background image

SUSTAINABLE

ENERGY SECURITY

Strategic risks and 

opportunities for business

WHITE PAPER

background image

about lloyd’s

Lloyd’s is the world’s leading specialist insurance market, conducting business in over 200 countries and territories
worldwide â€“ and is often the first to insure new, unusual or complex risks. We bring together an outstanding concentration
of specialist underwriting expertise and talent, backed by excellent financial ratings which cover the whole market.

about 360 risk insight

Global risks change rapidly. Companies need to anticipate tomorrow’s risks today. At Lloyd’s, we’ve been helping businesses 
do just that for over 300 years. From climate change to terrorism, energy security to liability, boards must anticipate and 
understand emerging risks to successfully lead their companies into the future.

Lloyd’s 360 Risk Insight brings together some of the views of the world’s leading business, academic and insurance experts. 
We analyse the latest material on emerging risk to provide business with critical information. Through research, reports, 
events, news and online content, Lloyd’s 360 Risk Insight drives the global risk agenda as it takes shape. We provide practical 
advice that businesses need to turn risk into opportunity.

Get the latest reports and analysis on emerging risk at www.lloyds.com/360

about chatham house

Chatham House’s mission is to be a world-leading source of independent analysis, informed debate and influential ideas on 
how to build a prosperous and secure world for all. Chatham House pursues this mission by drawing on its membership to 
promote open as well as confidential debates about significant developments in international affairs and about the context
and content of policy responses. The Energy, Environment and Development Programme (EEDP) at Chatham House aims to 
advance the international debate on energy, environment, resources and development policy and to influence and enable 
decision-makers â€“ governments, NGOs and business â€“ to make well-informed decisions that contribute to achieving 
sustainable development. 

about the authorS

Antony Froggatt is a Senior Research Fellow at Chatham House. He has worked on international energy and climate issues for 
over 20 years providing research and information for a wide range of bodies including companies, governments, the media, 
non-government organisations and international organisations and has published over 50 reports and papers.

Glada Lahn is a Research Fellow specialising in energy governance and development issues at Chatham House. She has published 
several papers on Asian energy security and oil and gas investment trends and is currently researching energy policy in the Gulf. 
Glada has also worked for a number of organisations as a freelance consultant on Middle East political and economic issues.

acknowledgements

Lead authors:

 Antony Froggatt and Glada Lahn

Contributing authors:

 William Blyth, Kirsty Hamilton, Bernice Lee, John Mitchell, Cleo Paskal, Felix Preston and Paul Stevens 

(all Chatham House)

We would like to thank the following peer reviewers and commentators:

 Liz Collett, Dr Muriel Desaeger (Toyota 

Motor Europe), Mark Dominik, Dr Oliver Inderwildi (Smith School, University of Oxford), Chris McCann. 

At an early stage of the drafting, we also held a workshop to discuss key themes with the business 
community. Representatives from the following companies and organizations took part: 

Alstom,

Anglo American plc, Arthur D. Little, Beazley, BP, Deutsche Bank, E.ON-UK, The Foreign and Commonwealth Office,
Gaz de France, Maersk Group, McKinsey, Shell, Siemens AG, Statoil, Travelers, Walmart, Watkins Syndicate. 

These individuals offered valuable suggestions and advice during the drafting process. However, the authors 
are solely responsible for any opinions expressed in the text and for any errors or omissions. 

background image

 1   

Foreword
Executive Summary
Introduction
Trends
  1.  The changing dynamics of energy demand and 

resource availability

    1.1 The resurgence of coal
    1.2 Gas as the â€˜transition fuel’
    1.3 Oil consumption driven by transport and price
    1.4 Uranium
  2.  Climate change and the drive towards  

renewable energy

  3.  The risks associated with a new  

technology revolution

    3.1 National and international policy risks
    3.2 New scarcity risks in some raw materials
    3.3 Competing resource uses
    3.4 New environmental risks
  4. Risks to energy and transport infrastructure
    4.1 Power sector risks
    4.2 Changing risk landscape for transport routes
    4.3 Oil and gas infrastructure
Challenges and risks for global businesses
  Implications and risks for business in general
  Implications and risks for the energy sector
  New business opportunities
Conclusions
References
Useful contacts

03
04
06
08
09

10
11
12
15
17

20

20
20
21
21
22
22
22
23
24
25
31
36
38
39
43

s

sustainable

energy security

Strategic risks and 

opportunities for business

WHITE PAPER

about lloyd’s

Lloyd’s is the world’s leading specialist insurance market, conducting business in over 200 countries and territories
worldwide â€“ and is often the first to insure new, unusual or complex risks. We bring together an outstanding concentration
of specialist underwriting expertise and talent, backed by excellent financial ratings which cover the whole market.

about 360 risk insight

Global risks change rapidly. Companies need to anticipate tomorrow’s risks today. At Lloyd’s, we’ve been helping businesses 
do just that for over 300 years. From climate change to terrorism, energy security to liability, boards must anticipate and 
understand emerging risks to successfully lead their companies into the future.

Lloyd’s 360 Risk Insight brings together some of the views of the world’s leading business, academic and insurance experts. 
We analyse the latest material on emerging risk to provide business with critical information. Through research, reports, 
events, news and online content, Lloyd’s 360 Risk Insight drives the global risk agenda as it takes shape. We provide practical 
advice that businesses need to turn risk into opportunity.

Get the latest reports and analysis on emerging risk at www.lloyds.com/360

about chatham house

Chatham House’s mission is to be a world-leading source of independent analysis, informed debate and influential ideas on 
how to build a prosperous and secure world for all. Chatham House pursues this mission by drawing on its membership to 
promote open as well as confidential debates about significant developments in international affairs and about the context
and content of policy responses. The Energy, Environment and Development Programme (EEDP) at Chatham House aims to 
advance the international debate on energy, environment, resources and development policy and to influence and enable 
decision-makers â€“ governments, NGOs and business â€“ to make well-informed decisions that contribute to achieving 
sustainable development. 

about the authorS

Antony Froggatt is a Senior Research Fellow at Chatham House. He has worked on international energy and climate issues for 
over 20 years providing research and information for a wide range of bodies including companies, governments, the media, 
non-government organisations and international organisations and has published over 50 reports and papers.

Glada Lahn is a Research Fellow specialising in energy governance and development issues at Chatham House. She has published 
several papers on Asian energy security and oil and gas investment trends and is currently researching energy policy in the Gulf. 
Glada has also worked for a number of organisations as a freelance consultant on Middle East political and economic issues.

acknowledgements

Lead authors:

 Antony Froggatt and Glada Lahn

Contributing authors:

 William Blyth, Kirsty Hamilton, Bernice Lee, John Mitchell, Cleo Paskal, Felix Preston and Paul Stevens 

(all Chatham House)

We would like to thank the following peer reviewers and commentators:

 Liz Collett, Dr Muriel Desaeger (Toyota 

Motor Europe), Mark Dominik, Dr Oliver Inderwildi (Smith School, University of Oxford), Chris McCann. 

At an early stage of the drafting, we also held a workshop to discuss key themes with the business 
community. Representatives from the following companies and organizations took part: 

Alstom,

Anglo American plc, Arthur D. Little, Beazley, BP, Deutsche Bank, E.ON-UK, The Foreign and Commonwealth Office,
Gaz de France, Maersk Group, McKinsey, Shell, Siemens AG, Statoil, Travelers, Walmart, Watkins Syndicate. 

These individuals offered valuable suggestions and advice during the drafting process. However, the authors 
are solely responsible for any opinions expressed in the text and for any errors or omissions. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 2   

Illustrations

Figure 1:  Global energy demand in 2007 (million tonnes 

of oil equivalent – mtoe)

Figure 2:  Middle East oil surplus vs Asia-Pacific deficit
Figure 3:  Historical coal consumption in major world 

regions (mtoe)

Figure 4:  Growth in global natural gas consumption 

and future projections (mtoe)

Figure 5:  Range of oil price forecasts
Figure 6:  Impact of Copenhagen Accord on  

global emissions

Figure 7:  Global growth of renewable energy in the 

power sector (excluding large hydro)

Figure 8:  Global shipping routes, pipelines and  

world ports

Figure 9:  Global final energy consumption (2005)
Figure 10:  Major global energy users in the 

manufacturing sector (2005)

Figure 11:  Risks for the wider business sector
Figure 12:  Energy use in the UK food sector
Figure 13:  Risks for the energy sector

Tables

Table 1: Material use on new energy sources

8

10
11

11

15
18

19

23

25
25

26
30
31

20

09
10

10
12
13
13
14

16
17
18
19

21
27

28
30

33

33
34
35

36

Boxes

Box 1:  China’s global energy impact
Box 2:  A change in the energy market balance between 

East and West

Box 3:   Geopolitics of Energy
Box 4:  What can we expect from shale gas?
Box 5:  The impact of government policy on energy pricing
Box 6:  Oil research: below ground constraints
Box 7:  Unconventional fossil fuels: prospects and 

problems

Box 8:  The progress of nuclear power
Box 9:  Renewable energy
Box 10:  The failure of Copenhagen to set a 2°C pathway
Box 11:  The carbon reduction commitment and the 

building trade

Box 12:  Rare earth metals
Box 13:  Electricity and gas cut-offs: the case of the textiles 

industry in Pakistan

Box 14:  European carbon market
Box 15:  How the food industry could be affected by 

energy disruption

Box 16:  Centrica – from energy supplier to energy service 

supplier? 

Box 17:  Carbon capture and storage
Box 18:  Energy and water use - a new flashpoint?
Box 19:  Smart energy systems bring new opportunities 

and risks

Box 20:  Competition and collaboration for the low-carbon 

space – the example of electric vehicles

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 3   

foreword

from the chief executive officer of lloyd’s

This report, jointly 
produced by Lloyd’s 360 
Risk Insight programme 
and Chatham House, 
should cause all risk 
managers to pause. 
What it outlines, in stark 
detail, is that we have 
entered a period of deep 
uncertainty in how we 
will source energy for 
power, heat and mobility, 
and how much we will 
have to pay for it. 

Is this any different from the normal volatility of the oil 
or gas markets? Yes, it is. Today, a number of pressures 
are combining: constraints on â€˜easy to access’ oil; the 
environmental and political urgency of reducing carbon 
dioxide emissions; and a sharp rise in energy demand 
from the Asian economies, particularly China. 

All of this means that the current generation of business 
leaders – and their successors – are going to have to 
find a new energy paradigm. As the report makes clear, 
we can expect dramatic changes: prices are likely to 
rise, with some commentators suggesting oil may reach 
$200 a barrel; regulations on carbon emissions will 
intensify; and reputations will be won or lost as the public 
demands that businesses reduce their environmental 
footprint. The growing demand for energy will require 
an estimated $26trn in investment by 2030. Energy 
companies will face hard choices in deciding how to 
deploy these funds in an uncertain market with mixed 
policy messages. The recent Deepwater oil spill shows 
all too clearly the hazards of moving into ever more 
unpredictable terrain to extract energy resources. And 
the rapid deployment of cleaner energy technologies will 
radically alter the risk landscape. 

At this precise point in time we are in a period akin to 
a phony war. We keep hearing of difficulties to come, 
but with oil, gas and coal still broadly accessible â€“ and 

largely capable of being distributed where they are 
needed â€“ the bad times have not yet hit. The primary 
purpose of this report is to remind the reader that all 
businesses, not just the energy sector, need to consider 
how they, their suppliers and their customers will be 
affected by energy supplies which are less reliable and 
more expensive. 

The failure of the Copenhagen Summit has not helped to 
instil a sense of urgency and it has hampered the ability 
of businesses – particularly those in the energy sector 
– to plan ahead and to make critical new investments 
in energy infrastructure. Like the authors of this report, 
I call on governments to identify a clear path towards 
sustainable energy which businesses can follow. 

Independently of what happens in UN negotiating rooms, 
businesses can take action. We can plan our energy 
needs, we can make every effort to reduce consumption, 
and we can aim for a mix of different energy sources. The 
transformation of the energy environment from carbon 
to clean energy sources creates an extraordinary risk 
management challenge for businesses. Traditional models 
that focus on annual profits and, at best, medium term 
strategies may struggle. Parts of this report talk about 
what might happen in 2030 or even 2050 and I make no 
apology for this. Energy security requires a long term view 
and it is the companies who grasp this who will trade on 
into the second half of this century. 
 

Dr Richard Ward

Chief Executive Officer
Lloyd’s

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 4   

executive summary

1.  BUSINESSES WHICH PREPARE FOR AND TAKE ADVANTAGE OF 

THE NEW ENERGY REALITY WILL PROSPER – FAILURE TO DO SO 

COULD BE CATASTROPHIC

Energy security and climate change concerns are unleashing a wave of policy initiatives and investments around the 
world that will fundamentally alter the way that we manage and use energy. Companies which are able to plan for and 
take advantage of this new energy reality will increase both their resilience and competitiveness. Failure to do so could 
lead to expensive and potentially catastrophic consequences. 

2.  MARKET DYNAMICS AND ENVIRONMENTAL FACTORS MEAN 

BUSINESS CAN NO LONGER RELY ON LOW COST TRADITIONAL 

ENERGY SOURCES

Modern society has been built on the back of access to relatively cheap, combustible, carbon-based energy sources. 
Three factors render that model outdated: surging energy consumption in emerging economies, multiple constraints on 
conventional fuel production and international recognition that continuing to release carbon dioxide into the atmosphere 
will cause climate chaos. 

3.  CHINA AND GROWING ASIAN ECONOMIES WILL PLAY AN 

INCREASINGLY IMPORTANT ROLE IN GLOBAL ENERGY SECURITY

China and emerging Asian economies have already demonstrated their weight in the energy markets. Their importance in 
global energy security will grow. First, their economic development is the engine of demand growth for energy. Second, 
their production of coal and strategic supplies of oil and gas will be increasingly powerful factors affecting the international 
market. Third, their energy security policies are driving investment in clean energy technologies on an unprecedented scale. 
China in particular is also a source country for some of the critical components in these technologies. Fourth, as â€˜factories 
of the world’, the energy situation in Asian countries will impact on supply chains around the world.

4.  WE ARE HEADING TOWARDS A GLOBAL OIL SUPPLY CRUNCH 

AND PRICE SPIKE

Energy markets will continue to be volatile as traditional mechanisms for balancing supply and price lose their power. 
International oil prices are likely to rise in the short to mid-term due to the costs of producing additional barrels from difficult 
environments, such as deep offshore fields and tar sands. An oil supply crunch in the medium term is likely to be due to a 
combination of insufficient investment in upstream oil and efficiency over the last two decades and rebounding demand 
following the global recession. This would create a price spike prompting drastic national measures to cut oil dependency.

5.  ENERGY INFRASTRUCTURE WILL BECOME INCREASINGLY 

VULNERABLE AS A RESULT OF CLIMATE CHANGE AND 

OPERATIONS IN HARSHER ENVIRONMENTS

Much of the world’s energy infrastructure lies in areas that will be increasingly subject to severe weather events caused by 
climate change. On top of this, extraction is increasingly taking place in more severe environments such as the Arctic and 
ultra-deep water. For energy investors this means long-term planning based on a changing – rather than a stable climate. 
For energy users, it means greater likelihood of loss of power for industry and fuel supply disruptions. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 5   

6.  LACK OF GLOBAL REGULATION ON CLIMATE CHANGE IS CREATING 

AN ENVIRONMENT OF UNCERTAINTY FOR BUSINESS, WHICH IS 

DAMAGING INVESTMENT PLANS

Without an international agreement on the way forward on climate change mitigation, energy transitions will take place 
at different rates in different regions. Those who succeed in implementing the most efficient, low-carbon, cost-effective 
energy systems are likely to influence others and export their skills and technology. However, the lack of binding policy 
commitments inhibits investor confidence. Governments will play a crucial role in setting policy and incentives that will 
create the right investment conditions, and businesses can encourage and work with governments to do this.

7.  TO MANAGE INCREASING ENERGY COSTS AND CARBON 

EXPOSURE BUSINESSES MUST REDUCE FOSSIL FUEL 

CONSUMPTION

The introduction of carbon pricing and cap and trade schemes will make the unit costs of energy more expensive. The 
most cost-effective mitigation strategy is to reduce fossil fuel energy consumption. The carbon portfolio and exposure of 
companies and governments will also come under increasing scrutiny. Higher emissions standards are anticipated across 
many sectors with the potential for widespread carbon labelling. In many cases, an early capacity to calculate and reduce 
embedded carbon and life-cycle emissions in operations and products will increase competitiveness.

8.  BUSINESS MUST ADDRESS ENERGY-RELATED RISKS TO 

SUPPLY CHAINS AND THE INCREASING VULNERABILITY 

OF â€˜JUST-IN-TIME’ MODELS

Businesses must address the impact of energy and carbon constraints holistically, and throughout their supply chains. Tight 
profit margins on food products, for example, will make some current sources unprofitable as the price of fuel rises and 
local suppliers become more competitive. Retail industries will need to either re-evaluate the â€˜just-in-time’ business model 
which assumes a ready supply of energy throughout the supply chain or increase the resilience of their logistics against 
supply disruptions and higher prices. Failure to do so will increase a business’s vulnerability to reputational damage and 
potential profit losses resulting from the inability to deliver products and services in the event of an energy crisis. 

9.  INVESTMENT IN RENEWABLE ENERGY AND ‘INTELLIGENT’ 

INFRASTRUCTURE IS BOOMING. THIS REVOLUTION PRESENTS 

HUGE OPPORTUNITIES FOR NEW business PARTNERSHIPS 

The last few years have witnessed unprecedented investment in renewable energy and many countries are planning 
or piloting â€˜smart grids’. This revolution presents huge opportunities for new partnerships between energy suppliers, 
manufacturers and users. New risks will also have to be managed. These include the scarcity of several essential 
components of clean energy technologies, incompatible infrastructures and the vulnerability of a system that is 
increasingly dependent on IT.

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 6   

INTRODUCTION

“In some cases, the surprise element 

is only a matter of timing: an energy 

transition, for example is inevitable; the 

only questions are when and how abruptly 

or smoothly such a transition occurs. An 

energy transition from one type of fuel 

(fossil fuels) to another (alternative) is an 

event that historically has only happened 

once a century at most with momentous 

consequences.” 

US National Intelligence Council 2008

1

The first part of this report sets out several trends 
propelling us towards a carbon-constrained world, these 
include: the dynamics affecting availability and demand 
for hydrocarbons; and the international climate change 
mitigation agenda. It considers the responses from 
government and industry in terms of renewable energy 
and carbon legislation, and the new risks emanating from 
technological change and climate instability. The second 
part explores the implications and associated risks of 
these trends for businesses in general, and for the energy 
sector specifically, in the coming decade. 

The report looks at short-term (one to five years) 
and medium-term (five to ten years) risks to general 
business. It also considers longer-term (ten years plus) 
issues, particularly as they impact on technological and 
investment choices for the energy sector. While energy 
supply disruption is frequently the result of technical 
faults and strike action, we do not deal with this here, 
but concentrate instead on the impacts of constraints 
on carbon and carbon-based resources.

A new look at energy security 

Historically, energy security has been understood as 
defence against supply disruption and price instability. 
Within this mindset, protecting the status quo is 
paramount. Yet dynamic trends, including the sharp 
rise in demand from newly industrialising economies, 
carbon-dioxide (C0

2

) induced global warming and the 

growth of alternative energy technologies, mean that 
protecting traditional energy practices will make us far 

less secure, and less competitive, in the future. This is in 
addition to the threat that climate change poses to energy 
infrastructure. These are not issues for the energy sector 
alone. The return to high and volatile oil prices after 2005 
reinforced the link between energy prices, profits and 
economic stability for most businesses. 

The looming climate challenge

Climate change creates many risks and uncertainties 
for society and industry. Anticipated disruption around 
energy, water and other critical natural resources pose 
new political, economic and human security challenges. 

We know that to keep global warming to 2°C above 
historical levels requires a step-change in the way energy 
is produced, transported and used. But international 
progress has been slow. The Copenhagen Accord of 2009 
lists actions that the governments of over 100 developed 
and developing countries propose to take to achieve this, 
but there is no binding legal commitment. 

Until now, supply concerns and relations with energy 
exporters have tended to dominate national energy 
policies, but this is changing. Energy efficiency will 
be the mantra of governments trying to ensure both 
national security and C0

2

 reductions, and energy users 

are increasingly central in this vision. Energy efficiency 
is also vital for economic competitiveness and insulates 
companies from the worst of the energy price volatility. 
On the supply side, renewable energy has moved into 
the mainstream and is now supplying the majority of 
new electricity in some regions. To increase efficiency 
and allow the uptake of more renewable energy, radically 
different infrastructures are being planned around the 
world. These may include local and transnational â€˜smart 
grids’ that communicate with household and industrial 
appliances and electric vehicles, and can send power 
back into the grid to help regulate demand flows.

Why is it important for businesses?

Meeting the dual challenge of maintaining stable energy 
services in the short term, without jeopardising them in 
the long term, means reformulating â€˜energy security’ as 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 7   

‘securing the transition to a low or no carbon economy’. 
This cannot be based purely on access to affordable 
units of energy, be it litres of fuel or kilowatt hour (kwh), 
but rather one which prepares for a long-term vision of 
efficient, clean, safe delivery of energy services to meet 
societal needs.

2

At the global level, there is little sign that energy 
demand will go down, with business as usual 
forecasts suggesting a 40% increase by 2030. This will 
require $26trn of investment - some 1.4% of global 
GDP.

3

 Given the global commitment to radically reduce 

emissions and the finite nature of conventional fossil 
fuel sources, a rapid movement towards a highly 

efficient non-fossil energy future would seem to be 
the logical investment choice. 

For energy businesses, the higher upfront investment 
costs, technological uncertainties and lack of confidence 
in the short-term economics (compared with conventional 
fuels) raise problems and risks. These include the dangers 
of changes in policy or higher costs associated with being 
a first mover. Businesses in the wider economy also 
need to be aware of the changing energy context their 
operations and supply chains will rely on. Businesses that 
can adapt their activities to benefit from emerging energy 
trends and manage the risks will gain an advantage over 
their competitors. 

background image

1176 

Biomass & waste

  265 

Hydro

  709 

Nuclear

2512 

Gas

4093 

Oil

    74 

Other renewables

3184 

Coal

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 8   

trends

“Secure and reliable energy supply and 

infrastructure impacts the feasibility and 

costs of doing business from perspectives 

of competitiveness and productivity. 

Energy security is a vital consideration, 

not only for day-to-day operations, but 

also for long-term investment.” 

International Chamber of Commerce, 2007

4

Today, the majority of our heating, power and mobility rely 
on extractive energy resources. Oil, coal, gas and uranium, 
account for around 90% of the world’s traded energy. Oil 
in particular, because it is widely traded on global markets 
and is the main fuel for transport, has been one of the 
drivers of global growth over the last century. With world 
population growth and pressure for higher standards of 
living in developing countries, demand for energy will 
reach new heights. But how long can we rely on these 
ultimately exhaustible and, with the exception of uranium, 
C0

2

 emitting fuels? 

The chart below (Figure 1) shows the contributions 
of different energy sources to global demand. It also 
highlights the importance of biomass (material from living 
or recently living organisms, eg wood or dung) and waste, 
which is often not traded but plays a vital role particularly 
in developing countries and rural areas.

Figure 1: 

Global energy demand in 2007

 

(million 

tonnes of oil equivalent – mtoe)

Source: International Energy Agency 2009

There is now widespread acknowledgement that we are 
in a â€˜transition’ period heading towards less-polluting, 
more-sustainable forms of energy. Yet there are a variety 
of views as to what this involves, the duration, and to 
what extent hydrocarbons should be part of the energy 
mix. Added to this is the uncertainty around what will 
replace them. This involves scaling up new technologies 
and introducing completely different energy delivery 
systems. These changes will naturally impact jobs, 
profits, national economies and the environment, just as 
the dramatic increase in coal use during the industrial 
revolution and the onset of the â€˜oil age’ did in the first 
part of the 20th century. This means that there will be 
push and pull factors from stakeholders. This will form 
the political context for many business transactions and 
operations over the next 30 years.

This section looks at the trends that will affect this 
transition in terms of changing energy demand and 
resource availability; climate change policies and the 
drive towards renewable energy; a technology revolution; 
and energy and transport infrastructure in a changing 
climate. While we cannot forecast exactly when and how 
this transition will take place, there are several indicators 
which business should be aware of. These are: 

‱  Global energy demand is putting pressure on fossil fuel 

markets and increasing price volatility 

‱  Past investment trends coupled with resurging demand 

suggest that an â€˜oil supply crunch’ is imminent. This will 
lead to harsher national policies to restrain oil consumption

‱  Increases in policy and regulation to reduce carbon 

emissions are inevitable and will impact on the 
economic viability of current investments and 
operations 

‱  Renewable energy has attracted an unprecedented 

upsurge in investment and been promoted into the 
mainstream energy mix in some countries 

‱  The rapid deployment of new technologies brings 

new risks

‱  As the climate changes, our existing energy and 

transport infrastructure are vulnerable to extreme 
weather events.

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 9   

Several variables will influence demand for different 
fuels in the coming years. These include: the pace of 
economic growth in developing countries; technological 
development; and policies to augment energy security 
and reduce greenhouse gas emissions. 

This creates risk for energy companies and natural 
resource owners who must invest large amounts of 
capital years in advance of expected returns. However, 
the obvious trends in the short to mid term are a huge 
surge of demand for all fuels from Asia, particularly China 
(see Box 1) a declining market for oil and coal in the 
Atlantic region and the increasing use of gas for electricity 
generation across the globe. 

Energy exporters with comparatively low domestic pricing, 
such as those in the Middle East, are also increasingly 
significant as energy consumers. This will have a dramatic 
effect on where oil will go, where competition for oil 
resources will take place, and who has the power to 
balance the oil market in the coming years (see Box 2).

Box 1: China’s global energy impact 

Growth in China will impact upon the energy trade like 
no other country in the world. Currently China’s energy 
consumption is dominated by domestic coal. In the 
electricity sector it provides 80% of the power. While 
the Chinese government aims to reduce its share in the 
mix, an additional 450 gigawatts (GW) of new coal-fired 
generating capacity is planned between now and 2030. In 
spite of China’s massive coal reserves, the pace of growth 
is leading to significant coal imports. Recent Chinese 
commercial investments in Australian coal demonstrate 
this expectation. Domestic oil production in China is 
expected to peak in 2013, while demand could more than 
double by 2030. This would account for nearly half of the 
predicted global increase over the same period. Because 
of the toll the extra imports would take on China’s foreign 
currency reserves and the volatility of the oil market, the 
government is keen to encourage alternative transport 

fuels at home as well as securing long-term oil supply 
contracts at stable prices. 
 
China is also becoming a major importer of gas, both 
through pipelines from Turkmenistan (and later Russia 
and Burma) and shipped liquid natural gas (LNG). By 2030, 
around 50% of the country’s gas demand is expected 
to be met by imports. Energy security is resulting in 
strong policies to improve energy efficiency and develop 
renewable and nuclear energy. In the longer term, what 
happens in the areas of policy and new technology to 
reduce consumption in China, India and other developing 
countries will shape and catalyse the energy transition in 
the rest of the world.

Energy is a globalised commodity. Sudden demand 
pressures for certain fuels in one place, coupled with 
previous inadequate investment in the necessary resources 
elsewhere, will push up prices on the international market. 
As traditional Organisation for Economic Co-operation and 
Development (OECD) countries decline as oil consumers, 
so will their power as rule setters in the international oil 
market. For example, Chinese strategic oil stocks (not yet 
included in the International Energy Agency’s security 
mechanism) will become vital to balancing global markets. 

Before new models of international energy governance are 
developed, insecurity will encourage strategic investments 
by the most import-dependent countries. Together with 
policies to reduce subsidies and increase efficiency, these 
trends will drive up final consumer prices for transport, 
fuel, heat and electricity in the short to mid term. 

While price rises will vary from country to country (see 
Box 5), all businesses will be affected through their 
own exposure to energy costs or that of their suppliers. 
The more efficient will have an important competitive 
advantage in times of high and volatile energy prices, 
especially in energy-intensive sectors or where supply 
chains are sensitive to energy costs.

1. The changing dynamics of energy demand 

  and resource availability

background image

000 b/d

30000

Middle East surplus

Year

25000

20000

15000

10000

5000

0

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

Asia-Pacific deficit

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 10   

Box 2: A change in the energy market balance 
between East and West

Advanced economies remain the biggest consumers 
of primary energy per person but by 2008 non-OECD 
countries led by China and India had outstripped them 
in terms of the share of world demand.

5

 This shift began 

in the 1990s, partly because manufacturing shifted 
eastwards. Meanwhile, lower population growth, de-
industrialisation, greater efficiency, higher fuel prices and 
a concern for the environment are lowering demand for 
oil-based fuels and coal in the OECD. 

These consumption trajectories mean there is likely to 
be a tipping point in 2015 when countries in Asia-Pacific 
need more imported oil in total than the Middle East 
(including Sudan) can export. 

Figure 2: 

Middle East oil surplus vs Asia-Pacific deficit

Source: John Mitchell, Chatham House 2010

of power are not new, but the changing growth dynamics 
have introduced new actors and relationships to the 
game. Key â€˜hot spots’ include:

‱  African countries, where the industrialised and 

industrialising world increasingly view resources as 
ripe for taking. For example China, is reported to have 
invested up to $50bn in the past decade on accessing 
raw materials in Africa, including uranium reserves 
in Niger, oil interests in Southern Sudan and bauxite 
concessions in Guinea. Former US Vice President, Dick 
Cheney said: â€œAlong with Latin America, West Africa is 
expected to be one of the faster-growing sources of oil 
and gas for the American market.”

6

‱  Countries in Central Asia, which have become a key 

area for competition amongst Russian, Chinese and 
western oil companies. Turkmenistan in particular will 
be crucial for the diversification of gas for both China 
and the EU. 

‱  The Middle East, whose dominance in global oil and gas 

supply is growing, as other resources deplete â€“ see Box 2. 

‱  Russia, a vital energy supplier, not only to Europe, but 

also to East Asia. Currently, the EU depends on Russia 
for 33% of its imported oil and 42% of its gas, with 
growing dependency in both sectors. Sales of gas and 
oil to Asia are increasing with the construction of new 
pipelines, including the 4,700km East Siberia-Pacific 
Ocean oil pipeline, which reached China in 2009. This 
diversification of customers gives added security and 
influence to Russia. 

The following sections look at the demand trends for coal, 
gas, oil and uranium, and how they might be met, with 
special attention to effects on the price of oil.

1.1 The resurgence of coal 

In spite of high CO

2

 emissions per unit of energy (two 

to three times more CO

2

 than natural gas when burned 

in conventional thermal power plants), coal is the 

West Africa, Eastern Russia, Central Asia and Northern 
Iraq are becoming â€˜pivot zones’ which can export to both 
western and eastern markets. These are already centres 
for competition and collaboration between western and 
Asian (usually state-backed) companies.

Box 3: Geopolitics of Energy

Competition among states for access to resources and 
the impact of energy trade on the international balance 

background image

3500

(Cubic km per year)

Industry

(Cubic km per year)

3000

2500

2000

1500

1000

500

0

1965

1969

1973

1977

1981

1985

1989

1993

1997

2001

2005

Total Asia-Pacific

Total Africa

mtoe

Total Middle East

Total Europe and Eurasia

Total S. & Cent. America

Total North America

3000

2500

2000

4000

3500

1500

1000

500

0

1965

1972

1979

1986

1993

2000

2007

2014

2021

2028

Total Asia-Pacific

Total Africa

Total Middle East

Total Europe and Eurasia

Total S. & Cent. America

IEA - Reference Scenario

mtoe

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  11   

fastest growing fossil fuel. Demand for coal for electricity 
generation in places with large national and usually cheaper 
reserves (like China and the US) is rising. This illustrates 
the clash between policies to keep the cost of energy 
down and reduce dependence on foreign imports by using 
cheap domestic resources and policies to mitigate climate 
change, which may be more expensive in the short term 
and require resource imports, such as gas or technologies.

Figure 3 shows the extent of the growth that is driven by 
increases from South East Asia. Between now and 2020, 
546 GW of new coal-fired power generation is planned 
in Asia - more than double that currently deployed in the 
EU.

7

 China and India lay claim to the world’s third and fifth 

largest coal reserves respectively, yet they are consuming 
coal faster than they can develop domestic mines. In the 
last five years, China has gone from being a significant 
exporter of thermal coal to a net importer.

8

 
Figure 3: 

Historical coal consumption in major 

world regions (mtoe)

Source: BP Statistical Review of World Energy 2009

Prices will rise in response to demand surges, with knock-on 
effects on electricity prices in other coal-importing countries. 
For example, wholesale electricity prices in the UK rose by 
66% between 2007 and 2008 – due not only to the rising 
price of gas, but also higher world coal prices affected by 
China’s import demand. 

Given transportation difficulties, shortages of coal stocks 
at power plants are also likely to cause more frequent 
power disruptions in emerging economies (see also 4.2).

1.2 Gas as the â€˜transition fuel’ 

Many countries plan to increase the share of natural gas in 
their national energy mixes as it has lower emissions than 
coal and oil and is more versatile (eg it can replace coal 
as a fuel for electricity generation and oil-based transport 
fuels in gas-to-liquid and compressed forms). 

Figure 4: 

Growth in global natural gas consumption 

and future projections (mtoe)

 

Source: BP Statistical Review of World Energy and IEA WEO 2009

The supply outlook

While estimates suggest coal reserves are plentiful,

9

a gap in supply may arise as a result of sharp demand 
rises in Asia before new extraction projects are 
completed. There will be strong expectation from 
Australia and Indonesia who provide around half of 
global exports, and there are doubts about the ability 
of these countries to expand exports fast enough. 

Uncertainty surrounds the supply and demand for gas 
in Asia and, in particular, China over the next decade. 
The Chinese government projects a tripling of current 
consumption to 300 billion cubic metres by 2020. Given 
the lengthy negotiations over routes from Russia’s far east 
gas fields it is hard to tell how much will be politically or 
economically possible via pipeline, and how much China 
will rely on the LNG market. The EU is also planning to 
increase imports of LNG as a diversification strategy. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 12   

The supply outlook

Recoverable reserves of natural gas are enough to meet 
world demand for heat, power and petrochemical uses to 
at least 2030, according to the IEA. But production equal to 
that of two Russias would need to come on-stream by then 
just to make up for the decline in existing fields.

10

 Over half 

of conventional natural gas resources are concentrated 
in three countries Russia, Iran and Qatar, and there are 
political, geological and technological obstacles that may 
restrict international supplies in the short to medium term. 

Two developments are counted on to ease gas supply 
constraints, the greater use of liquefied natural gas and 
the exploitation of shale gas. Until recently, getting gas 
from reserves to markets was limited by the direction and 
feasibility of pipelines. LNG, which can be transported by 
sea allows a more fluid trade and greater security options 
for gas-dependent countries. 

The recent exploitation of shale gas is adding to global 
supplies by alleviating the need for imports of gas to the 
US, and may do the same for other regions (see Box 4). 
This has led to a gas glut in the global market, discouraging 
investment in LNG.

Box 4: What can we expect from shale gas?

“A major new factor – unconventional 

natural gas – is moving to the fore in the 

US energy scene
it ranks as the most 

significant energy innovation so far this 

century. It has the potential, at least, to 

cause a paradigm shift in the fuelling of 

North America’s energy future.” 

HIS-CERA 2010

11

Unanticipated technological developments dramatically 
increased the availability of non-conventional (mostly 
shale) gas in the US last year. In 2000, non-conventional 
gas provided just 1% of total gas supply, but by 2009 it had 
reached 20%. Forecasts suggest this will reach 50% by 
2035. As natural gas prices fell in the US, demand for LNG 

fell internationally and volumes destined for US import 
were redirected to other (mainly Asian) markets. But the 
full impact is highly uncertain. Production from shale gas 
wells seems to peak much faster than conventional gas, 
and data is limited. Assessments of the Barnett wells in 
the US using horizontal drilling showed that most of the 
recoverable gas is extracted in the first few years.

12

Is the US experience set to become a global 
phenomenon? Some suggest that resources in OECD 
Europe are large enough to displace 40 years of imports 
of gas at the current level, assuming recovery rates in 
line with those in North America.

13

 Exploration is already 

under way in Europe (including in France, Germany, 
Poland and the UK) to assess this potential. 

1.3 Oil consumption driven by transport 
and price 

Global oil demand will grow in the medium term. But 
recent demand trends vary regionally. China, India and the 
Middle East show high rates of oil consumption growth 
(6% to 10% a year), while consumption in the OECD 
declines at around 1% a year. 

In the developing world, increasing car ownership and 
subsidised fuel prices will continue to drive up oil demand 
in the next few years. Whereas fuel efficiency standards, 
taxed fuel prices and alternatives, including biofuels, 
reduce demand in the advanced economies. Peak oil 
demand (the suggestion that reductions in demand as a 
result of policy, technology and behavioural changes will 
occur before any geological driven change) is a distinct 
possibility in the longer term. 

Unsustainable consumption trends are forcing many 
countries, particularly oil exporters, to rethink their 
energy pricing and subsidy systems to encourage greater 
efficiency (see Box 5). Strong policy measures here, and 
the uptake of new vehicle technology in major markets, 
such as the US and China, could set oil-fuel consumption 
on a downward trajectory. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  13   

Box 5: The impact of government policy 
on energy pricing

National taxation or subsidisation is a major factor 
determining the price of fuel at the pump and power at 
the plug. For example, in Europe the wholesale price of 
diesel fuel is relatively constant across the EU at about 

€

0.6 per litre, and the final price varies from around

 â‚Ź

1

to over

 â‚Ź

1.4, depending on the tax.

14

 However, in China 

the final price would be around

 â‚Ź

0.75, in India

 â‚Ź

0.52 and 

in Saudi Arabia 

€

0.7. 

Governments that tax domestic energy become dependent 
on the revenue, which makes them reluctant to reduce it in 
the event of higher international prices. Governments that 
do not tax energy, or that subsidise it, are under pressure 
to raise prices when the international price is high. This 
is for various reasons: to encourage greater efficiency; 
to lower dependency on energy imports; to reduce the 
subsidy bill; or to free up more energy resources for 
export. For example, the Chinese government doubled 
prices for gasoline and diesel between 2004 and 2008, 
and the Egyptian government recently committed to 
phasing out energy subsidies for industry by 2011. 

The supply outlook

Despite the global importance of oil (the most widely 
used fossil fuel) there is disagreement on how much will 
be available to meet future demands. There are basically 
three positions on this:

‱  Using advanced technologies will allow us to carry on 

producing enough oil for generations, particularly from 
non-conventional sources, such as oil sands and shale.

‱  Oil production will reach its peak level and go into 

irrevocable decline sooner than we are prepared for, with 
catastrophic effects on our societies and economies.

‱  There may be plenty of oil in the ground but above-ground 

factors such as cost, willingness to invest and political 
barriers will constrain its production. 

Box 6: Oil research - below ground constraints

 

“Peak oil presents the world with a risk 

management problem of tremendous 

complexity.” 

US Department of Energy 2007

15

A vast array of studies have attempted to predict the time at 
which global oil production will reach a maximum level, from 
which point it will go into irrevocable decline. Some suggest 
that this â€˜peak’ has already occurred, while others maintain it 
is either impossible to predict or shows no sign of appearing. 
Looking further than a decade into the future presents many 
uncertainties, including: the availability and cost of extraction 
technologies; substitute technologies; pricing systems in 
major economies; and carbon legislation. 

A comprehensive two-year study by the UK Energy Research 
Centre completed in August 2009 found that a peak in 
conventional oil production before 2030 appears likely, and 
there is a significant risk of a peak before 2020. With average 
rates of decline from current fields, the report says that just 
to maintain current production levels would require the 
equivalent of a new Saudi Arabia coming on-stream every 
three years. What’s more, giant fields pass peak production 
levels and there is a shift to smaller, more difficult to produce 
fields that have faster depletion rates meaning the rate of 
decline will accelerate.

16

This uncertainty makes it hard for governments and 
businesses to plan the move away from oil. A report 
produced for the US Department of Energy highlighted 
the economic chaos that would result from the onset of 
declining oil production as global demand continued to rise. 
It recommended â€œa mitigation crash program” involving a 
radical overhaul of the transportation system at least 20 
years before peaking. Yet it acknowledged that enacting 
such policies and paying for it with tax-payers money would 
be difficult without clear evidence for the peaking date.

17

Even before we reach peak oil, we could witness an oil 
supply crunch because of increased Asian demand. Major 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 14   

new investment in energy takes 10-15 years from the 
initial investment to the first production, and to date we 
have not seen the amount of new projects that would 
supply the projected increase in demand.

18 

‱  The IEA projections assume that additional supply from 

the Organization of the Petroleum Exporting Countries will 
largely fill the gap between declining non-OPEC production 
and rising world demand. But this implies the willingness 
and ability of those countries to invest or attract foreign 
investment into their oil sectors. The evidence reveals 
a serious lack of investment relative to demand growth 
throughout the 1990s, and a subsequent fall in the rate of 
discoveries. A look at the forecasts and actual outcomes 
for both OPEC crude capacity and non-OPEC production 
show that country targets and IEA expectations over the 
past decade have generally gone unmet.

I

 

‱  In the wake of the oil price crash of 2008 and the 

subsequent global financial crisis, over 20 planned 
large-scale upstream oil and gas projects were deferred 
indefinitely or cancelled.

19

Production from Iraq is the wild card. The current target 
of 12 million barrels a day by 2016 would make Iraq the 
world’s number one producer, potentially increasing 
global spare capacity and sending the oil price down. 
However, numerous legal, security and administrative 
problems hinder this development. 

Box 7: Unconventional fossil fuels: prospects  
and problems 

The constraints on access to conventional fossil 
fuel reserves, namely oil and natural gas, have led 
to the expansion of the exploitation of the so-called 
unconventional fossil fuels. 

The primary differences between conventional and 
unconventional petroleum liquids are the density of the 

liquid and how easily it flows. Petroleum or conventional 
oil is found in liquid form and flows naturally or is capable 
of being pumped without being treated. 

Unconventional oil, including very heavy oil, oil sands, 
and tar sands (bitumen), has a high viscosity. It flows very 
slowly and requires processing or dilution to be extracted 
through a well bore. Very heavy oil in Venezuela, oil sands 
in Canada, and oil shale in the US account for more than 
80% of unconventional resources. 

While some oil companies have invested large amounts in 
non-conventional oil, there are a number of limiting factors, 
including: environmental impacts; capital and operating 
costs; and the energy balance of the whole operation (how 
much energy is required to extract, process and transport 
the fuel compared to the final product).

Unconventional natural gas resources include tight sands, 
coalbed methane, and gas shales. The primary difference 
between these and conventional gases is the reservoir in 
which the gas is located. To extract these gases requires 
hydraulic fracturing (use of pressurised liquids to crack 
the rocks) of the host reservoirs. 

The costs, environmental impact and security 
implications of these options differ and are at the centre 
of fierce debates about the trade-offs between climate 
and energy security. For example, CO

2

 emissions from 

oil sands are at least 20% higher than for oil currently 
consumed in the US.

20

 This is because the energy input 

(usually in gas) needed to get the oil out is around three 
times as much as for conventional oil. It also takes three 
barrels of water to produce each barrel of oil, most of 
that being too toxic to return to the rivers.

21

 Emissions 

from shale oil are likely to be higher and those from 
coal to liquids are at least double the levels of those 
from conventional oil-based fuel. Gas to liquids would 
produce emissions some 10% to 15% higher than those 
from conventional petrol or diesel. 

22

I

 For example, plans such as the development of Kuwait’s northern oil fields has been delayed for over 15 years due to ongoing parliamentary 

obstruction to foreign participation. 

background image

140

160

USD per barr

el

120

180

200

100

80

60

40

20

0

2010

2015

2020

2025

2030

Bank America/ Merill Lynch (range)
OPEC (high)
OPEC (low)
EIA 2009 reference (2007 USD)

Barclays Capital
IEA WEO 2009 reference (2008 USD)
Deutsche Bank
Paul Stevens, Chatham House

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  15   

The May 2010 Deepwater Horizon rig explosion and oil 
leak in the Gulf of Mexico has highlighted the problems 
with difficult to reach oil. Operating at depths of 5000 
feet below the surface has been technically challenging, 
which is all too graphically demonstrated by the inability 
of the companies to stem the vast amounts of oil (with 
estimates ranging from 5,000 to 60,000 barrels per day) 
that are gushing out. 

The long-term impact on the environment, the companies 
involved and the sector as a whole is difficult to predict. 
One commentator likened the accident to Three Mile 
Island: â€œThe real legacy of Three Mile Island wasn’t what 
happened back in 1979, but rather what happened - or 
more precisely didn’t happen - over the course of the 
next 40 years in the US. Literally overnight, the near-
meltdown of the reactor core changed public acceptance 
of nuclear power plants. No company in the US has built 
a new one since.”

23

 Already President Barack Obama has 

suspended his recent decision to open new offshore 
areas for oil development and has declared a moratorium 
on new drilling.

Supply constraints will drive up the price of oil

 

“A supply crunch appears likely around 

2013
given recent price experience,  

a spike in excess of $200 per barrel is  

not infeasible”

 

Professor Paul Stevens, Chatham House

24

Oil price changes affect the price of other types of 
energy, particularly natural gas, and many aspects of 
the economy, for example: mobility; transported goods, 
including essential foods; importing government tax 
revenues or subsidy costs; and exporting country 
investment income. The global impact of higher oil 
prices on the economy was illustrated by the global 
recession of 2008-2009.

25

 Given the expense of extracting 

unconventional and difficult oils, the cost of oil is likely to 
rise. The question is when and by how much. Although 

there is a huge variety of opinion on how high the oil 
price will rise, and when it will reach these figures, most 
commentators agree that the trajectory is upwards 
(see Figure 5).

Figure 5:

 Range of oil price forecasts 

Source: Chatham House, listed sources.

A price spike, inevitable if the supply crunch described 
above takes place, would prompt government action to 
make legal and infrastructural changes that would lead to 
a declining demand for oil.

26

 

1.4 Uranium

To meet energy and climate security objectives, many 
countries are planning new nuclear power plants. At 
present, these depend on uranium - also a finite resource. 
Estimates from the OECD assume that, at current prices, 
the economically viable reserves for uranium (assuming 
the same level of nuclear production) will last for around 
80 years. If the number of reactors increases as suggested 
by some, other fuel sources and technologies would need 
to be added to increase the longevity of nuclear power 
(see Box 8).

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 16   

Box 8: The progress of nuclear power

Nuclear power has been in commercial operation for 
over 50 years and currently provides around 14% of the 
world’s electricity. There are 444 reactors in operation 
in 30 countries, mainly in the OECD. Over the past two 
decades the use of nuclear power has not increased 
significantly and in fact the global peak for reactors in 
operation was in 1989. This lack of growth is the result 
of a combination of factors, including: cheaper natural 
gas; higher investment costs than alternatives; public 
opposition; slower growth in electricity demand; and the 
closure of the oldest reactors. However, some regions of 
the world, particularly Asia, have active and fast growing 
nuclear power construction programmes.

The current generation of reactors is fuelled by uranium; 
future designs are likely to diversify as a result of mineral 
constraints. This may include thorium, while international 

programmes are also underway to develop so-called 
Generation IV reactors, which use plutonium fuels. While 
the diversification of fuel sources increases supply 
security, it also brings new technical problems and 
heightens proliferation concerns.

Fusion is another type of nuclear power being developed. 
This releases energy by combining atoms, rather than 
splitting atoms (nuclear fission), which occurs in existing 
nuclear power plants. A large, international demonstration 
facility, the International Thermonuclear Experimental 
Reactor (ITER), is under construction in France and was 
originally scheduled for completion in 2018. However, it is 
currently over budget and delayed.

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  17   

The threat of man-made climate change and 
supply security concerns is challenging the relative 
competitiveness of fossil fuels in terms of cost, 
environmental impact, energy output and access. 
This is driving the rapid deployment of renewable 
energy technologies, which hold the promise of 
energy generation free of greenhouse gas emission, 
with virtually infinite inputs that are often available 
domestically. As President Obama said in his State
of the Union address in February 2010, â€œWe know the 
country that harnesses the power of clean, renewable 
energy will lead the 21st Century.” Renewable energy 
solutions can help diversify the energy portfolio of 
many businesses, bringing added price and supply 
security in the long-term while adding to a company’s 
sustainability profile. 

Box 9: Renewable energy

There are a large variety of sources of renewable 
energies that are available in different concentrations 
all over the world. These include:

‱  Heating and cooling: passive solar architecture; solar 

thermal collectors; biomass-based combined heat and 
power; and geothermal energy.

‱  Electricity: solar photo-voltaic; solar thermal; hydro; 

solid biomass; biogas; geothermal; on and offshore 
wind; marine energies like sea current, wave and 
tidal energies.

‱  Transport (internal combustion-based): bioethanol; 

biomethanol; oils from biomass; and biomass-based 
synthetic fuels.

Until the last decade, the commercial renewable energy 
field was dominated by hydropower for electricity, 

biomass for heating, and solar thermal for hot water. 
However, the commercial strength of onshore wind has 
led to unprecedented growth in this area in a number 
of regions. This trend is likely to continue, as will the 
development of solar power for electricity production. 
The use of biofuels as a transport fuel remains 
controversial, due to the impact on food prices, land 
use and water consumption. If the use of biofuels is 
to be expanded, it is likely to require rapid technology 
innovation and the use of non-food sources for fuel, 
such as algae.

The most common critique of wind and solar power is 
that they both rely on intermittent sources. This means 
that thermal or nuclear capacity is still needed as back-up 
to compensate for times when the wind doesn’t blow 
or the sun doesn’t shine. Solutions are being developed 
which involve storage and â€˜super’ smart grids and which 
will enable far greater efficiency and transfer of excess 
electricity across borders (see also Box 19).

For the majority of the world’s scientific community,  
one of the greatest challenges that the human race 
faces is how to avoid global temperatures rising by 2°C 
over pre-industrial levels.

II

 Developed countries will 

have to make sharp emissions cuts and move close to 
a zero-carbon economy by 2050, with major developing 
countries following suit well before the end of the century. 

A 50% global reduction by 2050 implies average global 
emissions of around two tonnes of CO

2

 per person 

(less than half the present Chinese level, a fifth of 
the level in Europe and a tenth of that in the US). This 
implies a transformation in the way we live and the way 
governments regulate our activities, particularly in relation 
to industry, transport and buildings.

2.  Climate change and the drive towards  

renewable energy

II

 A concentration level of 450 ppm CO2 eqivalent would maintain a 50% chance of staying below 2°C, with a 400 ppm CO2eq providing a 

greater than 50% chance. To achieve either of these targets, global emissions would need to be at least 50% below 1990 levels by 2050. 
This would imply cutting developed country emissions to at least 30–35% below 1990 levels by 2020, while allowing developing economy 
emissions to grow until 2010 or 2020, but reducing them substantially thereafter.

background image

150

Billion tons C0

2

e per year

Year

100

50

0

2000

2040

2020

2060

2080

2100

Business
as usual

965 ppm

Atmospheric 

C0

2

Atmospheric 

C0

2

e

Temp. increase 

over preindustrial 

(90% C.I.)

1410 ppm

4.8˚C (2.9Âș - 7.7Âș)

8.7ÂșF (5.2Âș - 13.9Âș)

775 ppm

1020 ppm

3.9˚C (2.3Âș - 6.2Âș)

7ÂșF (4.2Âș - 11.2Âș)

585 ppm

725 ppm

2.9˚C (1.7Âș - 4.7Âș)
5.2ÂșF (3.1Âș - 8.4Âș)

470 ppm

520 ppm

2˚C (1.2Âș - 3.1Âș)

3.5ÂșF (2.1Âș - 5.7Âș)

Confirmed
proposals

Potential
proposals

Low
emissions path

Global C0

2

 Equivalent Emissions

2100 Values

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 18   

Box 10: The failure of Copenhagen to set  
a 2°C pathway

Despite great expectations, the Copenhagen Summit in 
December 2009 did not lead to a binding international 
treaty on global greenhouse gas emission reductions. 
The Copenhagen Accord did create a framework in which 
national low-carbon pledges are monitored, even though 
these do not yet pave the way for the 2°C scenario. 
Figure 6 describes the shortfall and points to the potential 
increase in global emissions that could lead to a rise of 
3°C to 4°C by 2100. 

The outcome is seen by many in the private sector as 
a missed opportunity. Without clearer and stronger 
domestic policies in key markets, it is unclear whether 
there are sufficient drivers for large-scale renewable 
investment and deployment. At the same time, the weak 
outcome from Copenhagen has revitalised discussion 
around carbon leakage and addressing it through 
border measures. Unilateral action to impose border tax 
adjustment outside any global climate agreement is likely 
to prompt trade-related retaliatory actions, undermining 
the global trading system.

To achieve the 2°C target (by the IEA’s calculation) 
countries and markets must stimulate opportunities 
in low-carbon and energy-efficient investments across 
the globe and generate $30trn of investment in the 
next two decades.

28

 This requires a massive increase of 

investment in both efficiency and the renewable and 
clean energy sector. 

According to Bloomberg New Energy Finance, the extent 
of global investment in clean energy sources reached 
$112bn in 2009, up from just $18bn in 2004. Only strong 
policy incentives will promote renewable energy activity 
under existing market conditions. This is often described 
as a â€˜market failure’ in need of market mechanisms or 
policies that factor in the environmental cost of higher 
emitting fuels or subsidise cleaner ones, as a public good.

Lack of confidence in the binding nature of national 
renewable energy targets or incentive mechanisms 
has hampered the growth of the sector. But where 
there is political will, investments are taking place. By 
2008, nearly a quarter of all new electricity generation 
was from renewable sources In Europe. In 2009, wind 

Figure 6: 

Impact of Copenhagen Accord on global emissions

Source: Climate Scoreboard, 2010 

27

background image

2002

2.9%

2.9%

5%

6%

6%

15%

16%

23%

3.1%

3.2%

3.6%

3.9%

4.4%

2003

2004

2005

2006

2007

2008

Additional Renewable generation as % of all power additions
Installed Renewable generation as a % of overall generation mix

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  19   

power installations accounted for 39% of new power 
installations, the second year running that more 
wind power was installed than any other generating 
technology. Renewable power installations in general 
accounted for nearly two-thirds of new installations in 
Europe in 2009. 

Figure 7: 

Global growth of renewable energy in the 

power sector (excluding large hydro)

Source: UNEP et al., â€œGlobal Trends in Sustainable Energy 
Investment 2009”, 2009

doubling of production in the last five years. This equates 
to around 5% of US transport fuel. 

Electric vehicles, which could encourage renewable 
electricity generation through their capacity for storage, 
are also generating a high level of interest. China is 
deploying large volumes of electric motorbikes and is 
seen both as a centre for manufacturing and a market. 

Box 11: The Carbon Reduction Commitment and 
the building trade

As part of the UK government commitment on climate 
change, it launched the legally binding CRC Energy 
Efficiency Scheme (formerly the Carbon Reduction 
Commitment) in 2010. It requires companies that pay 
more than ÂŁ500,000 a year for electricity to report on 
carbon emissions from all energy sources consumed 
by fixed installations. This affects not only the standards 
that construction companies work to but also creates 
a market for them, especially among large companies 
for whom the only way to reduce the emissions from 
their operations is to make their buildings more energy 
efficient. It provides the demand for energy efficient 
fit out and refurbishment services which many of 
the bigger construction companies have diversified 
into: â€œThe CRC is having an impact on many large UK 
companies because it increases the cost of carbon, 
increases the risk of fines associated with incorrect 
reporting, and also introduces a performance league 
table for publicly rating companies on their carbon 
reduction,” said Liz Collett, Group Environment Manager 
with Morgan Sindall Fit Out. â€œMorgan Sindall has to 
report on carbon both as a company in its own right and 
as a supplier to Government departments - so the client 
pressures for reporting are increasing.”

The success of wind power is not confined to the OECD 
countries in manufacture or deployment. In 2009, China 
became the world’s second largest installer of wind 
power and the largest manufacturer. It has now set 
targets to deploy 100 GW of wind power by 2020. Similarly, 
India has a strong wind industry, with rapid developments 
also taking place in Africa and Latin America. This global 
production will further reduce costs and drive forward 
technological innovation.

Renewable energy is also making a growing contribution 
in the transport sector. Given the virtual monopoly of oil 
in aviation and road transport, there are strong industrial 
efforts and government mandates for the production and 
deployment of biofuels. In Western Europe, the EU has set 
a binding target of least 10% of liquid transport fuels to 
come from renewable energy sources by 2020 - most of 
this is expected to come from biofuels. The US has seen a 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 20   

The transformation of the energy sector has been 
described as the â€˜third industrial revolution’.

29

 It will 

challenge all aspects of energy services: from energy 
sources and storage; to user-technologies, such as 
lighting, vehicles and electric motors; and infrastructure. 
Available technologies can deliver a large part of the 
necessary changes, especially in the field of energy 
efficiency, but new ones will need to be developed, tested 
or scaled up to meet this global challenge. Below we set 
out some emerging material, environmental and security 
risks that businesses will need to take into account as 
new energy resources and technologies are developed. 

3.1 National and international policy risks

In spite of broad international agreement on the 
importance of inventing and deploying technologies at 
scale to meet energy and climate security goals, progress 
has been too slow. Uncertainties around domestic and 
international regulations and pricing structures can 
stall investment, discourage collaborative projects and 
generally dampen investor confidence. For example, 
inconsistent policies have entrenched a pattern of 
boom and bust in the renewable energy and efficiency 
industries in many parts of the world, including the US. 

Enacting policies and freeing up the necessary finance 
for technological transformation is even harder in the 
context of the global financial crisis and volatile energy 
prices. Technology developers worry about recouping 
their investment in R&D and losing their intellectual 
property. Naturally, all businesses worry that government 
subsidies, tax breaks or funds might favour their 
competitors and disadvantage them. Uneven deployment 
of technologies across the world is inevitable, with 
breakthroughs occurring in those countries where there is 
most encouragement, and consistency, in terms of policy 
frameworks and market signals.

3.2 New scarcity risks in some  
raw materials

As demand for certain technologies rises, so will the 
demand for their raw material components - some of 
which are rare (see Box 12 on rare earth metals). The 
availability and price of these materials will determine the 
prospects for large scale commercialisation. Table 1 gives 
some examples of new energy technology fields and the 
materials used in their manufacture.

Table 1: 

Material use on new energy sources

Source: 

Materials Innovation Institute, November 2009

30

 

 

Raw materials (application)

Fuel cells

 

Platinum

 

Palladium

 

Rare earth metals

 

Cobalt

Hybrid cars

 

Samarium (permanent magnets)

 

Neodymium (high 

 

performance magnets)

 

Silver (advanced electromotor 

 

generator)

 

Platinum group metals (catalysts)

Alternative energies

  Silicon (solar cells)

 

Gallium (solar cells)

 

Silver (solar cells, energy 

 

collection / transmission,  

 

high performance mirrors)

 

Gold (high performance mirrors)

Energy storage

 

Lithium (rechargeable batteries)

 

Zinc (rechargeable batteries)

 

Tantalum (rechargeable batteries}

 

Cobalt (rechargeable batteries)

3. The risks associated with a new technology revolution

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  21   

The demand for these minerals has prompted more 
research into their availability. This is leading to an 
increase in reserves in the case of some, but not all, 
minerals. One study that looked at 57 cases of mineral 
extraction detected a clear production peak in 11 of 
these. This included zirconium, the extraction of which is 
in decline despite demand and rising prices.

31

 Companies 

pursuing technologies which rely on these and other 
limited mineral resources will need to consider the ability 
to re-use or recycle the material or to substitute for 
alternatives. 
 

Box 12: Rare earth metals

Rare earth metals (REMs) are a group of 17 elements 
whose unique properties make them indispensable in 
a wide variety of advanced technologies. They are an 
important example of material scarcity in the â€˜third energy 
revolution’, because they are indispensable for so many 
of the advanced technologies that will allow us to achieve 
critical national objectives.

32

 As such, disruption to their 

global supply is a new energy security concern.
 
Their production, alongside the metals and magnets that 
derive from them, is dominated by one country, China. 
At present, China produces 97% of the world’s rare earth 
metals supply, almost 100% of the associated metal 
production, and 80% of the rare earth magnets. 

REMs such as neodymium are the world’s strongest 
magnets and are key components for more efficient 
wind turbines, each of which requires about two tonnes. 
They are also important in enabling the miniaturising 
of electronic equipment; consequently demand grew 
between 15% to 25% per year from 2003 to 2008.

33

3.3 Competing resource uses

The production of energy can compete with resources 
previously destined for other uses. Two well known 
examples are the production of first-generation biofuels 
and the development of coal to liquids, both being 
developed primarily to combat security of supply 
concerns around oil. 

The growth of the current generation of biofuels is 
expected to slow due to environmental concerns and 
the impact of such large-scale production on land use 
and food prices. These concerns have accelerated the 
development of the next generation of biofuels, which will 
no longer use potential food sources for the production 
of ethanol (such as wheat), but farm waste instead. These 
could become more widespread in the next couple of 
years.

34

 Commercially viable third-generation biofuels 

from specially farmed plant forms, such as algae, are at 
the research stage. 

3.4 New environmental risks 

The development of new technologies can bring 
immediate or longer-term adverse environmental impacts. 
The industrial landscape is littered with technologies that 
have been widely used and then abandoned because of 
their effect on the environment (eg DDT or asbestos). 

There are numerous environmental liability concerns 
relating to major new energy infrastructure, such as 
nuclear power stations, and carbon capture and storage 
(CCS) facilities for adapting fossil fuel generation. For 
example, for CCS to be effective it must contain the CO

2

 

for at least a few centuries until we develop a way to 
neutralise its effects on the atmosphere. However, it is 
likely that the companies engaged in the storage will 
either cease to exist or will change ownership over this 
period. The legal mechanisms which will be put in place 
to ensure adequate accountability in the eventuality of 
system failure is a crucial issue for the industry. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 22   

Energy generation, extraction, refining, processing 
and distribution depend on a complex, interlinked, 
expensive (and sometimes global) infrastructure. Yet 
much of that infrastructure lies in areas that could be 
increasingly subject to severe weather events caused 
by climate change. Energy businesses owning or 
planning infrastructure now will need to ensure they 
are resilient to a changing climate, taking account 
of more frequent unusual weather events and more 
extreme seasonal fluctuations.

4.1 Power sector risks

Energy infrastructure tends to have a long lifespan. The 
Hoover Dam in the western US was completed in 1935 
and is still an important hydroelectric generator. New 
sites for refineries, coal power plants and high-voltage 
transmission lines are likely to be resisted by local 
communities and therefore replacements are often built 
on the same locations. This means that sites chosen in 
the 1980s may still be in operation in 2080 and beyond. 

Water flows are fundamental for agriculture, power 
generation and cooling. Hydropower contributes around 
15% of global electricity production, by far the largest of 
any renewable energy. It relies on the ability to predict the 
volume of water entering the system. Before construction, 
care is taken to assess river levels, hydrological cycles and 
precipitation patterns. Until recently those findings were 
considered to be constants. However, climate change 
is expected to cause accelerated changes in the rainfall 
patterns and what were constants are now becoming 
variables. This can cause problems for both glacier-
dependent and precipitation-dependent power plants. 

In Europe, cooling for electrical power generation 
(including both nuclear and fossil fuel plants) accounts 
for around one-third of all water used. During Europe’s 

record-breaking heat wave of 2003, temperatures across 
the continent reached more than 40° Celsius. As a result, 
France had to power down 17 nuclear power plants, 
because of heat and water problems. In 2006, France, 
Spain and Germany all had to power down nuclear plants 
for the same reasons. The UK Met Office’s Hadley Centre 
for Climate Change predicts that, by 2040, such heat 
waves would be â€˜commonplace’.

35

 

4.2 Changing risk landscape for  
transport routes

Environmental change (extreme weather events, water 
shortages, changing sea levels and melting glaciers) 
will generate great threats to critical infrastructure and 
to transport routes that underpin traditional energy 
production and delivery systems. The map below (Figure 8) 
illustrates the density of a handful of shipping lanes upon 
which global energy trade depends. 

All of the world’s largest energy importers are dependent 
on sea imported oil. The US imports 60% of the oil it 
consumes (over 95% delivered by tankers) while the 
growing markets of China and India import 90% by sea. 
Japan is almost completely dependent on maritime oil 
imports. The traffic is increasing as countries require 
greater energy imports further from their markets. For 
example, both China and India are importing coal from 
Colombia for the first time in 2010 and bottlenecks 
at the Australian port of Newcastle in 2007 and 2008 
kept coal vessels waiting for weeks restricting supply 
and contributing to the increasing price of deliveries to 
thermal power stations. 

The development of Arctic resources will create new and 
riskier shipping routes. Climate change will bring rising 
tides and more frequent extreme weather events that 
could increase shipping accidents and damage ports. 

 

4. Risks to energy and transport infrastructure 

background image

Energy Infrastructure

World ports

Pipelines

Nightime lights

Low

High

High

Low

Shipping density

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  23   

Figure 8: 

Global shipping routes, pipelines and world ports

Sources:

 Hadley Centre (2010), NCEAS (shipping routes1), FAO (ports2), GIS-Lab (pipelines3), NOAA (night-time lights)

4.3 Oil and gas infrastructure

As accessible oil and gas sites are depleted, more 
difficult offshore and coastal sites are becoming more 
significant. Offshore and coastal oil and gas extraction is 
carried out under a wide range of conditions, from the 
tropics to the tundra. 

Over a quarter of US oil production and close to 15% of 
US natural gas production comes from the Gulf of Mexico. 
In the summer of 2005, Hurricane Katrina shut off what 
amounted to around 19% of US refining capacity, damaged 
457 pipelines and destroyed 113 platforms. Oil and gas 
production dropped by more than half; causing a global 
spike in oil prices. Much of the infrastructure destroyed in 
2005 was rebuilt in the same location, leaving it vulnerable 
to similar weather events in the future. 

The US Geological Survey estimates that the Arctic 
might contain over a fifth of all undiscovered oil and 

gas reserves.

36

 Siberia could contain as much oil as the 

Middle East.

37 

However, dreams of a resource bonanza 

in the north are premature. The environment is difficult 
and becoming increasingly unpredictable as a result 
of the changing climate. The thawing of permafrost in 
the north is already causing infrastructural damage and 
reportedly costing Russia around $1.9bn a year to repair 
infrastructure and oil and gas pipelines in West Siberia.

38

Many of the challenges outlined above can be overcome 
with sufficient research, planning, engineering and 
financing. In some cases it may even be possible to 
integrate change into planning in such a way that energy 
output increases with changes rather than decreases. 
For example, hydro installations in regions that are 
expecting higher rainfall could be designed to eventually 
take advantage of that excess flow, rather than be 
overwhelmed by it.

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 24   

“Predictable supply of energy is one  

of the top policy priorities for business 

and governments in the major global 

economies.”

Business and Industry Advisory Council to the 
OECD - 2006

39

The constraints on carbon in terms of resource availability, 
price, policy and the move to a low-carbon economy will 
have a huge impact and risk implications for businesses, 
both within and outside the energy sector. This section 
looks at the implications of the trends outlined above 
for businesses in general, as well as the energy sector 
specifically. The last section discusses some opportunities 
that the shift to a decarbonised energy system presents.

Key challenges that will affect businesses across the 
board are: 

Cost and stability of services:

 All businesses depend 

on energy, both directly and indirectly, and projected 
changes in prices and resource availability will affect 
their competitiveness and economic viability. Without 
long-term contracts or hedging mechanisms, the impact 
of changes in direct costs (such as fuel for transport, 
heating or electricity) will be immediate, and will result 
in significantly higher running costs to business. Indirect 
costs, such as materials or delivery charges affected 
by higher energy inputs through the supply chain, may 
be less immediate, but would reduce profit margins on 
exposed product lines or services. The potential for actual 
power outages and fuel shortages could also be direct 
(affecting the area of operations) or indirect (disrupting 
the supply chain).

Pressure to reduce carbon emissions: 

The carbon 

portfolio of companies and governments will also come 
under increasing scrutiny. Higher emissions standards are 
anticipated across the major sectors. These will require 
carefully planned changes in practice and technology 
in the most energy intensive sectors - energy, heavy 
industry, construction and transportation. Carbon and 
efficiency standards in major markets will not only affect 
national industries, but also those in manufacturing 
export centres. In the transport sector, we can already 
see how binding legislation or voluntary standards 
are affecting the world’s major vehicle markets and 
encouraging competition in efficient technologies. 

For energy sector businesses, the dual task of meeting 
rising energy demand and leading the transition to 
radically lower carbon emissions presents enormous 
opportunities. Risks will vary considerably depending on 
the location of operations and specialisation, as well as 
technology and practices. 

The transformative changes in the energy sector:

 

The use of different resources, technologies and networks 
will in turn affect the way that we manage energy security. 
This also presents great business opportunities and new 
markets. The carbon market and policy mechanisms, such 
as feed-in-tariffs, are making new investments viable. 

In all areas, an assessment of vulnerability to changes 
in the energy system and markets, and early preparation for 
these new realities, will give businesses a competitive edge. 

Challenges and risks 

for global businesses

background image

3%   

Other

26% 

Transport

  9% 

Service Sector

29% 

Households

33% 

Manufacturing

22.7% 

Other

 1.9%   

Aluminium

 6.4%   

Pulp and Paper

 8%      

Cement

23%    

Steel

34%    

Chemical/Petroleum

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  25   

Three sectors dominate global energy use today: 
manufacturing, household consumption and transport 
(see Figure 9). We can gauge the price exposure 
of a company by looking at its turnover divided by 
energy costs. The energy costs of heavy industry and 
transportation are likely to form a larger share of revenue 
than, say, an IT company or a retailer. But the specific 
nature of a firm’s processes will determine the impact of 
higher prices or supply insecurity on its bottom line. Can 
manufacturing processes in a plant stop and restart with 
little impact? Will it be practical to switch fuels? Firms 
which have long and complicated supply chains will need 
to consider the potential exposure of suppliers or logistics 
operators to energy prices just as carefully. For example, 
Walmart has 100,000 first-tier suppliers. A â€˜just-in-time’ 
business model (used by many companies) will mean 
that disruptions can quickly escalate costs and damage 
reputation. Therefore, risk managers should investigate 
whether this model is adequate to cope with emerging 
energy risks.

Figure 9: 

Global final energy consumption (2005)

Source: 

IEA 2008

40

 

Figure 10:

 Major global energy users in 

manufacturing sector (2005)

Source:

 IEA 2008

41

 

Implications and risks for business in general

We have grouped the risks for business into broad 
categories, but these will overlap and be prioritised 
differently within each company. Some require fairly 
rapid decisions and contingency measures to prevent 
either disruption to operations or unsustainable costs. 
Others deal with events or conditions that should be 
taken into account in â€˜strategic’ decision-making in order 
to minimise vulnerability and maximise advantage over 
a longer time period. Although reputational damage 
is treated as a separate risk, mismanagement of any 
of these other dimensions can also contribute to 
reputational risk.

background image

Uncertain political commitment 

to technology incentives

Policy change undermining

viability of investments

Lack of global climate 

policy framework for

long-term planning

Regional carbon pricing

Carbon price uncertainty 

Increasing legislation and 

standards on efficiency

Consumer pressure for CO

2

emissions labelling

Government policies

Higher and volatile 

energy prices

Fuel and electricity

supply disruptions

Scrutiny of carbon portfolio 

Delivery of services 

compromised by 

energy disruptions

Technological risks

Risks for general business

Longer-term 

operational risks

Financial and 

regulatory risks

Short term operational 

and supply chain risks

Reputational management

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 26   

Figure 11: 

Risks for the wider business sector

Profits in the transport sector are especially sensitive 
to the upward price trend of oil. For the aviation and 
shipping industries, this exposure is high and largely 
unavoidable. The movement of goods is also dominated 
by fossil fuel, in this case diesel, which accounts for 
82% of movements. This lack of diversity makes these 
sectors vulnerable to oil price spikes and tighter 
markets for diesel. For example, United Airlines decided 
to ground around a fifth of its fleet when the oil price 
was at its highest in 2008. In an attempt to reduce fuel 
costs, research is underway into the use of biofuels, 
with LĂŒfthansa announcing that by 2012 they would 
be blending biofuels with traditional fuel. The key risk 
management strategies for the transport sectors  
involve long-term strategic and investment decisions to:

 

Short term operational and supply chain risks: 
price and supply

Ultimately, governments will determine end-user energy 
prices - so where a business’s operations and supply 
chains are located is crucial. Its place in the supply 
chain will also affect vulnerability to price. Energy-
intensive sectors, such as chemicals, steel or cement, 
are by nature more exposed to changes in the price or 
availability of energy (see Figure 10 for the share of major 
energy users in the manufacturing sector). For these 
sectors, even small changes in the prices they pay for 
energy domestically will affect the economic viability 
of manufacturing. Costs will be added onto the price of 
traded goods, affecting their global competitiveness. This 
has encouraged the shift of energy-intensive sectors to 
countries where the price of energy is comparatively low 
and often subsidised. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  27   

‱  Use energy more efficiently. This may include upgrading 

buildings, installing â€˜smart’ electricity management 
systems and planning operations to maximise the 
productivity of energy. 

‱  Diversify energy supplies and types. This may involve 

the investment in own back-up generation or large  
and more permanent domestic generation, such as  
very small or micro renewables. However, this may  
also lead to active support of research into and 
development of alternatives. 

Energy supply disruptions will affect businesses differently 
depending on how reliant their activities are on certain 
types of energy, where they are located and how their 
supply chains work. However, the absolute dependence 
of modern societies on electricity means that even 
short-term disruption to this electricity may cause 
multiple operational failures and incur heavy restart costs. 
Although energy supply disruptions have decreased in 
most OECD countries in recent decades, significant losses 
of electricity supply still occur. For example, in California 
(2000), New York (2003) and Italy (2003) technical failures 
coupled with inadequate back-up systems and poor 
electricity management resulted in widespread blackouts. 
Many larger businesses and infrastructure operators have 
invested in back-up generators. In 2010 the city of New 
York purchased stand alone generators for their water 
treatment plans as a result of the experiences in 2003. 

Resilience measures tend only to be justified as 
‘responses’ to crises. A 2006 study found that 
risk managers in the food industry tended to take 
uninterrupted power supply for granted and believed 
the government would step in to ensure fuel provision 
in the event of a crisis.

42

 However, in terms of essential 

national services

 III

, the food and finance industries are not 

guaranteed state protection in the event of a fuel supply 
crisis (see Box 15). 

More frequent outages are likely in the developing world 
where capacity cannot keep pace with demand growth. 

Access to reliable electricity is still not guaranteed, even 
for major industries and cities in developing countries. The 
lack of fuel for power stations and significant over-demand 
has led to power rationing and frequent power cuts. 
Rolling blackouts in South Africa in 2008 (which caused 
the shut-down of major industries, including gold mines) 
and brownouts (periods of reduced electrical voltage or 
scheduled cut offs for selected users) in eastern China in 
winter 2010 demonstrated the vulnerability of emerging 
economies to a depletion of coal stocks. As an increasing 
number of manufacturing and service industries are based 
in Asia-Pacific countries, this will have a major impact 
on global supply chains. The case of the textiles industry 
during the ongoing energy crisis in Pakistan illustrates this 
well (see Box 13).

Box 13: Electricity and gas cut-offs: the case of the 
textiles industry in Pakistan

The effect of unscheduled electricity blackouts and gas 
supply cuts on industry in Pakistan gives a clear example 
of the problems facing rapidly industrialising nations. As 
demand for power outstripped supply in Pakistan over the 
last decade, electricity and gas outages have blighted the 
textiles industry (which accounts for 60% of exports). This 
has disadvantaged local companies against competitors 
in China, India and Bangladesh and they are often unable 
to meet the requirements of buyers. The larger integrated 
companies, such as Chenab, which serves Western 
brands, such as Ralph Lauren and IKEA, have invested 
in their own gas-fired power plants to keep the looms 
going. Many of the smaller firms cannot afford these and 
are forced to shut down for several hours each day. Even 
Chenab had to shut down production during winter gas 
shortages and was operating at 70% capacity in 2009.

43

 

Gas cut-offs, which have taken place sporadically during 
winter, halt the cleaning of raw wool and cotton at mills as 
the water cannot be heated. According to one report, the 
profit margins of Rahat Woollen Mills have fallen by about 
50% as a result.

44

 In April 2010, the authorities decided 

to schedule the cut-offs for one day a week - rotating 

III 

These are the communications, emergency services, energy, finance, food, government, health, transport and water sectors

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 28   

between industrial zones. Power supply is not guaranteed 
by the Water and Power Development Authority of 
Pakistan so the mill and factory owners must absorb the 
costs. This has led to mass lay-offs. Chenab cut almost a 
third of its workforce (4,000 people), which is adding to 
political unrest in the country. 

Financial and regulatory considerations: counting 
the cost of carbon

Assuming a global agreement on climate change is 
eventually made, all businesses (not just the heavy 
industrial sector), will be impacted by the price of 
carbon. Such an increase would noticeably affect energy 
emissions costs for all businesses. In the EU, through 
the latest phase of the Emissions Trading Scheme (see 
Box 14), all emissions will be auctioned in the power 
sector (as opposed to granted for free as occurred in 
the earlier phases of the ETS) post 2013. There are some 
suggestions that this will lead to a 10% to 15% increase 
in electricity prices.

Box 14: European carbon market

The European Emissions Trading Scheme, which began in 
January 2005, is the world’s largest cap and trade system. 
The scheme works by reducing the total emissions 
granted to the affected sectors over time while allowing 
them to trade emissions permits. Initially the scheme 
only applied to facilities over 20 MW and mainly impacted 
power stations and large factories. Therefore it covered 
only around 50% of the EU’s C0

2

 emissions. During 

the first two phases, the emissions permits have been 
allocated and given for free to companies. However, in 
phase three (which will take place in 2013), companies 
will have to buy the majority of the allocations and the 
number of sectors the ETS applies to will increase, and 
include the petrochemicals and aluminium sectors. 

For most of 2008, the carbon price in the EU-ETS varied 
within the range of 

€

20 to 

€

27 per tonne of CO

2

, but with 

the worsening financial outlook towards the end of that 

year, prices dropped and have remained in the range of 

€

11 to

 â‚Ź

14 per tonne of CO

2

 since. One obvious driver for 

this price drop has been the reduced production forecasts 
for manufacturing output and electricity generation as 
a result of the recession which has led to lower CO

emissions forecasts and lower price expectations. 

Carbon prices have often been closely correlated with 
gas prices as higher gas prices lead to the greater use of 
coal, which in turn results in more C0

2

 emissions. Energy 

prices therefore have a direct impact on carbon prices. 
In addition, carbon has become a commodity traded by 
speculators and the prices have followed a similar trend 
to many other commodities in the recession. 

Ultimately, for carbon pricing to work on a global level 
a single market or intricately linked series of markets is 
required. This would remove the tensions around different 
production standards, competitiveness and eventually 
remove the threat of â€˜carbon leakage’. As this is some 
way off, sectoral agreements from particularly affected 
sectors, such as iron and steel, and a comprehensive 
agreement on the affects of carbon pricing on global 
trade, would go a long way in assisting businesses in their 
risk analysis.

Legislation and standards on energy efficiency, carbon 
emissions and other environmental impacts will 
increasingly affect all businesses as they apply to premises, 
mobility and products. In 2009, for example, the EU adopted 
legislation which requires all new buildings to comply with 
tough energy-performance standards and (after 2020) 
meet a significant proportion of their energy requirements 
from renewable sources. Stricter requirements were made 
for public sector buildings, requiring â€˜nearly zero’ energy 
standards by the end of 2018. While this legislation is vague 
and the concept of â€˜nearly zero’ is undefined allowing 
member states to make their own standards, it has set an 
agenda for the construction industry. Life-cycle analysis 
of the carbon (and perhaps also greenhouse gases) 
emissions of buildings will become the norm. More detailed 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  29   

legislation could follow in the next few years specifying 
efficiency improvements in existing buildings. This has 
so far been a voluntary or incentive-based undertaking 
in most countries. The regulatory environment for these 
kinds of developments presents a risk in itself given the 
investments companies are expected to make. 

Mounting consumer pressure has also led to several 
private initiatives to assess the embedded carbon content 
of specific products with a view to introducing carbon 
labelling and allowing consumers to make more informed 
purchasing decisions. In 2007, Tesco announced that it 
would be seeking â€œa universally accepted and commonly 
understood measure of the carbon footprint of every 
product we sell looking at its complete life cycle from 
production, through distribution to consumption”, and 
that they would establish a clear system of labelling for 
their customers. This is initially being piloted on twenty 
products and has required the active support of Tesco’s 
suppliers.

45

 These schemes are voluntary at present, but 

could well become mandatory - as has occurred with 
energy use in products, such as fridges. 
 
In moving forward on carbon labelling, as with carbon life-
cycle assessments, it is important to caution businesses 
against over-simplistic processes. Complicated accounting 
methods could be required, especially for manufactured 
goods, as hundreds of processes can contribute to the 
final product. 

Longer-term operational and supply chain risks

The lack of a legally binding global climate policy has 
revitalised appetite for assessing and addressing the issue 
of carbon leakage. The energy intensive sectors, such 
as steel and cement, fear that they will be competitively 
disadvantaged by regional carbon pricing, and that 
high-emitting industries or companies will relocate to 
developing countries that do not have a cap on carbon. 
This is an extremely sensitive political issue for emerging 
economies, such as China and India, which rely on 
export-led growth. Managing the potentially explosive 
dynamics around border carbon mechanisms to address 

carbon leakage is critical to energy-intensive industries. 
Consequently, these sectors are actively engaged in 
seeking to influence the development of national policies 
and international agreements. 

A number of attempts have been made to develop sector 
agreements and standards. One example is the Cement 
Sustainability Initiative, coordinated by the World Business 
Council for Sustainable Development. Members have 
set targets for the reduction of their own emissions and 
shared best practice. Work within the initiative is also 
progressing on modelling of sectoral targets within the 
framework of an international climate deal. Unilateral 
action to impose border tax adjustment outside any 
global climate agreement could prompt trade-related 
retaliatory actions, undermining the global trading system.

Reputational management

With increasing reliance on globalised supply chains and 
IT, stable energy supplies become even more vital to 
the delivery of services on which reputation is built. For 
example, some retail industries may need to re-evaluate 
the â€˜just-in-time’ business model (see Box 15) and 
some global supply chain linkages for potential energy 
vulnerabilities in order to avoid reputational damage in 
addition to the economic losses. 

The emissions profiles of governments, companies and 
other institutions are likely to come under increasing 
scrutiny by the public. Voluntary or mandatory carbon 
reporting - as required in the European Emissions 
Trading Scheme or regional initiatives in North America 
- is increasingly common. A McKinsey Quarterly article 
suggests that: â€œOver the next 5 to 15 years the way a 
company manages its carbon exposure could create or 
destroy its shareholder value”.

46

 

The development of the global low-carbon economy is 
expected to bring further pressures for harmonisation of 
reporting and additional verification mechanisms, as has 
occurred with the expansion of the ETS to cover more 
and more sectors. 

background image

  4%   

Pre farm (fertiliser, pesticides

          & machinery production)

28%

 Net trade

20% 

Households (shopping,

        storage & preparation)

  6% 

Catering (hotels & restaurants)

12% 

Commercial transportation (UK & overseas)

11% 

Retail

  6%   

Farming & fishing

13%   

Manufacturing

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 30   

Box 15: How the food industry could be affected 
by energy disruption

Food production straddles several business sectors 
and is particularly dependent on fossil fuel energy 
throughout the supply chain â€“ from fuelling farm 
equipment to electricity for the supermarket till. Food 
retail chains are highly dependent on global supply 
chains. The just-in-time business model and the trend 
towards strategic outsourcing have reduced the 
direct control that companies have over contingency 
planning. A study commissioned by the Department 
for Food and Rural Affairs in the UK found that the 
imperative to reduce space used for storage in both 
retail and manufacturing and the increase in fresh and 
chilled products had increased the vulnerability of food 
suppliers to electricity and fuel disruption.

47

 For example, 

the UK now imports more exotic fruit on a JIT basis and 
the packaging and the gasses needed for many chilled 
foods are produced overseas.

Figure 12: 

Energy use in the UK food sector 

Source:

 DEFRA Food Pocket Book 2009

over fuel price rises prevented the distribution of fuel 
from depots to the rest of the country. Supermarkets 
were obliged to put the government’s priority user 
scheme in place at its petrol stations. They also faced 
‘panic-buying’ which in some cases ran down stocks 
before replacements arrived. Several stores decided 
to implement rationing of basic goods like bread and 
milk. Companies that prepare and deliver fresh goods 
to retailers daily were particularly vulnerable. UK food 
group Geest announced that its deliveries would be 
unlikely to reach the supermarkets if fuel supplies were 
not restored in a matter of days.

48

 The chief executive of 

Sainsbury’s wrote to the Prime Minister to warn that the 
petrol crisis was threatening Britain’s food stocks and 
that stores were likely to be out of food in â€œdays rather 
than weeks”.

49

 Fuel disruptions in other parts of the 

world also affects transportation of goods to markets, 
and higher energy prices could push up the price of 
basic food commodities, such as rice, soya and wheat 
- as they did in 2008. 

A UK food manufacturer interviewed for the DEFRA report 
commented: â€œRolling power cuts would stop operations 
very quickly.”

50

 The same study also highlighted just 

how many transactions and logistics depend on IT, and 
therefore electricity. The 2008 food price rises were 
partially attributed to both higher oil prices and the 
spill-over effects of increased biofuel production from 
corn and rapeseed oil in that year.

51

 

Food businesses have the potential to improve the 
resilience of their own transportation system. For 
example, through long-term investments in more efficient 
fleets including hybrids and electric vehicles. Other 
measures food companies can consider could include 
sourcing fresh produce more locally. One example is the 
Mid-Counties branch of UK food retailer The Co-operative, 
which launched â€˜Local Harvest’ – a food sourcing scheme 
designed to support local suppliers and reduce food 
miles. This has benefited smaller suppliers, providing them 
with a reliable market.

52

As supermarkets tend to keep only two–three days worth 
of perishables on their shelves, a transportation fuel 
disruption lasting just a few days would affect availability. 
This happened during September 2000 when protests 

background image

Uncertain political commitment 

to technology incentives

Policy change undermining

viability of investments

Environmental damage resulting

from difficult-to-extract fossil fuels

Pollution from

new technologies

Accidents in

extreme environments

Environmental pollution 

and liability

Increasing emissions 

performance standards

Renewable energy

policy uncertainty

Future demand

uncertainty

Impact of pricing 

fluctuations on investment

decision-making

Carbon price uncertainty

Political threats to operations

in unstable regions

Harsher physical environments

Infrastructure failure in changing

climatic conditions

Transition to cleaner technologies 

making infrastructure obsolete

Cyber threats to smart grids

Technological risks

Scarcity of essential

mineral components

Risks for the energy sector

Reputational risks

Regulatory and 

environmental issues

Financial and 

investment risks

Physical and 

operational risks

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  31   

Implications and risks for the energy sector

Energy businesses face important choices over their 
strategic direction. The coming decades will require the 
building and rebuilding of global energy infrastructure 
on an unprecedented scale to meet future demand. 
Anticipated rises in consumption, outmoded power 
generation and national energy security imperatives 
mean governments will welcome and incentivise 
cost-effective, innovative solutions from the energy sector.
 

Regulatory and environmental risks

Our existing energy system faces two key challenges: how 
to adapt to a resource constrained and low-carbon world 
and how to deliver the non-traditional energy sources that 
are being encouraged by government policy.

The need to replace depleting energy reserves is 
leading energy companies to explore harder to get and 
harder to process reserves. The scale and longevity of 
the oil leak following the accident at the Deepwater 
Horizon rig in the Gulf of Mexico highlights the dangers 
of pollution and the environmental risks of operating in 
these harsh environments. These risks are increasing 
with operations in more environmentally sensitive 
areas, such as the Arctic and the boreal forests of 
Alberta, Canada. To date, most environmental policies 
tend to charge polluters for the costs of cleaning up 
pollution, for the economic cost that pollution causes 
to other’s property, or for the purchase of consents to 
discharge pollution. However, as the environment is 

Figure 13:

 Risks for the energy sector

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 32   

generally regarded as a â€˜public good’ it is not priced 
in a conventional market place creating uncertainty 
around liability limits and how to insure against such 
hazards (see also reputational risks below).

As governments seek to meet their medium term 
climate objectives, standards are being introduced to 
reduce emissions from individual energy sectors. Some 
regions and countries have introduced or are considering 
introducing emissions performance standards for the 
power sector that set a ceiling on the carbon intensity of 
the electricity, ie how much CO

2

 is emitted for every unit 

of electricity produced (CO

2

/kWh). This may lead to the 

rapid phasing out of certain types of fuel, such as coal, 
or the requirement to install radical emission reduction 
technologies, such as carbon capture and storage. This 
standard setting approach will also potentially be used 
in the extractive industries and is being considered to 
discourage the extraction of non-conventional oils, such 
as tar sands (due to their higher emissions count).

53

Globally, over 73 countries have renewable energy policy 
targets and much of the renewable energy market activity 
remains predominantly policy driven. While not affected 
by emission performance standards, the renewable 
energy sector is exposed to regulatory risks. A lack of 
confidence in the binding nature and the delivery of 
renewable energy targets or incentive mechanisms would 
hamper growth in the sector. This will affect not only the 
renewable energy sector, but also raises questions for 
the energy sector as a whole, with uncertainties over the 
need for traditional energy sources.

Government implementation of â€˜investment grade’ 
energy policy

54

 will reduce these risks and give investors 

confidence in the longevity and breadth of the proposed 
policies. To achieve this it is necessary to establish long 
term policy targets and incentives that remove ambiguities 
and ensure that all aspects of energy policy and investment 
are addressed. This will require action across the whole 
of the energy sector, including on-demand, planning, 
connectivity, grids and tariffs. This is something that energy 
businesses can actively lobby for. 

Financial and investment risks

The key question facing the energy sector is how much 
energy will be needed in the future. Concerns over 
security of supply and the need for a low-carbon future 
have created demand uncertainty for energy producers. 
According to OPEC projections, demand for OPEC crude 
could be anywhere between 29 million and 37 million 
barrels per day by 2020. The OPEC Secretary General noted 
that: â€œThis translates into an uncertainty gap for upstream 
investments in OPEC Member Countries of over $250bn. 
There is therefore the very real possibility of wasting 
financial resources on unneeded capacity.” 

55

The investment dilemma is further complicated by 
price fluctuations. In the last decade, high energy prices 
have led to great surges in investment, for instance in 
unconventional oil and gas extraction in the Atlantic region, 
in the petrochemical industries in the Middle East and Asia-
Pacific, and in renewable energy technologies worldwide. 
But many projects were stalled, cancelled or became 
unprofitable when the price fell. Between September 2008 
and April 2009, refining capacity of 1.5 million barrels per 
day were cancelled or deferred in Germany, Italy, Kuwait, 
Saudi Arabia, South Korea and the US. 

Renewable and alternative energy technologies tend to 
become more competitive if the price of oil is sustained 
above a certain level. For example, a McKinsey Quarterly 
report for the Republic of Ireland showed that onshore 
wind would require a subsidy at $60 per barrel of oil but 
be highly profitable at $120 per barrel.

56

 

The uncertainties of price fluctuations are amplified by 
variations in the carbon price and the uncertainties over 
which sectors it will affect. Large energy producers in 
some countries - including the UK - have called for the 
government to introduce a floor price for carbon, to 
reduce the risks to business.

The need for accelerated energy investment and financial 
stimulus packages have increased the level of public-sector 
expenditure on energy infrastructure projects, particularly 
for grid extensions and for new power, transport and CCS 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  33   

demonstration projects. This finance comes with its own 
risks, such as increased bureaucracy or susceptibility to 
policy change.

Box 16: Centrica – from energy supplier to energy 
service provider?

Recognising the new realities of the energy market, some 
major energy companies are adapting their business 
strategies. The future business model will not be based 
on the units of energy that are sold, but on delivering 
the necessary energy services. One of the largest energy 
companies in the UK, Centrica (owner of British Gas) 
states: â€œThe competitive retail market is now driving a 
transformation in energy services, reflected in the growing 
role of energy efficiency and small-scale generation 
in reducing emissions and energy consumption.” It is 
remarkable that a company that has been built on the 
ethos of selling more energy now states: â€œA key benefit of 
a vibrant demand side will be that there may be less of a 
need for new generation capacity and/or reinforcements 
to networks”.

57

 In February 2010 Centrica’s Chief 

Executive announced four new strategic priorities for the 
business one of which focuses on shifting the British Gas 
business model away from energy supply and towards 
energy services. In April 2010, the company purchased 
Hillserve, a significant UK insulating firm and stated its 
objective was to become the leading supplier of domestic 
insulation. It predicts that the market for home insulation will 
rise from around ÂŁ0.6bn a year in 2010 to ÂŁ1.4bn in 2015.

Technology risks

The widespread use of innovative technologies 
and practices to provide more energy with less CO

2

 

emissions is a strategic priority for many companies 
in the energy sector. New technologies and processes 
must be developed, piloted and scaled up, yet 
incentives to drive their innovation and deployment 
at the scale and necessary pace often lack long-term 
political commitment. Research by Chatham House and 
CambridgeIP found that inventions in the clean energy 
sector have generally taken two to three decades to 
reach the mass market.

58 

Consequently, many businesses would prefer to adopt 
a â€˜wait-and-see’ approach rather than be subject to 
‘stroke-of-the pen’ risk (the risk of government policy 
changing and undermining the viability of investments). 
The current situation with CCS highlights the risks and 
dilemmas. The technology brings no additional security 
of supply benefits, in fact the reverse with an (as yet 
unknown) energy penalty associated with its use. In a 
carbon-constrained world, the use of CCS may be the 
only way in which coal is usable. But without a clear 
financial incentive or binding requirement for its use, 
early movers deploying the technology gain little, and 
therefore the large utilities are reluctant to act.

Box 17: Carbon capture and storage

Commercial scale demonstration projects are planned 
for the use of carbon capture and storage on coal 
fired power stations. Coal emits the highest carbon 
emissions of all conventional fuel sources per unit 
of energy produced but is the most widely available 
(and cheapest) fossil fuel. Attempts are being made to 
develop economically and commercially viable methods 
of separating and storing the C0

2

 produced during coal 

combustion. The idea is to make coal an acceptable 
fuel in a low carbon energy system. However, the use of 
CCS is yet to be proven at scale and there are concerns 
about the long-term safety and legal issues surrounding 
the underground storage of C0

2

. Its impact on security of 

supply also raises concerns for developing countries. This 
is because using CCS is likely to reduce the efficiency of 
a coal-fired power plant, effectively needing more coal 
to generate the same amount of electricity produced. 
The EU target is to have 12 CCS demonstration plants in 
operation by 2015, although progress to date has been 
slow. However, funding has been earmarked through the 
European Economic Recovery Plan and the European 
Emission Trading Scheme, which may speed things up.

Physical and operational risks

Politics and geology remain major areas of risk for 
the extraction and supply of energy resources to their 
markets. The depletion of ’easy to produce’ oil and gas 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 34   

in some areas and political limitations on access to it in 
others, is leading companies to spend more on exploiting 
resources in riskier geological and political terrain. 

Infrastructure investments generally have long pay-back 
periods and, in the case of power plants, working lifetimes 
of up to 50 years. Infrastructure and systems not built to 
withstand changing environmental conditions will require 
retrofitting, become increasingly expensive to operate 
and/or become redundant. For example, power stations 
that use river water may need to build cooling towers 
to enable operation in periods of higher temperatures 
(as higher river temperatures affect the efficiency of the 
power stations) or droughts.

Energy planners and financiers need to take into account 
the global transition towards greater sustainability. At 
the same time, policies to incentivise the deployment of 
progressively cleaner energy technologies may mean the 
need to retire some energy infrastructures prematurely. 
It is therefore critical that investments made today are 
assessed to meet both medium and long-term energy 
security and climate change goals. 

Some utilities companies are also seeking to change their 
businesses models, so that they supply energy services, 
rather than just selling units of energy. This requires new 
technology and infrastructure such as smart grids (see 
Box 19) and institutional changes to manage different 
practices, such as rewarding efficiency and allowing 
electricity to be easily sold back into the grid. While 
bringing new opportunities, these innovations also bring 
new vulnerabilities, such as exposure to cyber attack 
(see Box 19). 

Box 18: Energy and water use - a new flashpoint? 

Energy production and sources of drinkable water 
are intimately linked. Their interdependence, coupled 
with increasing shortages in some parts of the world, 
poses a major global dilemma. Energy is essential for 

obtaining drinkable water while water is a prerequisite 
for major sources of energy production. Hydropower, 
cooling of thermal and nuclear power plants, fossil fuel 
production and processing, biomass production and 
hydrogen production are all dependent on a plentiful 
supply of water. In fact, energy production accounts 
for approximately 39% of all water withdrawals in the 
US and 31% in the EU.

59

 Contamination of underground 

and surface fresh water supplies as a result of energy 
generation worsens this impact. With energy production 
forecast to grow by approximately 45% over the next two 
decades, water consumption for energy production will 
more than double over the same period.

Another report published by Lloyd’s 360° Risk Insight 
highlights the potential risks for business resulting from 
growing water scarcity. The report notes that climate 
change will make rainfall patterns less predictable and 
that efforts to reduce C0

2

 may impose penalties on 

water practices that are energy/carbon intensive, such 
as desalination.

60

Reputational risks

NGO campaigns and the media can have substantial 
effects on a company’s share price and the availability of 
capital. Recent campaigns against some forms of energy 
production have raised awareness of their impacts on 
limited resources such as fresh water and ancient forests. 
This can harm the reputation of companies operating in 
or funding the operations. For example, some campaigns 
have lobbied pension funds that invest in oil companies 
with operations in the Canadian tar sands

61

 and banks 

that lend to companies carrying out mountain top 
removal coal mining in the US.

62 

Green energy companies could also face damaging 
criticism on health, safety and environmental grounds. 
For example, a Chinese polysilicon manufacturer was 
exposed in the Washington Post for dumping its toxic 
waste products in a nearby village

63

 and Greenpeace 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  35   

raised awareness of banks funding palm oil production 
for biodiesel when this leads to deforestation.

64

 Electronic 

waste, from solar and other high-tech energy systems, 
is a growing phenomenon not yet fully legislated for and 
the industry will have to address increasing pressure 
for transparency in their practices and supply chains.

65

 

These risks and the necessary costs of pollution control 
and recycling processes will have to be factored into 
investment decision-making. 

Operating in more difficult terrains increases the risk 
of accidents which have human, environmental and 
economic consequences. The economic consequences 
relate to the costs of remediation, compensation and 
the potential impact of reputational damage on the 
company’s share prices. The pressure to invest in areas 
with unclear legal frameworks and governance challenges 
will continue to expose companies to accusations of 
collusion in human rights abuses or corruption.

Box 19: Smart energy systems bring new 
opportunities and risks

As energy technologies mature, advances in design, 
site selection and operation increasingly depend on 
innovation in information and communication systems. 
This means that companies and countries with strengths 
in information communications technology (ICT) are 
well placed to capitalise on the growth opportunities 
as these technology systems evolve. Smarter energy 
systems will also generate opportunities for different 
kinds of partnerships between energy providers and 
the manufacturers of user technology. With so much 
dependence on ICT, security against technical failure, 
loss of energy supply to the servers and cyber risk will 
become more important. 

A â€˜smart grid’ uses information technology to create an 
‘intelligent’ electricity system which monitors, protects 
and automatically optimises operation. Smart grids will 
not only supply but also communicate with industrial 

and household users by means of building automation 
systems, energy storage installations, thermostats  
and appliances. 

Most major economies are planning the introduction 
of smart grids although with differing timescales. 
China began building its first pilot smart grid for the 
Sino-Singapore Eco-City in Tianjin in April 2010. Smart 
grids will lessen the need for investment in peak load 
power plants and enable greater deployment 
of renewable energy. Some renewables, such as 
wind power, are dependent on the weather on 
a day-to-day and hour-to-hour basis (this is called 
intermittent generation). Companies, such as Siemens 
in Germany, where wind power is a significant part of 
the electricity mix, are engaged in planning an efficient 
system that maximises electricity from renewables. 
If grids are extended widely enough (across all the 
countries of the EU, for example) non-renewable and 
renewable energy surpluses could be shifted from 
country to country. An extensive study by the 
European Climate Foundation found that given the 
necessary investment including the rapid development 
of a European smart grid with interconnection into 
North Africa, 100% of Europe’s electricity could come 
from renewable energy.

66

Modernising the ageing grid and deploying smart grid 
technology is currently thought to have a market of 
around $21bn, but this is expected to increase to $200bn 
over the next five years, with companies like Cisco, IBM, 
Motorola, GE and Siemens all vying for a share of the 
market.

67

The two-way flow of electricity and information would 
also enable electric cars to be used as a form of mobile 
storage. â€˜Vehicle-to-grid’ technology would help balance 
loads by charging at night when demand is low, selling 
power back to the grid when demand is high and 
providing some back-up in the event of outages (see 
also Box 20).

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 36   

New business opportunities

Markets for low-carbon energy products are likely to be 
worth at least $500bn per year by 2050, and perhaps 
much more, according to the Stern Review.

68

 For example, 

several major insurance markets (including syndicates 
at Lloyd’s) now have units dedicated to insuring the 
renewable energy market, and construction companies 
are opening up new lines in low or zero-carbon housing.

“No one should underestimate the sheer 

scale of the opportunity the transition 

to a low-carbon economy will offer the 

construction industry. The requirement  

for low-carbon construction is probably 

the biggest change management 

programme that the industry has  

faced since Victorian times.”

Paul Morrell, The UK Government's  
Chief Construction Adviser 

69

The developing world is also a growth market for products 
that can combine efficiency and emissions reductions. 
Several Asian companies are succeeding in this area. 
For example, Chinese telecoms company Huawei has 
a â€˜Green Communications’ arm which provides next 
generation telecommunications network infrastructure 
featuring â€˜intelligent management’ of electricity and 
renewable energy options. This claims to cut power 
consumption by over 60% and is proving especially 
successful in Africa and South Asia where there are 
frequent power cuts or areas without grid access. Huwei 
won a major contract with Reliance Communications in 
India in 2007 and built Pakistan’s first 100% solar-powered 
base station for Warid Telecom in 2008. More companies 
are embracing a so-called â€˜game-changing strategy’ - 
one that allows a company to leapfrog its competitors 
by creating new markets or reshaping old ones in such 
a way that they generate or sustain its domination. This 
strategy often involves collaboration between companies 
in order to bring about the right conditions to compete in 
international markets.

Box 20: Competition and collaboration for the 
low-carbon space - the example of electric vehicles

Electric vehicles (EVs) are an example of how low-carbon 
innovation is creating new types of industrial partnerships 
– from research and development all the way to the 
customers’ experience. Collaboration is required because 
few companies have assets and expertise that cut 
across batteries, electricity, automobiles and information 
systems. However, electric vehicles are unlikely to take 
significant market share until common standards can be 
agreed for plugging in and charging the vehicles. Finally, 
new financing models will be needed – the upfront costs 
of the battery technology are high, even if the running 
costs are much lower than diesel. In one example, 
Swedish power company Vattenfall and car manufacturer 
Volvo have joined forces to create a plug-in hybrid car 
to be on the road by 2012. The idea is for Volvo to make 
the car and Vattenfall to develop the charging systems. 
Meanwhile, battery packs for the vehicles are expected to 
be supplied by LG-Chem, the leading South Korean firm. 

Partnerships between the manufacturer and customer 
are helping to speed up deployment, such as the deal 
between Sainsbury’s and Smith Edison to produce the 
supermarket chain’s electric vehicle fleet – now the 
largest in the UK. The calculation is that the fleet will save 
the company money in the long-run given that they are 
exempt from the London congestion charge, have around 
20% lower running costs and may benefit from lower fleet 
insurance. Nissan says it will install home charging points 
(supplied by AeroVironment, best known for advanced 
military technology) when a customer buys an electric 
vehicle in the US. This suggests an ongoing relationship 
with the customer more akin to a mobile phone than a 
conventional car purchase.

Standardisation of charging and battery technology is a 
major challenge given that there are still many different 
options being pursued. A group of Japanese car makers 
(ChaDeMo), including Toyota and Nissan, have created a 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  37   

group which by â€œforming a common â€˜language’ 
for fast-charging electric cars across various brands 
would save development costs for carmakers and 
ancillary industries”.

70

 

Investing in efficiency offers the most obvious protection 
against many of the risks noted here as well as increasing 
competitiveness. Businesses have the tools and incentive 
to act, especially in the area of energy efficiency, given 
the rapid payback times for many investments. However, 
some companies will also face hard choices about how 
fast to diversify into manufacturing new products or using 
different technologies. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 38   

We can expect dramatic changes in the energy sector in 
the coming decades. This report encourages businesses, 
both in the energy sector and beyond, to look at how this 
will impact on their firms. The transition towards a low-
carbon economy and the interim volatility in traditional 
fossil fuel markets presents businesses with numerous 
risks but also opportunities. In order to reduce potential 
vulnerability and seize opportunities, business should be 
aware that:

1. Energy security is now inseparable from 
the transition to a low-carbon economy and 
businesses plans should prepare for this new 
reality. 

Security of supply and emissions reduction 

objectives should be addressed equally, as prioritising 
one over the other will increase the risk of stranded 
investments or requirements for expensive retro-fitting.

2. Traditional fossil fuel resources face serious 
supply constraints and an oil supply crunch is 
likely in the short-to-medium term with profound 
consequences for the way in which business 
functions today. 

Businesses would benefit from taking 

note of the impacts of the oil price spikes and shocks 
in 2008 and implementing the appropriate mitigation 
actions. A scenario planning approach may also help 
assess potential future outcomes and help inform 
strategic business decisions.

3. A â€˜third industrial revolution’ in the energy 
sector presents huge opportunities but also 
brings new risks. Of particular importance for 
new technologies is the risk of constraints on raw 
materials such as rare earth metals, as scarcity 
may drive up costs.

 The rapid and widespread diffusion 

of some new technologies may also incur negative 
environmental implications.

conclusions 

4. Energy infrastructure will be increasingly 
vulnerable to unanticipated severe weather 
events caused by changing climate patterns 
leading to a greater frequency of brownouts 
and supply disruptions for business.

 

This throws 

out a critical challenge to energy providers, investors 
and planners in terms of choosing the location of new 
infrastructure and fortifying existing plants and networks. 
Those businesses for which uninterrupted access to 
energy is of fundamental importance should actively 
consider investing in alternative energy supply systems.

5. Increasing energy costs as a result of reduced 
availability, higher global demand and carbon 
pricing are best tackled in the short term by 
changes in practices or via the use of technology 
to reduce energy consumption. 

T

he wider use of 

renewable energy and even self generation, bring 
added price and supply security benefits. 

6. The sooner that businesses reassess global 
supply chains and just-in-time models, 
and increase the resilience of their logistics 
against energy supply disruptions, the better

.

The current system is increasingly vulnerable to 
disruption, given the trends outlined in this report.

7. While the vast majority of investment in the 
energy transition will come from the private 
sector, governments have an important role in 
delivering policies and measures that create the 
necessary investment conditions and incentives.

 

If the global carbon market is to become a reality then 
government action must be taken to bring additional 
price stability and transparency. Investing in a secure, 
low-carbon energy future may have higher upfront 
costs, but will deliver lower cost energy in the future. 
Sound renewable energy and demand side measures 
are crucial elements in delivering the necessary 
energy services for businesses and the expected return 
on investments. 

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  39   

references

1

 Global Trends 2025: A Transformed World, US National Intelligence Council. 2008

2

  Jansen 2009: Energy services security: concepts and metrics: J.C. Jansen, Energy Research Centre of the Netherlands, 

October 2009

3

 IEA 2009: World Energy Outlook, International Energy Agency 2009

4

  ICC 2007: Policy statement, Energy Security: A World Business Perspective, International Chamber of Commerce, May 2007

5

  BP 2009: Statistical Review of Energy, British Petroleum June 2009

6

  IASPS 2002: African Oil: A priority for US National Security and African Development, The Institute for Advanced Strategic 

and Political Studies, 2002

7

  Mcllvaine 2010: Coal-fired Boilers: World Analysis and Forecast, McIlvaine Company, 2010

8

  This was due mainly to the closure of over 1000 domestic mines due to unsafe conditions. Bloomberg 2010: China May Be 

Net Importer of Coal for Second Year, April 2010

9

  Enough to last 122 years at current consumption levels according to BP 2009: Statistical Review of World Energy 2009.

10

  IEA 2009: World Energy Outlook, International Energy Agency 2009

11

  HIS-CERA 2010: Fuelling North America’s Energy Future, the Unconventional Natural Gas Revolution and the Carbon 

Agenda, March 2010

12

  International Energy Agency 2009: World Energy Outlook, International Energy Agency 2000, page 405. According to the 

assessment, reserves declined by 39% in the first year. By the fifth year production rates had fallen by two thirds.

13

  International Energy Agency 2009: World Energy Outlook, International Energy Agency

14

  Eurostat 2009: Panorama of Energy; Energy Statistics to Support EU Policies and Solution, second edition 2009

15

  DOE 2007: Peaking of World Oil Production: Recent Forecasts, DOE/NETL-2007/1263, US Department of Energy 2007

16

  UKERC 2009: Global Oil Depletion, An assessment of the evidence for a near-term peak in global oil production, UK Energy 

Research Centre, August 2009

17

  Robert Hirsch, Peaking Of World Oil Production: Impacts, Mitigation, & Risk Management, Robert L. Hirsch, SAIC, Project 

Leader Roger Bezdek, MISI, Robert Wendling, MISI, February 2005

18

  Chatham House 2009: The Coming Oil Supply Crunch, Paul Stevens, July 2008, Chatham House updated May 2009

19

  IEA 2009: The Impact of the Financial and Economic Crisis on Global Energy Investment International Energy Agency, May 2009

20

  Michael Toman et. al 2009: Unconventional Fossil-Based Fuels: Economic and Environmental Trade-Offs Santa Monica, CA: 

RAND Corporation, 2008

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 40   

21

  WWF & Cooperative Bank 2009: Unconventional Oil: Scraping the Bottom of the Barrel? World Wide Fund for Nature and 

the Co-operative Bank 2009

22

  EEA 2010: Overall well-to-wheel greenhouse gas emissions of various types of biofuels, compared to reference fuel. 

European Environment Agency, Available at http://www.eea.europa.eu/data-and-maps/figures/overall-well-to-wheel-
greenhouse-gas-emissions-of-various-types-of-biofuels-compared-to-reference-fuel accessed April 2010

23

  Rubin 2010: Oil disaster may prove tipping point for world oil production, Globe and Mail, 5th May 2010 http://www.

theglobeandmail.com/report-on-business/commentary/jeff-rubins-smaller-world/oil-disaster-may-prove-tipping-point-for-
world-oil-production/article1557220/

24

  Chatham House 2009: The Coming Oil Supply Crunch, Paul Stevens, July 2008, Chatham House updated May 2009

25

  IEA 2009: The Impact of the Financial and Economic Crisis on Global Energy Investment, May 2009

26

  Chatham House 2009: The Coming Oil Supply Crunch, Chatham House Report, Paul Stevens: July 2008, Updated May 2009

27

  Climate Scoreboard 2010: Scoreboard Science and Data, Climate Interactive,: http://climateinteractive.org/scoreboard/

scoreboard-science-and-data

28

  IEA 2008: Energy Technology Perspectives International Energy Agency 2008

29

  Rifkin 2010: Welcome to the Third Industrial Revolution, Jeremy Rifkin, accessed May 2010 

http://thirdindustrialrevolution.ning.com/

30

  Mi2 2009: Material Scarcity, Materials Innovation Institute, November 2009

31

  Mi2 2009: Material Scarcity, Materials Innovation Institute, November 2009

32

  Smith 2010: Written Testimony, Mark A. Smith, Chief Executive Officer, Molycorp Minerals, LLC House Science and 

Technology Committee, Subcommittee on Investigations and Oversight â€œRare Earth Minerals and 21st Century Industry”, 
March 16, 2010

33

  NEF 2009: Unearthing the Rare Earth Market for Clean Energy Investors, New Energy Finance, January 2009

34

  Reuters 2010: â€˜Danish Firms Launch Second Generation Biofuel Enzymes’ Reuters, February 2010

35

  The Hadley Centre: Impacts our models are already predicting for Europe and the UK, available at http://www.metoffice.

gov.uk/climatechange/science/explained/explained1.html

36

  USGS 2008: 90 Billion Barrels of Oil and 1,670 Trillion Cubic Feet of Natural Gas Assessed in the Arctic 23rd July 2008 

http://www.usgs.gov/newsroom/article.asp?ID=1980&from=rss_home

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  41   

37

  Chalecki 2007: , â€˜Climate change in the Arctic and its implications for US national security’, Oceanic Studies, Fletcher 

School of Law and Diplomacy, Beth Chalecki http://fletcher.tufts.edu/maritime/documents/ArcticSecurity.pdf

38

  Greenpeace: Greenpeace Russia warns the government of the dangers of climate change’, 20 November 2009

39

   BIAC 2006: Without energy security, no growth and prosperity Business key messages on energy for the G-8 Summit 

15-17 July 2006, Business and Industry Advisory Committee to the OECD

40

  IEA 2008: Worldwide Trends in Energy End Use and Efficiency, Key Insights from IEA Indicator Analysis, International Energy 

Agency 2008

41

  IEA 2008: Worldwide Trends in Energy End Use and Efficiency, Key Insights from IEA Indicator Analysis, International Energy 

Agency 2008 

42

  Helen Peck Cranfield University/Defence Academy College of Management and Technology: Food Service Supply Chains 

for the UK: Fragile or Resilient? Presented at the Logistics Research Network Conference, Cardiff, September 2009

43

  Reuters 2009: â€˜Pakistan’s Textile Industry Buckles under Crisis’, Reuters, 12 August 2009

44

  Reuters 2010: â€˜Pakistan’s finance woes stare at new economy chief’, Reuters, 10 March 2010

45

  Carbon Trust 2008: Working with Tesco Product carbon footprinting in practice, Carbon Trust 2008

46

  Mckinsey 2004: â€˜Preparing for a low-carbon future’, Christoph Grobbel, Jiri Mali and Michael Molitor, McKinsey Quarterly, 

no. 4, 2004

47

  DEFRA 2006: Resilience in the Food Chain: A Study of Business Continuity Management in the Food and Drink Industry, 

Helen Peck, Final Report to the Department for Environment, Food and Rural Affairs, July 2006

48

  Just-Food.com 2000: UK: Fears of food shortage in wake of fuel crisis, Clare Harman, 14 September 2000, Just-Food.com

49

  The Times 2000: Panic buyers force stores to ration food, V. Elliot, September 14th 2000

50

  DEFRA 2006: Resilience in the Food Chain: A Study of Business Continuity Management in the Food and Drink Industry, 

Helen Peck, Final Report to the Department for Environment, Food and Rural Affairs, July 2006

51

  IMF 2010: Impact of High Food and Fuel Prices on Developing Countries, International Monetary Fund 

http://www.imf.org/external/np/exr/faq/ffpfaqs.htm - last updated 11 February 2010

52

  FDA 2009: Community Partnership Awards 2009, Food and Drink Federation 

http://www.fdf.org.uk/corporate_pubs/CPA_2009_case_studies.pdf

53

  EIP 2008: Feeding US Refinery Expansions with Dirty Fuel, Environmental Integrity Project and Environmental Defence 

Canada, June 2008

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 42   

54

  Chatham House 2009: Unlocking Finance for Clean Energy: The Need for â€˜Investment Grade’ Policy Kirsty Hamilton, 

Chatham House, Energy, Environment and Resource Governance December 2009 

55

  El-Badri 2010: Keynote address by OPEC Secretary General, HE Abdalla S. El-Badri, to the Chatham House Conference, 

London, UK - 1st February 2010. â€œProspects for Middle East & North Africa Energy: Oil Reserves, Investments & Demand.”

56

  SEI 2009: Ireland’s low-carbon Opportunity, Sustainable Energy Ireland, Assessment carried out by McKinsey, July 2009

57

  Centrica 2010: Centrica’s response to Ofgem’s consultation on â€œProject Discovery- Options for delivering secure and 

sustainable energy”, 31st March 2010

58

  Chatham House 2009: Who owns our low-carbon future? Energy technologies and intellectual property, Bernice Lee, Ilian 

Iliev and Felix Preston A Chatham House Report, September 2009

59

  WEF 2009: The bubble is close to bursting: warnings on water from World Economic Forum report 

http://www.weforum.org/en/media/Latest%20Press%20Releases/PR_AM09_Water

60

  Lloyds 2010: Global Water Scarcity, Risks and Challenges for Businesses, Lloyd’s 360 Risk Insight and WWF May 2010

61

  Examples are the FairPensions campaign in the UK, supported by WWF, the Cooperative Bank and several trade unions 

and the Platform campaign against banks lending to companies involved in tar sands projects.

62

  For instance, US organizations Sierra Club, Rainforest Action Network and Bank Track which ranked nine major banks for 

their lending to companies that engaged in this practice.

63

  Washington Post: â€˜Solar Energy Firms Leave Waste Behind in China’, 9 March 2008

64

  See http://www.greenpeace.org.uk/forests/palm-oil 

65

  Silicon Valley Toxics Coalition: Towards a Just and Sustainable Solar Industry, White Paper, San Jose C.A.: 14 January 

2009. Available at http://www.svtc.org/site/DocServer/Silicon_Valley_Toxics_Coalition_-_Toward_a_Just_and_Sust.
pdf?docID=821

66

  ECF 2010: Roadmap 2050, European Climate Foundation: April 2010

67

  Reuter 2010: Smart grid’s big promise lures blue chips, 10th May 2010

68

  Stern 2006: The Economics of Climate Change, â€˜The Stern Review’. Nicholas Stern Cambridge: Cambridge University Press, 2006

69

 govtoday.co.uk 2010: 'Low Carbon Construction Team report welcomed', March 2010

70

  Reuters 2010: â€˜Japan firms to standardise electric car rechargers’, Reuters, 10 March 2010

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business  43   

Bloomberg New Energy Finance

www.newenergyfinance.com

BP Statistical Review of World Energy

www.bp.com

The Carbon Trust

www.carbontrust.co.uk

Chatham House’s Energy, Environment 
& Development Programme 

www.chathamhouse.org.uk/eedp

European Climate Foundation (ECF)

www.europeanclimate.org

International Energy Agency (IEA)

www.iea.org

Lloyd’s 360 Risk Insight

www.lloyds.com/360

The Oil Depletion Analysis Centre

www.odac-info.org

The US Department of Energy Information 
Administration (EIA)

www.eia.doe.gov

The UK Energy Research Centre (UKERC)

www.ukerc.ac.uk

World Business Council for Sustainable 
Development

www.wbcsd.org

useful contacts

background image

Lloyd’s 360° Risk Insight

 Sustainable energy security: strategic risks and opportunities for business

 44   

Lloyd’s is a member of ClimateWise, the insurance industry initiative through which members work individually and 
collectively to pro-actively reduce the societal and economic risks associated with climate change. Members include 
leading international brands from across the industry.
 
ClimateWise was launched in September 2007 and all members commit to principles in six key areas. These cover climate 
risk analysis, public policy, climate awareness amongst customers, investment strategies and the impact of their business 
operations. Members also commit to independent public reporting against all of these commitments.
 
For more information, visit www.climatewise.org.uk

Copyright Notice: Â© 2010    Lloyd’s    All rights reserved.

Disclaimer

This document is intended for general information purposes only. While all care has been taken to ensure the accuracy of the information 

neither Lloyd’s nor Chatham House accept any responsibility for any errors or omissions. Lloyd’s and Chatham House do not accept any 

responsibility or liability for any loss to any person acting or refraining from action as the result of, but not limited to, any statement, fact, 

figure, expression of opinion or belief contained in this document.

Lloyd’s is a registered trademark of the Society of Lloyd’s. Â© Lloyd’s 2010.

background image

Lloyd’s is a registered trademark of the Society of Lloyd’s. Â© Lloyd’s 2010.

background image

Lloyd’s

   One Lime Street   London   EC3M 7HA   Telephone +44 (0)20 7327 1000   Fax +44 (0)20 7626 2389   

www.lloyds.com