background image

297

ORNITOLOGIA NEOTROPICAL 11: 297–306, 2000

© 

 The Neotropical Ornithological Society

UROPYGIAL GLAND SIZE AND AVIAN HABITAT

Diego Montalti

1,2

 & Alfredo Salibián

3

1

Cátedra de Ornitología, Facultad de Ciencias Naturales y Museo,

                   Universidad Nacional de La Plata, Paseo del Bosque, 1900-La Plata, Argentina.                    

E-mail:

 dmontalti@arnet.com.ar 

2

Departamento de Biología, Aves, Instituto Antártico Argentino, Cerrito 1248, 

1010-Buenos Aires, Argentina.

3

CIC Buenos Aires and Universidad Nacional de Luján (Programa de Ecofisiología Aplicada), 

6700-Luján (B), Argentina.

Resumen. 

El papel fisiológico de la glándula uropigia es hasta ahora una controversia. Algunos autores afir-

man que su función podría estar estrechamente vinculada con las propiedades hidrofóbicas de su secre-
ción, que puede ser esencial para impermeabilizar el plumaje. Por consiguiente podría esperarse que el
grado de desarrollo de esta glándula debe ser mayor en aves acuáticas que en especies terrestres. Con el
objeto de validar esta hipótesis, se determinó el peso de la glándula (GW) relativo al peso corporal (BW)
expresando los resultados como porcentajes (GW x 100/BW). Se analizaron los datos de 1164 individuos
de 126 especies de aves adultas de 49 familias. Los resultados mostraron la ausencia de una clara correla-
ción entre el Ã­ndice calculado y el grado de contacto de las aves con el agua. No se observó correlación
filogenética derivada de la presencia de la glándula uropigia.

Abstract. 

The physiological role of the uropygial gland is still controversial. Certain authors state that its

function could be closely connected to the hydrophobic properties of its secretion, that may be essential
for plumage waterproofing. Therefore, it could be hypothesized that the degree of this gland's develop-
ment should be greater in aquatic birds than in terrestrial species. In order to validate that hypothesis,
gland's mass (GW) relative to body weight (BW) was determined, expressing the results as percentages
(GW x 100/BW). Data of 1164 adult individuals from 126 bird species from 49 families were analysed.
Results showed the absence of a clear cut correlation between the calculated index and the degree of birds'
contact with water. No phylogenetic correlation was observed derived from the presence of the uropygial
gland. 

Accepted 15 June 2000.

Key words: Uropygial gland, habitat, aquatic birds, terrestrial birds.

INTRODUCTION

The uropygial gland, may be considered as the
only organized tegumentary structure of
external secretion typical of birds, is always
found in embryonic stages, while in adults of
some species it may be vestigial or absent
(Rheidae, Psittacidae and Columbidae)
(Johnston 1988). It is a holocrine gland that
secretes a complex and variable mixture of
substances formed greatly of aliphatic

monoester waxes, formed of fatty acids (with
various degree of methyl branching) and
monohydroxy wax-alcohols. However, some
types of diester waxes containing hydroxyfatty
acids and/or alkane-diols exist in the secre-
tions of the uropygial gland of some groups
of birds (Jacob & Ziswiler 1982, Downing
1986, Jacob 1992) and is highly specialized in
lipid synthesis (Kolattukudy & Rogers 1978,
Urich 1994).

Morphological descriptions of the gland

background image

298

MONTALTI & SALIBIÃN

of different taxa and systematic classifications
based on its morphology and chemical nature
of secretory lipids have been reported (Jacob
& Ziswiler 1982, Johnston 1988). Informa-
tion on the uropygial gland's histology, secre-
tion chemistry, and possible physiological
functions has been recorded (Elder 1954,
Lucas & Stettenheim 1972, Jacob & Ziswiler
1982, Montalti 

et al

. 1994). It is interesting to

mention that Jacob 

et al

. (1979) demonstrated

sexual differences in the chemical composi-
tion of the secretion in domestic ducks. The
extirpation of the uropygial gland did not
reveal any serious consequence for the sur-
vival of pigeons (Montalti 

et al

. 1999), hens,

and passerine birds (Jacob 1976).

The physiological function of this gland

has not been studied extensively. Many work-
ers hold that this gland's function is closely
connected with the hydrophobic properties
of its secretion, which would have an essential
role in plumage waterproofing. It is also pos-
sible that the gland could play a role in plum-
age hygiene against microflora and/or in
supplying provitamin D and repository and
excretory function for several pesticides and
pollutants (Johnston 1975, 1976, 1978, Jacob
& Ziswiler 1982, Quay 1986, Kozulin & Pav-
luschick 1993, Pilastro 

et al

. 1993, Jacob et al.

1997, Gutiérrez 

et al

. 1998, Bandyopadhyay &

Bhattacharyya 1996, 1999). We undertook
this study in order to check this point of view.
Our hypothesis was that adult birds‘gland
size, considering its weight relative to the
body weight, should be related to the bird’s
habitat, being relatively greater in species that
are in permanent or temporary contact with
water than in terrestrial species.

MATERIALS AND METHODS

Data  used  in  this  work  came  from  two
sources. Some of them were taken from Jacob
& Ziswiler (1982) and Johnston (1988). Most
of them came from measurements carried out

at our laboratory between 1985 and 1995. In
the latter case, birds were captured in differ-
ent places of the Buenos Aires province,
Argentina; penguins (Spheniscidae), petrels
(Procelariidae and Hydrobatidae), cormorants
(Phalacrocoracidae),  sheathbills (Chionidae)
and skuas (Stercorariidae) came from King
George Island (South Shetland Islands) and
from Laurie Island (South Orkney Islands),
Antarctica. A few samples were provided by
the La Plata Zoo.

Some 1164 individuals from 126 species

and 49 families were studied in total. Body
weight was determined in the field or at the
laboratory, using a dynamometer balance (± 1
g accuracy); glands were removed according
to the technique developed by Montalti 

et al

.

(1998) and weighed with an electronic balance
(± 0.01 g accuracy). These values were used
to calculate the gland's mass as percentage in
relation to body weight (GW x 100/BW) for
each one of the considered species.  Follow-
ing Johnston’s procedure (1988), data were
grouped in families and a mean gland weight
(as %) for each species was calculated. When
the number of data was higher than two,
results were expressed as means Â± SD; other-
wise individual values were shown. Data were
evaluated statistically by one-way analysis of
variance and the Tukey test.

RESULTS AND DISCUSSION

The Appendix shows the results ordered
according to the systematic sequence of
Morony 

et al

. (1975). We found the largest

mean relative gland weight in the Sternidae
(S

terna trudeaui

, mean = 0.522), Podicipedidae

(

Podylimbus podiceps

, 0.418–0.556) and Procel-

lariidae (

Daption capense

, mean = 0.426). These

findings are coincident with those of Jacob &
Ziswiler (1982) and Johnston (1988) who also
found the largest gland’s weight in other spe-
cies of the same families. 

Among the Passeriformes, the greatest

background image

299

UROPYGIAL GLAND SIZE AND HABITAT

relative weights were recorded in the Furnari-
idae (

Phacellodomus striaticollis

, mean = 0.363),

Tyrannidae (

Serpophaga subcristata

, mean =

0.359), and Emberizidae (

Poospiza nigrorufa

,

0.280–0.320). Kennedy (1971) and Jacob &
Ziswiler (1982) recorded the largest value in
Passeriformes in Troglodytidae (

Troglodytes tro-

glodytes

,  0.561 and 0.580) whereas, in a larger

sample of 

Troglodytes aedon

, we found a much

lower value (mean = 0.245).

The smallest glands proportional to body

weight were found in Ardeidae (

Bubulcus ibis

,

mean = 0.014), and in Columbidae (

Columba

picazuro

, mean = 0.016). Other authors

(Kennedy 1971, Jacob & Ziswiler 1982,
Johnston 1988) have reported similar results
in Columbidae. The small size of the gland in
these families may be attributed to the pres-
ence of the powder down; it is known that
some birds such as herons, pigeons and kagus
possess a rudimentary preen gland whose
function may be fulfilled by powder down
(Jacob 1976). Thus, the well developed pow-
der down production may explain  their
reduced uropygial glands or absence of it
(Johnston 1988).

In this study, it came out that there was

no clear cut correlation between gland's size
and the bird's exposure to water. It is
accepted that species that plunge into the
water to capture their prey would require
larger glands than species that pick their prey
from the water surface, almost without con-
tact with water (see Jacob & Ziswiler 1982).
However, the relative gland weight appeared
without a clear relationship with the degree
of aquaticity of the considered species. In
spite of their condition of being fully aquatic
species, the relative size of Sternidae resulted
one of the largest among the species we stud-
ied; similar findings were reported by
Johnston (1988) for 

S. albifrons

On the other hand, birds living in aquatic

environments not always have a more devel-
oped gland than non-aquatic birds. If we

compare the size of glands of aquatic vs land-
birds, it will come out that both show compa-
rable values in spite of their different habitats;
for instance, 

Anas georgica

 (mean = 0.306) vs

Guira guira 

(mean = 0.296); 

Pygoscelis adeliae

(mean = 0.159) vs 

Colaptes campestroides

 (mean

= 0.174).

When comparing the gland size among

landbird species, we found great variability.
That is the case of fully terrestrial species as

Zonotrichia capensis

 (mean = 0.198), 

Milvago chi-

mango

 (mean = 0.143), 

Athene cunicularia

(mean = 0.090) and 

Zenaida auricularia

 (mean

= 0.026). On the other hand, it is interesting
that if we compare the glands’size of aquatic
species, but of dissimilar degree of aquaticity,
it can be noted the existence of peculiar dif-
ferences. 

Pygoscelis papua,

 which is a pursuit

diving species, has a gland size of 0.132 %,
while in 

Daption capense

, a surface filterer bird,

the size is 0.426 %. The size of the glands of
these seabirds seems to be in the opposite
direction of the expected values, i.e., the
gland size of 

P. papua

 might be larger than the

gland of 

D. capense

 because their feeding

behaviour involves a different degree of con-
tact with water. A similar trend is observed
when the comparison between freshwater
species is done; that is the case of 

Fulica

rufifrons

 (mean = 0.168) and 

Anas versicolor

(mean = 0.342).

Several authors have reported differences

in relative gland weights, attributing them to
seasonal variations (Kennedy 1971), habitat
(Jacob & Ziswiler 1982), body weight
(Johnston 1979), individual variation, and sex
(Johnston 1988). In our case, no difference
was found in the gland relative size between
males and females.

Analysis of birds' phylogenetic classifica-

tion (according to Morony 

et al

. 1975) shows

that despite the fact that the number of our
samples may be considered small, the trend
of the development  of the gland was inde-
pendent from the lineage of the birds. Thus,

background image

300

MONTALTI & SALIBIÃN

the uropygial gland is present in birds phylo-
genetically distant (Tinamidae-Hirundinidae)
or, on the contrary, absent in phylogenetically
close taxa (some Psittacidae and Colum-
bidae).

In summary, if we assume that the gland's

mass constitutes a valid parameter to quantify
its degree of gland development, our results
indicate that the physiological role of the
gland does not depend upon gland mass.
Chemical composition of the secretion may
be involved in this (Jacob 1978). The role
could be more complex than a feather water-
proofing function.

  There is no evidence that glands of simi-

lar mass produce comparable quantities of
secretion. Consequently, we cannot disregard
the possibility that the degree of contact with
water might rather be associated with adap-
tive changes in the composition of the secre-
tion, involving the biosynthesis routes of the
gland's lipids.

ACKNOWLEDGMENTS

This work was supported by grants from the
Universidad Nacional de La Plata (Programa
de Incentivos). D.M. is affiliated to the Cáte-
dra de Fisiología Animal, FCNyM-UNLP.

REFERENCES

Bandyopadhyay, A. & Bhattacharyya S. P. 1996.

Influence of fowl uropygial gland and its secre-
tory lipid components on the growth of skin
surface bacteria of fowl. Indian J. Exp. Biol.
34:48–52.

Bandyopadhyay, A. & S. P. Bhattacharyya. 1999.

Influence of uropygial gland and its secretory
components on the growth of skin surface
fungi of fowl. Indian J. Exp. Biol. 37:1218–
1222.

Downing, D. T. 1986. Skin lipids, preen gland and

scent gland lipids. Pp. 833–840 

in

 Bereiter-

Hahn J., A.G. Matoltsy & K.C. Parks (eds.).
Biology of the integument, Vol. 2. New York.

Elder, W. H. 1954. The oil gland of birds. Wilson

Bull. 66: 6–31. 

Gutiérrez, A. M., D. Montalti, G. R. Reboredo, A.

Salibián, & A. Catalá. 1998.  Lindane distribu-
tion and fatty acid profiles of uropygial gland
and liver of 

Columba livia

 after pesticide treat-

ment. Pestic. Biochem. Physiol. 59: 137–141.

Jacob, J. 1976. Bird waxes. Pp. 93–146 

in

 Kolat-

tukudy, P. E. (ed.). Chemistry and biochemistry
of natural waxes. Elsevier, Amsterdam.

Jacob, J. 1992. Systematics and the analysis of

integumental lipids. Bull. Br. Ornithol. Club
112A: 159–167.

Jacob, J., J. Balthazart, & E. Schoffeniels. 1979. Sex

differences in the chemical composition of uro-
pygial gland waxes in domestic ducks. Bio-
chem. Syst. Ecol. 7: 149–153.

Jacob, J., U. Eigene, U. Hoppe. 1997. The structure

of preen gland waxes from Pelecaniform birds
containing 3,7-dimethyloctan-1-ol - an active
ingredient against dermatophytes. Z. Naturfor-
sch Sect C-A J. Biosci. 52: 114–123.

Jacob, J., & V. Ziswiler. 1982. The uropygial gland.

Pp. 199–324 

in

 Farner, D. S., J. R. King, & K. C.

Parkes (eds.). Avian biology, Vol. 6. Academic
Press, New York.

Johnston, D. W. 1975. Organochlorine pesticide

residues in small migratory birds, 1964–73.
Pestic. Monit. J. 9: 79–88.

Johnston, D. W. 1976. Organochlorine pesticide

residues in uropygial glands and adipose tissue
of wild birds. Bull. Environ. Contam. Toxicol.
16: 149–155.

Johnston, D. W. 1978. Organochlorine pesticide

residues in Florida birds of prey, 1969–76. Pes-
tic. Monit. J. 12:8–15.

Johnston, D. W. 1988. A morphological atlas of the

avian uropygial gland. Bull. Br. Mus. (Nat.
Hist.) Zool. 54: 199–259.

Kolattukudy, P. E., & L. Rogers. 1978. Biosynthesis

of fatty alcohols, alkane-1,2-diols and wax
esters in particulate preparations from the uro-
pygial glands of white-crowned sparrows
(Zonotrichia leucophrys). Arch. Biochem. Bio-
phys. 191: 244–258.

Kozulin, A., & T. Pavluschick. 1993. Content of

heavy metals in tissues of mallards Anas platy-
rhynchos wintering in polluted and unpolluted
habitats. Acta Ornithol. 28: 55–60.

background image

301

UROPYGIAL GLAND SIZE AND HABITAT

Lucas, A. M., & P. R. Stettenheim. 1972. Uropygial

gland. Pp. 613–626 

in

 Agriculture handbook

362. Avian anatomy project, Poultry research
branch, Animal science research division, Agri-
cultural research service, U. S. Department of
agriculture, Washington, D.C.. 

Montalti D., A. M. Gutiérrez, & A. Salibián. 1998.

Técnica quirúrgica para la ablación de la glán-
dula uropigia en la paloma casera 

Columba livia

.

Rev. Bras. Biol. 58: 193–196.

Montalti D., A. M. Gutiérrez, G. R. Reboredo, &

A. Salibián. 1999. Ablación de la glándula
uropigia y sobrevida de 

Columba livia

. Boll.

Mus. civ. Stor. nat. Venezia 50: – .

Montalti, D., M. A. Quiroga, A. R. Massone, J. R.

Idiart, & A. Salibian. 1994. Estudios histo-
químicos y lectinhistoquímicos de la glándula

uropigia de 

Columba livia

 (Aves,Columbidae).

Congr. Arg. Cs. Vet., Buenos Aires 7
(Resumenes): 446.

Morony, J. J., W. J. Bock, & J. Farrand. 1975. Refer-

ence list of the birds of the world. Am. Mus.
Nat. Hist. Spec. Publ., New York. 

Pilastro, A., L. Congiu, L. Tallandini, & M. Tur-

chetto. 1993. The use of bird feathers for the
monitoring of cadmium pollution. Arch. Envi-
ron. Contam. Toxicol. 24: 355–358.

Quay, W. B. 1986. Uropygial gland. Pp. 248–254 

in

Bereiter-Hahn J., A. G. Matoltsy & K. C. Parks
(eds.). Biology of the integument, Vol. 2. New
York.

Urich, K. 1994. Comparative animal biochemistry.

Springer Verlag, Berlin.

APPENDIX. Uropygial gland weight relative to body mass (gland weight x 100/ body weight). Data as
percentage (mean Â± SD). Species listed according to Morony 

et al

.(1975). 

FAMILY/Especies

1,2

Mean

SD

n

3

TINAMIDAE
   

Rhynchotus rufescens

   Nothura maculosa

SPHENISCIDAE  (A)
   

Pygoscelis papua

   Pygsocelis adeliae
   Pygoscelis antarctica

GAVIIDAE  (A)
   

Gavia stellata

 **

   

Gavia immer

 **

PODICIPEDIDAE  (A)
   

Podilymbus podiceps

   Rollandia rolland

PROCELLARIIDAE  (A)
   

Macronectes giganteus

   Daption capense
   Halobaena caerulea

HYDROBATIDAE  (A)
   

Oceanites oceanicus

   Fregetta tropica

PELECANIDAE   (A)
   

Pelecanus occidentalis

 **

FREGATIDAE  (A)
   

Fregata magnificens

 **

PHALACROCORACIDAE  (A)
   

Phalacrocorax olivaceus  

 

0.080
0.141

0.132
0.159
0.217

0.190
0.103

0.418-0.556

0.428

0.191-0.437

0.426

0.212-0.332

0.445
0.459

0.373

0.067

0.279

0.017
0.042

0.015
0.042
0.070

0.016
0.009

—

0.107

—

0.047

—

0.055
0.079

0.045

0.005

0.066

6

41

10
16

6

3
3

2

10

2
5
2

16

5

3

3

6

background image

302

MONTALTI & SALIBIÃN

APPENDIX. Continuation. 

FAMILY/Especies

1,2

Mean

SD

n

3

   

Phalacrocorax bransfieldensis

   Phalacrocorax georgianus

ANHINGIDAE  (A)
   

Anhinga anhinga

 **

SULIDAE  (A)
   

Sula bassana

 *

ARDEIDAE
   

Syrigma sibilatrix

   Egretta alba
   Egretta thula
   Bubulcus ibis
   Nycticorax nycticorax

CICONIDAE
   

Ciconia maguari

   Ciconia ciconia

THRESKIORNITHIDAE
   

Plegadis chihi

   Platalea ajaja

PHOENICOPTERIDAE
   

Phoenicopterus chilensis

ANHIMIDAE
   

Chauna torquata

ANATIDAE  (A)
   

Dendrocygna viduata

   Cygnus melanocorypha
   Coscoroba coscoroba
   Chloephaga picta
   Cairina moschata
   Anas flavirostris
   Anas georgica
   Anas versicolor
   Netta peposaca

CATHARTIDAE
   

Coragyps atratus

 **

ACCIPITRIDAE
   

Elanus leucurus

   Rostrhamus sociabilis
   Circus buffoni
   Buteo magnirostris

FALCONIDAE
   

Polyborus plancus

   Milvago chimango
   Falco sparverius

PHASIANIDAE
   

Gallus gallus

0.154

0.191-0.194

0.152

0.350

0.025
0.029
0.029
0.014

0.031-0.041

0.051-0.074
0.077-0.082

0.208

0.148-0.190

0.181

0.063

0.263
0.152
0.234

0.063-0.095

0.242
0.382
0.306
0.342
0.408

0.043

0.094

       0.097

0.065
0.044

0.060
0.143
0.082

0.094

0.041

—

0.017

—

0.006
0.006
0.013
0.007

—

—
—

0.043

—

0.043

0.016

0.035
0.012
0.057

—

0.065
0.066
0.120
0.108
0.134

0.004

0.015
0.020
0.013
0.011

0.018
0.033
0.022

0.041

3
2

5

2

4
7
8
3
2

2
2

31

2

12

3

8
3
4
2
5
8
9
5
4

4

3

11

4
4

6

17

6

3

background image

303

UROPYGIAL GLAND SIZE AND HABITAT

APPENDIX. Continuation. 

FAMILY/Especies

1,2

Mean

SD

n

3

ARAMIDAE

   Aramus guarauna

RALLIDAE  (A)

   Aramides ypecaha
   Pardirallus maculatus
   Pardirallus sanguinolentus
   Gallinula chloropus
   Gallinula melanops
   Fulica armillata
   Fulica rufifrons

GRUIDAE

   Grus canadensis 

**

JACANIDAE  (A)

   Jacana jacana

ROSTRATULIDAE

   Nycticryphes semicollaris

RECURVIROSTRIDAE

   Himantopus himantopus

CHARADRIIDAE

   Vanellus chilensis

SCOLOPACIDAE

   Tringa flavipes
   Calidris fuscicollis

CHIONIDAE

   Chionis alba

STERCORARIIDAE  (A)

   Catharacta maccormicki
   Catharacta antarctica

LARIDAE  (A)

   Larus dominicanus
   Larus cirrocephalus
   Larus maculipennis

STERNIDAE  (A)

   Sterna trudeaui

RHYNCHOPIDAE  (A)

   Rynchops niger 

**

ALCIDAE  (A)

   Uria algae 

*

   Alca torda 

*

COLUMBIDAE

   Columba livia
   Columba picazuro
   Columba maculosa
   Zenaida auriculata
   Columbina picui

0.141

0.114

0.294-0.342
0.281-0.316

0.222
0.296

0.111-0.219

0.168

0.045

0.157

0.191

0.088

0.096

0.231
0.251

0.202

0.211
0.172

0.174
0.232
0.225

0.522

0.200

0.170
0.220

0.026
0.016
0.022
0.026
0.069

0.020

0.020

—
—

0.033
0.091

—

0.048

0.009

0.032

0.017

0.006

0.023

0.031
0.036

0.029

0.053
0.049

0.058
0.043
0.042

0.031

—

—
—

0.012
0.005
0.006
0.010
0.016

4

6
2
2
6
4
2
4

4

6

3

4

51

8

22

6

17
35

13

6

23

3

6

2
3

50

9
7

26

5

background image

304

MONTALTI & SALIBIÃN

APPENDIX. Continuation. 

FAMILY/Especies

1,2

Mean

SD

n

3

PSITTACIDAE
   

Melopsittacus undulatus

   Ara macao
   Nandayus nenday
   Cyanoliseus patagonus
   Myiopsitta monachus

CUCULIDAE
   

Guira guira

TYTONIDAE
   

Tyto alba

STRIGIDAE
  

 Asio flameus    

   Athene cunicularia
   Bubo virginianus 

**

APODIDAE

   Apus apus 

*

TROCHILIDAE
   

Chlorostilbon aureoventris

ALCEDINIDAE  (A)
   

Chloroceryle americana

RAMPHASTIDAE
   

Ramphastos toco

PICIDAE
   

Colaptes campestroides

   Colaptes melanolaimus
   Melanerpes carolinus 

**

FURNARIIDAE
   

Cinclodes fuscus

   Furnarius rufus
   Phacellodomus striaticollis
   Schoeniophylax phryganophila
   Anumbius annumbi
   Lessonia rufa

TYRANNIDAE
   

Machetornis rixosus

   Tyrannus savana
   Tyrannus melancholicus
   Pitangus sulphuratus
   Pyrocephalus rubinus
   Serpophaga subcristata
   Serpophaga nigricans
   Satrapa icterophrys
   Xolmis coronata
   Hymenops perspicillatus

PHYTOTOMIDAE
  

 Phytotoma rutila

0.207

0.057-0.097

0.084

0.094-0.117

0.094

0.296

0.121

0.068-0.089

0.090
0.038

0.050

0.286-0.288

0.415-0.510

0.065-0.071

0.174
0.108
0.117

0.223
0.125
0.363
0.309
0.240
0.121

0.150
0.103
0.104
0.124
0.143
0.359
0.248

0.089-0.178
0.053-0.083

0.161

0.111

0.023

—

0.004

—

0.033

0.111

0.033

—

0.028
0.004

—

—

—

—

0.021
0.027

0.02

0.033
0.045
0.083
0.049
0.094
0.020

0.007
0.032
0.045
0.037
0.046
0.183
0.083

—
—

0.022

0.023

5
2
3
2

12

35

3

2

10

4

7

2

2

2

10
11

3

11
29

5
5
9
3

5

19

8

25

7
3
4
2
2
4

10

background image

305

UROPYGIAL GLAND SIZE AND HABITAT

APPENDIX. Continuation. 

FAMILY/Especies

1,2

Mean

SD

n

3

HIRUNDINIDAE
   

Phaeoprogne tapera

   Tachycineta leucorrhoa

MOTACILIDAE
   

Anthus hellmayri

TROGLODYTIDAE
   

Troglodytes aedon

POLIOPTILIDAE
   Polioptila dumicola
MIMIDAE
   

Mimus saturninus

   Mimus triurus

TURDIDAE
   

Turdus rufiventris

   Turdus amaurochalinus
   Turdus migratorius 

**

EMBERIZIDAE
   

Sicalis flaveola

   Zonotrichia capensis
   Paroaria coronata
   Poospiza nigrorufa
   Donacospiza albifrons
   Embernagra platensis
   Cardinalis cardinalis 

**

ICTERIDAE
   

Molothrus bonariensis

   Molothrus badius
   Molothrus rufoaxilaris
   Icterus cayanensis
   Agelaius thilius
   Pseudoleistes virescens
   Sturnella superciliaris

FRINGILLIDAE
   

Carduelis magellanicus

   Serinus canarius

STURNIDAE

   Sturnus vulgaris 

**

CORVIDAE

   Corvus corax 

*

   Corvus corone 

*

   Pica pica 

*

   Cyanocitta cristata 

**

PARIDAE

   Parus major

 *

   Parus ater 

*

0.076
0.125

0.257

0.245

0.153

0.134
0.074

0.129

0.064-0.093

0.100

0.101
0.198
0.093

0.278-0.323
0.366-0.620

0.275
0.083

0.116
0.262
0.143
0.140
0.212
0.246
0.242

0.122

0.151-0.186

0.117

0.120
0.100
0.090
0.127

0.140
0.150

0.016
0.032

0.043

0.067

0.085

0.026
0.017

0.027

—

0.014

0.028
0.084
0.022

—
—

0.079
0.009

0.042
0.076
0.012
0.013
0.054
0.051
0.056

0.032

—

0.009

—
—
—

0.052

—
—

6
4

3

13

9

9
3

3
2
3

5

35

4
2
2

26

3

6

27

3
3

31
13
27

16

2

3

6
8
5
3

12
11

background image

306

MONTALTI & SALIBIÃN

APPENDIX. Continuation. 

FAMILY/Especies

1,2

Mean

SD

n

3

AEGITHALIDAE
   

Aegithalos caudatus

 *

ESTRILDIDAE
   

Padda oryzivora

PLOCEIDAE
   

Passer domesticus

0.210

0.111-0.136

0.171

—

—

0.061

2

2

22

1

(A) means aquatic bird.

2

Asterisks indicate the source of information: * = from Jacob & Ziswiler (1982), ** = from Johnston

(1988).

3

n = number of specimens of each species.