background image

Administration

Federal Aviation

HQ-10998.INDD

Semi- Annual Launch Report

Second Half of 2009

Reviewing Launch Results from the 2nd and 3rd Quarters 2009 and Forecasting

Projected Launches for 4th Quarter 2009 and 1st Quarter 2010

Special Report: Commercial Access to Space from Cecil Field, Florida

background image

Semi-Annual Launch Report: Second Half of 2009

1

Introduction

The 

Semi-Annual Launch Report: Second Half of 2009

features launch results from April through September

2009 and forecasts for the period from October 2009 to March 2010. This report contains information on

worldwide commercial, civil, and military orbital and commercial suborbital space launch events. Projected

launches have been identified from open sources, including industry contacts, company manifests, periodicals,

and government sources. Projected launches are subject to change.

This report highlights commercial launch activities, classifying commercial launches as one or both of the 

following:

• Internationally-competed launch events (i.e., launch opportunities considered available in principle to

competitors in the international launch services market);

• Any launches licensed by the Office of Commercial Space Transportation of the Federal Aviation

Administration (FAA) under 49 United States Code Subtitle IX, Chapter 701 (formerly the Commercial

Space Launch Act).

The FAA has changed to a half-year schedule for publishing this report. The next Semi-Annual Launch

Report will be published in May 2010.

Cover photo courtesy of Space Exploration Technologies Corporation (SpaceX) Copyright Â© 2009. A SpaceX Falcon

1 vehicle lifts off from Omelek Island in the Kwajalein Atoll, 2,500 miles (4,000 kilometers) southwest of Hawaii, on

July 13, 2009. The commercial launch to low Earth orbit (LEO) carried RazakSAT, a Malaysian imaging satellite,

along with two secondary payloads.

Contents

Highlights: April - September 2009  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Vehicle Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Commercial Launch Events by Country  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Commercial vs. Non-commercial Launch Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Orbital vs. Suborbital Launch Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Launch Successes vs. Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Payload Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Payload Mass Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Commercial Launch Trends  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Commercial Launch History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Special Report: Commercial Access to Space from Cecil Field, Florida . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SR-1
Appendix A: Orbital and Suborbital Launch Events: April - September 2009  . . . . . . . . . . . . . . . . . . . . . . .A-1
Appendix B: Orbital and Suborbital Launch Events: October 2009 - March 2010  . . . . . . . . . . . . . . . . . . .B-1  

background image

Semi-Annual Launch Report: Second Half of 2009

2

Highlights: April - September 2009

On April 16, Space Exploration Technologies Corporation

(SpaceX) and Argentina’s National Commission on Space

Activity (CONAE) signed an agreement to launch the SAO-

COM 1A and 1B, a pair of earth-monitoring satellites

equipped with L-band synthetic aperture radar (SAR) instru-

ments. The payloads are expected to launch aboard SpaceX’s

Falcon 9 vehicle in 2012.

On April 30, a Sea Launch Zenit-3SL lifted off from Odyssey

Launch Platform in the Pacific Ocean. The FAA-licensed 

commercial launch successfully deployed Sicral 1B, a dedicated

military communications operated by the Italian Ministry of

Defense, in geosynchronous orbit (GEO).

On May 19, a Minotaur 1 rocket successfully launched the U.S.

Air Force Research Laboratory’s TacSat-3 satellite into orbit.

TacSat-3, built by Alliant Techsystems (ATK), demonstrated a

hyperspectral sensor whose operations can be controlled direct-

ly by troops in the field. The launch also deployed NASA’s

PharmaSat, manufactured by Orbital Sciences Corporation.

In May, the U.S. subsidiary of ICO Global Communications

filed for pre-arranged bankruptcy protection under Chapter 11

of the U.S. Bankruptcy Code. The company has struggled to

recover the investment costs of its ICO-G1 satellite, launched

in April 2008 to serve the North American market, and retains

substantial debts to its hardware suppliers. The subsidiary plans

to restructure financing while continuing business operations.

With more than $2 billion in unpaid debt, Sea Launch filed for

bankruptcy protection on June 22.  Sea Launch had been expe-

riencing ongoing financial shortfalls stemming from its January

30, 2007, failed launch of the NSS 8 commercial communica-

tions satellite. Following the launch failure, Sea Launch did not

resume launch operations until January 2008, and several of its

launch contracts were canceled. As of October 2009, Sea

Launch officials had set a goal to emerge from bankruptcy by

the end of the first quarter of 2010.

On June 27, a United Launch Alliance (ULA) Delta IV

Medium-Plus vehicle lifted off from Cape Canaveral Air Force

Station. The FAA-licensed launch successfully deployed GOES

O, an environmental monitoring satellite operated by the

National Oceanic and Atmospheric Administration (NOAA),

in GEO.

SpaceX and Argentina’s CONAE

finalize launch deal

Successful launch of TacSat-3

U.S. division of ICO Global

Communications files for 

bankruptcy protection

Sea Launch files for bankruptcy

protection

Sea Launch Zenit-3SL deploys

Italian military satellite

ULA Delta IV launches NOAA

environmental satellite

background image

Highlights: April - September 2009

Semi-Annual Launch Report: Second Half of 2009

3

In July, the satellite communications company Globalstar

received a $276 million loan guaranteed by France’s export

credit agency, Coface—the first installment in a $586-million

loan package. This financing allows Globalstar to move forward

with plans for its second-generation satellite system. The sys-

tem, manufactured by Alcatel Alenia Space, is expected to pro-

vide Globalstar customers with voice and data services through

2025. The satellites are slated to launch in sets of six aboard the

Soyuz 2 vehicle operated by Arianespace beginning in 2010.

On July 13, a SpaceX Falcon 1 lifted off from Kwajalein Atoll

in the Marshall Islands. The FAA-licensed launch successfully

deployed RazakSAT, a remote sensing satellite operated by the

Malaysian National Space Agency, in low Earth orbit (LEO).

On August 17, a United Launch Alliance (ULA) Delta II rock-

et successfully deployed the last of the U.S. Air Force’s GPS 2R-

series positioning and navigation satellites from Cape Canaveral

Air Force Station, Florida. The satellite, Navstar GPS 2RM-8, is

the final of eight Lockheed Martin-built GPS 2R satellites

enhanced to include additional civilian and military bandwidth

capacity, higher signal power, and superior jamming resistance.

The newly launched satellite joins 18 other functioning GPS

2R satellites in the Air Force’s 30-satellite GPS constellation.

On August 25, the Korea Space Launch Vehicle (KSLV 1),

developed jointly by South Korea and Russia, failed in its first

orbital launch attempt. The vehicle veered off course following

liftoff from the Naro Space Center in Goheung, South Korea,

due to a second-stage malfunction that prevented payload fair-

ing separation from the launch vehicle. As a result, the demon-

stration satellite STSAT-2 was lost. South Korea plans to stage a

second launch attempt in May 2010.

Japan’s H-II transfer vehicle (HTV-1), a spacecraft designed to

ferry cargo to the International Space Station (ISS), was

launched on September 10 from Tanegashima Space Center.

The $680-million HTV-1 spacecraft, in development since

1997, was deployed aboard a H-II B rocket. It carried food,

experiments, mission hardware, and general cargo to the ISS,

where it was scheduled to dock for 55 days.

On September 23, Oceansat-2 and six European nanosatellites

were successfully launched aboard an Indian Polar Satellite

Launch Vehicle (PSLV) that lifted off from the Satish Dhawan

Space Centre. The 960-kilogram (2,100-pound) Oceansat-2

continues India’s decade-long program of regular ocean moni-

toring, maintaining data collection operations initiated by

Oceansat-1 in 1999.

Second-Generation Globalstar 

satellites financed for launch in

2010

Final GPS-2R-series satellite

launched

India deploys ocean-monitoring

satellites

Maiden South Korean orbital

launch fails

Japan’s HTV-1 successfully 

reaches the ISS

SpaceX Falcon 1 performs 

second successful commercial

launch

background image

3

3

3

1

1

1

3

3

2

1

1

1

5

6

1

1

1

1

1

0 1 2 3 4 5 6 7

Atlas V

Delta II

Shuttle

Minotaur I

Delta IV

Falcon 1

Long March

Ariane 5

PSLV

H-IIB

Zenit-3SL

Zenit-3SLB

Proton

Soyuz

Soyuz 2

Rockot

Kosmos

Dnepr

KSLV 1

2

2

5

2

2

2

1

4

3

1

1

2

3

6

2

3

0 1 2 3 4 5 6 7

Shuttle

Delta II

Atlas V

Delta IV

Falcon 9

Minotaur IV

Taurus

Long March

Ariane 5

PSLV

H-IIA

Zenit-3SLB

Dnepr

Proton

Rockot

Soyuz

Semi-Annual Launch Report: Second Half of 2009

4

Figure 1 

shows the total number of orbital and commercial suborbital launches of each launch vehicle and the

resulting market share that occurred from April through September 2009.

Figure 2 

projects this information for

the  period  from  October  2009  through  March  2010. The  launches  are  grouped  by  the  country  in  which  the 

primary vehicle manufacturer is based. Exceptions to this grouping are launches performed by Sea Launch, which

are designated as multinational.

Note:

Percentages for these and subsequent figures may not add up to 100 percent due to rounding of individ-

ual values.

Vehicle Use 

(April 2009 â€“ March 2010)

Total = 39

USA (31%)

Total = 41

USA (39%)

JAPAN (2%)

Figure 1: Total Launch Vehicle Use:

April - September 2009

Figure 2: Total Projected Launch Vehicle Use:

October 2009 - March 2010

CHINA (8%)

CHINA (10%)

EUROPE (8%)

INDIA (5%)

INDIA (2%)

JAPAN (3%)

EUROPE (7%)

MULTI (5%)

RUSSIA (34%)

MULTI (5%)

RUSSIA (38%)

SOUTH 

KOREA (3%)

background image

Semi-Annual Launch Report: Second Half of 2009

5

Commercial Launch Events by Country

(April 2009 â€“ March 2010)

Figure  3

shows  all  commercial  orbital  and  suborbital  launch  events  that  occurred  from  April  through

September 2009.

Figure 4 

projects this information for the period from October 2009 through March 2010.

Total = 13

Total = 17

Figure 3: Commercial Launch

Events by Country:

April - September 2009

Figure 4: Projected Commercial Launch

Events by Country:

October 2009 - March 2010

Commercial vs. Non-Commercial Launch Events 

(April 2009 â€“ March 2010)

Figure 5

shows commercial vs. non-commercial orbital and suborbital launch events that occurred from April

through September 2009.

Figure 4 

projects this information for the period from October 2009 through March

2010.

Total = 39

Total = 41

Non-Commercial

59% (24)

Commercial

41% (17)

Non-Commercial

67% (26)

Commercial

33% (13)

Figure 5: Commercial vs. Non-Commercial 

Launch Events:

April - September 2009

Figure 6: Projected Commercial vs.

Non-Commercial Launch Events:

October 2009 - March 2010

MULTI

12% (2)

EUROPE

15% (2)

RUSSIA

53% (9)

USA

24% (4)

USA 15%

(2)

CHINA

8% (1)

EUROPE

12% (2)

RUSSIA

46% (6)

MULTI

15% (2)

background image

Semi-Annual Launch Report: Second Half of 2009

6

Orbital vs. Commercial Suborbital Launch Events

(April 2009 â€“ March 2010)

Figure 7: Orbital vs. Suborbital 

Launch Events:

April - September 2009

Figure 8: Projected Commercial Suborbital vs.

Orbital Launch Events:

October 2009 - March 2010

Figure  7 

shows  orbital  vs. FAA-licensed  commercial  suborbital  launch  events  (or  their  international 

equivalents)  that  occurred  from April  through  September  2009.

Figure  8

projects  this  information  for  the 

period from October 2009 through March 2010.

Launch Successes vs. Failures

(April 2009 â€“ September 2009)

Figure 9 

shows orbital and commercial suborbital launch successes vs. failures for the period from April through

September 2009. Partially-successful orbital launch events are those where the launch vehicle fails to deploy its 

payload to the appropriate orbit, but the payload is able to reach a useable orbit via its own propulsion systems.

Cases in which the payload does not reach a useable orbit or would use all of its fuel to do so are considered

failures.

Total = 39

Success 95% (37)

Figure 9: Launch Successes vs. Failures:

April - September 2009

Orbital

100% (39)

Commercial

Suborbital 0% (0)

Total = 39

Orbital

100% (41)

Commercial

Suborbital 0% (0)

Total = 41

Failure 3% (1)

Partial 3% (1)

background image

Semi-Annual Launch Report: Second Half of 2009

7

Payload Use (Orbital Launches Only)

(

April 2009 â€“ March 2010)

Figure  10

shows  total  payload  use  (commercial  and  government), actual  for  the  period  from April  through

September of 2009.

Figure 11 

projects this information for the period from October 2009 through March 2010.

The  total  number  of  payloads  launched  may  not  equal  the  total  number  of  launches  due  to  multiple 

manifesting, i.e., the launching of more than one payload by a single launch vehicle.

Total = 46

Total = 63

Figure 10: Payload Use:

April - September 2009

Figure 11: Projected Payload Use:

October 2009 - March 2010

Payload Mass Class (Orbital Launches Only)

(

April 2009 â€“ March 2010)

Figure 12: Payload Mass Class:

April - September 2009

Figure 13: Projected Payload Mass Class:

October 2009 - March 2010

Figure  12 

shows  total  payloads  by  mass  class  (commercial  and  government), actual  for  the  period  from April

through September 2009.

Figure 13

projects this information for the period from October 2009 through March

2010. The  total  number  of  payloads  launched  may  not  equal  the  total  number  of  launches  due  to  multiple 

manifesting, i.e., the launching of more than one payload by a single launch vehicle. Payload mass classes are defined

as Micro: 0 to 91 kilograms (0 to 200 lbs.); Small: 92 to 907 kilograms (201 to 2,000 lbs.); Medium: 908 to 2,268 

kilograms (2,001 to 5,000 lbs.); Intermediate: 2,269 to 4,536 kilograms (5,001 to 10,000 lbs.); Large: 4,537 to 9,072

kilograms (10,001 to 20,000 lbs.); and Heavy: over 9,072 kilograms (20,000 lbs.).

Total = 46

Total = 63

Intermediate

30% (14)

Medium

22% (10)

Large

15% (7)

Comm.

30% (19)

Micro

2% (1)

ISS

8% (5)

Small

20% (9)

Classified

5% (3)

Navigation

7% (3)

Dev.

14% (9)

Classified

7% (3)

Comm.

35% (16)

ISS 4%

(2)

Scientific

11% (5)

Remote

Sensing

9% (4)

Dev.

15% (7)

Intermediate

17% (11)

Micro

25% (16)

Small

19% (12)

Remote Sensing

10% (6)

Large

11% (7)

Medium

17% (11)

Meteor.

3% (2)

Scientific

16% (10)

Crewed

4% (2)

Heavy

11% (5)

Navigation

5% (3)

Meteor.

7% (3)

Test

2% (1)

Crewed

6% (4)

Other

3% (2)

Heavy

10% (6)

background image

Semi-Annual Launch Report: Second Half of 2009

8

Commercial Launch Trends (Orbital Launches Only)

(October 2008 â€“ September 2009)

Figure  14

shows  commercial  orbital  launch

events  for  the  period  from  October  2008

through September 2009 by country.

Figure 15

shows estimated commercial launch

revenue  for  orbital  launches  for  the  period  from

October 2008 through September 2009 by country.

MULTI 11%

($220M)

RUSSIA

48% (10)

EUROPE

19% (4)

MULTI

14% (3)

CHINA 3%

($70M)

RUSSIA 35%

($739M)

Total = 21

Total = $2,082M

Figure 14: Commercial Launch

Events, Last 12 Months

Figure 15: Estimated Commercial 

Launch Revenue, Last

12 Months (US$ millions)

Commercial Launch Trends 

(Suborbital Launches and Experimental Permits)

(October 2008 â€“ September 2009)

Figure 16

shows FAA-licensed commercial subor-

bital launch events (or their international equiva-

lents) for the period from October 2008 through

September 2009 by country.

Total = 0

Figure 16: FAA-Licensed Commercial

Suborbital Launch Events

(or Their International 

Equivalents), Last 12 Months

USA

14% (3)

USA 8%

($173M)

Figure 17 

shows suborbital flights conducted

under FAA experimental permits for the period

from October 2008 through September 2009 by

country.

Figure 17: FAA Experimental Permit

Flights, Last 12 Months 

Flight Date

Operator

Vehicle

Launch Site

10/26/2008

Armadillo
Aerospace

Pixel

Las Cruces International

Airport, NM

10/25/2008

Armadillo
Aerospace

MOD-1

Las Cruces International

Airport, NM

10/25/2008

Armadillo
Aerospace

MOD-1

Las Cruces International

Airport, NM

10/25/2008

Armadillo
Aerospace

MOD-1

Las Cruces International

Airport, NM

10/25/2008

TrueZer0

Ignignokt

Las Cruces International

Airport, NM

CHINA

5% (1)

EUROPE 42%

($880M)

background image

Semi-Annual 

Launch Repor

t: Second Half of 2009

9

2004

2005

2006

2007

2008

0

2

4

6

8

10

12

14

UNITED STATES
INDIA
MULTINATIONAL
RUSSIA
EUROPE

2004

2005

2006

2007

2008

0

250

500

750

1000

1250

UNITED STATES
INDIA
MULTINATIONAL
RUSSIA
EUROPE

Figure 

18

 

shows  commercial

launch events by country for the

last five full calendar years.

Figure 

19

shows  estimated

commercial launch revenue by

country  for  the  last  five  full

calendar years.

Figure 

18

:

 

Commercial Launch Events by Country, Last Five Years

Figure 

19

:

 

Estimated Commercial Launch Revenue (

US

$ millions) 

by 

Country, Last Five Years

Commercial Launch History

(January 2004 â€“ December 2008

)

background image

 

SR-1

Commercial Access to Space from Cecil Field, Florida 

 

 

Introduction 

The FAA has conducted a brief study to identify National 
Airspace System (NAS) integration requirements associated 
with proposed twice weekly commercial space transportation 
operations at Cecil Field, Florida. 
 
The operations studied and included in this report are limited 
to those based on the Scaled Composites WhiteKnightOne 
(WK1) / SpaceShipOne (SS1) operations out of Mojave, 
California.  This combination is the only one that has actually 
flown at this time and was used as a model for the newer 
Virgin Galactic commercial WhiteKnightTwo (WK2) / 
SpaceShipTwo (SS2) vehicles. There are several other mission 
concepts under development including vertical 
launch/parachute recovery, horizontal air breathing launch 
with rocket-powered Kármán Line penetration and air 
breathing powered return and landing.  In addition, for the 
purpose of this study all operations are assumed to be from 
the former Cecil Field Naval Air Station south west of 
Jacksonville Florida. 
 
The case study was developed to depict typical operations in 
the 2025 timeframe and an assumed flight rate of two flights 
a week.  The goal of the study was to uncover any unique 
requirements that must be considered in the development of 
the Next Generation Air Transportation System (NextGen) 
to allow for this type of commercial space tourism with 
minimal impact on the NAS as it develops. 
 
Several issues that were believed to be critical prior to this 
study were found to present minimal impact to the NAS.  
The first of these was the impact of high altitude flight 
through commercial airways.  After careful study of the flight 
paths of this type of operation, it was found the actual 
footprint of the flight was fairly small and very little airspace 
was needed.  Once the spacecraft is released, it climbs from 
above 40,000 feet to over 350,000 feet returning to the same 

small area over the ground. On return to between 40,000 and 
70,000 feet altitude, the spacecraft converts to a glider that 
proceeds on an almost straight line to approximately 8,500 
feet directly over Cecil Field for landing.  Because of the 
inability of the space craft to hold or perform a missed 
approach, the most important critical issue for airspace 
controllers is the requirement to have a window for the 

background image

 

SR-2

spacecraft to land after release from the carrier aircraft.  The 
window for this clearance appears to open about 20 minutes 
after release from the carrier aircraft.  Actual release of the 
spacecraft can also be significantly delayed to provide spacing 
for other aircraft approaching Cecil Field giving JAX 
TRACON controllers’ significant operational flexibility.  The 
window for landing would normally be a period less than 5 
minutes in duration.  After landing, the spacecraft is normally 
clear of the runway within 30 minutes and the parallel runway 
is able to support normal operations throughout the removal 
of the spacecraft. 
 
Carrier aircraft (WK2) operation will have almost no impact 
on controllers as it is able to fly under a normal Flight Plan 
and its operation is relatively predictable and does not 
normally present any issues to NAS controllers.   The carrier 
aircraft with SS2 departs from and returns to Cecil Field like 
any other aircraft. 
 
All other support aircraft operations are conducted in visual 
flight rules (VFR) conditions under normal local flight plans, 
and operations are virtually transparent when compared to 
other normal aircraft operations in the area. 
 
It is the top level conclusion of this study that the flights 
described in this report will not have a significant impact on 
NAS operations.  Furthermore, export of this type of 
operation to other geographic areas can be easily integrated 
into the NAS in other areas, especially those with lower 
traffic density than the northern Florida area west of 
Jacksonville used in this study.  Because of the unique nature 
of these kinds of flights, individual evaluation of other 
proposed sites would be necessary, but there were no 
systematic issues that would prevent exporting this type of 
operation to other locations. 
 
Although the study was not to consider emergency 
procedures, a spacecraft abort was found to have some minor 
impacts that will be reviewed briefly in the conclusions.  A 
more detailed study of each operational abort scenario is 
recommended to uncover any NAS impacts that would not 
necessarily have been uncovered in the cursory abort research 
done in this study. 
 

Approach 

The first step in the evaluation process was to develop 
information on all vehicles (and sites) used in past 

background image

 

SR-3

developmental efforts and extrapolate that data for proposed 
operations. 
 
In the second step, the flight profiles were reverse engineered 
for the vehicles based on publicly available information and 
published performance capabilities where available.  Where 
performance capabilities were not published or available, 
expert judgment was used to extrapolate probable capabilities 
based on available information.  This notional flight profile 
was compared to information on previous flights to validate 
the model used.  In this step, significant differences were 
found in published performance capabilities for different 
carriers and spacecraft.  These differences had minimal 
impact on the final conclusions.  Flight profiles (for WK2 / 
SS2) can be found in Figures 1 and 2, respectively. 
 
The third step was to use the notional profiles to develop 
“distance from base of operations†and altitude tracks for all 
vehicles used in the operation.  Performance differences for 
vehicles from different sources were accounted for in this 
section by using the “worst case†(and interpolation of “worst 
caseâ€) information.  This had the effect of slightly increasing 
the footprint for operations. 
 
Using surface maps and standard airspace charts for areas 
around Cecil Field, nearby population centers and areas at 
high risk from over-flight incidents were located.  These areas 
were further defined using logical assumptions about over-
flight restricted areas and typical vehicle performance.  In 
actual operation, it is expected that the areas shown in this 
report may be slightly smaller than shown, reducing the 
impact on the NAS. 
 
Timelines for each vehicle were over-laid to develop a full 
mission time profile.  The timeline was limited to the actual 
flight period for the mission.  Because of potential impact on 
other traffic at Cecil Field, the mission was defined as 
extending from man-up of the first vehicle through clearing 
of the runway by towing SpaceShipTwo from the active 
runway.  The last vehicle to land would be one of the chase 
aircraft, but that was not considered since those aircraft, as 
well as the WhiteKnightTwo aircraft, have considerable loiter 
capability and would be operating within normal flight rules 
like any other aircraft entering Cecil Field airspace. 

 

background image

 

SR-4

 

(WK2 - virgingalactic.com) 

 

The fourth step was to integrate the operation profiles and 
timelines for all vehicles used into a normal NAS operation to 
determine potential impacts to normal operations and 
evaluate what actions would or would not be needed by 
regulators and controlling authorities.  The team has had no 
liaison with Jacksonville Center/TRACON to evaluate actual 
traffic flow. 

 

Assumptions 

All analysis was based on historic flights of the WK1 and SS1 
in the Mojave operating area along with available data 
acquired on the capabilities and operation of the proposed 
WK2 and SS2 vehicles. 
 
All support aircraft used in the Cecil Field area were assumed 
to be the same as those used in Mojave.  Although there is a 
high probability that support aircraft will not be the same for 

Virgin Galactic operations as for Scaled Composites, the 
Mojave aircraft are representative of those needed for Florida 
operations. 
 
No emergency/abnormal procedures were to be addressed.  
As the analysis progressed, it was discovered that some “off 

background image

 

SR-5

nominal†events—such as several mission aborts (including 
carry-back, drop, and no ignition with and without oxidizer 
dump)—might require contingency procedures to avoid 
becoming emergencies. It is strongly recommended that 
additional analysis be performed to determine the impact on 
the NAS of non-emergency, contingency operations.  
Whenever normal flight operations can be accomplished 
under existing regulations and procedures it was assumed 
they would be used. 

 
Methods 
 

Baseline and specific data from the FAA, Virgin Galactic 
public information, internet research, technical knowledge of 
NAS and operations as well as technical expertise in 
spacecraft/aircraft operations and limitations were used to 
support all derivations and conclusions.  Although the 
conclusions from this report concern the operation of 
WK2/SS2, the bulk of raw data available was related to 
WK1/SS1.  Therefore, every effort has been made to identify 
all data applications as to which vehicles and operations are 
used. 

 
Aircraft/  
Spacecraft Data 
 

As a first step towards developing this report, basic data was 
gathered on the configurations and performance of all 
vehicles used in past similar operations.  This real world data 
was limited to the WK1/SS1 operations out of Mojave, 
California—the only non-government operation to reach 
space at this time.  The following table contains basic data 
gathered for each aircraft and vehicle involved and is 
primarily based on publicly available data.  Because much of 
the information was contradictory concerning statistics for 
WK1, SS1, WK2, SS2, and SS3, all data used was selected 
from the source that provided the “most conservative†input 
(i.e., the longest gliding range to determine radius of 
operation from the highest altitude listed).  This provided a 
total “most conservative†size in footprint and altitudes of 
operation.  As long as the space vehicles analyzed remained 
within this conservative footprint, those vehicles should be 
able to reach a safe landing at the home airfield. 
 

Vehicles: 

 

!

 

WhiteKnightOne (WK1) 

background image

 

SR-6

!

 

WhiteKnightTwo (WK2) 

!

 

SpaceShipOne (SS1) 

!

 

SpaceShipTwo (SS2) 

!

 

Support/chase aircraft  
- (current for SS1 and potential for SS2) 

 

 
 

Parameters 

WK1 

WK2 

SS1 

SS2 

SS3 

Chase 1 

Chase 2 

Chase 3 

Chase 4 

Type 

NA 

NA

 

NA

 

NA

 

NA

 

Starship 

Duchess 

Alpha Jet 

Extra 300 

Crew 

Unk 

Passengers 

14 

Unk 

6 or 8 

3 or 5 

Payload 

8,000lb 

35,000 lb 

Unk 

Unk 

Unk 

4,513 lb 

854 lb 

11,000 lb 

595 lb 

Fuel 

Jet A 

Jet A 

N2O/ 

HTPV 

N2O/ 

Rubber 

Unk 

Jet A 

100 LL 

Jet A 

100 LL 

Engines 

2 GE 

J85-

GE5 

AB 

4 PW 

308A 

N20/HTPV 

Space 

Development

Scaled 

Composites 

Proprietary 

Unk 

Two 

895kW 

(1200shp) 

PT6A67A 

2 O-360  

Lycoming 

SNECMA 

Turbomeca 

Larzac 04-

C6 

turbofans 

1 AEIO-

540-L1B5 

300HP 

Thrust 

5,000 lb 

(each) 

6,900 lb 

(each) 

14,000 to 

16,530 lb 

(Sig variance 

in data) 

Unk 

Unk 

NA 

NA 

NA 

NA 

Empty Wt 

Unk 

Unk 

2,640 lb 

Unk 

Unk 

9,887 lb 

2,446 lb 

7,750 lb 

1,500 lb 

Gross Wt 

~17,000 

lb 

60,000 lb 

6,828 lb 

Unk 

Unk 

14,400 lb 

3,900 lb 

18,000 lb 

2,095 lb 

Span 

82 ft 

141 ft 

16 ft, 5 in 

27 ft 

Unk 

54 ft, 5 in 

38 ft 

30 ft 

24.25 ft 

Length 

Unk 

Unk 

16 ft, 5 ft 

60 ft 

Unk 

46 ft, 1 in 

29 ft 

43 ft, 5 in 

22’ 9.5†

Service 
Ceiling 

53,000 

ft 

70,000 ft 

367,360 ft 

>360,000 ft

NA 

(Orbital)

41,000 ft 

19,400 ft 

50,000 ft 

16,000 ft 

Release Alt 

40,000 

to 

47,000 

ft 

40,000 ft 

(planned) 

40,000 to 

47,000 ft 

40,000 ft 

(planned) 

NA 

NA 

NA 

NA 

NA 

Rate of 

Climb 

Unk 

Unk 

82,000 

ft/min 

Unk 

Unk 

3,225 

ft/min 

1,248 

ft/min 

Unk 

3,200 

ft/min 

I

sp

 

NA 

NA 

250 sec 

Unk 

Unk 

NA 

NA 

NA 

NA 

Burn Time 

NA 

NA 

84 sec 

Unk 

Unk 

NA 

NA 

NA 

NA 

V Max 

Unk 

207 mph 

2,170 mph 

2,600 mph 

Unk 

285 mph 

197 mph 

621 mph 

253 mph 

Max Mach 

NA 

M .65 

(VNE) 

M 3.09 

Unk 

M 25 

NA 

NA 

NA 

NA 

Range 

Unk 

Unk 

30 NM 

Unk 

Unk 

1,634 NM 

923 NM 

1,500 NM 

510 NM 

Apogee 

NA 

NA 

Unk 

360,000 ft 

240 

miles 

(Orbit) 

NA 

NA 

NA 

NA 

Launch Alt 

NA 

NA 

45-46K ft 

50,000 ft 

TBD 

NA 

NA 

NA 

NA 

Status 

Retired 

in test 

Retired 

in test 

design 

operational

operational  operational

operational

 

Table of Vehicle Data 

 
 
 
 

background image

 

SR-7

Flight Concept of  
Operations and Diagrams 
 

Flight Scenarios 

 

 

 

 

 

 

SS1 and SS2’s objective is to cross the Kármán line (328,000 
feet).   There are future plans for a SS3 that would be capable 
of orbital flight and International Space Station (ISS) docking. 
However, SS3 will not be addressed in this report. 
 

Flight frequency: Flights per week 
 

Initially one flight per week was proposed as an initial study 
parameter.  Given the projected rise in suborbital space 
tourism, future flights expectations could exceed three per 
week.  Considering these two scenarios, the FAA study 
considered a baseline of two flights per week.  This baseline, 
while reasonable for the short term, will likely need to be 
reconsidered in future years. Two flights per week will likely 
be exceeded later in the 2010 to 2025 timeframe, considering 
the number of paid flights already transacted by the 
suborbital space tourism firm Virgin Galactic. 
 

Duration 

 
Total mission evolution is estimated to be 1.5 hours (from 
take off of WK2 until recovery of SS2 (on a normal flight 
profile).  The WK2 carrier aircraft and all support aircraft will 
have the same impact on the NAS as any other normal 
aircraft flying in the area and will land after recovery of the 
SS2.  If the launch of SS2 is aborted and it is carried back to 
Cecil Field by WK2, the SS2 flight plan would be canceled 
and SS2 would return with WK2 with no impact on NAS 
operations. 
 

Flight Profile for WK2 and SS2: 
 

WK2 will take off from Cecil Field, FL, climb to 
approximately 50,000 feet, where it will release SS2, and 
return to Cecil Field under normal FAA control and flight 
rules. SS2 releases from WK2 at approximately 50,000 feet 
and accelerates to M 4 in a steep (almost vertical) climb.  At 
approximately 205,000 feet, the rocket propellant is expended 
and the engine shuts down.  SS2 continues to “coast†up to 
an altitude of approximately 360,000 feet, crossing the 
Kármán line (328,000 feet).  At 360,000 feet the spacecraft 
reaches apogee and starts to fall. SS2’s wings are shifted to 

background image

 

SR-8

the feather mode at 350,000 feet (wings deflected causing a 
“deep stall, free fall†near vertical descent).  SS2 continues 
descending to between 70,000 and 40,000 feet. where the 
wings are unfeathered, rotating the fuselage into the normal 
glide attitude, from nose up to nose down.  In that 
configuration, SS2 continues a normal glide back to Cecil 
Field. 
 
The following flight profile was derived from 
WhiteKnightOne/SpaceShipOne profiles and performance.  
The basic flight paths were adapted for WK2/SS2 using the 
new vehicle performance and applied for operations in the 
Cecil Field operating area.  All altitudes and dimensions are 
estimated for WK2/SS2 and Cecil Field. 

 

 

- Not to Scale - 

 

 

 

Figure 1 

Determination of Safety Cone: 

Non interference line w / 

Jacksonville area  (and airports)

East

 

West

“Safety 

Base of â€œSafety 

Cone†

WK2 spiral 

climb

Cecil Field, FL

Launch point 

(45

 

,000

 

 

–

46

 

,000

 

'

 

)

White Knight (WK2) Climb Flight Profile for 

Operations at Cecil Field, FL

After WK2 drops SS2 WK2

 

departs area to the southwest and 

returns to Cecil Field

 

,FL under 

normal flight rules and control.

35 miles 

max

 

.

 

background image

 

SR-9

 

The 

safety cone 

is a three-dimensional zone that combines 

geographic surface area with altitude and airspace. It is 
referred to as a cone because the airspace from which a spiral 
descent is possible is wider at the highest altitude, and 
narrows as the vehicle approaches the ground (see Figure 1). 
 
This safety cone of aviation activity represents an “outer 
operation boundary†that would allow SS2 to reach Cecil 
Field via a controlled glide after release from its WK2 carrier 
aircraft under almost all conditions.  The cone takes into 
account failure of the SS II engines to ignite and mission 
abort scenarios with early SS2 release, fully loaded with fuel 
and oxidizer and with oxidizer dumped (SS2 fuel cannot be 
dumped). 
 

During ascent (emergency procedure) 

 

 
The base of the safety cone was determined based on the 
following: 
 
1)

 

Altitude required to separate from WK2 and accelerate 
from optimum climb speed of WK2 to optimum glide 
speed of SS2. 

2)

 

Rate of descent with full load of fuel. 

3)

 

Altitude required to reach modified high key (fuel load) 
on the proper heading. 

 
Note that if oxidizer is dumped the base altitude could be 
lowered—but this was not assumed in the analysis. 
 
 
 
 
 
 
 
 
 
 
 

 

background image

 

SR-10

 

 

- Not to Scale - 

 

Figure 2 

 

 
 
 
 

 

Non interference line w

 

 

Jacksonville area 

 

(

 

and airports

 

)

East

West

“Safety Coneâ€

 

Base of â€œSafety 

Cone†

 

SS2 spiral descent 

out of â€œHigh Keyâ€

Cecil Field , FL

“Feathered†

 

wing drop

 

Rocket 

 

propelled climb

 

SS2 starts recovery glide 
(

 

after wing â€œunfeathered†)

Primary chase 

 

plane 

 

(

 

Alpha 

 

50

 

,

 

000

 

'

 

)

 

Secondary chase 

plane  (Starship 

25 ,000 ')

Launch point 

 

(

 

45

 

,000

 

' â€“

 

46

 

,

 

000

 

')

 

Wing â€œhigh 

unfeatheredâ€

(

 

65

 

,

 

000 ')

Spaceship  (SS2) Rocket Ascent and 

Flight Profile for Operations at Cecil Field

Zero G

 

“Feather†wing

(

 

291

 

,

 

000

 

' â€“

 

32 ,000 ')

“High Keyâ€

(

 

8,500')

Flight profile derived from available data from WhiteKnightOne /

SpaceshipOne,profiles will be modified as more data from 

WhiteKnightTwo/SpaceshipTwo is available

 

.

 

328

 

,

 

000

 

'

 

Wing â€œlow 

unfeatheredâ€

(

 

40

 

,

 

000 ' )

Wing can be 

 

“unfeathered†in 

 

this area

 

205

 

,000

 

' MECO

 

30 miles 

 

max

 

.

25 miles 

 

max

 

.

Aux chase plane 

(Dutchess 

15 ,000 ')

(0 miles )

background image

 

SR-11

Ground Track 
 

Parent aircraft – After takeoff from Cecil Field, WK2 will fly 
a climbing spiral to the release altitude and point.  This spiral 
will remain within the safety cone to enable the spacecraft to 
return safely to Cecil Field after emergency release.  WK2 is 
capable of flying under normal control throughout its entire 
mission. 
 
Spacecraft â€“ After drop from WK2 (at the designated 
altitude, position, and heading), the spacecraft will ignite its 
rocket engine and start a near vertical climb.  After the rocket 
engine has shut down, the spacecraft will continue to climb, 
arc over, and start a near vertical descent.  After the wing 
feather/unfeather evolution, it will start its glide (relatively 
straight line) to the intended “high key†(an aviation term 
indicating the maximum altitude from which a glide descent 
may safely be conducted).  It is possible because of 
unpredicted factors such as high altitude winds that the flight 
profile will require modification in flight to arrive at a point 
that would enable a safe approach to Cecil Field.  This may 
not be the established high key altitude glide path position.  
Ideally, the spacecraft would reach the appropriate high key 
altitude and perform a 360-degree turn to arrive at the final 
glide path for landing.  The spacecraft should always remain 
within the safety cone to ensure the capability of gliding to 
Cecil Field for a safe landing. 
 
Support Aircraft – There may be as many as four aircraft 
involved with the mission.  All are capable of normal flight 
control.  Their takeoff, flight, and landing at Cecil Field will 
be under normal control. 

 

background image

 

SR-12

 

Figure 3 - WK2 Ascent Depicted on Low Altitude Airway Chart 

 

In Figure 3 above, the flight path is overlaid on a low altitude 
chart (surface to 18,000 feet).  The center of the spiral is the 
takeoff point at Cecil Field.  The left outer end of the spiral 
represents the planned release point for SS2 at 45,000 feet.  
In an abort, WK2 could release SS2 anywhere above the 
safety cone base as long as it was within the cone and SS2 
could still make a safe approach and landing at Cecil Field.  
This would be a declared emergency and could be treated by 
controllers like any loss of power emergency approach and 
landing for a high performance aircraft. 

 

 

background image

 

SR-13

 

Figure 4 - WK2 Ascent Depicted on High Altitude Airway Chart 

 

In Figure 4 above, the flight path is overlaid on a high altitude 
chart (180 feet and above).  As on the low altitude chart, the 
center of the spiral is the takeoff point at Cecil Field and the 
left outer end of the spiral represents the planned release 
point for SS2 at 45,000 feet.  In a high altitude abort, WK2 
would most likely have time to advise controllers and delay 
release long enough to allow clearing of the airspace for 
landing of both vehicles (together or with SS2 released as 
long as WK2 was within the safety cone).  If an emergency 
was declared, controllers could respond in an established 
manner, like any other aircraft.  SS2 would be high enough 
for oxidizer jettison and could either land attached to WK2 or 
independently like a normal release, but with higher landing 
weight from the carried, non-jettisonable fuel. 

background image

 

SR-14

 

Figure 5 – SS2 Descent and Approach Depicted on Low Altitude Airway Chart 

 

 

In Figure 5 above for the low altitude chart and Figure 6 
below for high altitude, a normal SS2 return to Cecil Field is 
depicted.  WK2 releases SS2 at around 45,000 feet near the 

left end of the depicted flight path.  SS2 would ignite the 
rocket engine and perform a near vertical climb and descent, 
returning to the same area as release.  SS2 would follow a 
smooth flight path to the high key point, increasing or 
decreasing the arc and descent rate to arrive at the 
appropriate high key altitude, direction, and speed. 
 
If the rocket engine does not ignite, oxidizer would be 
dumped during the descent and the SS2 vehicle would fly 
nearly the same flight path at a slightly higher speed due to 
the additional weight of the un-jettisoned fuel.  From the 
appropriate high key altitude, SS2 would perform a single 360 
degree approach and landing.  Arrival time from release 
would be accurately predictable based on release time and 
WK2 position. 
 

background image

 

SR-15

 

 

Figure 6 – SS2 Descent and Approach Depicted on High Altitude Airway Chart 
 
NAS Interface 

All aircraft participating in SS2’s mission (other than SS2 
itself), are capable of, and will be operating within the NAS 
under normal Federal Aviation Regulations (FARs). 
 
SS2, due to its unique flight profile, will require clearance to 
land prior to release from WK2.  Though this will take special 
consideration, the evolution (release from WK2 to landing) is 
very short in duration and highly predictable.  In addition, 
there is flexibility in releasing SS2 from WK2 to allow for 
“realtime†contingencies to address non-mission related 
(other aircraft emergencies).  Once SS2 is released, it is 
committed to land without interference. 
 
Note that WhiteKnightTwo is 

not

 equipped with either an 

autopilot or a certified altimeter and therefore in NOT 
qualified for Reduced Vertical Separation Minimums (RVSM) 

background image

 

SR-16

operation for FL 290 – 410 (Certificate of Waver from 
Administrator in accordance with the relevant FARs). 
 

FAA Approvals 
for Operations 
 

The following issues should be resolved and implemented 
before commencing flight operations: 

 

!

 

Letter of Agreement/Memorandum of 
Understanding (LOA /MOU) between the Cecil Field 
facility and the vehicle operators in accordance with 
FARs. 

!

 

“Stereo Routeâ€(that is, standardized and pre-planned) 
flight plan development 

!

 

Vehicle Certification 

!

 

Propulsion system certification 

 

Conclusions 
 

Normal operations for all aircraft (except SS2) are transparent 
to the FAA/NAS (present no special operational burdens or 
requirements) and operate under current FARs and flight 
plans/â€stereo routes†defined by LOA between the facility 
and vehicle operators.  All aircraft operating in coordination 
with the SS2 flight will fly within normal operating 
limitations. 
 
The SS2 vehicle will require special consideration from 
takeoff from Cecil Field through clearing the runway after 
landing.  These considerations can be broken into the 
following phases: 
 
1.

 

Any non emergency mission abort where WK2 does 

not

 

release SS2 will result in a normal return to the runway 
under normal air traffic control procedures.  This may 
involve an approach delay to jettison the onboard 
oxidizer. 

2.

 

If SS2 is released before reaching the minimum fully 
loaded abort altitude it will 

not

 be able to return to Cecil 

field safely and will initiate a forced landing with fuel and 
oxidizer onboard.  Therefore, this phase must be carried 
out over a safe impact zone.  Release of SS2 in this area 
would be considered extremely unlikely and would almost 
certainly result in serious damage (such as vehicle 
destruction and/or loss of life).  This statement is 

background image

 

SR-17

conjecture since we do not have any data from Virgin 
Galactic regarding off nominal events. 

3.

 

Minimum safe abort return altitude to (altitude providing 
sufficient time to dump all oxidizer).  Abort in this zone 
would allow the SS2 to reach the runway threshold and 
land, but the vehicle would be carrying at least a partial 
load of oxidizer and a full solid fuel load that would 
create a risk. 

4.

 

“Fuel dump minimum altitude†to normal mission release 
altitude.  Abort in this zone would allow for release of all 
oxidizer and a normal abort approach and landing.  This 
phase abort would be flown like a normal mission from 
an airspace control perspective with the exception of the 
SS II being “n†minutes ahead of schedule and landing 
over normal landing weight from the mass of the solid 
fuel which could not be dumped. 

5.

 

Normal mission, handled in accordance with the LOA/ 
MOU. 

 
Aside from SS2, this report does not analyze abnormal 
situations that could arise with other aircraft, since they will 
comply with the resepective FARs and their established 
procedures in their Pilot Operating Handbook. 

 
Recommendations 

Follow-on analysis with regards to SS2 is recommended: 
 

 

For Associated Risks (not addressed by this report): 

 

!

 

National Transportation Safety Board (NTSB) â€“ Fuel and 
oxidizer hazards 

!

 

Crash/explosion (public liability) 

!

 

Vehicle service life – long range airworthiness 
certification issues 

 

For Public relations issues:

 

 

!

 

Public safety 

!

 

Environmental impact  

!

 

Noise 

!

 

Oxidizer dumping 

!

 

Oxidizer and fuel ground shipping/handling 

Future Concepts 

 
Additionally, there are future concepts and technologies 
under development that will require further study to 
determine their impact on operational safety and their 

background image

 

SR-18

interface requirements on the NAS.  Technologies with 
potential impact to safety include side effects from using and 
transporting cryogenic materials such as liquefied hydrogen 
and oxygen and highly toxic materials that will be proposed 
for flight use in attitude control systems, such as hydrazine.  
Storage, transfer, and fueling of vehicles at public facilities 
could create severe hazards that should be evaluated and 
mitigated before their use. 
 
Although it does not apply to the Virgin Galactic proposed 
vehicles, several concepts may use vertical launch and high 
drag (parachute) or retro rocket recovery.  This represents a 
whole new set of problems for operation in the NAS. These 
problems are not within the scope of this report. 
 
While gathering data and developing scenarios for this report 
several different concepts of operation were discovered that 
are being developed by companies that can be expected to 
follow Virgin Galactic in seeking FAA support for operations 
with private access to space.  These fall into the two main 
categories of vertical ballistic flight (non orbital) and orbital 
flight.  None of the concepts for private orbital flight for hire 
is nearing maturity.  The leaders seem to be SpaceX with the 
Falcon 9 launch vehicle and Dragon spacecraft (which would 
probably fly from established launch facilities such as 
Kennedy Space Center or the launch facilities at Kwajalein 
Atoll),  Planet Space’s Silver Dart orbital space plane, Scaled 
Composites/Virgin Galactic with the SpaceShipThree 
concept. 
 

Virgin Galactic  
 

The development of SS3 (as referenced above). 

 

 

Rocketplane Inc. 

Rocketplane is based out of Oklahoma City and their vehicle 
is based on stretching the Learjet 25 fuselages to make room 
for the kerosene and liquid oxygen tanks that will power a 
36,000-pound thrust rocket engine. The stabilizers are 
removed and replaced with a V-tail to raise the nose when 
loaded with fuel.  The standard, straight Lear wing is replaced 
with a delta wing, increasing surface area and adding sweep 
for reduction of drag divergence at supersonic speeds. Flight 
cost was estimated at $225,000 to $300,000. 

background image

 

SR-19

In operation, twin GE CJ610 jet engines will provide power 
to a launch altitude of 25,000 feet where they will be shut 
down and the rocket engine will fire for a 70-sec, 4-g boost 
into space at a maximum speed of Mach 3.5 to Mach 4.  After 
rocket engine shut down, passengers will experience four 
minutes of weightlessness. 

Critical to safe Rocketplane operation is the computerized 
flight control system that will navigate the dynamic pressure 
and supersonic speeds of reentry.  A Reaction Control System 
(RCS) must interact with the vehicles aerodynamic control 
surfaces throughout flight in the rarified atmosphere for 
reentry to prevent loss of control and exceeding the 
maximum safe dynamic pressure on the vehicle.  The pilot 
will only take control in emergencies and for landings. The 
twin jet engines will be restarted at 20,000 feet. for a powered 
landing. Total flight time is estimated at about one hour.  

The Rocketplane vehicle is planned to weigh 19,500 pounds 
at takeoff compared with the Learjet 25’s 15,000 pounds.  
Operations are planned for the former Strategic Air 
Command base in Burns Flat, OK (now Oklahoma 
Spaceport).   Rocketplane hopes to fly its first passengers 
beginning in 2010.  

Numerous issues face the FAA with this concept, both in the 
safety and NAS integration areas. 

XCOR Aerospace 

The XCOR vehicle is also proposed to launch from a runway 
but unlike the Rocketplane concept does not use jet engines.  
A developmental vehicle has already been flown. (EZ-Rocket 
was a modified Rutan Long-EZ home-built airplane and is 
now retired.)  EZ-Rocket was a manned technology 
demonstrator and flew 26 developmental missions using twin 
XR-4A3 (XCOR developed 400-pound thrust LOX/alcohol) 
engines.  These engines are multiple air start capable and have 
made over 700 runs for a total of more than 165 minutes. 

Although there is little verifiable information on the final 
passenger vehicle available yet, XCOR has stated preliminary 
design is underway.  The suborbital vehicle has been named 
Xerus and is a single-stage suborbital vehicle designed for 
research, space tourism, and transporting microsatellites to 
low Earth orbit via a small secondary stage. 

background image

 

SR-20

Numerous technical challenges must be addressed by XCOR 
before a final design and evaluation of their concept for NAS 
is feasible. Since these challenges are not yet resolved, such an 
evaluation is not within the scope of this study. 

Additional Conceptual Vehicles (Less Mature 
Development): 

In addition, the following vehicles were found that are at 
lower technology readiness levels and could be further 
developed into viable space access platforms. 

!

 

AERA Corporation Altairis 

!

 

ARCASPACE Orizont 

!

 

Da Vinci Project Wildfire 

!

 

Interorbital Systems Neutrino 

!

 

Masten Space Systems 

!

 

XA Series 

!

 

Space Adventures Explorer 

!

 

SpaceDev Dream Chaser 

!

 

Starchaser Industries Nova 2 and Thunderstar 

!

 

Truax Engineering, Inc. Volksrocket X-3 

!

 

XCOR Aerospace Lynx Rocketplane 

Proposed orbital projects include: 

!

 

Interorbital Neptune 

!

 

Masten Space Systems O Series 

!

 

Rocketplane Kistler K-1 

!

 

T/Space Crew Transfer Vehicle 

There are numerous other design concepts that may or may 
not warrant in-depth consideration.  The vehicles and 
projects listed above have been evaluated and have some 
chance of being able to be developed into test vehicles, which 
in turn could affect future NAS operations at some level.

 

background image

Semi-Annual Launch Report: Second Half of 2009 

 

 

 

 

 

A-1 

 

 
 

Date

Vehicle

Site

Payload or Mission Operator

Use

Vehicle 

Price

L M

4/3/2009

\

/

Proton M

Baikonur

* Eutelsat W2A

Eutelsat

Communications

$100M

S S

4/3/2009

Atlas V 421

CCAFS

WGS 2

DoD

Communications

$125M

S S

4/15/2009

Long March 3C

Xichang

Compass G2

CNSA

Navigation

$70M

S S

4/20/2009

PSLV

Sriharikota

Risat 2

ISRO

Remote Sensing

$25M

S S

Anusat

ISRO

Communications

S

4/20/2009

\

/ + Zenit 3SL

Odyssey Launch 
Platform

Sicral 1B

Italian MoD

Communications

$100M

S S

4/22/2009

Long March 2C

Taiyuan

Yaogan 6

China - TBA

Remote Sensing

$25M

S S

4/29/2009

Soyuz

Plesetsk

Kosmos 2450

Russian Space Forces

Classified

$60M

S S

5/5/2009

Delta II 7920

VAFB

STSS-ATRR

Missile Defense Agency

Classified

$65M

S S

5/7/2009

Soyuz

Baikonur

Progress ISS 33P

Roscosmos

ISS

$60M

S S

5/11/2009

Shuttle Atlantis

KSC

STS 125

NASA

Crewed

N/A

S S

Hubble Servicing 
Mission 4

NASA

Other

S

5/14/2009

Ariane 5 ECA

Kourou

Herschel Space 
Observatory

ESA

Scientific

$220M

S S

Planck Surveyor

ESA

Scientific

S

5/16/2009

\

/

Proton M

Baikonur

* Protostar II

Protostar Ltd.

Communications

$100M

S S

5/19/2009

Minotaur

Wallops Flight 
Facility

TacSat 3

USAF

Development

$15M

S S

GeneSat 2

NASA

Scientific

S

PharmaSat 1

NASA

Scientific

S

5/22/2009

Soyuz 2 1A

Plesetsk

Meridian 2

Russian MoD

Communications

$65M

S S

5/27/2009

Soyuz

Baikonur

ISS 19S

Roscosmos

ISS

$60M

S S

6/18/2009

Atlas V 401

CCAFS

Lunar Reconnaissance 
Orbiter

NASA

Scientific

$125M

S S

LCROSS

NASA

Scientific

S

6/21/2009

\

/

Zenit 3SLB

Baikonur

* Measat 3A

MEASAT

Communications

$60M

S S

6/27/2009

\

/ + Delta IV Medium-

Plus (4,2)

CCAFS

GOES O

NOAA

Meteorological

$100M

S S

April - September 2009 Orbital and Suborbital Launch Events

 

 
 
 
 
 
 
 

 

!

  Denotes commercial launch, defined as a launch that is internationally competed or FAA-licensed. For multiple manifested launches, certain secondary payloads     

    whose launches were commercially procured may also constitute a commercial launch. Appendix includes suborbital launches only when such launches are    
    commercial. 

+  Denotes FAA-licensed launch. 

*   Denotes a commercial payload, defined as a spacecraft that serves a commercial function or is operated by a commercial entity 
 

     Notes:   All prices are estimates, and vary for every commercial launch.  Government mission prices may be higher than commercial prices. 

Ariane 5 payloads are usually multiple manifested, but the pairing of satellites scheduled for each launch is sometimes undisclosed for proprietary 

reasons until shortly before the launch date. 

background image

Semi-Annual Launch Report: Second Half of 2009 

 

 

 

 

 

A-2 

 
 

 

Date

Vehicle

Site

Payload or Mission Operator

Use

Vehicle 

Price

L M

7/1/2009

\

/

Ariane 5 ECA

Kourou

* TerreStar 1

TerreStar Networks

Communications

$220M

S S

7/1/2009

\

/

Proton M

Baikonur

* Sirius FM-5

Sirius Satellite Radio

Communications

$100M

S S

7/6/2009

Rockot

Plesetsk

Kosmos 2452

Russian MoD

Communications

$15M

S S

Kosmos 2453

Russian MoD

Communications

S

7/13/2009

\

/ + Falcon 1

Kwajalein Island

RazakSAT

Malaysia National Space 
Agency

Development

$8M

S S

7/15/2009

Shuttle Endeavour

KSC

STS 127

NASA

Crewed

N/A

S S

AggieSat-2

Texas A&M University

Development

S

BEVO 1

University of Texas - Austin Development

S

7/21/2009

Kosmos 3M

Plesetsk

Kosmos 2454

Russian MoD

Navigation

$15M

S S

Sterkh 1

Russia - TBA

Other

S

7/24/2009

Soyuz

Baikonur

Progress ISS 34P

Roscosmos

ISS

$60M

S S

7/29/2009

\

/

Dnepr 1

Baikonur

DubaiSat-1

Emirates Institution for 
Advanced Science and 
Technology

Remote Sensing

$12M

S S

* AprizeStar 3

Aprize Satellite

Communications

S

* AprizeStar 4

Aprize Satellite

Communications

S

* DEIMOS

Deimos Imaging

Remote Sensing

S

Nanosat 1B

INTA

Communications

S

UK DMC 2

British National Space 
Centre

Remote Sensing

S

8/11/2009

\

/

Proton M

Baikonur

* Asiasat 5

Asiasat

Communications

$100M

S S

8/17/2009

Delta II 7925

CCAFS

Navstar GPS 2RM-8

USAF

Navigation

$65M

S S

8/21/2009

\

/

Ariane 5 ECA

Kourou

* JCSAT 12

JSAT

Communications

$220M

S S

* Optus D3

Singtel/Optus

Communications

S

8/25/2009

KSLV 1

Naro Space Center

STSAT 2A

KARI

ISS

TBD

F F

8/28/2009

Shuttle Discovery

KSC

STS 128

NASA

Crewed

N/A

S S

8/31/2009

\

/

Long March 3B

Xichang

* Palapa D

PT Indosat Tbk

Communications

$70M

P P

9/8/2009

Atlas V 401

CCAFS

PAN

USA - TBA

Classified

$125M

S S

9/10/2009

H-II B

Tanegashima

HTV

JAXA

ISS

$100M

S S

9/17/2009

Soyuz

Baikonur

Meteor M1

Russian Meteorological 
Service

Meteorological

$60M

S S

Sumbandila

University of Stellenbosch

Development

S

9/18/2009

\

/

Proton M

Baikonur

* Nimiq 5

Telesat Canada

Communications

$100M

S S

9/23/2009

PSLV

Satish Dhawan 
Space Center

Oceansat 2

ISRO

Remote Sensing

$25M

S S

BeeSat

Technical University of 
Berlin

Development

S

ITU-pSat

Istanbul Technical University 
Turkey

Scientific

S

Rubin 9.1

OHB System

Scientific

S

Rubin 9.2

OHB System

Development

S

SwissCube-1

Ecole Polytechnique 
Federale De Lausanne

Scientific

S

UWE-2

University of Wurzburg

Scientific

S

9/25/2009

Delta II 7920

CCAFS

STSS Demo 1

USAF

Development

$65M

S S

STSS Demo 2

USAF

Development

S

9/30/2009

Soyuz

Baikonur

ISS 20S

Roscosmos

Crewed

$60M

S S

April - September 2009 Launch Events (Continued)

 

 
 

!

  Denotes commercial launch, defined as a launch that is internationally competed or FAA-licensed. For multiple manifested launches, certain secondary payloads     

    whose launches were commercially procured may also constitute a commercial launch. Appendix includes suborbital launches only when such launches are    

    commercial. 
+  Denotes FAA-licensed launch. 

*   Denotes a commercial payload, defined as a spacecraft that serves a commercial function or is operated by a commercial entity 

 
     Notes:   All prices are estimates, and vary for every commercial launch.  Government mission prices may be higher than commercial prices. 

Ariane 5 payloads are usually multiple manifested, but the pairing of satellites scheduled for each launch is sometimes undisclosed for proprietary 

reasons until shortly before the launch date. 

background image

Semi-Annual Launch Report: Second Half of 2009 

 

 

 

 

 

B-1 

 

 
 

Date

Vehicle

Site

Payload or Mission

Operator

Use

Vehicle 

Price

10/1/2009

\

/

Ariane 5 ECA

Kourou

* Amazonas 2

Hispasat

Communications

$220M

COMSATBw 1

EADS Astrium

Communications

10/8/2009

\

/ + Delta II 7920

VAFB

* WorldView 2

DigitalGlobe

Remote Sensing

$65M

10/15/2009

Soyuz

Baikonur

Progress ISS 35P

Roscosmos

ISS

$60M

10/18/2009

Atlas V 401

VAFB

DMSP 5D-3-F18

DoD

Meteorological

$125M

10/29/2009

\

/

Ariane 5 ECA

Kourou

* NSS 12

SES New Skies

Communications

$220M

* Thor 6

Telenor AS

Communications

10/29/2009

Proton M

Baikonur

Glonass TBA

Russian MoD

Navigation

$90M

11/2/2009

\

/

Rockot

Plesetsk

SMOS

ESA

Remote Sensing

$15M

Proba 2

ESA

Development

11/10/2009

Soyuz

Baikonur

Mini Research Module 
2

Roscosmos

Scientific

$60M

11/12/2009

Shuttle Discovery

KSC

STS 129

NASA

Crewed

N/A

11/14/2009

\

/ + Atlas V 431

CCAFS

* Intelsat 14

Intelsat

Communications

$125M

11/18/2009

Delta IV Medium-
Plus (5,4)

CCAFS

WGS 3

DoD

Communications

$170M

11/28/2009

H-II A 2024

Tanegashima

IGS 4A

Japanese Defense Agency

Classified

$100M

11/29/2009

\

/ + Falcon 9

CCAFS

* Falcon 9 Demo Flight

SpaceX

Test

$40M

11/2009

\

/

Zenit-3SLB

Baikonur

* Intelsat 15

Intelsat

Communications

$60M

11/2009

Dnepr 1

Baikonur

Prisma Main

Swedish Space Corporation

Development

$12M

Prisma Target

Swedish Space Corporation

Development

11/2009

\

/ + Proton M

Baikonur

* Eutelsat W7

Eutelsat

Communications

$100M

12/7/2009

Delta II 7320

VAFB

WISE

JPL

Scientific

$65M

12/10/2009

Ariane 5 GS

Kourou

Helios 2B

DGA

Classified

$220M

12/21/2009

Soyuz

Baikonur

ISS 21S

Roscosmos

ISS

$60M

12/2009

\

/

Dnepr 1

Baikonur

* TanDEM X

Infoterra

Remote Sensing

$12M

4Q/2009

\

/

Proton M

Baikonur

* MSV 1

Mobile Satellite Ventures

Communications

$100M

4Q/2009

Minotaur IV

VAFB

SBSS 1

USAF

Classified

$20M

4Q/2009

\

/

Proton M

Baikonur

* Intelsat 16

Intelsat

Communications

$100M

4Q/2009

Long March 3A

Xichang

Beidou 4

CAST

Navigation

$60M

4Q/2009

Long March 4B

Taiyuan

Fengyun 3C

China Meteorological 
Administration

Meteorological

$60M

4Q/2009

Long March 3A

Xichang

* DFH 4A

Chinese MPT

Communications

$60M

4Q/2009

\

/

Rockot

Plesetsk

* SERVIS 2

USEF

Development

$15M

4Q/2009

Long March 4B

Taiyuan

Fengyun 3B

China Meteorological 
Administration

Meteorological

$60M

October 2009 - March 2010 Projected Orbital and Suborbital Launches

 

 
 
 
 
 

 

!

  Denotes commercial launch, defined as a launch that is internationally competed or FAA-licensed. For multiple manifested launches, certain secondary payloads     

    whose launches were commercially procured may also constitute a commercial launch. Appendix includes suborbital launches only when such launches are    

    commercial. 

+  Denotes FAA-licensed launch. 
*   Denotes a commercial payload, defined as a spacecraft that serves a commercial function or is operated by a commercial entity 

 

     Notes:   All prices are estimates, and vary for every commercial launch.  Government mission prices may be higher than commercial prices. 

Ariane 5 payloads are usually multiple manifested, but the pairing of satellites scheduled for each launch is sometimes undisclosed for proprietary 
reasons until shortly before the launch date. 

background image

Semi-Annual Launch Report: Second Half of 2009 

 

 

 

 

 

B-2 

 

 
 

Date

Vehicle

Site

Payload or Mission

Operator

Use

Vehicle 

Price

1/23/2010

Taurus XL

VAFB

GLORY

NASA GSFC

Scientific

$35M

2/3/2010

Atlas V 401

CCAFS

Solar Dynamics 
Observatory

NASA GSFC

Scientific

$125M

2/4/2010

Shuttle Endeavour

KSC

STS 130

NASA

Crewed

N/A

2/28/2010

\

/

Dnepr M

Baikonur

Cryosat 2

ESA

Remote Sensing

$12M

2/2010

Delta IV Medium

CCAFS

Navstar GPS 2F-01

USAF

Navigation

$170M

1Q/2010

\

/

Proton M

Baikonur

* BADR-5

Arabsat

Communications

$100M

1Q/2010

Atlas V 541

CCAFS

MUOS 1

DoD

Communications

$125M

1Q/2010

Atlas V 501

CCAFS

X-37B OTV

USAF

Development

$125M

1Q/2010

Minotaur 4

VAFB

TacSat 4

USAF

Development

$20M

1Q/2010

\

/

Zenit 3SLB

Baikonur

* AMC 1R

SES Americom

Communications

$60M

1Q/2010

\

/ + Falcon 9

CCAFS

Dragon COTS Demo 2 SpaceX

Development

$40M

1Q/2010

PSLV

Sriharikota

Megha Tropiques

ISRO

Scientific

$25M

1Q/2010

\

/

Proton M

Baikonur

* DirecTV 12

DIRECTV

Communications

$100M

* Arabsat 5A

Arabsat

Communications

October 2009 - March 2010 Projected Launches (Continued)

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

!

  Denotes commercial launch, defined as a launch that is internationally competed or FAA-licensed. For multiple manifested launches, certain secondary payloads     

    whose launches were commercially procured may also constitute a commercial launch. Appendix includes suborbital launches only when such launches are    

    commercial. 
+  Denotes FAA-licensed launch. 

*   Denotes a commercial payload, defined as a spacecraft that serves a commercial function or is operated by a commercial entity 

 
     Notes:   All prices are estimates, and vary for every commercial launch.  Government mission prices may be higher than commercial prices. 

Ariane 5 payloads are usually multiple manifested, but the pairing of satellites scheduled for each launch is sometimes undisclosed for proprietary 

reasons until shortly before the launch date.