ph/0104304.

[92â„„

M.

Da

vier,

S.

Eidelman,

A.

H

o

k

er

and

Z.

Zhang,

arXiv:hep-ph/0208177.

[93â„„

M.

P

errottet

and

E.

de

Rafael,

unpublished.

[94â„„

K.

Hagiw

ara,

A.

D.

Martin,

D.

Nom

ura

and

T.

T

eubner,

arXiv:hep-ph/0209187.

[95â„„

S.

P

eris,

M.

P

errottet

and

E.

de

Rafael,

JHEP

05,

011

(1998).

[96â„„

G.

't

Ho

oft,

Nul.

Ph

ys.

B

72,

461

(1974).

[97â„„

E.

Witten,

Nul.

Ph

ys.

B

160,

157

(1979).

[98â„„

M.

P

errottet

and

E.

de

Rafael,

priv

ate

omm

uniation.

[99â„„

J.

Calmet,

S.

Narison,

M.

P

errottet

and

E.

de

Rafael,

Ph

ys.

Lett.

B61,

283

(1976).

[100â„„

T.

Kinoshita,

B.

Nizi,

Y.

Ok

amoto,

Ph

ys.

Rev.

D

31,

2108

(1985).

[101â„„

M.

Ha

y

ak

a

w

a,

T.

Kinoshita

and

A.

I.

Sanda,

Ph

ys.

Rev.

Lett.

75,

790

(1995);

Ph

ys.

Rev.

D

54,

3137

(1996).

[102â„„

J.

Bijnens,

E.

P

allan

te

and

J.

Prades,

Nul.

Ph

ys.

B

474,

379

(1996).

[103â„„

M.

Ha

y

ak

a

w

a

and

T.

Kinoshita,

Ph

ys.

Rev.

D

57,

465

(1998).

[104â„„

M.

Kne

h

t

and

A.

Nyeler,

Ph

ys.

Rev.

D

65,

073034

(2002).

background image

V

ol.

2,

2002

The

Anomalous

Magneti

Momen

ts

of

the

Eletron

and

the

Muon

125

[105â„„

M.

Ha

y

ak

a

w

a

and

T.

Kinoshita,

arXiv:hep-ph/0112102,

and

the

erratum

to

[103

â„„

published

in

Ph

ys.

Rev.

D

66,

019902(E)

(2002).

[106â„„

J.

Bijnens,

E.

P

allan

te

and

J.

Prades,

Nul.

Ph

ys.

B

626,

410

(2002).

[107â„„

J.

W

ess

and

B.

Zumino,

Ph

ys.

Lett.

B37,

95

(1971).

[108â„„

E.

Witten,

Nul.

Ph

ys.

B

223,

422

(1983).

[109â„„

S.

L.

Adler,

Ph

ys.

Rev.

177,

2426

(1969).

[110â„„

J.

S.

Bell

and

R.

Ja

kiw,

Nuo

v

o

Cimen

to

A

60,

47

(1969).

[111â„„

J.

Bijnens

and

F.

P

ersson,

arXiv:hep-ph/0106130.

[112â„„

M.

Kne

h

t

and

A.

Nyeler,

Eur.

Ph

ys.

J.

C

21,

659

(2001).

[113â„„

J.

L.

Rosner,

Ann.

Ph

ys.

(N.Y.)

44,

11

(1967).

Impliitly

,

the

metho

d

of

Gegen

bauer

p

olyno-

mials

w

as

already

used

in

the

follo

wing

pap

ers:

M.

Bak

er,

K.

Johnson,

and

R.

Willey

,

Ph

ys.

Rev.

136,

B1111

(1964);

163,

1699

(1967).

[114â„„

M.

J.

Levine

and

R.

Roskies,

Ph

ys.

Rev.

D

9,

421

(1974);

M.

J.

Levine,

E.

Remiddi,

and

R.

Roskies,

ibid.

20,

2068

(1979).

[115â„„

M.

Kne

h

t,

A.

Nyeler,

M.

P

errottet

and

E.

de

Rafael,

Ph

ys.

Rev.

Lett.

88,

071802

(2002).

[116â„„

I.

Blokland,

A.

Czarne

ki

and

K.

Melnik

o

v,

Ph

ys.

Rev.

Lett.

88,

071803

(2002).

[117â„„

W.

J.

Bardeen

and

A.

de

Gouv

ea,

priv

ate

omm

uniation.

[118â„„

W.A.

Bardeen,

R.

Gastmans

and

B.E.

Lautrup,

Nul.

Ph

ys.

B

46,

315

(1972).

[119â„„

G.

Altarelli,

N.

Cabbib

o

and

L.

Maiani,

Ph

ys.

Lett.

B40,

415

(1972).

[120â„„

R.

Ja

kiw

and

S.

W

ein

b

erg,

Ph

ys.

Rev.

D

5,

2473

(1972).

[121â„„

I.

Bars

and

M.

Y

oshim

ura,

Ph

ys.

Rev.

D

6,

374

(1972).

[122â„„

M.

F

ujik

a

w

a,

B.W.

Lee

and

A.I.

Sanda,

Ph

ys.

Rev.

D

6,

2923

(1972).

[123â„„

V.A.

Smirno

v,

Mo

d.

Ph

ys.

Lett.

A

10,

1485

(1995).

[124â„„

S.

P

eris,

M.

P

errottet

and

E.

de

Rafael,

Ph

ys.

Lett.

B355,

523

(1995).

[125â„„

A.

Czarne

ki,

B.

Krause

and

W.

Mariano,

Ph

ys.

Rev.

D

52,

R2619

(1995).

[126â„„

T.V.

Kukh

to,

E.A.

Kuraev,

A.

S

hiller

and

Z.K.

Silagadze,

Nul.

Ph

ys.

B

371,

567.

[127â„„

S.

P

eris,

M.

P

errottet

and

E.

de

Rafael,

arXiv:hep-ph/0205102.

[128â„„

G.

Degrasi

and

G.F.

Giudie,

Ph

ys.

Rev.

D

58

(1998)

053007.