background image

Support to the IADC Space Debris Mitigation Guidelines

 

 

 

i

 

Issue 1  

 

 

 

 

 

 “Support to  

the IADC Space Debris Mitigation Guidelines”  

 

 

 

 

5 October 2004 

 

IADC  WG4 

 

background image

Support to the IADC Space Debris Mitigation Guidelines 

 

 

ii

Foreword 

This document provides the readers of IADC Space Debris Mitigation Guidelines (first edition dated 15 
October 2002

)

 

with  the  purpose, feasibility, practices, and tailoring guide for each recommendation 

addressed in the Guidelines.  Much of this  information was based on various documents, research 
papers, and opinions that were introduced by  IADC member agencies. 

The next table depicts the category of typical debris, their causes, and recommendations from IADC. 
Several national and international organisations of the space-faring nations have established Space 
Debris Mitigation Standards or Handbooks to promote efforts to deal with space debris issues. The 
contents of these Standards and Handbooks may be slightly different from one another, but their 
fundamental principles are the same as the IADC Guidelines: (1)  preventing on-orbit break-ups, (2) 
removing spacecraft and orbital stages that have reached the end of their mission operations from the  
densely populated orbital regimes, and (3) limiting the objects released during normal operations. 

Category 

Causes  

Recommendation 

Objects released intentionally 

Mitigation design 

Mission-related objects 

Objects released unintentionally 

Design robustness 

Intentional destruction 

Refrain from intentional destruction 

Accidental break-ups  during operation 

Mission assurance 

Break-ups  after mission termination 

Mitigation design 

Fragments  

On-orbit collisions  

Collision avoidance and shielding 

Mission-terminated spacecraft 
and rocket bodies  

Inadequate disposal manoeuvre 

Re-orbit or de-orbit  manoeuvre to avoid 
interference with useful orbital regions  

 

In this document, the following information typically will be given for each recommendation: 

(a)  Purpose: rationale for the guideline; 

(b)  Practices:  recommendations on how to cope with the guideline, applicable methods, and 

justification of the numerical values; 

(c)  Tailoring guide; and 

(d)  Feasibility, definition of parameters, technical information, applicable references, and examples. 

background image

Support to the IADC Space Debris Mitigation Guidelines 

 

 

iii

Acronyms and Definitions

 

ASI 

Agenzia Spaziale Italiana (Italian Space Agency) 

A/m 

Area to mass ratio 

BNSC 

British National Space Centre 

CDR 

Critical Design Review 

CNES 

Centre National d’Etudes Spatiales (French Space Agency) 

CNSA 

China National Space Administration 

C

R

 

Solar Pressure Coefficient  

DELTA 

Debris Environment Long  –Term Analysis tool (ESA) 

DLR 

Deutsches Zentrum fuer Luft-und Raumfahrt (German Aerospace Center) 

DoD 

US Department of Defense 

ESA 

European Space Agency 

EDMS 

European Space Debris Safety and Mitigation Standard 

E / W 

East / West 

E volve 

Orbital environmental model developed by NASA/JSC 

FKA 

Federal Space Agency of Russia 

GEO 

Geostationary Earth Orbit 

GTO 

Geostationary Transfer Orbit 

HEO 

High Earth Orbit 

IADC 

Inter-Agency Space Debris Coordination Committee 

IADC/WG2 

Working Group 2 of IADC: Environment and Data Base   

IADC/WG4 

Working Group 4 of IADC: Mitigation 

IDES 

Integrated Debris Evolution Suite (orbital environmental model developed by UK) 

Isp 

Specific Impulse 

ISRO 

Indian Space Research Organisation 

ISS 

International Space Station 

ITU 

International Telecommunication Union. A specialized organization of the UN 

JSC 

Johnson Space Center  (NASA) 

JAXA  

Japan Aerospace Exploration Agency    (former NASDA, NAL and ISAS) 

LBB 

Leak Before Burst 

LEO 

Low-Earth Orbit.  Orbit in the region below 2000 km altitude 

LV 

Launch Vehicles 

MEO 

Medium Earth Orbit 

NASA 

National Aeronautics and Space Administration 

NASDA 

National Space Development Agency of Japan   

N/S 

North / South 

NSAU 

National Space Agency of the Ukraine 

PDR 

Preliminary Design Review 

S/C 

Spacecraft 

SDM 

Semi-Deterministic Model for orbital debris long term evolution (ESA and ASI) 

SSN 

Space Surveillance Network (US) 

SSS 

Space Surveillance System (Russia) 

STD 

Standard 

STS 

Space  Transportation System  (US Space Shuttle) 

STSC 

Scientific and Technical Subcommittee  (for UNCOPUOS) 

TBC 

To Be Confirmed 

TLE 

Two-Line Element data  (orbital element data of tracked objects, described in two-
line format, provided by US based on the data obtained primarily from the Space 
Surveillance Network)  

UNCOPUOS 

United Nations Committee on the Peaceful Uses of Outer Space  

background image

Support to the IADC Space Debris Mitigation Guidelines 

 

 

i v 

Contents 

 

1.  Scope.......................................................................................................................................................... 1

 

2  Application.................................................................................................................................................... 2

 

3   Terms and definitions ................................................................................................................................... 4

 

3.1  Space Debris ............................................................................................................................................. 4

 

3.2  Space Systems.......................................................................................................................................... 4

 

3.3  Orbits and Protected Regions ..................................................................................................................... 5

 

3.4  Mitigation Measures and Related Terms ...................................................................................................... 6

 

3.5  Operational Phases .................................................................................................................................... 7

 

4  General Guidance......................................................................................................................................... 8

 

5  Mitigation Measures .................................................................................................................................... 10

 

5.1  Limit Debris Released during Normal Operations ....................................................................................... 10

 

5.2  Minimise the Potential for On-Orbit Break -ups ............................................................................................ 11

 

5.2.1  Minimise the potential for post mission break-ups resulting from stored energy .......................................... 13

 

5.2.2  Minimise the potential for break-ups during operational phases ................................................................ 16

 

5.2.3  Avoidance of intentional destruction and other harmful activities ............................................................... 17

 

5.3  Post Mission Disposal............................................................................................................................... 18

 

5.3.1  Geosynchronous Region........................................................................................................................ 18

 

5.3.2  Objects Passing Through the LEO Region .............................................................................................. 21

 

5.3.3  Other Orbits .......................................................................................................................................... 25

 

5.4  Prevention of On-Orbit Collisions............................................................................................................... 25

 

6  Update ....................................................................................................................................................... 26

 

7.  References ................................................................................................................................................ 27

 

 

 

 

background image

 

1.  Scope 

The IADC Space Debris Mitigation Guidelines describe existing practices that have been identified 
and evaluated for limiting the generation of space debris in the environment. 

The Guidelines  cover the overall environmental impact of the missions with a focus on the 
following: 

(1) 

Limitation of debris released during normal operations 

(2) 

Minimisation of the potential for on-orbit break-ups 

(3) 

Post-mission disposal  

(4) 

Prevention of on-orbit collisions.

   

 

Purpose:  

The major sources of space debris are categorised in Table 1.1-1.  The Guidelines 

recommend feasible and important measures to deal with debris sources identified by bold type 
letters in Table 1.1-1. 

Table 1.1-1 Debris Sources 

Main 

Categories 

Causes 

Debris Sources 

operational debris 

(fasteners, covers, wires)

  

objects released for experiments 

(needles, balls, etc.)

 

tethers designed to be cut after experiments 

objects released 
by design 

others 

(released before retrieval)

 

fragments caused by ageing 

(flakes of paints and blankets derived from 

degradation) 

tether systems cut by debris 

objects released before retrieval to ensure safety 

liquids with high density (leaked from the nuclear power system, etc.) 

Mission- 
related 
objects 

(Parts 
Released 
During 
Mission 
Operation) 

unintentionally 
released objects 

particles ejected from solid motors   

destruction for scientific or military experiments 

(including self-

destruction, intentional collision, etc.)

  

destruction prior to re-entry in order to minimise ground casualty 

intentional 
destruction 

destruction to ensure security of on-board devices and contained data 

explosion caused by failure during mission operation 

accidental 
break-ups 

explosion caused by command destruct systems, residual propellants, 
batteries, etc., after mission termination  

fragments caused by collision with catalogued objects 

On-orbit 
break-ups 

on-orbit 
collisions 

fragments caused by collision with un-catalogued objects 

Mission-terminated space 
systems 

systems left in near-GEO, GTO, LEO, and HEO 

 

background image

 

2  Application 

The  IADC Space Debris Mitigation  Guidelines  are applicable to mission planning and the  design 
and operation of spacecraft and orbital stages (defined here as space systems) that will be injected 
into Earth orbit.   

Organisations  are encouraged to use these Guidelines in identifying the  standards that they will 
apply when establishing the mission requirements for planned space systems.   

Operators of existing space systems are encouraged to apply these guidelines to the greatest 
extent possible.

  

 

 

Purpose:  
 

The IADC Space Debris Mitigation Guidelines demonstrate the international consensus on space 
debris mitigation activities and constitute a baseline that can support agencies and organisations  
when they establish their own mitigation standards.   
 
Some space agencies throughout the world have developed or are developing  their own debris 
mitigation standards to preserve and improve the orbital environment.  Table 2.1-1 shows  the 
summary of a comparison between these standards.    
 

Expected document system:  
 

Figure 2.1-1 shows the structure of a document system related to the IADC Guidelines. 

Since the IADC Guidelines will provide only the  fundamental standard practices or  top level 
recommendations, more detailed, technical issues and practical implementation will be addressed 
in the lower level documents.  Currently, there is only one document, IADC-97-004: IADC 
Recommendation, Re-orbit Procedure for GEO Preservation

[1]

,  which was approved at the 15

th

 

IADC meeting.  Lower-level recommendations covering other major issues are anticipated in due 
course.   

 

 

IADC Space Debris 

M itigation Guidelines

“Support to the IADC Space Debris

Mitigation Guidelines”

(Planned)

Figure 2.1-1 Planned IADC Document System for Debris Mitigation Guidelines

background image

 

3

Table  2.1-1

 

 Recommendations / Requirements S pecified in Major Debris Mitigation Standards

 

 

Mitigation Measures 

IADC Guidelines 

NASA 

JAXA (NASDA) 

CNES 

US standard 

FKA 

EDMS 

Operational Debris 

Addressed in 5.1 

Addressed 

Required 

Required 

Addressed 

Required 

Required 

Tether 

Addressed in 5.1 

Addressed 

 

 

Addressed 

Required 

 

Mission 
Related 
Objects 

Others 

Addressed in 5.1 

 

 

Required  

 

Required 

Required 

Intentional Break Up 

Addressed in 5.2.3 

Limited 

Required 

Required 

 

Required 

Required 

Residual Propellants  

Addressed in 5.2.1 

Required 

Required 

Batteries 

Addressed in 5.2.1 

Required 

Required 

Destruct Devices 

Addressed in 5.2.1 

Required 

 

Pressure Vessels 

Addressed in 5.2.1 

Required 

Probability<10

-4

Passivation within 1 
year. 

Required 

Probability<10

-4

Passivation within 1 
year. 

On

-orbit Break

-

ups

 

 

Wheels 

Addressed in 5.2.1 

During operations; 
Probability <10

-4

Depletion at end of 
mission life. 

No 

 

Generally required 
during mission 
operation and after 
the end of mission. 

 

 

Collision Avoidance 

Addressed in 5.4 

(Addressed in another 
document for human 
flight) 

Required for launch, 
and Recommended 
for S/C 

Required  
If necessary 

 

Required for 
manned mission 

Required  
If necessary 

Collision with Large 
Debris 

Addressed in 5.4 

Assess collision 
Probability 

Avoidance is 
Recommended 

Recommended 
(Assess probability.) 

Recommended 
(Design & Operation)  

Assess collision 
Probability 

Assess collision risk  

Break

-up 

C

aused by 

C

ollision

 

Collision with Small 
Debris 

Addressed in 5.4 

Assess collision 
Probability 

Protection is  
Recommended 

 

Recommended 
(Protection, etc.) 

Assess collision 
Probability 

 

Reorbit of GEO S/C 

235 km 
+ (1,000.Cr..A/m) 

300 km  
+ (1,000..A/m) 

235 km 
+ (1,000.Cr..A/m) 

235 km 
+ (1,000.Cr..A/m) 

Above 36,100 km 
(300km+GEO) 

235 km 
+ (1,000.Cr..A/m) 

235 km 
+ (1,000.Cr.A/m) 

GEO

 

Lower limit of GEO 
Inclination 

-200 km 
-15 < Inc. < 15 deg. 

-500 km 

-500 km 

-H: reorbit distance 
-15 < Inc. < 15 deg. 

-500 km 

 

-H: reorbit distance 
-15 < Inc. < 15 deg. 

Removal  

Addressed in 5.4 

Within 25 years 

Within  25 years, if 
possible 

Feasibility of disposal: 
P> 0.99 Within 25 years 

Within 25 years 

Reduction of orbit 
lifetime 

Feasibility of disposal: 
P> 0.99 Within 25 years 

Graveyard Orbit 

Not addressed  
( > 2000 km) 

2,500 - 19,900 km 
20,500- 35,288 km 

Not addressed  
( > 2000 km) 

2000 - (GEO-H) 
H= reorbit distance 

2,000 - 19,700 km 

20,700 - 35,300 km 

 

2000 - (GEO-H) 
H= reorbit distance 

Orbital Retrieval 

Addressed in 5.3.2 

Addressed 

Recommended 

 

Addressed 

 

 

From

 LEO

  

MEO

 

Ground Risk 

Addressed in 5.3.2 

Addressed  

Required (Ec<10

-4

Required 

Addressed (Ec<10

-4

To be assessed 

(Ec<10

-4

) (TBC) 

Lifetime Reduction  

Addressed in 5.3.2 

Addressed 

Recommended 

Required 

Addressed 

Required 

Required 

Deorbit from GTO 

Addressed in 5.3.1 

Addressed 

Recommended 

Required 

Addressed 

 

Required 

Mission 

T

erminated

 Systems

 

R/B

 

L/O time selection 

 

 

 

 

 

 

 

Periodical M onitor  

Addressed in 5.2.2 

 

Required 

 

 

 

 

Failure 

Removal from Orbit 

Addressed in 5.2.2 

Addressed 

Required 

 

Addressed 

 

 

Remarks for symbols    a : Semi-major axis,  Cr :Solar Pressure Coefficient,  A/m : Area-to-mass ratio,  Ec: Casualty expectation 

NASA: 

NASA Safety Standard 1740.14

[2]

,  

JAXA (NASDA): 

NASDA-STD-18A

[3]

,  

CNES: 

MPM-50-00-12

[4]

,  

FKA

: Mitigation of Space Debris Population

[5]

US Standard

: Orbital Debris Mitigation Standard Practices  

[6]

EDMS:

 European Space Debris Safety and Mitigation Standard (draft: June 2000) 

[7]

 

background image

 

4

 

3   Terms and definitions 

The following terms and definitions are added for the convenience of the readers of this document.  
They should not necessarily be considered to apply more generally.   

3.1  Space Debris 

Space debris are all man made objects including fragments and elements thereof, in Earth orbit or 
re-entering the atmosphere, that are non functional.   

 
Reference:  
 

The term of space debris was defined in more detail as below in  

Technical Report on Space 

Debris

, 1999, by UN/COPUOS/STSC.

[8]

 

 
“ 

Space debris are all man-made objects, including their fragments and parts, whether their owners 

can be identified or not, in Earth orbit or re-entering the dense layers of the atmosphere that are 
non-functional with no reasonable expectation of their being able to assume or resume their 
intended functions or any other functions for which they are or can be authorized”.

 

 

Detail: 
 

As explained in Table 1.1-1, fluids can also constitute a type of debris, particularly if their densities 
are high, such as NaK leaked from nuclear power systems. 
 
 

3.2  Space Systems  

Spacecraft and orbital stages are defined as space systems within this document. 

 

3.2.1  Spacecraft

 

  an  orbiting object designed to perform a specific function or mission (e.g. 

communications, navigation or  Earth observation).  A spacecraft that can no longer  fulfil its 
intended mission is  considered  non-functional.  (Spacecraft in reserve or  standby modes 
awaiting possible reactivation are considered functional.) 

3.2.2  Launch vehicle

 – any vehicle constructed for ascent to outer space, and for placing one or 

more objects in outer space, and any sub-orbital rocket. 

 

3.2.3  Launch vehicle orbital stages 

 any stage of a launch vehicle left in Earth orbit.      

 
 
 

background image

 

5

3.3  Orbits and Protected Regions  

 

3.3.1  Equatorial radius of the Earth  -  

the equatorial radius of the Earth is taken as 6,378 km 

and this radius is used as the reference for the Earth’s surface from which the orbit regions are 
defined. 

3.3.2  Protected regions 

 any activity that takes place in outer space should be performed while 

recognising the unique nature of the following regions, A and B, of outer space (see Figure 1), 
to ensure their future safe and sustainable use. These regions should be protected regions 
with regard to the generation of space debris. 

(1) 

Region A, 

Low Earth Orbit 

(or LEO) Region – spherical region that extends from the  Earth’s 

surface up to an altitude (Z) of 2,000 km  

  

 

 

Note: The orbital region used for manned flights, of special concern due to risks of in-orbit 
casualties, is included in the Region A, Low Earth Orbit Region. 

 

 (2) Region B, the 

Geosynchronous  Region 

 - a segment of the spherical shell defined by the 

following: 

lower altitude = geostationary altitude minus 200 km   

upper altitude = geostationary altitude plus

 

200

 

km 

-15 degrees 

 latitude 

 +15 degrees 

geostationary altitude (Z 

GEO

) = 35,786 km (the altitude of the geostationary Earth orbit) 

Z

GEO

 - 200km

Z = 2000km (LEO)

Z

GEO

 + 200km

Equator

Earth

Region A

Region B

Region B

Z = Z

GEO

15

°

15

°

 

Figure 1 - Protected regions

 

3.3.3  Geostationary Earth Orbit (GEO) 

 Earth orbit having zero inclination and zero 

eccentricity, whose orbital period is equal to the Earth's sidereal period. The  altitude of this 
unique circular orbit is close to 35,786 km. 

3.3.4  Geostationary  Transfer Orbit (GTO) 

 an Earth orbit which is or can be used to transfer 

space systems from lower orbits to the geosynchronous region.  Such orbits typically have 
perigees within LEO region and apogees near or above GEO. 

 
 
 

background image

 

6

For clarification, the protected regions are indicated by the 3D figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

background image

 

7

3.4  Mitigation Measures

 

and Related Terms

 

3.4.1  Passivation 

 the elimination of all stored energy on a space system to reduce the chance 

of break-up.  Typical  passivation measures include venting or burning  excess propellant, 
discharging batteries and relieving pressure vessels. 

3.4.2  De-orbit 

  intentional changing of orbit for re-entry of a space  system  into the Earth’s 

atmosphere to eliminate the hazard it poses to other space systems, by applying a retarding 
force, usually via a propulsion system. 

3.4.3  Re-orbit 

 intentional changing of a space system’s orbit 

3.4.4  Break-up 

 any event that generates fragments, which are released into Earth orbit. This 

includes: 

(1) 

An explosion caused by the chemical or thermal energy from propellants, pyrotechnics and 
so on 

(2) 

A rupture caused by an increase in internal pressure 

(3) 

A break-up caused by energy from collision with other objects 

However, the following events are excluded from this definition: 

• 

A break-up during the re-entry phase caused by aerodynamic forces 

• 

The  generation of fragments, such as paint flakes,  resulting from  the ageing and 
degradation of a space system.    

 

 

3.5  Operational Phases 

3.5.1  Launch phase  - 

begins when the launch vehicle is no longer in physical contact with 

equipment and ground installations that made its preparation and ignition possible (or when the 
launch vehicle is dropped from the carrier-aircraft, if any), and continues up to the end of the 
mission assigned to the launch vehicle. 

3.5.2  Mission phase - 

the phase where the space system fulfils its mission.  Begins at the end of 

the launch phase and ends at the beginning of the disposal phase.   

3.5.3 

 

 Disposal phase

 - begins at the end of the mission phase for a space system and ends 

when the space system has performed the actions to reduce the hazards it poses to other 
space systems.   

 

background image

 

8

 

4 General Guidance 

 

During an organisation’s planning  for and operation of  a  space system   it should take  systematic 
actions to reduce adverse effects on the orbital environment by introducing space debris mitigation 
measures into the  space system's lifecycle, from the mission requirement analysis and definition 
phases.

 

In order to manage the implementation of space debris mitigation measures, it is recommended 
that a feasible Space Debris Mitigation Plan be established and documented for each program and 
project. The Mitigation Plan should include the following items: 

A management plan addressing space debris mitigation activities 

A plan for the assessment and mitigation of risks related to space debris, including applicable 

standards 

The measures minimising the hazard related to malfunctions that have a potential for 

generating space debris 

A plan for disposal of the space system at end of mission 

Justification of choice and selection when several possibilities exist 

Compliance matrix addressing the recommendations of these Guidelines. 

 

Purpose:

   

Space debris mitigation measures should be taken into consideration from the very early phases 
of project planning.  Also, adequate decision-making is expected in each of the planning, design, 
operation, and disposal phases.  Section 4 recommends that space debris mitigation activities be 
included in phased planning, and that organisational and systematic actions be taken according 
to the authorised plan. 

 

Practices (Phased planning):  

(1)  System concept, mission planning, launch configuration, operation planning, and disposal 

procedures should be developed with consideration for their effects on the orbital 
environment. It may be noted that major mitigation procedures should be fixed in the very 
early phases (mission definition and conceptual design phases), and the issues relevant to 
debris generation should be identified in the preliminary design review and be solved by a 
detailed design review.  (NASA Safety Standard and JAXA standard formally define two 
design reviews, PDR (Preliminary Design Review) and CDR (Critical Design Review), to 
assess the mitigation actions.)  A  Mitigation Plan should be developed to  control these 
activities. 

(2)  The disposal phase should be clearly considered in mission planning. 

 

Practices (Mitigation Plan):  

Space debris mitigation issues should be identified and dealt with in a project like several other 
issues, such as safety. It is therefore suggested to include this issue in the scope of the Product 
Assurance manager of the project. It should not be necessary to issue a large amount of 
documentation: 

background image

 

9

• 

a plan for control of debris mitigation during the development of the project and the 
operations, including the disposal and passivation of the spacecraft, and 

• 

the necessary technical documentation answering to this plan and identifying the measures 
to limit debris generation and the assessment of the satellite disposal and its operational 
aspects. 

 

Of course, the compliance status of any recommendations is addressed via standard practices. 

  

Moreover, it would be desirable for the Mitigation Plan to include the following elements: 

 

(1) 

Concept: 

The Mitigation Plan could include management organisation, major event, 

schedule,  potential for generating debris, assessment plan, related documents, and  the 
results of design tailoring. 

(2) 

Organisation

: Each agency (and its contractors) may assign a group or individual bearing 

responsibilities to study, plan, implement, and review space debris mitigation  activities. 
The assigned group or individual should be provided with enough authority and resources 
required to accomplish and fulfil this duty and  should report the progress status to the 
project manager. Usually, such a role would be assigned to a Safety & Mission Assurance 
department.  

(3) 

Management

: Major events and schedule, potential debris  sources, disposal plan, 

assessment plan, and related documents would be helpful. 

(4) 

Mitigation measures:   

The technical basis for mitigation measures corresponding to each 

debris source and disposal plan should be described.  

(5) 

Compliance matrix:

   

In each design phase, compliance among system requirements, 

design, manufacturing,  and the  operation plan should be reviewed and recorded in a 
compliance matrix.  If some requirements or  recommendations are tailored, the facts 
should be recorded as specified immediately below.

 

 

  

Tailoring guide:   

The recommendations in this document can be tailored before being applied. The results of 
tailoring, however, should be agreed upon among the departments responsible for each project 
and should be submitted and reviewed by the responsible review committee.  
 
The facts of tailoring and the basis for such should be recorded in the Space Debris Mitigation 
Plan. Typical examples for tailoring are as follows:  

(1)  

for space systems already in progress in their development phase to some extent, only 
practically feasible recommendations would be applied, and 

(2)  

comprehensive studies for various conditions including economical, technical, and other 
situations concerned with debris mitigation measures would identify the practically feasible 
range of recommendations to be applied. 

 

background image

 

10 

 

5  Mitigation Measures

 

5.1  Limit Debris Released during Normal Operations  

In all operational orbit regimes, space systems should be designed  not to release debris during 
normal operations.  Where this is not feasible any release of debris should be minimised in 
number, area and orbital lifetime.   

Any program, project or experiment that will release objects in orbit should not be planned unless 
an adequate assessment can verify that the effect  on the orbital environment, and the hazard to 
other operating space systems, is acceptably low in the long-term. 

The potential hazard of tethered systems should be  analysed by considering both an intact and 
severed system.

 

 

Purpose:

   

Approximately 12% of the  current catalogued objects are debris released during normal 
operations.    The release of fasteners, yo-yo weights, nozzle covers, lens caps,  and  multiple 
payload mechanisms should be kept to a minimum.   

 

Feasibility: 

It is relatively easy, both technically and economically, to take mitigation measures against these 
objects.  Many agencies have already reported to be taking such action.  

Satellite manufacturers usually avoid intentional debris generation, since this debris might 
remain very close to the satellite and become a danger to the satellite itself (blocking 
mechanisms,  obstructing the field of view, etc.). It is therefore a sound requirement for 
spacecraft manufacturers to preclude intentional debris generation during normal operations. 

 

Practices:  

 

The number of objects released during nominal operations to become orbital debris should be 

minimised by design. The following are examples of these objects. 

(1)  Launch vehicle connectors and fasteners:  separation bolts, clamp bands, etc.  

(2)  Fairings: fairings and adapters for launching multiple payloads, etc. 

(3)  Covers: nozzle closures, etc.   

(4)  Others:  yo-yo weights and lines, etc.  

Apogee motor cases or engines should not separate  or be left  in  an  orbit passing through  the 
protected regions.  If this is not possible, they  should be left so as not to  interfere with the 
protected regions, and they should be passivated. 

Note: Solid Rocket Motors release solid particles during and after burning.  The precise nature of 
the amount and distribution of the ejecta are unclear, and the improvement of solid propellants 
and motor insulation to minimise the number of released objects is currently difficult. 

 

Practice (tethers):

   

Tethers several thousand meters in length and a few  millimetres in diameter have  a  large 
probability to be severed by small debris.  New multi-strand tether designs can reduce the risk of 

background image

 

11 

severing.  At the end of missions,  it is recommended  that tethers be retracted to reduce the 
probability of collision with space systems. 

 

Tailoring guide:   

(1)  Fairings: 

support structural elements left in orbit during a multiple payload mission may be 

released,  if  there are no feasible alternative  measures at present.  Fortunately,  when 
released at low altitude their orbital lifetimes can be relatively short if their area-to-mass 
ratios are high. 

(2)  Orbital lifetime:

  released objects  whose orbital lifetime is short (less than 25 years, for 

example) could be assessed as allowable. 

(3)  Mission  requirements to release objects:

  missions that require releasing objects should 

be submitted to the review board of the agencies to assess their necessity and their effects 
on orbital environment. 

(4)  Paint flakes and other objects released by degradation: 

by exposure to the space 

environment (ultraviolet radiation, atomic oxygen, thermal cycling, and micro-particle 
impacts)

paint, surface materials, and possibly  deployment devices  can deteriorate and 

generate fragments. However, it is impossible to present standards or recommendations with 
regard to how many years materials should withstand the space environment.   

(5)  Tethers:

  tethers  can exacerbate the debris environment, but  can also be used to reduce 

orbital  lifetime. In the planning of tether systems, these  advantages and disadvantages 
should be assessed.

 

5.2  Minimise the Potential for On-Orbit Break-ups 

 

On-orbit break-ups caused by  the  following factors should be prevented  using the measures 
described in 5.2.1 

 5.2.3: 

(1) 

The potential for break-ups during mission should be minimised  

(2) 

All space systems should be designed and operated so as to  prevent  accidental explosions 
and ruptures at end-of- mission 

(3) 

Intentional destructions, which will generate long-lived orbital debris, should not be planned or 
conducted. 

 
Purpose

:  

 
The most common source of space debris is on-orbit break-ups of space systems.  Approximately 
43% of catalogued objects, and 85% of all space debris larger than 5 cm in diameter stem from on-
orbit break-ups.  This section recommends the minimum effort to prevent their generation. 
 
According to the  NASA database provided by NASA/JSC (Orbital Debris Program Office), at the 
end of February 2004 at least 174 orbital fragmentations (excluding aerodynamic break-ups) have 
occurred.  Among them, 79 events (45%) had propulsion-related causes, 54 events (31%) were 
due to intentional destruction, and 8 events (5%) were due to the rupture of battery cases.  Only 
one case was due to an accidental on-orbit collision. The causes of the remaining 18% are 
unknown. 

 

Figure 5.2-1 shows the cause of break-ups, and Fig.5.2-2 shows differences of the causes 
depending on spacecraft and rocket bodies. Intentional destruction is the major cause for 
spacecraft break-up,  while  the  propulsion system is  the major responsible  for rocket-body  break-
up.  No spacecraft has yet been observed to have broken up as a result of liquid propulsion failure, 
and no rocket body as a result of battery failure. 

background image

 

12 

 

On orbit Break-ups 

Data Source: 

NASA database provided by NASA/JSC (Debris Program 

Office),  

Fig. 5.2-1 Causes of Breakup

Fig.5.2-2 Breakup Systems and Causes

Number of Breakup Events

üi

i

ncluding PROTON-Block DM SOZüj

background image

 

13 

  

5.2.1  Minimise the potential for post mission break-ups resulting from stored energy 

In order to limit the risk to other space systems from accidental break-ups after the completion of 
mission operations, all on-board sources of stored energy of a space system, such as residual 
propellants, batteries, high-pressure vessels, self-destructive devices, flywheels and momentum 
wheels, should be depleted or safed when they are no longer required for mission operations or 
post-mission disposal.    Depletion should occur as soon as this operation does not pose an 
unacceptable risk to the payload.  Mitigation measures should be carefully designed not to create 
other risks. 

 

Purpose

:  

The most important and effective measure  is the prevention of break-ups.  Expenditure of 
residual propellants and high-pressure fluids and the switching-off of battery charging lines are 
typical measures. More detailed recommendations are addressed below. 

 

(1)  Residual propellants and other fluids, such as pressurants, should be depleted as thoroughly 

as  possible, either by depletion burns or venting, to prevent accidental  break-ups by over-
pressurisation or chemical reaction.   

 

Purpose

:  

Residual propellant is the most common cause of on-orbit break-ups. Many accidental break-ups 
have been caused by orbital stages  possessing hypergolic propulsion systems with common 
bulkhead tanks. But even cryogenic propulsion systems have apparently ruptured as a result of 
propellant evaporation and resulting over-pressurisation.

 

The above  recommendation can prevent such  propulsion-related break-ups.  However, it is 
sometimes difficult  to know the exact amount of remaining propellant, since sensors can give 
incorrect information, for example at the end of life of a satellite. 

 

Practices in design and operation of LV

:  

Accidental mixing of hypergolic propellants should be prevented by design.  For example, the 
common bulkhead or the lines having a path between the oxidiser and fuel feeding systems, that 
would increase the risk of mixing of oxidiser and fuel, should be properly 

designed and used

.  In 

cases where a common bulkhead tank system is designed, the pressure of the inner tank should 
be kept higher than the outer tank in order to prevent a rupture of the common bulkhead.  This 
effort  to keep  differential pressure should be also applied during  the  final venting  or burning 
operation to prevent bulkhead breakage.   

Even in  the  case of  a  monopropellant or cryogenic propellant system or  a  separated tank 
system, residual propellant should be vented or burned at the end of mission.  Venting lines 
should be designed to prevent blockage from freezing propellants.

 

Consequently, an adequate  sequence of  valve operation, sufficient electric power to sustain 
vent-valve  operation, and a monitoring system to sense complete depletion are recommended. 
The sequence of events should be officially planned and reviewed.   

 

Impact on the operating spacecraft

:  

Depletion burns and venting may generate impulses that will disturb the attitude of spacecraft or 
rocket body.  Especially in the case of venting propellants, a specific design (torque-free venting 
system) or operation may be required to cancel the impulse. 

background image

 

14 

 

Tailoring guide:

  

Some propellant may be allowed to become trapped in lines as long as the amount is insufficient 
to cause a break-up by ignition or pressure increase. 

(2)  Batteries should be adequately designed and manufactured, both structurally and electrically, 

to prevent break-ups.  Pressure increase in battery cells and assemblies could be prevented by 
mechanical measures  unless  these measures  cause an excessive reduction of mission 
assurance.  At the end of operations battery charging lines should be de-activated

.

 

 

Purpose

:  

Historically, eight accidental  satellite  break-ups  have been caused by  battery ruptures.  The 
above guideline  recommends  considering  measures during  design,  manufacturing, and 
operation to prevent such malfunctions.   

 

Practices:

  

The main causes of  battery  break-ups are inadequate  design and manufacturing in both 
structural and electrical aspects, as well as operational errors. Usually, battery cases have 
enough strength to withstand the increase of inner pressure under normal conditions and will not 
cause  a satellite  break-up.  However,  system qualification for long periods can be difficult. In 
addition, there is a break-up risk in case of hypervelocity impact.  Shutting-off charging lines and 
completely discharging the battery will substantially reduce the break-up risk.   

Relays (and  the command line) to shut off the charging lines and heaters or other high power 
loads to discharge batteries are recommended.   

In any case, there are electrical and chemical events able to generate gas inside the cells, and 
then to make the pressure increase without limitation. The space debris limitation should rely on 
electrical protection, rather than on battery mechanical re-enforcement, for example, 

in case of a potential leakage current, the implementation of a resistor between battery 
and structure might be recommended or 

a high depth of discharging (DOD) may lead to a cell being inversely polarised if the cell 
is not homogeneous. 

It is therefore recommended to perform a specific power subsystem study aimed at defining an 
adequate architecture that would be able to cope with end-of-life electrical passivation needs for 
the various families of satellites. 

 
Tailoring guide

:  

For the passivation itself, some documents recommend the implementation of a relay or relays 
for disconnection from the charging lines and the associated command line. From French 
experience, such a disconnection capability was implemented on the SPOT platform (and this 
command was used for the disposal of SPOT 1), but it is usually not implemented on 
Telecommunication satellites or many small satellites.  An erroneous command to a system 
employing a solitary relay could be a  single point of failure, which is often considered 
unacceptable in satellite design.  An alternative would be to install independent relays in parallel. 

 
Pressure relief valves for battery cells might reduce reliability.  Such measures  have been taken 
for the battery  cells and assemblies on some launch vehicles (e.g.,  Ag-Zn batteries), but less 
often for spacecraft.

 

background image

 

15 

(3) High-pressure vessels should be vented to a level guaranteeing that no  break-ups can occur.  

Leak-before-burst designs are beneficial but are not sufficient  to meet all passivation 
recommendations of propulsion and pressurisation  systems.  Heat pipes may be left 
pressurised if the probability of rupture can be demonstrated to be very low. 

 

Purpose

:  

This recommendation is mainly applied to regulated systems that consist of  an upstream high-
pressure vessel and a downstream, regulated-pressure vessel.  

Practices

:  

(1)  blow down system

: The upstream pressurant should be vented at least to less than the mean 

operational pressure of the downstream vessel.   

(2)  tanks with a bladder:

 Tanks in which fuel and pressurant are separated by a bladder should 

contain a  mechanism  for  totally  venting  gases.  In cases where such  a mechanism is not 
implemented, enough safety margin to prevent break-up under expected solar heating should 
be adopted.  

(3)  LBB design

:  Leak-before-burst (LBB) designs are beneficial but not sufficient in preventing 

potential break-up scenarios.  They are normally effective when the rise in pressure is gradual.  
On the other hand, the cause of the significant 1996  Pegasus HAPS break-up has been 
assessed to be the rapid over-pressurisation and failure of the main propellant tank (which had 
a leak-before-burst design) when a regulator between the propellant tank and pressurant tank 
failed. 

Tailoring guide: 

  

(1)  Although helium bottles of launch vehicles sometimes do not have vent mechanisms, a bleed 

valve of  the pressure regulator will gradually  decrease the inner pressure to avoid unsafe 
levels.   

(2)  In some propellant tanks with  a  bladder and no vent valve,  the pressurising gas might be 

trapped in the tanks and cannot be vented.  Usually the pressure will decrease during normal 
operations to safe levels (less than one tenth of initial pressure), but enough margin should be 
taken for the case that some failure would keep the initial pressure, e.g., main engine failure.  

(3)  Heat pipes are highly pressurised and, therefore, a source of stored energy.  However, in the 

usual design process, they have enough structural integrity to prevent such accidents. NASA 
has  recognised that  no particular action is  usually  needed to de-pressurise heat pipes and 
intends to revise NSS 1740.14 for such cases. 

(4)  Self-destruct systems should be designed not to cause unintentional destruction due to 

inadvertent commands, thermal heating, or radio frequency interference. 

 

Purpose

:  

Unintentional triggering of self-destruct systems can produce break-ups. 

 

 

Practices

:   

Unintentional activation of self-destruct systems is a complex topic and many sources may 
trigger it, for example static electricity discharge, impact, … 

background image

 

16 

Destruction command receivers should be turned off as soon as they are no longer needed. 

Thermal insulation should protect the explosive charge to  keep its  temperature less than its 
cook-off temperature.  

  

(5) Power to flywheels and momentum wheels should be terminated during the disposal phase.

 

 

Tailoring Guide

:  

Usually no action will be required if the batteries have been discharged. Flywheels and 
momentum wheels will usually stop shortly after cutting off the power supply due to friction.

 

 

(6) Other forms of stored energy should be assessed and adequate mitigation measures should be 
applied. 

 
Purpose

 

“Other forms” covers all other possible sources of break-ups that have not be mentioned above. 
Such forms might be design-dependent and should be assessed; adequate mitigation measures 
should then be applied. 

 

Practices

:   

A list of all elements with stored energy (mechanical, thermal, chemical, etc.) should be 
established and subject to assessment on each project.  Examples are as follows: 
1)  chemical experimental devices, 
2)  mechanical devices that might retain a large amount of stress or kinetic energy, 
3)  thermal devices, and 

4) 

pyrotechnic devices.

 

 
 

5.2.2  Minimise the potential for break-ups during operational phases 

During the design of a space system, each program  or project should demonstrate, using failure 
mode and effects analyses or an equivalent analysis, that there is no probable failure mode leading 
to accidental break-ups. If such failures cannot be excluded, the design or operational procedures 
should minimise the probability of their occurrence.

 

During the operational phases, a space system should be periodically monitored to detect 
malfunctions that could lead to a break-up or loss of control function.  In the case that a 
malfunction is detected, adequate recovery measures should be planned and conducted; 
otherwise disposal and passivation measures for the system should be planned and conducted. 

 

Purpose:

  

Mission assurance is not explicitly a space debris issue.  However, considering the effect of on-
orbit break-ups, an intentional decrease in reliability that is induced by cost reductions, lack of 
technology, or time-saving should be avoided for the sake of other operating space systems and 
the orbital environment. 

 

 

background image

 

17 

Practice:

  

It is standard practice on satellites, even on the cheapest ones, to identify potential failure modes 
and their effects and to monitor on-board or on-ground (depending on the needed reaction delay) 
the technological parameters indicating that 

(1)  a failure has occurred and is likely to propagate to other functions of the vehicle or 

(2)  a failure is likely to occur (indicated by parameter drift). 

Monitoring then allows the ground or the on-board satellite management to take all necessary 
passivation measures, in order to eliminate the risk of failure propagation. 

A primary recommendation would then be to make sure that all necessary measurement points 
are implemented on-board to monitor the physical characteristics (pressure, temperature, 
current, etc.) and their drift, in order to detect failures with the potential to lead to debris 
generation. 

Concerning propulsion, depending on the selected architecture, these actions may consist of 
closing or opening some valves to isolate the critical section. 

 

5.2.3  Avoidance of intentional destruction and other harmful activities   

Intentional destruction of a space system, (self-destruction, intentional collision, etc.), and other 
harmful activities that may significantly increase collision risks to other systems should be avoided.  
For instance, intentional break-ups should be conducted at sufficiently low altitudes so that orbital 
fragments are short lived. 

 

Purpose:

 

Intentional destructions have been conducted for the purpose of engineering tests, experiments, 
or security assurance (data  and technology security) for on-board information.  Such activities 
should be avoided whenever possible.  

In the past, deliberate activities detrimental to the space environment have taken place.  Large 
numbers of needles were scattered in-orbit for a communications experiment in the 1960’s.   

When conducted, intentional destruction or potentially harmful activities should be assessed for 
possible damage to other spacecraft.  

Tailoring Guide

:  

In rare cases, destruction may be planned to reduce the risk to people on Earth from re-entering 
debris objects,  but  this should be conducted at low altitude,  e.g.,  lower than 90 km. However, 
keeping the destruct devices in-orbit during mission operation could increase the risk of an  on-
orbit explosion, even if  the  mission duration  is short.  Also, to control the destruction in low 
altitude may not be easy because of difficulty in  attitude control, protection from aero-heating, 
and the maintenance of command lines.

   

 

 

background image

 

18 

5.3  Post Mission Disposal   

5.3.1  Geosynchronous Region 

Spacecraft that have terminated their mission should be manoeuvred far enough away from GEO 
so as not to cause interference with space systems still in geostationary orbit.  The recommended 
minimum increase in perigee altitude at the end of re-orbiting, which takes into account all orbital 
perturbations, is:   

 

235 km + (1000

 

C

R

 

x A/m) 

where   C

R

: Solar radiation pressure coefficient  (typical values are between 1 & 2),

 

A/m: Aspect area to dry mass ratio [m

2

/kg]    

 

235 km:  Sum of  the upper altitude of the GEO protected region (200 km) and  the 

maximum descent of  a  re-orbited  space system  due to luni-solar and 
geopotential perturbations (35 km). 

The propulsion system for a GEO spacecraft should be designed not to be separated from the 
spacecraft. In the case that there are unavoidable reasons that require separation, the propulsion 
system should be designed to be left in an orbit that is, and will remain, outside of the protected 
geosynchronous region.  Regardless of whether it is separated or not, a propulsion system should 
be designed for passivation.  

Operators should avoid the long term presence of launch vehicle orbital stages in the 
geosynchronous region. 

 

Purpose:

  

To preserve the GEO environment, where the removal of objects by natural forces normally will 
require extremely long periods, objects should be moved to  a  higher region when no longer 
useful.

 

 

Definitions: 

A/m: Aspect area (in m

2

) over dry mass (in kg) : 

A is the effective cross-sectional area of the spacecraft (m

2

) in the condition when the space 

system is sent to super-GEO, usually with solar arrays and antennas in their deployed positions.  
The  NASA Safety Standard

[2]

  on orbital debris  provides a simple calculational method for 

determining the approximate cross-sectional area for a tumbling vehicle, i.e., “the average cross-
sectional area is 1/4 the surface area.  For a simple convex spacecraft body with solar panel 
wings, calculate the average cross-sectional area from the surface areas of the spacecraft body, 

A

body

, and the solar panels, 

A

sp

, as 

(A

A

) / 4

body

sp

+

.” 

Mass (kg) is the actual mass at the time that the space system is sent to super-GEO.  Usually 
this can be considered equal to the dry mass, if all fluids have been burned or released. 

 

C

R

 (Solar Pressure Radiation Coefficient):

   

The actual value of C

R

 depends on the surface characteristics (insulators, solar arrays, radiators, 

antennas, etc.), their areas, and the vehicle attitude with respect to the sun. There will be some 
difference between the case of the golden colour of aluminised Kapton and the black Kapton, but 
the total value of C

R

 will not vary significantly because of the large area of the solar paddles and 

other components. So  C

R

 may be in the range of  about 1.2 to 1.5.  In addition, the value is 

typically expected to decrease with ageing, but usually the value at the beginning of life will be 
used as a conservative measure. 

 

 

background image

 

19 

Practice (Sending to super-GEO):

  

To prevent on-orbit collisions in the GEO region, spent space systems (including separated 
apogee propulsion systems, that should not ordinarily be separated, and orbital stages of launch 
vehicles that conduct direct injection of spacecraft into GEO)  might be sent to  an orbit  higher 
than GEO.  

The minimum re-orbit distance was determined as the sum of the upper side of the bandwidth of 
protected  region and the expected orbital change of the re-boosted object due to natural 
perturbations.     

   The following figure shows the GEO protected space region (Fig. 5.3.1-1). 

 

 

Figure 5.3.1-1  Protected  GEO Orbital Region and Reorbit Distance from GEO

 

 

Practice (control of eccentricity):

  

There is no mention of the eccentricity of final orbit, but  the eccentricity might be minimized, 
since (1) it will help to attain highest perigee altitude if there is much uncertainty in the estimated 
quantity of residual propellant, (2) it will minimise the deviation between the apogee and perigee 
altitudes which consequently permits a higher relative perigee altitude, and (3) it will increase the 
stability of the orbit from luni-solar perturbation.   

Penalty

:  

The penalty of this re-orbit operation may be equivalent to 3 months of operation for a typical 
N/S and E/W station-keeping GEO satellite.   

The following are typical values for the required velocity increase and mass fraction for re-orbit 
manoeuvres.  

- 200 km

 

+ 200 km

Protected Region

Effect of  luni

 

-solar and geopotential perturbations = 35 km

+/

 

- 15degree

Earth

 

GEO

 

Effect of  Solar radiation pressure  = 1000 x C

R

x A/m

Reorbit distance  235 km + (1000 x C

R

x A/m)

Super-
GEO

 

background image

 

20 

 

 

 

 

Apogee propulsion system:

  

In the past, some types of spacecraft have separated their apogee propulsion systems to obtain 
better characteristics and efficiencies from the aspect of attitude control, thermal control, and 
field of view.  Liquid engines are more hazardous than solid motor cases particularly in the event 
that they separate while containing residual propellants as sources of break-up energy (for 
instance NASDA’s ETS-VI).  Such residual propellants should be vented before separation. 
Otherwise specific devices (to control venting and to provide energy to open the valves), should 
be required to vent immediately after separation. 

If unavoidable reasons arise which require separation, the propulsion system should be 
designed to be left in a higher orbit as recommended for mission-terminated GEO spacecraft.  

 

Note that current satellite designs or future ones do not usually include separable propulsion 
stages. This may be the case for interplanetary missions, which are not in the scope of this report.  
 

Direct Injection into GEO 

In the case of direct injection of payloads into orbits near GEO (e.g. US Centaur upper stage) 
the best solution might be to insert the upper stage and payload directly into a recommended 
disposal orbit above GEO and to have the payload then perform a minor maneuver to place 
itself into GEO. 
 

Practice (GTO objects):

  

To avoid the long-term presence of launch vehicle orbital stages in the geosynchronous region, 
the NASA Safety Standard 1704.14

[2]

 and NASDA-STD-18A

[3]

 recommend that apogee should 

decrease to 500 km lower than GEO within 25 years.  In  JAXA, as a practical procedure, with 
considering the perturbation effect on GTO, it is requested that the apogee should descend 550 
km lower than GEO. 

é h

s p ü

ü

2 0 0

Figure 5.3.1-2  Velocity Increase (

V) and Propellant Mass Fraction with 

Parent S/C Dry Mass (

M/M) as Function of Reorbit Distance 

background image

 

21 

 

5.3.2  Objects Passing Through the LEO Region 

Whenever possible space systems that are terminating their operational phases in orbits that pass 
through the   LEO region, or have the potential to interfere with the LEO region, should be de-
orbited (direct re-entry is preferred) or where appropriate manoeuvred into an orbit with a reduced 
lifetime. Retrieval is also a disposal option.  

A space system  should be left in an orbit in which, using an accepted nominal projection for solar 
activity, atmospheric drag will limit the orbital lifetime after completion of operations. A study on the 
effect of post-mission orbital lifetime limitation on collision rate and debris population growth has 
been performed by the IADC.  This IADC and some other studies and a number of existing national 
guidelines have found 25 years to be a reasonable and appropriate lifetime limit.  If a space system 
is to be disposed of by re-entry into the atmosphere, debris that survives to reach the surface of 
the Earth should not pose an undue risk to people or property.    This may be accomplished by 
limiting the amount of surviving debris or confining the debris to uninhabited regions, such as broad 
ocean areas.  Also,  ground environmental pollution, caused by  radioactive substances, toxic 
substances or any other environmental pollutants resulting from  on-board articles, should be 
prevented or minimised in order to be accepted as permissible. 

In the case of a controlled re-entry of a space system, the operator of the system should inform the 
relevant air traffic and maritime traffic authorities of the re-entry time and trajectory and the 
associated ground area. 

 

Purpose:  

The  LEO region is a collection of  useful orbits that many  countries use for Earth observation, 
micro-gravity experiments, communications, space scientific observation and experiments, and 
so on.  It also includes manned missions conducted during the past 30 years up to an altitude of 
600 km. Preserving the orbital environment of this region is very important both for the use of this 
region and also for passing through this region to GEO and beyond.  Consequently, the removal 
of objects from  LEO as soon as possible after the end of  a  mission is beneficial.  Fortunately, 
natural forces, especially drag, work to clean debris from this region, although  this is 

effective 

primarily for satellites below 700 km. I

t is recommended that orbital lifetime be reduced to less than 

25 years at the end of mission  (approximately 750 km circular orbit for A/m = 0.05  m

2

/kg,  and 

approximately 600 km circular orbit for A/m=0.005 m

2

/kg, depending on solar activity to be more 

exact).  For a given amount of propellant, lowering perigee only will minimise the remaining 
orbital lifetime, compared with lowering both apogee and perigee to a new, lower circular orbit. 

This guideline is appropriate for all space systems, regardless of size: satellites without 
propulsion systems should not be launched to the orbits within the LEO protected region if their 
post-mission lifetime is greater than 25 years. 

Practice (Reduction of orbital lifetime): 

Computations related to orbital lifetime as a function of initial orbit, air drag and area-to-mass 
ratios may be found in many documents. Similarly, the fuel required for decreasing a low orbit 
perigee down to a given value is easy to compute.  The IADC recommendation is to ensure that 
the lifetime after disposal will not exceed 25 years.  

  

 

IADC Working Group 2 studied the effect of de-orbiting and the result is shown below. [Ref. End-
of-life Disposal of Space Systems in the Low Earth Orbit Region, IADC/WG2]

[11]

 

General 

A combination of mission-related object elimination, passivation and post-mission de-
orbiting to a limited lifetime orbit was found to be successful at mitigating the future LEO 

background image

 

22 

debris environment in the long-term (assuming that launch traffic does not increase 
significantly above that seen in recent years). 

 

Post-mission De-orbiting to a Limited Lifetime Orbit 

All post-mission lifetimes considered in the study (0, 25 and 50 years) were able to stabilise 
overall LEO debris population levels over the next 100 years, and were therefore deemed to 
be beneficial. 

Longer post-mission lifetimes generally led to higher stabilised population levels (at altitudes 
<800 km) and therefore it is desirable to shorten post-mission lifetime as far as possible in 
order to reduce population levels and collision risks in the long-term. However, shorter post-
mission lifetimes are more costly for space systems to achieve using on-board propulsion 
systems. 

Only a modest near-linear increase in de-orbit manoeuvre propellant consumption would be 
needed to reduce post-mission lifetime over much of the range considered in this study. 
However, it has been found that decreasing post-mission lifetime to very short times would 
involve a substantial exponential growth in the de-orbit propellant requirement. 

Hence, based on the analysed post-mission lifetimes, a 25-year post-mission lifetime was 
found to be the shortest possible without significant and disproportionate increases in de-
orbit propellant consumption. 

Therefore, a 25-year post-mission lifetime appears to be a good compromise between an 
immediate (or very short lifetime) de-orbit policy which is very effective but much more 
expensive to implement, and a 50 or 100 year lifetime de-orbit policy which is less costly to 
implement but can lead to higher collision risks in the long-term. 

- Any concern for low-altitude manned mission safety in connection with post-mission de-

orbiting is not warranted. Though the population of >10 cm objects will slightly increase in this 
region mainly due to perigee lowering, these large disposed objects can be, and are, tracked 
and avoided. The benefit to low-LEO altitudes attained by post-mission de-orbiting is a low 
and stabilised overall LEO collision rate. This directly prevents significant growth in the 
untrackable (but hazardous) centimetre-sized object population at all LEO altitudes, including 
low-LEO altitudes where manned missions are operating.

 

>1cm Population Evolution

EVOLVE Model Projections

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0

10

20

30

40

50

60

70

80

90

100

Projection Year

No. of objects >1cm in LEO

Business As Usual (BAU)

MRO/Explosion Prevention

MRO/Expl Prev, 0-yr De-orbit

MRO/Expl Prev, 25-yr De-orbit

MRO/Expl Prev, 50-yr De-orbit

 

Figure 5.3.2-1  Debris ( > 1cm) Average Population Evolution from Evolve  

MRO: Mission Related Objects are refrained to be released,  

Expl Prev: Explosions and other break-up events are prevented,  

N-yr De-orbit: S/C & Rocket Bodies are removed within N years from orbit.  

[Ref.  End-of-life Disposal of Space Systems in the Low Earth Orbit Region, IADC/WG2]

[11]

 

 

 
Case-1: Business as Usual (No mitigation measures are 

taken.) 

 

Case-2: Mission Related Objects are refrained to  be 

released, and explosions are prevented. 

 
Case-3: In addition to case-2, systems are removed 

within 50 years after mission termination. 

 
Case-4: In addition to case-2, systems are removed 

within 25 years after mission termination. 

 
Case-5: In addition to case-2, systems are removed 

immediately after mission termination. 

 

 

background image

 

23 

Estimation of Penalty 

The propellant requirement to achieve a specified orbital lifetime will be higher if the operating 
orbit is high.  For example, if orbital lifetime is limited to 25 years after mission completion,  an 
amount of propellant equal to  4% of the mass of the vehicle will be required for the disposal 
operations from an altitude of 1000 km.   

 

                          

Table 5.3.2-1    Required propellant for lifetime reduction within 25 years 

  (Isp = 200 sec, A/m = 0.05 m

2

/kg) 

Initial Altitude 

Descending 

altitude 

Final perigee 

Altitude 

Delta Velocity 

Mass Fraction 

(Propellant / Dry Mass) 

800 km 

70 km 

730 km 

18 m/s 

0.8% 

1,000 km 

370 km 

630 km 

88 m/s 

4.3% 

1,500 km 

965 km 

535 km 

236 m/s 

11% 

2,000 km 

1505 km 

495 km 

349 m/s 

17% 

[Ref: Space Debris Handbook NASDA -CRT-98006, 1998]

[10]  

The  IADC WG2  report [End-of-life Disposal of Space Systems  in the Low Earth Orbit Region, 
IADC/WG2]

[11]

  also shows propellant mass for re-orbit as shown in Fig. 5.3.2-2 (in the case of 

Isp=260 sec). 

 

 
 
 
 
 

Practice (on-orbit retrieval):

  

With current technology, this option is not feasible for most spacecraft owner/operators.  The 
only practical measure is  that of using  the US Space Shuttle.  However, NASA would not 
encourage this option because even  for the US the use of the Shuttle for satellite retrieval is 
normally not warranted, and the risk to the Shuttle crew may exceed the risk to people on Earth 

Chemical Propulsion De-orbiting - Fuel (I

sp

=260s)

0

2

4

6

8

10

12

0

10

20

30

40

50

60

70

80

90

100

Lifetime Limit (yrs)

Fuel Mass Margin (% sat. mass)

800 km alt, 0.005 m^2/kg

800 km alt, 0.05 m^2/kg

1400 km alt, 0.005 m^2/kg

1400 km alt, 0.05 m^2/kg

Re-orbit (2 burns):

1400 km to 2000 km

Figure 5.3.2-2  Cost of N-year post-mission lifetimes in terms of added fuel mass 

assuming use of conventional chemical propulsion systems. 

[Ref.  End-of-life Disposal of Space Sys tems in the Low Earth Orbit Region, IADC/WG2]

[11]

 

background image

 

24 

from uncontrolled re-entry.  Providing the Shuttle on a commercial  basis for retrieval is not 
possible.   Furthermore, the target object  orbit must be lowered to the Shuttle orbit (600 km at 
highest case), propellants and deployed objects must be  passivated, and they must  offer the 
proper interfaces.  So, until such time that direct retrieval is a more commonly available option 
(perhaps by robotic means), this is not a practical solution. 

Tailoring guide (Reduction of orbital lifetime)

 

One can take advantage of anticipated residual propellants set aside for other purposes, e.g., 
initial orbital injection, in determining propellant reserves for disposal manoeuvres. 

Purpose (Ground Safety from Objects Surviving Re-entry ): 

One effective space debris mitigation measure is the removal of mission-terminated space 
objects from useful orbit regions and the disposal of them by aerodynamic heating during re-
entry, if possible.  However, the ground casualties that might be caused by fragments surviving 
atmospheric re-entry should be carefully considered in planning uncontrolled re-entry, particularly 
for large spacecraft.   
 
To assess the  human casualty risk of impact by  objects that survive re-entry, assessment 
parameters and  their  allowable levels,   reliable analysis tools for survivability, and acceptable 
analysis conditions should be developed. 
 

Practice  (Assessment of Re-entry Safety):

   

More than 4,300 missions to Earth orbit (more than 5,000 tons in mass)  have been 
accomplished since 1957.  More than 50 large objects (system level objects) typically fall back 
to Earth every year.  

The re-entries of Cosmos 954 on Canadian territory in January 1978 and Skylab in the oceans 

and on Australia in July 1979 are well-known.  Large objects that have re-entered since the 
1980’s are listed in the following table. 

Table 5.3.2-1  Large objects re-entered after 1980 

Name 

Nationality  Mass [kg] 

Date of Decay 

Mode 

Salyut 6/Cosmos 1267 

Russia 

35,000 

29-Jul-82 

Controlled Re-entry 

Cosmos 1443 

Russia 

15,000 

19-Sep-83 

Controlled Re-entry 

Apollo 9 CSM BP-16 

USA 

16,700 

10-Jul-85 

Natural Re-entry 

Apollo 8 CSM BP-26 

USA 

16,700 

8-Jul-89 

Natural Re-entry 

Salyut 7/Cosmos 1686 

Russia 

40,000 

7-Feb-91 

Natural Re-entry 

Compton GRO 

USA 

14,910 

4-Jun-00 

Controlled Re-entry 

Mir 

Russia 

120,000 

23-Mar -01 

Controlled Re-entry 

[URLhttp://www.aero.org/cords/faq3.html]

 

Typical parameters to assess re-entry safety are  casualty area and  the casualty  expectation 
(Ec). An allowable Ec is not currently recommended in the IADC Guidelines, while NASA Safety 
Standard  1740.14

[2]

 ,  U.S. Government Orbital Debris Mitigation Standard Practices

[6] 

, and 

NASDA Space Debris Mitigation Standard (NASDA-STD18A)

[3] 

limit the value of Ec to less than 

10

-4 

[persons per event].  

background image

 

25 

5.3.3  Other Orbits 

Space systems that are terminating  their operational phases  in other orbital regions should be 
manoeuvred to reduce  their orbital lifetime,

 

commensurate with LEO lifetime limitations, or 

relocated if they cause interference with highly utilised orbit regions. 

 
Purpose

:  

The Navigation Satellites orbital region, particularly the circular 12-hour-orbit, is also a useful 

orbital region, which may be subject of further studies, although the number of satellites 
currently residing in that orbital region is not yet large with respect to protected orbital regions. 

 

5.4  Prevention of On-Orbit Collisions 

In developing the design and mission profile of a space system, a program or project  should 
estimate and limit the probability of accidental collision with known objects during the system's 
orbital lifetime.  If reliable  orbital data  is available, avoidance manoeuvres for spacecraft and  co-
ordination of launch windows may be considered if the  collision risk is not considered negligible.  
Spacecraft design should limit the probability of collision with small debris which could cause a loss 
of control, thus preventing post-mission disposal. 

 
Purpose:  

The above recommendation addresses

 

(1)  estimation of collision probability and taking measures, if necessary, in the planning phase; 

(2) 

collisions with large objects during mission operations (collision avoidance); and

 

[This may be applied for large debris or  orbiting vehicles (already tracked), and by an 
operational action (authorisation for launcher lift-off, collision avoidance manoeuvre). Such 
measures are already in place for some manned and unmanned spacecraft.] 

(3)  collision with small debris during mission operations.  

[This may be applied for small or very small debris (on the order of 1mm) with additional 
satellite shielding, a specific lay-out to protect the most sensitive components, or a 
separation of redundant components] 

 

Practice (avoidance of on-orbit collision):   

The United States Space Surveillance Network (SSN) and the Russian Space Surveillance 
System (SSS) monitor the LEO environment to warn crewed spacecraft if an object is projected 
to come within a few kilometres. NASA computes for the Space Shuttle a probability of collision 
with a conjuncting object and if the probability of collision is high enough (typically 1/10000), an 
avoidance manoeuvre may be performed. During the period 1999-2003, the International Space 
Station executed seven evasive manoeuvres using similar conjunction assessment techniques. 
The Russian SSS and the Russian Space Agency performed similar collision avoidance 
assessments for the Mir space station. 
 
For GEO spacecraft, coordinated stationkeeping is beneficial. Inclination and eccentricity vector 
separation strategies can be efficiently employed to maintain co-located GEO spacecraft at safe 
distances.  Eccentricity vector control may also be employed to reduce the risk of collision 
between members of a given LEO satellite constellation. 

 
Practice (avoidance of collision with new launch):   

Collision between an ascending launch vehicle and manned systems should be avoided. In the 
USA, collision avoidance analysis for new launches is conducted and safe launch windows are 
established.  In the event of a predicted conjunction, the launch is delayed.  JAXA estimates the 
collision probability with manned systems before H-IIA lift-off and confirms that they can keep  a 
distance of 200 km x 50 km x 50 km from any manned systems in orbit. 

 

background image

 

26 

Feasibility (avoidance maneuvers in orbit ):

  

The accuracies   of potential collision predictions today are insufficient to warrant  avoidance 
maneuvers except for special cases.  The currently available TLEs used alone are  clearly an 
insufficient basis upon which to make such decisions.  However,  ESA does it for ERS-2 and 
Envisat and CNES for their SPOT satellites using additional tracking data other than TLEs.  
JAXA has changed a launch time to avoid a close approach to the Space Shuttle.   
 
Collision avoidance manoeuvres impact satellite operations in several ways (e.g., propellant 
consumption, payload data and service interruptions, and temporary reduction in tracking and 
orbit determination accuracy), and they should be minimized, consistent with spacecraft safety 
and mission objectives. Collision avoidance strategies are most effective when the uncertainty in 
the close approach distance is kept small, preferably less than 1 km. Collision avoidance is 
always probabilistic.  NASA employs a risk threshold of 1 in 10,000 for collision avoidance 
maneuvers for manned spacecraft. 

 

Practice (Protection):  

All of these types of protection could add mass, volume, or layout complexity and could become 
cost drivers for satellites, where one usually tries to reduce mass and volume (hence, possibly 
decreasing launch cost). Furthermore, it can be difficult to demonstrate their efficiency (in 
reasonable extra costs) for the protection against collision effects, with relative velocities higher 
than 10 km/sec. Therefore, protection strategy (debris size, impact direction, protected devices, 
etc.) should be studied. 

 
 

6  Update 

These guidelines may be updated as new information becomes available regarding space activities 
and their influence on the space environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 

27 

 

7.  References 

 
[1] IADC-97-004: IADC Recommendation, Reorbit Procedure for GEO Preservation 
[2] NASA Safety Standard 1740.14 
[3] NASDA-STD-18: NASDA Space Debris Mitigation Standard 
[4] CNES Standards Collection, Method and Procedure, Space Debris – Safety Requirements,  

MPM-50-00-12, Issue 1- Rev. 0, April 19, 1999 

[5] Rosaviakosmos Standard “SPACE TECHNOLOGY ITEMS. GENERAL REQUIREMENTS ON 

MITIGATION OF SPACE DEBRIS POPULATION.” had come into force in July, 2000 

[6] US Government Orbital Debris Mitigation Standard Practices, December 2000 
[7] European Space Debris Safety and Mitigation Standard, Draft presented at 18

th

 IADC, June 2000 

[8] Technical Report on Space Debris, UNITED NATIONS, New York,  1999  
[9] IAA Position Paper on Orbital Debris, 2000 
[10]  Space Debris Handbook NASDA-CRT-98006, 1998 
[11]  End-of-life Disposal of Space Systems in the Low Earth Orbit Region, IADC/WG2