background image

Metacomet-Mattabesett Trail Natural Resource 

Assessment 

 
 

 

 

Elizabeth J. Farnsworth 

Research Ecologist 

Royalston, Massachusetts 

 
 

17 July 2004

 

background image

Acknowledgments 

This Natural Resource Assessment of the Connecticut portion of the Metacomet-
Mattabesett Trail was prepared for the National Park Service under award 
number P4507040104.  The author thanks Kevin Case, Ann Colson, Beth 
Goettel, David Gumbart, Dan Hubbard, Leslie Kane, Beth Lapin, Christopher 
Mangels, Nicole Martinez, Ken Metzler, Adam Moore, Bill Moorhead, Nancy 
Murray, Judy Preston, and Karen Zyko for essential advice and logistical support. 
 
All maps were produced by the author (unless otherwise credited) in ArcView 
from datalayers provided by the University of Connecticut Map and Geographic 
Information Center, the National Park Service, and the Connecticut Forest and 
Park Association.  Photographs © Elizabeth Farnsworth unless otherwise noted. 

background image

 

Summary 

 

 

The Connecticut portion of the Metacomet-Mattabesett Trail traverses 

approximately 101 miles of mountain summits, forested glades, vernal pools, lakes, 
streams, and waterfalls, including some of the most rugged, picturesque, and diverse 
landscapes of southern New England.  Two of these natural communities are 
considered globally rare.  A proposed extension of the trail through Guilford, 
Connecticut would encompass a rich array of coastal environments, including 
freshwater, brackish and saline tidal marshes and beaches that are critical habitat for 
uncommon breeding birds.  Long vistas of rural towns, agrarian lands, extensive 
unfragmented forests, and large river valleys, as well as pathways through important 
Native American and colonial landmarks showcase some of the best examples of 
classic New England landscapes that are unique in the nation.  Situated in one of the 
most densely populated areas of the United States, the Metacomet-Mattabesett Trail, 
with its corridor of comparatively intact habitats, offers numerous opportunities to 
appreciate the wild, scenic, pastoral, and cultural features of the region. 
 
 

 

Figure 1

: View of the Metacomet Range from Trail at Chauncey Peak. 

 

background image

 

Bedrock Geology

 

 

The backbone of much of the Metacomet-Mattabesett Trail consists of a series of 

knife-edged ridges collectively known as the Metacomet Range.  This range extends in 
a discontinuous, roughly north-south line from New Haven, Connecticut to Greenfield, 
Massachusetts, a distance of over 100 miles as the crow flies.  The range rises abruptly 
from the central lowlands of the Connecticut River valley and forms an impressive 
physical landmark that is visible from tens of miles away.  The prominent outcrops and 
fascinating geology of the Metacomet range has drawn students, artists, and admirers 
from all over New England since the 1800’s.  Scientific observations made on the range  
have provided evidence for the existence of dinosaurs, the action of glaciers, and the 
impacts of plate tectonics – phenomena that have changed our fundamental thinking 
about the history of the earth (Hitchcock 1957, Lyell 1865).   
 
 

Figure 2

: Bedrock geology of central 

Connecticut with Trail overlay in black.  Red 
arrows point to arkose (sedimentary) formations; 
blue arrow points to basalt (traprock) formations.  
Colored areas to east form the older Iapetus 
terrane (black arrow).  Source: University of 
Connecticut datalayers.

 

 
 
 
 

 

 

The bedrock of the range is a 

product of a series of three periods of 
violent volcanic eruptions occurring over 
a geologically “brief” period 
approximately 200 million years ago 
(Bell 1985).   
 
The African and American continental 
plates, once joined tightly together, 
began to pull apart during the Triassic 
and Jurassic Periods, forming an 
enormous rift beset by numerous fault 
lines extending from Florida to 
Newfoundland (Lee 1985, Little 2003).   
 

 

Figure 3

.  The Metacomet Trail (overlay in red) 

follows and crosses many of the fault lines 
(heavy lines) that create this rugged topography.  
Source: University of Connecticut datalayers.

 

background image

 

 

Figure 4

.  Fault lines create many crevices and 

deep ravines that shelter vegetation. 

 
 Magma 

erupted 

from widening 

fissures as the land surface was 
gradually torn apart.  The first and oldest 
of these lava flows formed a layer of 
Talcott Basalt some 65 m thick 
(McDonald 1996).  A period of relative 
calm then ensued over the next several 
million years.  During this respite, the 
basalt was eroded by seasonal tropical 
rains (the proto-continent, and thus 
Connecticut, was much closer to the 
equator then) and washed into lakes 
and streams as fine-grained sediments. 
 
 
 

These sediments were lithified into 
sandstones and silty shales of the 
Shuttle Meadow Formation.  Another 
tumultuous period of volcanism led to 
the extrusion of the Holyoke Basalts, 
followed by a lengthy period of erosion 
and redeposition of more sandstone 
(with minor limestone elements), 
creating the East Berlin Formation.  A 
third upheaval spurred the Hampden 
Basalt flow.  Meanwhile, the expanding 
valley began to sink relative to the 
surrounding uplands, with the east side 
sinking faster than the west as the 
Eastern border fault plunged deep under 
the bedrock toward the west.  Thus, the 
layer cake of basalts and arkose 
sandstones tilted upward at their 
western flank and downward to the east, 
a topography still very much in evidence 
today.  Shortly thereafter, the central 
Connecticut lowlands would become a 
“failed” rift valley, as the main tension of 
the separating continents shifted 
eastward, opening up what is now 
known as the Atlantic Ocean.  No longer 
subjected to intense pulling, the land 
ceased faulting, but erosion continued 
apace.  Bands of reworked sediments in 
the wake of the Hampden Basalt flow 
comprise the youngest layer of 
sandstone and siltstone, the Portland 
Formation, some 2000 m thick in places.  
Today, with subsequent erosion of the 
younger sedimentary rocks, the 
Metacomet Range consists of tilted hills 
mostly capped by resistant older 
basalts, interspersed with sedimentary 
layers.

 

Figure 5

.  Stratigraphy, faulting, and subsidence of the range.  Source: Lee (1985) 

background image

 

 

The Metacomet Range is one of the best places in the world (outside current 

centers of activity, such as Hawai’i and Iceland), and the only area on the eastern 
seaboard with a developed trail system, to view a broad array of well-preserved volcanic 
and sedimentary features such as columnar basalt.  Basaltic lava developed polygonal 
shrinkage cracks as it cooled, much like those that criss-cross drying mudflats.  In 
places, these cracks filled with precipitated quartz and calcite, further enriching the 
chemistry of the bedrock (and the soils weathered from it).  These deep fissures broke 
the rock into pentagonal and hexagonal columns, some of them more than 1 meter in 
diameter.  Eons of glacial plucking and freeze-thaw action continue to accentuate these 
vertical columns and to expose new ones.  The term “trap rock,” used to describe this 
columnar basalt, derives from the Swedish word, “trappa,” meaning “step.”  Towers of 
columnar basalt create the precipitous, west-facing cliffs so characteristic of the 
Metacomet Range.  Upon exposure to air, the iron-rich minerals of basalt turn a 
brownish rusty color.   
 

 

Figure 6

.  Columnar basalt at summit of traprock 

ridge, Meriden, Connecticut. 

 
 
 
 
 

 
Other volcanic features of interest 
include pillow lava (magma that instantly 
cooled into rounded shapes as it 
bubbled into a water body) and lava 
tubes (formed as surface lava cooled 
while underground lava continued to 
flow), both of which are especially well 
exposed where the Trail passes through 
Talcott Mountain State Park in 
Simsbury, Connecticut.   
 

 

Figure 7.

  Trees root in crevices of columnar 

basal, Giuffrida Park. 

 

background image

 

 

Fractured basalt blocks collect in enormous fans of talus at the base of the steep 

exposures.  These jumbles of sharp boulders lie at the angle of repose and thus are 
highly unstable.  As such, they tend to be colonized only slowly by plants, and their 
upper reaches can remain open expanses for decades.  However, these talus slopes 
create their own microclimate that tends to foster unique vegetation at their bases.  
Large boulders absorb the heat of the sun while shading all surfaces below them and 
keeping them cool; ice from winter may persist long into the spring beneath talus.  Cool 
air, which is denser than warm air, sinks into the interstices of the talus slope in 
downdrafts and is constantly replaced by warm air from above.  This process draws in 
warmer air toward the steep cliffs, some of which rises in updrafts as it contacts the 
boundary layer around the solar-heated rock columns.  Raptors (and occasional hang-
gliding enthusiasts) can be seen soaring on these thermals.  This natural “air-
conditioning” circulation creates variable climates from the base to the summit of these 
mountains. 
 

 

Figure 8

.  Talus slopes plunge into lakes at the Hanging Hills, Hubbard Park. 

 
 

The sedimentary layers of the Metacomet Range hold their own fascination, 

principally in the form of fossils.  Arkose sandstone that was deposited in quiet waters 
shows a rippled texture in places.  Dinosaur footprints abound in certain strata, 
frequently revealed by quarrying (trail users can view an example of these on display 
near Mirror Lake in Hubbard Park, Meriden, Connecticut).  Fossils of bony fish remain 
on Totoket and Pistapaug Mountains in Durham, Connecticut, reminders of when fish 
abounded in stagnant tropical lakes of the late Jurassic period.   
 

background image

 

 

While many miles of the Metacomet-Mattabesett Trail scramble over the striking 

cliff-and-valley topography of trap rock in Connecticut, it is important to note that 
southern portions (principally the Mattabesett sector) traverse bedrock of very different 
types.  Here, to the east of Metacomet Range, remnants of the ancient proto-Atlantic 
Ocean that existed during the Devonian Period (400 million years ago) — 

before

 the 

American and African plates had even joined — are visible.  Squeezed at the impact 
zone during the collision of continents, these rocks were heavily metamorphosed under 
heat and pressure.  Their complex, crumpled crystal structure renders them resistant to 
erosion; thus, they form more rolling topography of ledges and low hills.  Together, 
these resistant gneisses and schists comprise the Iapetus terrane of Connecticut (see 
Figure 2).  Broomstick Ledges, Mica Ledges, and Mt. Pisgah in Durham, Connecticut 
exemplify the bedrock types of this terrane.  These contrasts in bedrock geology 
contribute to the diversity of landscapes and vegetation types that users of the 
Metacomet-Mattabesett Trail encounter.   
 

 

Figure 9

.  Micaceous and pegmatite bedrock at Mica Ledges, Durham, Connecticut. 

 

Glacial Geomorphology 

 

Although the next 200 million years following formation of the Metacomet Range 

were not without incident (notably the formation of the Connecticut River valley by 
uplift), geologists tend to think of Pleistocene glaciation as the next Big Event affecting 
this region of New England.  Making multiple advances between 2.3 million and 16,000 
years ago, ice sheets more than a mile deep covered Connecticut.  Dragging enormous 
quantities of sediment and rock over the summits of the Metacomet Range and other 
local highlands, ice sheets rounded and scarified the bedrock surface; these scratches 

background image

 

are still visible on Metacomet summits today.  Glacial erratics, large boulders 
transported and strewn about by glaciers, are frequent features along the Trail.  Glacial 
till, the predominant soil type of the region, is a mixture of materials of varying size and 
composition – from sand grains to boulders – brought and deposited by the expanding 
and contracting rivers of ice.  The emblematic stone walls of region (celebrated by 
Thorson [2002] as “the signature of the interior New England landscape”) were 
painstakingly created by farmers sorting bothersome rocks from their till.  The 
Metacomet-Mattabesett Trail also visits many kettle ponds, formed by abandoned ice 
blocks trapped under mounds of till, which melted in place to form flooded depressions. 
 
 

As the ice sheet receded north, glacial meltwater poured into valleys, creating 

extensive lakes where moraines (collections of dumped outwash) dammed the outlets 
for water.  One such debris dam, which formed a glacial lake covering the area around 
present-day Avon and Simsbury, Connecticut, caused the Farmington River to divert its 
formerly southward course eastward through a gap in the Holyoke Basalt in Tarriffville, 
Connecticut.  Water found the only outlet available through this gap, and over the past 
16,000 has eroded the deep, vertically-sided Tarriffville Gorge.  The Metacomet Trail 
and its side trails yields a spectacular view of the gorge from the rim; alternatively, 
hikers can descend to river level, where the Farmington still courses with gusto through 
the narrows (Class II and III rapids attract whitewater specialists).  The gorge walls 
show all three layers of basalt flow in vertical exposure: a unique glimpse across almost 
100 million years of geological history (Wetherell 1992).  Elsewhere, the Metacomet-
Mattabesett Trail offers views across miles of glacial lake valleys, where agriculture still 
takes advantage of the rich alluvial clays and loams left behind. 
 

 

Figure 10

.  View of farm field on rolling coastal outwash, Guilford, Connecticut.

 

 

Soils 

 

Soil types along the Metacomet-Mattabesett Trail vary largely in respect to the 

country rock from which they are derived (Reynolds 1979).  The summits of the traprock 
ridges and talus slopes are characterized by very shallow, nearly xeric soils that are 
highly weathered by wind; these thin soils hold little water and have little organic matter.  
Crevices among the traprock fissures and talus can harbor pockets of slightly deeper 
and moister soil; frequent ant colonies further enrich the meager soil.  These soils are 

background image

 

mapped generally as Hollis-rock outcrop and Holyoke-rock outcrop complexes 
(Reynolds 1979).  The more moderate, east-facing slopes immediately below the open 
summits support deeper soils formed from the weathering of basalt or arkose 
sandstone.  Both soil types are abundant in Calcium and Magnesium relative to most 
other Connecticut soils — two limiting nutrients that are essential for plant growth and 
support an unusual array of calcium-loving plants in the region.  However, studies from 
the Metacomets in Massachusetts reveal that these parent materials give rise to soils 
that differ subtly in composition, with implications for the vegetation that colonizes them.  
Arkose-derived soils, for example, are more acidic, and somewhat lower in organic 
content, Calcium, Magnesium, Manganese and Zinc than basalt-derived soils (Searcy et 
al. 2003).  A higher number of species of trees, shrubs, and herbaceous plants is 
associated with basalt than with arkose (Searcy et al. 2003), and a significant number of 
species predictably occur on basalt.  Thus, contrasting assemblages of plants that 
specialize on these subtly different soil types are juxtaposed along the Trail.  Deeper, 
mesic soils that accumulate at the toe of talus slopes are the richest of all in mineral 
nutrients and organic matter.  These soils are generally classified as Wethersfield loam 
and Ludlow silt loam (Reynolds 1979).   
 
 

Soils derived from the gneisses and schists of the Iapetus terrane are generally 

more acidic and lower in mineral nutrients than soils of Metacomet origin, and support 
very different suites of plant species (e.g., fewer calciphiles).  These rocky tills and their 
associated natural communities share more affinity with soils to the east and north in 
Massachusetts.   
 
 
 

At lower, valley elevations along 

the Metacomet-Mattabesett Trail, soils 
are dominated by glacial till, alluvial silts 
and clays (in former glacial lakes), 
deltaic outwash (gravels and sands 
forming fans at the border of former 
glacial lakes), and poorly drained 
wetland mucks.  Peatlands and highly 
acidic, gleyed soils, more common in 
colder areas to the north near Mount 
Monadnock, are rare in this sector of the 
Trail except in cool, saturated pockets.  
Were the trail to extend to the coast in 
Guilford, Connecticut, it would traverse 
glacial outwash in the form of sandy 
beaches and rocky subterminal and 
lateral moraines.    
 
 
 
 

 
 

 

Figure 11

.  General soil types associated with 

the Metacomet-Mattabesett Trail in Connecticut 
(Trail overlay in black).  Source: University of 
Connecticut datalayers. 

 

background image

 

Hydrology 

 

Fissuring and faulting of the basaltic bedrock, and interbedding with sedimentary 

layers, creates complex drainage patterns along the Metacomet Range.  Precipitation 
evaporates quickly from the exposed summits.  Off the summit, water drains rapidly 
through talus and glacial till, finding routes through bedrock crevices until it encounters 
impermeable strata.  Water tends to collect at the surface along these bedrock shelves, 
forming vernal pools (seasonally flooded depressions), seeps, and more extensive 
wetlands.  Large wetland complexes are a common feature along the western flank of 
the Metacomet mountains (see Figure 1).  Ponds and lakes also tend to form along 
major fault lines: Lake Quonnipaug and Myer Huber Pond, both visible from the Trail at 
Bluff Head in Guilford, Connecticut, overlie eastern border faults of the Central valley.  
 

 

Figure 12

.  Vernal pool along Mattabesett Trail.  Wood frog egg masses are visible in foreground. 

 

 

Figure 13

.  Myer Huber Pond, visible from Bluff Head, Guilford, Connecticut. 

 

background image

10 

 

 

Groundwater percolates downhill, west to east through basalt strata; thus, the 

valleys associated with the Metacomet Range often constitute important recharge areas 
for drinking water.  Valleys formerly covered by glacial lakes are particularly valuable 
recharge areas, as deep coverage of clay and gravel protects aquifers to a certain 
degree from direct surface contamination.  Clusters of aquifer protection areas and 
corresponding wellhead fields occur all along the flanks of the Metacomet Range.  No 
fewer than 8 drinking water reservoirs occur in association with the range (Lareau 1997 
and inspection of topographic maps).  Relatively undisturbed, forested slopes also help 
to maintain good water quality in the Central lowlands of Connecticut. 
 

 

Figure 14

.  Diagram illustrating aquifer recharge.  Source: Shaw (1989). 

 

 

Figure 15

.  Well heads (yellow) and aquifer protection areas (blue areas delineated) in proximity to the 

Metacomet-Mattabesett Trail (Trail overlay in green).  Town boundaries are also shown.   

Source: University of Connecticut datalayers. 

background image

11 

 

Climate and Air Quality 

 

Connecticut enjoys an equable climate, with an even distribution of precipitation 

among the four seasons, and precipitation falling, on average, one out of every three 
days (Connecticut State Climate Center 2004a).  Connecticut lies in the prevailing 
westerlies of the middle latitudes of North America, which bring frequent fronts and 
storm centers over the state throughout the year.  Central Connecticut is primarily 
influenced by continental air masses originating in subarctic North America (bearing 
cold, dry air) and the Gulf of Mexico (bearing warm, moist air).  The state also 
occasionally experiences severe winter storms (“nor‘easters”) originating from the 
Atlantic.  Thunderstorms occur on 20-30 days per year, with severe activity such as 
downbursts and hail occurring infrequently.  Extreme weather events such as tornadoes 
and hurricanes are very rare (occurring on decadal time scales).  Connecticut typically 
attains 55-60% of available sunshine (Connecticut State Climate Center 2004a).  Snow 
can fall from October to April, but is usually concentrated between December and 
February.  The statewide mean annual temperature is 48.47

o

F, and has been 

increasing 0.14

o

F per decade (National Oceanic and Atmospheric Administration 2004). 

 
 

Local climate varies between the northern and southern portions of the 

Metacomet-Mattabesett Trail, with contrasts in precipitation and temperature being most 
significant during the winter months.  For example, Windsor Locks (near the northern 
end of the Metacomet Trail in Connecticut) has a mean December temperature of 
30.9

o

F, 1,051 heating degree days, and total snowfall of 8.5 inches.  Middletown, 

Connecticut, in the heart of the Mattabesett Trail area, records mean December 
temperatures of 32.9

o

F, 989 heating degree days, and 6.1 inches of snowfall 

(Connecticut State Climate Center 2004b, 2004c).  Average annual precipitation also 
varies considerably from north to south along the trail, with less than 44 inches falling in 
the northern tier around the Metacomet Range, 48-53 inches recorded for middle New 
Haven County, and drier conditions (46-48 inches) at the coastline. 
 

 

Figure 16

.  Map of Connecticut showing precipitation isoclines.  Darker areas correspond to higher mean 

annual precipitation amounts.  Source: Connecticut State Climate Center datalayers. 

 

background image

12 

 

 

As noted above, users of the Metacomet-Mattabesett Trail also experience a 

variety of microclimates as they proceed from the Central lowlands to mountain 
summits.  Due to the high heat capacity of dark basalt and the updrafts of warm air 
conducted to the top of west-facing ridges, the summits tend to warm up earlier in the 
spring and to remain warm longer into the autumn.  The central Metacomet ridgetops 
(e.g., Beseck, Higby, and Totoket Mountains) fall within the sector of the 50-51

o

F mean 

annual temperature isopleths; this sector exhibits the earliest average date (April 2) of 
extended daily temperatures exceeding 43

o

F (Brumbach 1965).  Mean annual 

temperature on the summit of Higby Mountain at about 900 feet elevation, for example, 
is 55.2

o

F compared to 50.7

o

F at 370 feet at the Middletown climate monitoring station 

(Ruf 1985a, b; Connecticut State Climate Center 2004c).  Thus, a hiker climbing in 
spring and summer experiences warmer temperatures at higher elevations.  Forest 
cover on the lower elevations fosters cooler conditions on the trail, and the bases of 
talus slopes exhibit the coolest temperatures overall.   
 
 

Air quality in the Central valley is good to moderate (Environmental Protection 

Agency 2004).  The number of days for which overall air quality is unhealthy or harmful 
for sensitive groups is generally 15 and under in Hartford and New Haven Counties 
(Table 1).  Principle pollutants of concern are ozone and particulates, largely originating 
from car exhaust and industry.  The Central valley can be subject to short-lived 
inversions during the year, during which air masses and pollutants can stagnate in the 
area.  These brief episodes can result in reduced long-distance visibility.  Middletown’s 
Northeast Utilities power station is considered one of Connecticut’s “Filthy Five” plants; 
until recently, its emissions were permitted to exceed the 1972 Clean Air Act.  However, 
these exemptions are slated to be discontinued, so its emissions should decrease in 
coming years (Lobel et al. 2002).  Pollution is more severe in the southern sectors of the 
state, influenced by large urban centers to the southwest. 
 

Table 1.  Mean Air Quality Conditions 

(Year 2003 Data summarized from EPA 2004) 

Note: these data are obtained from urban monitoring stations. 

Air Quality Indicator 

EPA 
Standard 

Hartford 
County 

New Haven 
County 

Number of days air is rated unhealthy for 
sensitive groups 

- 7  15 

Number of days air is rated as broadly 
unhealthy 

- 0  5 

Carbon monoxide (8-hour average) 

9 ppm 

10.1 ppm 

2.7 ppm 

Nitrogen dioxide (annual mean) 

0.053 ppm 

0.017 ppm 

0.025 ppm 

Ozone (8-hour average) 

0.08 ppm 

0.097 ppm 

0.134 ppm 

Sulfur dioxide (annual mean) 

0.03 ppm 

0.004 ppm 

0.005 ppm 

Particulates < 2.5 µm (annual mean) 

15.0 µg/m

3

 13.0 

µg/m

3

 17.9 

µg/m

3

 

Particulates < 10 µm (annual mean) 

50 µg/m

3

 38 

µg/m

3

 41 

µg/m

3

 

 
 

background image

13 

 

Biological Richness of the Metacomet-Mattabesett Trail 

 

Because the Metacomet-Mattabesett Trail visits such varied and unusual terrain, 

straddling a diversity of bedrock types and landforms, it is home to a concentration of 
plant and animal species, several of which are state-listed or globally rare.  In fact, the 
Trail and its environs constitute a “hotspot” in the state and the northeast for rare and 
declining species.  Overall, the Trail visits 3 of Connecticut’s 13 most imperiled 
ecosystems, namely traprock summits, coastal beaches, and large riparian systems 
(Metzler and Wagner 1998).  Rare species and exemplary uncommon natural 
community types occur all along the Metacomet-Mattabesett Trail.  Intensive surveys for 
biological diversity have identified many clusters of rare species occurrences in this 
area (e.g., Dowhan and Craig 1976, Moorhead 2003). 
 

 

Figure 17

.  Clusters of rare plant occurrences in New England.  Town boundaries for New England states 

are shown.  Shading of towns corresponds to the number of extant rare plant occurrences recorded for 

each town; darker shading corresponds to higher numbers of occurrences.  Red arrow points to general 

area of Metacomet-Mattabesett Trail in Connecticut.  Source: Farnsworth (2003). 

 
 

background image

14 

 

 

From data provided by the Connecticut Natural Diversity Database, 132 records 

of rare species or natural community types exist within a 1,000-foot buffer of the 
Metacomet-Mattabesett Trail.  The majority of occurrences (76 or 58%) are extant.  Of 
these, 15 (11%) have received an element occurrence rank of “A,” “AB,” or “B” from the 
state Natural Heritage Program, indicating they show good to excellent viability on 
account of population size or intact habitat context.  Another 40 are ranked “E” (extant 
only with no further information) or are relatively new discoveries that have not been 
evaluated for viability as yet.  Twenty-one populations (16%) are regarded as more 
precarious (ranked “BC” to “D”).  Fifty-six occurrences are ranked as state-historical 
(SH) and are known only from observations predating 1975.  Several of these historical 
records may still be in existence in the area, but have not necessarily been searched for 
systematically.   
 

 

Figure 18

.  Occurrences of state-listed plants and animals along the existing Trail route (Trail overlay in 

red).  Town boundaries are also shown.  Dots correspond to localities of known extant occurrences, to 1-

minute precision.  Green=plants, blue=birds, red=area of unique natural significance; pink=amphibians 

and reptiles; brown=fish.  Source:  Connecticut Natural Diversity Data Base. 

 

background image

15 

 

 

Extant occurrences include 1 species of turtle, 2 snake species, 3 salamander 

species, 1 mussel, 1 species of bat, 1 butterfly, 1 rare fish, 4 species of birds, 30 plant 
species, and 3 rare community types, two of which are considered globally imperiled or 
vulnerable (G2 or G3) by NatureServe.  These are given below, along with their element 
occurrence ranks and global conservation ranks (NatureServe Explorer 2004).  In 
addition, 6 rare insect species, 1 turtle, 1 bat, and 11 plants have been identified (either 
through historical records or through recent biological inventory) from similar habitats 
within 10 miles of the trail.  These have a reasonable likelihood of inhabiting the areas 
along the trail; likewise, the trail can offer alternative or buffer habitat for these species.  
Three of these species (2 plants and a bat species) are ranked as globally imperiled 
(G2) by NatureServe.   
 
 

A 2001 Biodiversity Day survey in Guilford identified an additional 46 rare 

species in proximity to proposed trail extension routes.  These included a number of 
coastal species that do not venture inland.  Three insect species, 19 bird species, 1 bat, 
and 13 plant species were unique to this sector and are listed as state-rare. 
 

Table 2.  Rare species and natural features of the Metacomet-Mattabesett Trail 

Data provided by the Connecticut Natural Diversity Database, Fitzgerald (2001), and 

Menunkatuck Audubon Society (2001) 

Species or Technical Name 

Common Name 

State EO 
Rank 

Global 
Rank 

Year Last 
Observed

NATURAL FEATURES 

 

 

 

Area of unique natural 
significance 

Fossil fish bed 

Not ranked 

1982 

Subacidic cold talus forest/ 
woodland  

Not 

ranked 

1989 

Subacidic rocky summit/outcrop 

 

G2 

1984 

Subacidic rocky summit/outcrop 

 

G2 

1982 

Subacidic cold talus forest/ 
woodland  

BC 

Not 

ranked 

1987 

Subacidic rocky summit/outcrop 

 

BC 

G2 

1991 

Poor fen 

 

G3 

1981 

Subacidic rocky summit/outcrop 

 

No data 

G2 

No data 

Subacidic rocky summit/outcrop 

 

G2 

1987 

Subacidic rocky summit/outcrop 

 

G2 

1984 

 

 

 

 

 

ANIMALS  

 

 

 

Agkistrodon contortix 

Copperhead 

Not ranked 

G5 

No data 

Ambystoma jeffersonianum 

Jefferson Salamander 

G4 

2000 

Ambystoma jeffersonianum 

Jefferson Salamander 

G4 

1999 

Ambystoma jeffersonianum 

Jefferson Salamander 

G4 

1986 

Ambystoma jeffersonianum 

Jefferson Salamander 

G4 

1998 

Ambystoma laterale 

Blue-spotted Salamander 

G5 

1982 

Ambystoma laterale 

Blue-spotted Salamander 

G5 

1980 

Anthocharis midea 

Falcate orange-tip butterfly 

G5 

2004 

Crotalus horridus 

Timber Rattlesnake 

G4 

1943 

Eremophila alpestris 

Horned Lark 

G5 

1976 

Falco peregrinus 

Peregrine Falcon 

G4 

1935 

Falco peregrinus 

Peregrine Falcon 

G4 

1934 

background image

16 

 

Table 2.  Rare species and natural features of the Metacomet-Mattabesett Trail 

Data provided by the Connecticut Natural Diversity Database, Fitzgerald (2001), and 

Menunkatuck Audubon Society (2001) 

Species or Technical Name 

Common Name 

State EO 
Rank 

Global 
Rank 

Year Last 
Observed

Falco peregrinus 

Peregrine Falcon 

G4 

1940 

Hemidactylium scutatum 

Four-toed salamander 

Not ranked 

G5 

No data 

Lampetra appendix 

American brook lamprey 

G4 

1997 

Lasiurus cinereus 

Hoary Bat 

G5 

1999 

Ligumia lacustris 

Eastern pondmussel 

G4G5 

No data 

Passerculus sandwichensis 

Savannah Sparrow 

G5 

1975 

Pooecetes gramineus 

Vesper Sparrow 

G5 

1997 

Pooecetes gramineus 

Vesper Sparrow 

G5 

1975 

Terrapene carolina 

Eastern Box Turtle 

G5 

1998 

Terrapene carolina 

Eastern Box Turtle 

G5 

1998 

Terrapene carolina 

Eastern Box Turtle 

G5 

2000 

Terrapene carolina 

Eastern Box Turtle 

Not ranked 

G5 

1999 

Terrapene carolina 

Eastern Box Turtle 

Not ranked 

G5 

1999 

Thamnophis sauritus 

Eastern Ribbon Snake 

Not ranked 

G5 

1987 

 

 

 

 

PLANTS 

 

 

 

 

Agrimonia parviflora 

Small-flowered Agrimony 

G5 

1919 

Agrimonia parviflora 

Small-flowered Agrimony 

Not ranked 

G5 

2000 

Alopecurus aequalis 

Orange Foxtail 

G5 

1907 

Aplectrum hyemale 

Puttyroot H 

G5 

1897 

Arenaria glabra 

Smooth Mountain Sandwort  A 

G4 

1997 

Arenaria glabra 

Smooth Mountain Sandwort  B 

G4 

2002 

Arenaria glabra 

Smooth Mountain Sandwort  F 

G4 

1989 

Arenaria glabra 

Smooth Mountain Sandwort  H 

G4 

1914 

Arenaria macrophylla 

Large-leaved Sandwort 

CD 

G4 

2003 

Arenaria macrophylla 

Large-leaved Sandwort 

G4 

1995 

Asclepias purpurascens 

Purple Milkweed 

G5? 

1916 

Asclepias purpurascens 

Purple Milkweed 

G5? 

1900 

Asclepias purpurascens 

Purple Milkweed 

G5? 

1900 

Asclepias purpurascens 

Purple Milkweed 

G5? 

1902 

Asplenium ruta-muraria 

Wallrue Spleenwort 

G5 

1947 

Asplenium ruta-muraria 

Wallrue Spleenwort 

G5 

1901 

Aster x herveyi 

Hervey's Aster 

 

1905 

Carex hirsutella 

Sedge B 

G5 

2000 

Carex hirsutella 

Sedge E 

G5 

1998 

Carex hirsutella 

Sedge E 

G5 

2000 

Carex hitchcockiana 

Hitchcock's Sedge 

G5 

1999 

Carex hitchcockiana 

Hitchcock's Sedge 

G5 

1998 

Carex hitchcockiana 

Hitchcock's Sedge 

G5 

1988 

Carex lupuliformis 

False Hop Sedge 

BC 

G4 

2002 

Carex lupuliformis 

False Hop Sedge 

G4 

2000 

Carex lupuliformis 

False Hop Sedge 

G4 

2000 

Carex oligocarpa 

Eastern Few-fruit Sedge 

CD 

G4 

1997 

Carex oligocarpa 

Eastern Few-fruit Sedge 

G4 

1997 

Carex squarrosa 

Sedge E 

G4G5 

1994 

Carex squarrosa 

Sedge H 

G4G5 

1917 

Carex squarrosa 

Sedge Not 

ranked 

G4G5 

2001 

Carex typhina 

Sedge AB 

G5 

2000 

background image

17 

 

Table 2.  Rare species and natural features of the Metacomet-Mattabesett Trail 

Data provided by the Connecticut Natural Diversity Database, Fitzgerald (2001), and 

Menunkatuck Audubon Society (2001) 

Species or Technical Name 

Common Name 

State EO 
Rank 

Global 
Rank 

Year Last 
Observed

Carex typhina 

Sedge H 

G5 

1913 

Carex willdenowii 

Willdenow's Sedge 

G5 

2000 

Carex willdenowii 

Willdenow's Sedge 

G5 

1907 

Chamaelirium luteum 

Devil’s bit lily 

G5 

2000 

Coeloglossum viride

 var. 

virescens

 Long-bracted 

Green 

Orchid 

G5T5 

1895 

Corydalis flavula 

Yellow Corydalis 

G5 

2002 

Corydalis flavula 

Yellow Corydalis 

G5 

2002 

Corydalis flavula 

Yellow Corydalis 

G5 

2002 

Cuphea viscosissima 

Blue Waxweed 

G5? 

1913 

Cypripedium parviflorum 

Yellow Lady's-slipper 

G5 

2002 

Deschampsia caespitosa 

Tufted Hairgrass 

G5 

1929 

Desmodium glabellum 

Dillen Tick-trefoil 

G5 

2002 

Dicentra canadensis 

Squirrel-corn B 

G5 

2003 

Dicentra canadensis 

Squirrel-corn H 

G5 

1943 

Dicentra canadensis 

Squirrel-corn H 

G5 

1935 

Diplazium pycnocarpon 

Narrow-leaved Glade Fern 

G5 

1873 

Diplazium pycnocarpon 

Narrow-leaved Glade Fern 

G5

 

1914 

Dryopteris goldiana 

Goldie's Fern 

G4 

1999 

Dryopteris goldiana 

Goldie's Fern 

G4 

1898 

Dryopteris goldiana 

Goldie's Fern 

G4 

1910 

Dryopteris goldiana 

Goldie's Fern 

G4 

1914 

Elymus trachycaulus

 ssp. 

subsecundus

 

Slender Wheatgrass 

G5T5 

2002 

Elymus trachycaulus

 ssp. 

subsecundus

 Slender 

Wheatgrass 

G5T5 

2002 

Equisetum pratense 

Meadow Horsetail 

G5 

1900 

Goodyera repens

 var. 

ophioides

 

Dwarf Rattlesnake Plantain 

G5 

1904 

Goodyera repens

 var. 

ophioides

 

Dwarf Rattlesnake Plantain 

G5 

1894 

Hydrastis canadensis 

Golden-seal BC 

G4 

2001 

Hydrastis canadensis 

Golden-seal H 

G4 

1899 

Linnaea borealis

 var. 

americana

 Twinflower 

G5T5 

2002 

Linum intercursum 

Sandplain Flax 

G4 

1900 

Liparis liliifolia 

Lily-leaved Twayblade 

G5 

2001 

Lygodium palmatum 

Climbing Fern 

G4 

1917 

Malaxis unifolia 

Green Adder's-mouth 

G5 

1902 

Megalodonta beckii 

Water-marigold H 

G4G5 

1910 

Megalodonta beckii 

Water-marigold H 

G4G5 

1905 

Moneses uniflora 

One-flower Wintergreen 

G5 

1949 

Opuntia humifusa 

Eastern Prickly-pear 

G5 

2002 

Orontium aquaticum 

Golden Club 

G5 

1902 

Panax quinquefolius 

American Ginseng 

G4 

1898 

Panax quinquefolius 

American Ginseng 

G4 

1898 

Panax quinquefolius 

American Ginseng 

G4

 

1893 

Paronychia fastigiata 

Hairy Forked Chickweed 

G5 

1916 

Platanthera dilatata 

Tall White Bog Orchid 

G5 

1900 

Platanthera hookeri 

Hooker Orchid 

G5 

1902 

Platanthera hookeri 

Hooker Orchid 

G5 

1896 

background image

18 

 

Table 2.  Rare species and natural features of the Metacomet-Mattabesett Trail 

Data provided by the Connecticut Natural Diversity Database, Fitzgerald (2001), and 

Menunkatuck Audubon Society (2001) 

Species or Technical Name 

Common Name 

State EO 
Rank 

Global 
Rank 

Year Last 
Observed

Podostemum ceratophyllum 

Threadfoot E 

G5 

2002 

Polygala nuttallii 

Nuttall's Milkwort 

G5 

1997 

Polymnia canadensis 

Small-flowered Leafcup 

G5 

2002 

Populus heterophylla 

Swamp Cottonwood 

G5 

No data 

Populus heterophylla 

Swamp Cottonwood 

G5 

1924 

Potentilla arguta 

Tall Cinquefoil 

BC 

G5 

2001 

Potentilla arguta 

Tall Cinquefoil 

G5 

2002 

Potentilla arguta 

Tall Cinquefoil 

G5 

2001 

Potentilla arguta 

Tall Cinquefoil 

G5 

1992 

Potentilla arguta 

Tall Cinquefoil 

G5 

1941 

Potentilla arguta 

Tall Cinquefoil 

G5 

1897 

Pycnanthemum clinopodioides 

Basil Mountain-mint 

G2 

1902 

Ribes rotundifolium 

Wild Currant 

G5 

2003 

Sagittaria cuneata 

Waputo H 

G5 

1933 

Salix pedicellaris 

Bog Willow 

G5 

1900 

Sporobolus compositus 

var

compositus 

Dropseed E 

G5T5 

2000 

Sporobolus heterolepis 

Northern Dropseed 

G5 

1994 

Stellaria borealis 

Northern Stitchwort 

CD 

G5 

2001 

Stellaria borealis 

Northern Stitchwort 

G5 

1932 

Trisetum spicatum

 var. 

molle

 

Spiked False Oats 

CD 

G5 

2002 

 

 

 

 

 

 

 

 

OTHER SPECIES FOUND NEARBY IN SIMILAR HABITAT 

 

ANIMALS  

 

 

Asterocampa celtis 

Hackberry butterfly 

No data 

G5 

No data

 

Oligia chlorostigma 

Noctuid moth 

No data

 

G5 No 

data

 

Cicindela duodecimguttata 

Twelve-spot tiger beetle 

No data

 

G5 No 

data

 

Cicindela rufiventris 

Red-bellied tiger beetle 

No data

 

G5 No 

data

 

Rhodoecia aurantiago 

Aureolaria seed borer 

No data

 

G4 No 

data

 

Eumeces fasciatus 

Five-lined skink (lizard) 

No data

 

G5 No 

data

 

Clemmys insculpta 

Wood turtle 

No data

 

G4 No 

data

 

Myotis sodalis 

Indiana bat 

No data

 

G2 No 

data

 

 

 

 

 

 

PLANTS 

 

 

 

 

Aristolochia serpentaria 

Virginia snakeroot 

No data

 

G5 No 

data

 

Cheilanthes lanosa 

Hairy lip-fern 

No data

 

G5 No 

data

 

Draba reptans 

Whitlow-grass No 

data

 

G5 No 

data

 

Houstonia longifolia 

Longleaf bluet 

No data

 

G4G5 No 

data

 

Lespedeza repens 

Creeping bush-clover 

No data

 

G5 No 

data

 

Oxalis violacea 

Violet wood sorrel 

No data

 

G5 No 

data

 

Pedicularis lanceolata 

Swamp lousewort 

No data

 

G5 No 

data

 

Plantago virginica 

Hoary Plaintain 

No data

 

G5 No 

data

 

Pycnanthemum clinopodioides 

Basil mountain mint 

No data

 

G2 No 

data

 

Pyncnanthemum torrei 

Torrey’s mountain mint 

No data

 

G2 No 

data

 

Senecio pauperculus 

Ragwort No 

data

 

G5 No 

data

 

 

 

 

 

 

 

 

 

background image

19 

 

Table 2.  Rare species and natural features of the Metacomet-Mattabesett Trail 

Data provided by the Connecticut Natural Diversity Database, Fitzgerald (2001), and 

Menunkatuck Audubon Society (2001) 

Species or Technical Name 

Common Name 

State EO 
Rank 

Global 
Rank 

Year Last 
Observed

ADDITIONAL SPECIES RECORDED FOR GUILFORD (POTENTIAL TRAIL EXTENSION AREAS)

 

ANIMALS 

 

 

 

Cicindela tranquebarica 

Dark-bellied tiger beetle 

No data

 

G5 2001 

Hesperus baltimorensis 

Rove beetle 

No data

 

No rank 

2001

 

Abagrotis nefascia benjamini 

Coastal heathland cutworm 

No data

 

G4T3 2001

 

Ardea alba 

Great egret 

No data

 

G5 2001

 

Egretta thula 

Snowy egret 

No data

 

G5 2001

 

Egretta caerulea 

Little blue heron 

No data

 

G5 2001

 

Ixobrychus exilis 

Least bittern 

No data

 

G5 2001

 

Plegadis falcinellus 

Glossy ibis 

No data

 

G5 2001

 

Circus cyaneus 

Northern harrier 

No data

 

 2001

 

Accipiter striatus 

Sharp-shinned hawk 

No data

 

 2001

 

Accipiter cooperii 

Cooper’s hawk 

No data

 

 2001

 

Buteo lineatus 

Red-shouldered hawk 

No data

 

 2001

 

Falco sparverius 

American kestrel 

No data

 

 2001

 

Rallus elegans 

King rail 

No data

 

G4 2001

 

Haematopus palliatus 

American oystercatcher 

No data

 

 2001

 

Catoptrohporus semipalmatus 

Willet No 

data

 

 2001

 

Sterna hirundo 

Common tern 

No data

 

 2001

 

Chordeiles minor 

Nighthawk No 

data

 

G5 2001

 

Progne subis 

Purple martin 

No data

 

 2001

 

Ammodramus caudacutus 

Saltmarsh sharp-tailed 
sparrow 

No data

 

G4 

2001

 

Ammodramus maritimus 

Seaside sparrow 

No data

 

G4 2001

 

Sturnelia magna 

Eastern meadowlark 

No data

 

 2001

 

Lasiurus borealis 

Eastern red bat 

No data

 

G5 2001

 

 

 

 

 

 

PLANTS 

 

 

 

 

Acalypha virginica 

Three-seeded mercury 

No data

 

G5 2001

 

Agastache nepetoides 

Yellow giant hyssop 

No data

 

G5 2001

 

Atriplex glabriuscula 

Orach No 

data

 

G4 2001

 

Cirsium horridulum 

Yellow thistle 

No data

 

G5 2001

 

Hottonia inflata 

Featherfoil No 

data

 

G4 2001

 

Liatris scariosa var. novae-
angliae 

Northern blazing star 

D

 

G5?TNR 

2001

 

Lycopus amplectens 

Clasping water-horehound 

No data

 

G5 2001

 

Polygonum glaucum 

Seabeach knotweed 

No data

 

G3 2001

 

Prunus maritima 

Beach plum 

No data

 

G4 2001

 

Rubus cuneifolius 

Sand blackberry 

No data

 

G5 2001

 

Scirpus cylindricus 

 No 

data

 

 2001

 

Solidago rigida 

Stiff goldenrod 

No data

 

G5 2001

 

Viola canadensis 

Canada violet 

No data

 

G5 2001

 

Zizia aptera 

Heart-leaved golden 
alexanders C/D 

G5 

2001

 

 

background image

20 

 

 

Two major attributes explain the biological richness and significance of the 

environments along the trail: 1) high diversity of landforms; 2) high connectivity among 
parcels that are protected for conservation purposes or that suffer minimal lasting 
damage from human disturbance.   
 

Diversity of landforms 

 

The Metacomet-Mattabesett Trail traverses an elevational gradient with 

numerous climbs and descents from sea level to over 800 feet.  It crosses traprock 
ranges, valleys, open waters, streams, and wetlands, and a proposed extension of the 
trail would bring hikers to coastal marshes, tidal rivers, and beaches.  Together, these 
features create habitat for a wide array of species.   
 
 

The unique bedrock and topography of traprock ridges fosters contrasting 

microenvironments: 1) a warm summit condition which, together with meager soil 
development, creates a xeric habitat with affinities to more southerly ecoregions; and 2) 
cold conditions at the base of talus slopes which, together with deeper soils influenced 
by seeps, creates a cool, mesic habitat with affinities to more boreal ecoregions.  Due to 
this local climatic variability, and because this region of Connecticut lies at the juncture 
of three ecoregions (Griffith et al. 2004), many of the plant species found along the 
Metacomet Range reach the northern or southern boundaries of their range in this part 
of Connecticut.  

Viola canadensis, Linnaea borealis 

var

. americana,

 

Dryopteris 

goldiana, 

and 

Dicentra canadensis

 are examples of plant species that occur at the 

southern end of their New England ranges along the trail.  

Corydalis flavula, Sporobolus 

compositus

 var. 

compositus

, and 

Opuntia humifusum

 are examples of plant species that 

hail from warmer regions.  Insect species also reach their range limits here; for 
example, the Falcate orange-tip butterfly (

Anthocharis midea

) extends northward to 

New England only along the southern Metacomet Range, seeking specialized host 
plants in the mustard family.  It is a common and spectacular sight in early spring along 
the ridgetop. 
 
 

 

 

Figure 19

.  Ecoregions of 

Southern New England.  The 
Trail passes through the 
Lower Worcester 
Plateau/Eastern Connecticut 
Upland, Connecticut Valley, 
and Southern New England 
Coastal Plains and Hills.  
Source: Griffith et al. (2004). 

 

background image

21 

 

 

Figure 20.  Dryopteris goldiana, 

a rare fern of 

cool talus and seeps. 

 

 

Figure 21.  Corydalis flavula, 

a rare herb of 

warm summits. 

 

 

Figure 23

.  Falcate orange-tip butterfly.   

Source: Robert J. Nuell, Jr. 

 

The calcium- and magnesium-

rich soils associated with both these 
habitats fosters the development of 
diverse plant communities (Lapin 1992).  
Calcareous bedrock occupies only a 
small proportion of the New England 
landscape (southern Connecticut, 
Berkshire and Champlain Valleys, 
isolated pockets in northern Maine); 
thus, the calciphilic vegetation types that 
are concentrated along the Metacomet 
Range are rare in the region and two 
(poor fens – peatlands dominated by 
ericaceous shrubs, and circumneutral 
rocky summit outcrop – the glades and 
balds of traprock summits) are 
considered globally rare.  Hence, many 
of their characteristic plant species are 
also listed as Threatened or 
Endangered in Connecticut (and other 
New England states).   
 

 

Figure 22

.  Red cedar (

Juniperus virginiana

) is a 

characteristic member of the summit bald 

community.   

 

background image

22 

 

 

 

Figure 24

.  Typical summit glade, dominated by hickory (

Carya

 spp.), white ash (

Fraxinus americana

), 

and oak (

Quercus

 spp.), with a park-like understory of sedges (principally 

Carex pensylvanica

), grasses, 

and sparse herbaceous dicots. 

 

 

Figure 25

.  Upper talus slope of Mount Higby, 

with a profusion of columbine (

Aquilegia 

canadensis

) in bloom. 

 

 

 

Figure 26

.  Base of talus slope at Totoket 

Mountain, with northern-affinity herbaceous 
species (

Aralia nudicaulis

, Wild sarsaparilla). 

 

background image

23 

 

 

Areas underlain by more acidic bedrock support hemlock (

Tsuga canadensis

), 

pine (

Pinus strobus

), and oak (

Quercus

 spp.) forests with a well-developed shrub layer 

of mountain laurel (

Kalmia latifolia

) and witch hazel (

Hamamelis virginiana

), and a 

sparser herbaceous understory of blueberry (

Vaccinium

 spp.), wintergreen (

Gaultheria 

procumbens

), trailing arbutus (

Epigaea repens

), and other species.  Coastal oak forests 

and brackish and salt marshes (dominated by 

Spartina

 spp. [grasses] and 

Scirpus

 spp. 

[bulrushes] predominate in the southern portions of the proposed Guilford extension. 
 
 

 

Figure 27

.  Oak, beech (

Fagus grandifolia

), and 

red maple (

Acer rubrum

) forest with blueberries 

(

Vaccinium

 spp.) on acidic soils, Reservoir Loop 

of Mattabesett Trail. 

 
 
 
 

 

 

Figure 28

.  Shrub layer of very old Mountain 

laurel (

Kalmia latifolia

) at Reservoir Loop Trail. 

 

 

Figure 29

.  Brackish marsh (Spartina patens) and tidal river on projected southern extension of Trail, 

Guilford, Connecticut.

 

background image

24 

 

 

Figure 30

.  Turkey vulture 

over Totoket Mountain. 

 

A number of migratory raptor species also cruise 

the thermals that rise along the steep, westward-facing 
cliffs of the Range, and the Range functions as a major 
flyway during the spring and autumn (Zalles et al. 2000). 
The nearby Connecticut River functions as an important 
stopover site for Nearctic-Neotropical migrants (U. S. 
Fish and Wildlife Service 1996).  Once home to the 
Peregrine falcon, the cliffs still offer ample nesting 
habitat (in fact, falcons have returned to parts of the 
Range in northern Massachusetts).   

 
 

Talus slopes, wet areas, and warm ridgetops are home to unusual snake species 

that are found in very few other sites in the northeast, including the Northern 
Copperhead whose numbers have declined precipitously throughout the region.  Talus 
affords protected sites for denning and for sunning (Peterson and Fritsch 1986).   
 
 

A variety of water features along the trail, including streams, ponds, vernal pools, 

and seeps, supports several rare salamander and turtle species.  Jefferson’s and 
Spotted salamanders, for example, use vernal pools as their obligate breeding ground.  
Clear streams with good water quality support rare populations of the native Brook Trout 
and the American brook lamprey.  Coastal mudflats and marshes attract numerous 
birds, including several (e.g., 

Egretta thula

 and 

Ammodramus caudacutus

) that are less 

common farther north.  The East and West River Marsh areas of Guilford, Connecticut, 
through which the new trail would access the coast, have been identified as a Globally 
Important Birding Area by the Audubon Society — a critical staging and breeding site for 
coastal birds.  An estimated half of the world population of Saltmarsh sharp-tailed 
sparrows (a state-listed species, see Table 2), breeds in southern New England, with a 
sizable proportion of birds using these marshes, according to Partners in Flight.  
 

 

Figure 31

.  A young hiker discovers a painted turtle near the Trail.  Source: Ann Colson. 

 

background image

25 

 

 

Figure 32

.  First Lake, Guilford, Connecticut.  

Iron Brook, above this lake along proposed trail 
route, contains one of a very few healthy native 

Brook trout populations in central Connecticut. 

  

Figure 34

.  Nest holes abound on the Trail. 

 

Figure 33

.  Seven Falls, Middletown. 

 

 

Connectivity of intact habitats 

 

A high diversity of plant and animal species inhabit the Metacomet-Mattabesett 

Trail corridor because it represents a continuous, relatively undisturbed (undeveloped) 
swath of land over 100 miles long, comprising at least 20,000 acres.  Despite a history 
of land use that includes mining, grazing, and logging (see below) and its proximity to 
urban areas, the forests and wetlands associated with the trail have not been subjected 
to major degradation and, in fact, have largely recovered to healthy levels.  Large, 
contiguous tracts of deciduous and coniferous forest cover in the Connecticut River 
watershed as a whole provide critical habitat for interior forest nesting birds (Anderson 
and Merrill 1998).  Twelve species of neotropical migrants using this watershed 
(including 5 warbler species, 2 vireo species, Louisiana waterthrush, Grasshopper 
sparrow, Yellow-breasted chat, Orchard oriole, and Blue-gray gnatchatcher) are largely 
restricted to the Lower New England Ecoregion (Anderson and Merrill 1998).  Large 
mammals including bear, bobcat, mustelid species (minks, fishers), and bats also use 
these large forested corridors.  The Hoary bat (

Lasiurus cinereus

), recorded from near 

the Trail (Table 2) requires habitat buffered from urban influences and with little 
evidence of anthropogenic disturbance (Tuttle 1995).  Large predatory snakes need 
sizable home ranges on the order of hectares, and may move up to half a kilometer 
away from nest sites (McCartney et al. 1988).  Thus, the Metacomet Range is one of 
only a handful of sustainable refugia for these species (Klemens 1993).     

background image

26 

 

 

Figure 35

.  Land cover types along the Trail (overlay in black).   

Source: University of Connecticut datalayers. 

 
 
 

A considerable proportion of the Trail and environs (over 25% of total trail length; 

unpublished data) falls on land protected in fee or through easement by conservation 
entities including the Connecticut Department of Environmental Protection, The Nature 
Conservancy, and a host of local land trusts including the Berlin Land Trust, Cheshire 
Land Trust, Farmington Land Trust, Guilford Land Conservation Trust, Haddam Land 
Trust, Madison Land Conservation Trust, Middlesex Land Trust, Simsbury Land 
Conservation Trust, Sufflield Land Conservancy, and the Wallingford Land Trust 
(Fitzgerald 2001).  State Parks and Forests traversed by the Metacomet-Mattabesett 
Trail include: Black Pond Wildlife Management Area (Middlefield), Cockaponset State 
Forest (Durham and Haddam), Lamentation Mountain State Park (Berlin), Millers Pond 
State Park (Durham and Haddam), Penwood State Park (Bloomfield and Simsbury), 
Talcott Mountain State Park (Avon, Bloomfield, and Simsbury), and Trimountain State 
Park (Durham and Wallingford) (Leary 2004).  Additional municipal and private parks 
such as Hubbard Park (Meriden) and the Hill-Stead Museum (Farmington), extend the 
level of protection and increase accessibility to portions of the Trail.  Lands held by 
regional water utilities comprise another significant sector of land (approximately 14% of 
total trail length) that is kept relatively intact (aside from selective forestry) to protect 
drinking water supplies.   
   

background image

27 

 

 

Figure 36

.  State parks and forests found along Metacomet-Mattabesett Trail.   

Towns with Trail are outlined in orange.  Adapted from Leary (2004). 

 

Land Use along the Trail: Past and Present Influences on Natural Resources 

 

Connecticut has been occupied by humans for at least 10,000 years (Keegan 

and Keegan 1999), and human activity has had critical influences on the landscapes of 
the Metacomet-Mattabesett Trail.  Native American activity was intense throughout 
central Connecticut, with the Niantic tribes focused on the mouth of the Connecticut 
River and the Mohegan-Pequot tribes inhabiting areas to the east (Sultzmann 1997).  
Quinnipiac Indians were known to create settlements in the Branford and Guilford areas 
(Camacho et al. 2002).  Numerous Archaic and Woodland sites dated from 9,000 BP on 
are documented from the region, particularly where stream tributaries meet the main 
stem of large rivers like the Connecticut.  Low, flat river terraces were preferentially 
occupied during Spring to Fall, when foragers exploited rich shellfish beds and 
anadromous fish (Juli 1994).  Basalt was used for flint and arrowheads. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 37

.  Native American sites from the 

Woodland Period.  Source: Keegan and Keegan 
(1999). 

background image

28 

 

 

The name of the Metacomet-Mattabesett Trail commemorates two important 

tribes that once occupied the region.  Chief Metacomet (aka “King Philip”), son of the 
Wampanoag ally of the Pilgrims, Massasoit, is the trail’s most notorious namesake, 
leading some of the most damaging attacks against white settlers throughout 
Massachusetts and Connecticut in the 1670’s (Clapp and Kohl 1978).  The 
promontories of the Metacomet Range served as strategic lookout points for mounting 
raids on the nascent towns of Connecticut.  Legends, many apocryphal, ascribe natural 
landmarks such as “King Phillip’s Cave” (a lava tunnel visible from the Trail at Talcott 
Mountain) to famous battles between Native Americans and colonists.   
 
 

Native Americans likely exerted profound local influences on the structure of 

natural communities in the region, but their precise impacts are still being reconstructed 
(Cronon 1983, Hall et al. 2002).  Deer-hunting, fishing, and plant-gathering would have 
been the predominant activities during the Woodland Period.  Intentional burns may 
have been used in limited ways to concentrate wildlife, or to promote growth of 
blueberries or nut-bearing trees, but evidence for major fires with large-scale impacts on 
forests is not conclusive (Parshall and Foster 2002).  Pollen evidence (Hall et al. 2002) 
suggests that forests during Native American occupation were dominated by chestnut 
(

Castanea dentata

), oak (

Quercus

 spp.), beech (

Fagus grandifolia

), hickory (

Carya

 

spp.), and pine (

Pinus

 spp.), with chestnuts and hickories providing a major food 

source.  Sedentary agriculture did not commence until after 1,000 years BP, with some 
tribes in central Connecticut planting corn, sunflowers, and squash (Keegan and 
Keegan 1999).  Cultivation would have required only limited land clearing using axes 
and hoes (Keegan and Keegan 1999).  
 
 

Europeans entered Connecticut in the 1630s, and large-scale land clearing, 

homesteading, tilling, and grazing of the Connecticut River and Farmington River 
valleys began in the 1650’s (Feder 1999).  Intentional fires and logging became 
widespread throughout the next century, transforming a largely forested landscape to a 
pastoral one.  This activity shifted forest composition to young, disturbance-tolerant 
stands dominated by birch (

Betula

 spp.), maple (

Acer

 spp.), pine (

Pinus

 spp.), cherry 

(

Prunus

 spp.), and poplar (

Populus

 spp.).  Many house foundations of the 1700’s were 

built of trap rock collected from the bases of talus slopes along the Metacomet Range 
(Lee 1985).  Industrialization during the early 1800’s led to the construction of 
innumerable dams on large and small rivers, providing hydro-energy for mills, and 
altering the courses and flow dynamics of many waterways.  Logging to provide wood 
fuel for local foundries and other industries may have denuded some portions of the 
Metacomet ridge from valley to summit.  A large traprock quarry opened on East Rock 
(New Haven, Connecticut) in 1810, and large-scale extraction of traprock to provide 
crushed paving stone and brownstone for a large number of buildings in the Northeast 
and beyond began in the 1850’s (Lee 1985).   
 
 

The legacy of early colonial settlement and industrialization is preserved in 

numerous historical sites along the Trail – from simple foundation holes to restored 
landmarks that appear on the National Historic Register.  One alternative route 
proposed for the Trail extension through Guilford would include the nationally-

background image

29 

 

recognized, historic Clapboard Hill District.  An archaeological preserve surrounds 
“Hospital Rock” in Plainville, a monument to the quarantine at the site of colonial-era 
Farmington and Hartford residents afflicted by smallpox.  The Mattabesett Trail was 
twice traveled by George Washington, once on his way to assume command of the new 
American revolutionary army, and again in 1789 when he was elected President (Leary 
2004).  Local politicians have also made their marks on the Trail throughout the years, 
creating, for example, the Selectman’s Stones monument at Mica Ledges in Durham, 
Connecticut.    
 

 

Figure 38

. Selectman’s Stones.  Newly elected selectmen for the four towns that bordered at this site 

were required to “peregrinate” town boundaries.  They hauled engraved stones to this site as proof of 

fulfilling their official obligations. Note engraved dates from the 1800’s. 

 
 
 

In the 1830’s to 1950’s, 

increasing urbanization, population 
pressure, and large-scale exploitation of 
the New England landscape stirred a 
new aesthetic appreciation among the 
populace for the remaining natural areas 
of the region.  Henry David Thoreau, 
Ralph Waldo Emerson, and painters of 
the emerging Hudson River School 
(Thomas Cole, Thomas Charles Farrar, 
William Henry Bartlett, and others) 
extolled the virtues of nature in writings 
and artwork.  The painters in particular 
flocked to the Metacomet Range to 
capture its grandeur and views 
(Doezema 2002).  Interestingly, the  
paintings of this time reveal the 
mountains as some of the only forested 
land in a sea of agriculture and rural 
 

 
 
settlement, indicating that some of the 
mountains may have provided a critical 
refuge for plant and animal species for 
hundreds of years.  
 

 

Figure 39

.  Classic painting by Thomas Cole, 

View from Mt. Holyoke, Northampton, 
Massachusetts, After a Thunderstorm (The 
Oxbow)

, 1836. 

background image

30 

 

 

Buildings dating from this period 

began to spring up along the summits of 
the Metacomet Range from 
Massachusetts to Connecticut.  The 
historic Heublein Tower atop Talcott 
Mountain, for example, was the fourth in 
a series of towers built at the site from 
1810 to 1914 (Leary 2004).  Eminent 
visitors to these landmarks made the 
range famous; Mark Twain quoted his 
friend, the Reverend Joseph Twichell 
issuing the cry, “Just look at this 
magnificent autumn landscape!  Look at 
it!  Look at it!  Feast your eyes on it!” 
(Twain 1876).  While the ridge was 
never densely populated, it was (and 
continues to be) a popular day-trip 
destination for tourists, students, and 
artists.  This popularity created the 
impetus for the establishment of a 
protected system of hiking trails, among 
the first of its kind in the United States.   
 

Figure 40

.  Castle Craig, a fanciful tower 

constructed in 1900 of basalt, provides a 
dramatic lookout over the Hanging Hills 
of Meriden from an elevation of 976 feet. 

 

 
 

 
 

Local hiking trails attracted visitors from medium-sized, decentralized urban 

areas (Hartford, Meriden, New Haven, etc.) throughout the state.  In the late 1800’s, 
philanthropic industrialists donated large areas of land for parks and recreational areas 
(Waterman and Waterman 1989).  By 1895, the Connecticut Forestry Association (later 
called the Connecticut Forest and Park Association) formed with a mission to preserve 
woodlands, and the state of Connecticut formed a park commission in 1913.  Many of 
the protected areas cobbled together during this time were very small, but emphasized 
the same kind of views that had thrilled Twain and many others.  Frederick W. 
Kilbourne, a Meriden resident, pioneered the idea of a “Trap Rock Trail” to span the 
distance from Long Island Sound to the Massachusetts border in 1918, and Edgar Laing 
Heermance took the project forward.  By 1929, the Connecticut Forest and Park 
Association devised its first Trails Committee, and the concept of the Blue Trail system 
was inaugurated (Woodside 2004).  The cumulative effect of this land protection and 
outreach was the creation of a “continuous hiking trail of almost 50 miles right up 
against the most densely populated heart of Connecticut, threading between and 
around the cities of Meriden, Berlin, Wallingford, Durham, and Middletown” (Waterman 
and Waterman 1989: 438), a corridor of green in an urbanized context unlike any other 

background image

31 

 

trail before it.  Socially, this trail system permitted a burgeoning number of recreation-
seekers to gain a new appreciation for Connecticut’s natural ecosystems, and engaged 
a new class of volunteers in construction and maintenance.  An utterly new literary 
genre – the trail guide – was invented to educate trail users about their environs (e.g., 
Longwell and Dana 1932), and the Trail received a great deal of attention in the popular 
press of the time (e.g. Anonymous 1932, 1933).  Ecologically, the formation of the 
Metacomet-Mattabesett Trail led to the long-term conservation of dozens of contiguous 
miles of relatively intact habitat.     
 
 

Today, the Metacomet-Mattabesett Trail passes through areas that are largely 

forested (see Figure 35).  A qualitative analysis of digital ortho-photo quads 
(Farnsworth, unpublished data) indicates that over 70% of the trail passes through 
deciduous or hardwood-hemlock stands 20-100 years in age, interspersed with 
wetlands, fields, and residential areas.  Areas surrounding the Trail are primarily rural, 
suburban, and exurban.  Recreation heads the list of major activities within the trail 
corridor, but at least seven quarries still operate along the Metacomet ridge (The 
Mineral Database 2004).  Selective forestry, usually by Municipal landowners (e.g., 
Water Commissions) or state agencies, continues on small scales (typically cuts of 20 
acres at a time or less).   
 

Threats to the natural resource values of the Trail 

 

The natural resources found along the Metacomet-Mattabesett Trail are 

principally intact, but face several threats from both human activity and natural agents of 
disturbance.  These factors are discussed in priority order in terms of the amount of 
area they impact, their influence on the quality of the trail experience, and the 
immediacy of threat.  Several large-scale forces, such as hurricanes and global change, 
are mentioned as potential threats and are treated only in more general terms. 
 

Development 

 

Development of land adjacent to the Metacomet-Mattabesett Trail poses the 

most serious threat to the quality and continued existence of the Trail and to the 
integrity of the region’s natural resources.  The population of central Connecticut in the 
19 towns encompassing the Trail was 454,890 according to the 2000 census, and rates 
of population increase averaged 7.6% between 1990 and 2000 across these towns 
(Connecticut Office of Policy and Management 2003).  Suffield, Durham, and 
Farmington showed the highest rates of growth (from 15-18%).  Building permits (an 
index of housing starts) have increased more rapidly than population, rising 26.0% from 
2003-2004 (Connecticut Department of Labor 2004).  The Metacomet Range is an 
attractive place to site residences because of its views and its convenient proximity to 
highways and cities.  Several developments now cluster densely along the bases of 
traprock ridges (displacing formerly rich talus habitat and increasing the risk of human-
snake contact, among other problems).  Road-building and widening along the base of 
the Metacomet Range to accommodate increased vehicular traffic (e.g., along Route 66 
in Middletown) has also contributed to habitat destruction. 
 

 

background image

32 

 

 

Figure 41

.  Aerial photograph with arrows highlighting development, taking place over several years (left 

to right: housing; road building across ridge; golf course), that has encroached on the Metacomet Trail (in 

red) in Berlin/Southington.  Note narrowing of forested habitat toward the northeast (blue arrow). 

 

 

Homebuilding has been less frequent to date at higher elevations along the 

range, principally because of the formidable engineering challenges of constructing 
roads and houses on steep, shallow-to-bedrock slopes and in permitting on-site septic 
on soils of the Hollis and Holyoke Rock Outcrop Complexes.  Enabling legislation 
(Public Act 95-239) allows towns to zone their ridgetops for viewshed protection by 
limiting or prohibiting building, and at least five trailside towns to date (e.g., Southington, 
Farmington, Middlefield, Durham, and Meriden) have created overlay ordinances 
designed to protect the viewshed of traprock ridges.  Likewise, the towns of Meriden, 
Middletown, and Berlin formulated the Tri-Town Land Use Plan (1994) to address the 
need to maintain and protect open space on the traprock ridges (particularly 
Lamentation Mountain and Chauncey Peak).  In 1998, 17 traprock ridge towns in 
Connecticut signed the Metacomet Ridge Conservation Compact to confirm their joint 
commitment to protect the range.  However, pressure to build on the range has 
increased in recent years and some local property owners have objected to legislation 
limiting building rights on private land.  Protests by individual landowners have led to 
temporary trail closures.  A 1997 attempt to regulate clear-cutting, quarrying, and 
development on the ridge in Middletown failed (Lareau 1997).  
 
 

Disturbance on these shallow-to-bedrock ridges would irreversibly alter habitat 

for both plants and animals inhabiting the range.  Vegetation regrowth is severely 
limited by soil availability at the summit and would be slow in the wake of clearing.  
Large-scale removal of forest and expansion of paved surfaces would impair the 
recharge capacity of the range, with implications for water quality of associated aquifers.  
Disruption of habitats would place rare plant and animal species in danger of local 

background image

33 

 

extirpation.  Such development would permit intensified, unregulated access by people, 
pets, and all-terrain vehicles to the Trail, increasing the risk of harming plant and animal 
species, the probability of invasive species introductions, and overall damage to the 
Trail itself. 
 
 

There have also been several proposals to construct cell phone and radio 

communications towers along the Metacomet summits and elsewhere along the Trail 
(e.g., along Talcott Mountain).  Road construction to service towers, and herbicide use 
to maintain clear areas around the tower would have negative impacts on local plants 
and animals, as discussed above.  Likewise, towers may pose a collision risk to 
migratory birds, especially the raptors that seasonally frequent the range in large 
numbers (Kerlinger 1989). 
 
 

Quarrying 

 

Quarrying for traprock has taken 

place since the early 1800’s in 
Connecticut, and the level of quarrying 
intensity (in terms of economic output) 
has remained relatively stable since the 
1970’s (Fitzgerald 2001).  Although the 
Connecticut Department of Labor (2004) 
projects a 4.3% decrease in mining-
related employment statewide in the 
coming year, the demand for quarried 
traprock may be increasing as much as 
11% per year (Lareau 1997).  
Contemporary quarries on the range are 
typically large operations impacting on 
average several tens to over one-
hundred acres.  Quarrying entails clear-
cutting of forest, removal of substantial 
amounts of bedrock (estimates range 
from 7.5 to 20 million tons of traprock 
annually), permanent changes in 
topography, alteration of hydrology, 
additional land for disposal of waste 
materials, dust generation, and noise.  
One such quarry operates directly 
adjacent to the Metacomet-Mattabesett 
Trail at Chauncey Peak in Meriden, 
Connecticut.  The Trail has been moved 
to accommodate mining and will soon 
have to be relocated further (personal 
observation). 
 

 
 
 
In proximity to the mine, the hiking 
experience is much diminished and 
damage to the plant and animal 
communities (through dust 
accumulation, noise disturbance, and 
outright destruction) is obvious.  
However, evidence of disturbance 
becomes much less visible beyond 30 
feet away from the quarry edge.  
Negotiation of conservation easements 
and restoration strategies with the 
largest quarry owners will be essential 
to sustaining the continued existence of 
the Trail and to minimize further harm to 
natural systems and aquifers. 
 
 

 

Figure 42

.  Quarry near Chauncey Peak within 

close view of the Trail. 

 

background image

34 

 

Trampling, rogue trails, and Off-Road Vehicle use 

 

The Metacomet-Mattabesett Trail is well-marked and regularly reblazed by 

volunteers.  While the vast majority of users respect designated trail boundaries, some 
evidence of unauthorized uses was found during reconnaissance in Spring, 2004.  
Particularly popular areas for walkers, e.g., Ragged Mountain, showed significant trail 
widening at lower elevations, because hikers and trailbike riders use a variety of 
alternative paths.  This proliferation of paths can disorient hikers (Higbee 2003).  A few 
sites with attractive rock-climbing areas also have rogue trails that lead to staging sites.  
Such trails can harm rare plant populations.  At Mount Higby, for example, an offshoot 
trail leading to a talus overlook crosses through a population of the State-listed plant, 
yellow corydalis (

Corydalis flavula

).  Certain plant species, such as the rare 

Potentilla 

arguta

, tend to cluster closely along trail margins (possibly because of increased light 

availability at trailside) and would be eliminated by trampling or trail widening (William 
Moorhead, Consulting Botanist, personal communication).  Less than 5% of the trail 
length surveyed during this reconnaissance was affected by this activity.   
 

 

Figure 43

.  Trail widening due to foot and bike traffic at Ragged Mountain. 

 

 

Off-road vehicle tracks were seen on a larger sector of the trail (approximately 

20% of the trail mileage surveyed by the author during 2004 showed some impact; note 
that this is a qualitative visual estimate).  In fact, ORVs, motorcycles, and other vehicles 
have been noted as issues along the Trail since the 1940’s (according to minutes from 
past Blue Trail Committee meetings).  ORVs tend to create deep ruts and gullies in 
deeper, moist or wet soils at lower elevations, and to remove or compact shallow, dry 
soils at higher elevations.  Tracks traversing steep slopes can hasten soil erosion and 
alter water drainage patterns along the Trail, and exacerbate damage resulting from 
high rainfall events.  ORV riders can inadvertently trample rare plants and animals as 
well.  Noise and air pollution from 2-stroke engines can further disturb both hikers and 
resident organisms. 

background image

35 

 

 

Figure 44

.  ORV tracks skirt a footbridge, 

creating ruts in a streambed at Reservoir Loop. 

 
 

Normal trail maintenance 

activities could exert their own impacts 
on vegetation, drainage patterns, and 
animal burrows, if not undertaken 
carefully to avoid erosion or widening.  
Digital elevation models (unpublished 
data) indicate that as much as 25% of 
the Trail occurs on steep slopes in 
excess of 20% grades; such paths 
require special attention to placement 
and maintenance.  However, training 
materials and workshops given to Blue 
Trail volunteer managers by the 
Connecticut Forest and Park 
Association stress the importance of 
minimizing collateral damage to 
adjacent areas while clearing debris, 
blazing new trails, and constructing 
water bars and steps, with an emphasis 
on using hand tools.   
 

Invasive species 

 

Two classes of invasive species 

pose significant potential threats to the 
integrity of natural communities, the 
viability of rare plant and animal 
species, and the experience of hikers 
along the Metacomet-Mattabesett Trail: 
invasive insects and invasive plants.  
Principal among these agents are the 
hemlock woolly adelgid and exotic 
shrubs. 
 
 

The hemlock woolly adelgid 

(

Adelges tsugae

), introduced from 

Japan in the 1920’s, is now ubiquitous 
throughout central Connecticut on 
hemlock (

Tsuga canadensis

).  Feeding 

by these phloem-sucking relatives of 
aphids can lead to whole-tree mortality 
within 3-10 years of colonization.  Sites 
of infestation are patchily distributed 
along the Trail, but tend to wreak the 
most damage in hemlock stands on 
drier soils in warmer aspects (trees are 
more stressed on droughty soils and the 
adelgid benefits from warmer 
temperatures; Bonneau et al. 1999, 
Orwig et al. 2002).  Hemlock infestations 
are more frequent and severe in the 
southern latitudes of Connecticut, as the 
invasion front is still moving northward 
(Orwig et al. 2002).  The dark shade 
under a dense canopy of healthy 
hemlock tends to discourage formation 
of a dense herbaceous or shrub layer in 
the understory.  By contrast, defoliation 
results in stands of dead and dying 
trees, a considerable amount of downed 
wood, and canopy openings; soils in 
damaged stands are more acidic, lower 
in moisture, and higher in coarse woody 
debris than soils in undamaged stands 
(Kizlinski et al. 2002).  Salvage logging 
of dying hemlock has been conducted at 
some sites near the Trail to reduce fire 
hazards and promote safety of forest 

background image

36 

 

visitors (e.g., Penwood State Forest, 
Cockaponset State Forest); these 
harvesting practices create large gaps 
that are conducive to regeneration of 
fast-growing deciduous trees and 
herbaceous plants, particularly black 
birch (

Betula lenta

) and hay-scented 

fern (

Dennstaedtia punctilobula

(Kizlinski et al. 2002).  Together, adelgid 
infestation and salvage logging can 
permanently alter the forest profile and 
associated ecosystem dynamics.  
Because a large proportion of the 
Metacomet-Mattabesett Trail traverses 
ridgetops that are not dominated by 
hemlock, most (perhaps 70%) of the 
Trail is not directly affected by this 
defoliation.  However, dying trees are 
visible at many viewpoints along the 
Trail.  It is also important to note that a 
host of other invasive insects and 
pathogens have killed – or are projected 
to kill or weaken – a significant number 
of trees of many species: Gypsy moth, 
beech bark disease, chestnut blight, 
Dutch elm disease, butternut canker, 
dogwood anthracnose, sudden oak 
death, and Asian longhorn beetle (Orwig 
2002). 
 

 

Figure 45

.  Dead hemlocks at Hubbard Park, 

Meriden, Connecticut. 

 

Much of the Metacomet-

Mattabesett Trail is relatively free of 
invasive plant species, as they have yet 
to gain a foothold in intact forest 
interiors.  The areas where invasive 
plants most frequently occur are trail 
access points near roads or infested 
fields (perhaps 10% of total trail length).  
These areas receive the largest number 
of human visitors, and have the highest 
proportion of “edge” habitats that attract 
birds and other animal vectors that 
spread invasive plant seeds.  High-light 
conditions at these habitat edges tend to 
favor growth of invasives and other sun-
demanding native species.  Areas 
where these species appear to 
penetrate forest interiors tend to 
coincide with previously grazed or 
farmed plots or with house foundation 
sites (personal observation).  
Exceptions to this trend occur at Beseck 
Mountain along the Mattabesett Trail, 
where invasive shrubs have spread to 
the summit.  Hikers, bikers, and pets 
can potentially transport invasive 
propagules all along the Trail.   
 
 

The most common invasive 

species (in terms of ground cover) noted 
along the Trail during 2004 and in 
previous surveys (Farnsworth 2001) 
included the following shrub species: 
Japanese barberry (

Berberis thunbergii

), 

multiflora rose (

Rosa multiflora

), 

honeysuckles (

Lonicera

 spp.), glossy 

buckthorn (

Frangula alnus

), and winged 

euonymous (

Euonymous alatus

), and 

autumn olive (

Elaeagnus umbellata

).  

Japanese knotweed (

Fallopia japonica

is common along well-visited waterways 
near the Trail. 
 

background image

37 

 

 

Figure 46

.  Japanese knotweed along stream 

shore at Seven Falls. 

 

Figure 47

.  Japanese barberry at Ragged 

Mountain. 

 

 
 

While there is widespread consensus in the scientific and conservation 

community that invasive plant species are becoming more prevalent in Connecticut, few 
systematic studies to date have characterized the long-term impacts of particular 
invasives on rare species or community structure, or have documented the actual 
longevity of particular infestations.  Thus, while it is obvious that species composition in 
certain habitats traversed by the Trail (especially ecological borders between forest and 
anthropogenically altered landscapes) will change with the presence of invasives, the 
lasting effects of these invasions are not as yet known (Farnsworth, in press).  In the 
immediate term, these invasives tend to homogenize the landscape, reducing the 
diversity of natural community types visible along the Trail.  Thorny shrubs can also 
pose a hindrance to hiking. 
 
 

While not considered “invasive” in the strict sense, native white-tailed deer 

(

Odocoileus virginianus

) are burgeoning in the state and are changing the face of 

Connecticut forests through heavy grazing pressure.  Deer often utilize human trails, 
and can be seen along the Metacomet-Mattabesett Trail at all times of year.  Dense 
populations of deer can hamper forest regeneration through overconsumption of tree 
seedlings; shift forest understory structure to low-diversity stands of resistant 
herbaceous species (such as hay-scented fern, 

Dennstaedtia punctilobula

), and reduce 

reproduction and growth of rare plant species (McShea et al. 1997).   
 

background image

38 

 

Campsites and fire rings 

 

Despite prohibitions against camping in undesignated sites, areas along the 

Metacomet-Mattabesett Trail attract campers and partiers.  Unauthorized uses are more 
frequent in sectors of the Trail in proximity to densely populated areas (e.g., the cities of 
Meriden and Berlin) where visitation pressure is higher.  The main problems resulting 
from this activity are an increased risk of fire, and pollution from dumping.  Fire rings 
and small garbage heaps were found at a few sites on Lamentation Mountain in 
particular during 2004 reconnaissance.  Dumping has local effects that are primarily 
aesthetic in nature.  However, fires could spread rapidly in the more xeric areas of the 
Metacomet summits.  Fuel loads are low on rocky balds, but increase markedly at short 
distances from the ridgetops.  Fires would be difficult to fight in areas of the Trail that 
are less accessible to emergency vehicles.  During a recent fire on the Mt. Holyoke 
Range (along the Metacomet Trail in Massachusetts), detection and control was 
hampered for several days due to difficulty of access; eventually, water drops had to be 
made from aircraft to contain the fire.  There is little conclusive evidence that lightning-
strike fires have been frequent on the Metacomet Range, or that fire is a natural 
ecological driver in maintaining the oak-hickory glades or other community types that 
predominate on the range (Fitzgerald 2001).  Therefore, the impacts of fire on natural 
community structure are largely unpredictable without further systematic study.  Studies 
of post-fire recovery on the Mt. Holyoke Range reveal a shift toward more diverse and 
dense herbaceous vegetation (some exotic) in burned zones, along with gradual stump-
sprout regeneration by trees (Hampshire College, unpublished data).  
 

 

Figure 48

. Fire ring with associated litter at Lamentation Mountain. 

 

Global change 

 

The term “global change” encompasses a range of human-induced alterations of 

ecological processes that occur at very large scales; the manifestations of global 
change that impinge most directly on the Trail in Connecticut are climatic warming and 
nitrogen pollution.  Climatic warming — due at least in part to rising levels of 
atmospheric greenhouse gases — is demonstrably occurring (IPCC 2001); Connecticut 

background image

39 

 

mean annual temperatures have risen 1.4

o

F in summer and 2.4

o

F in winter between 

1885 and 1999 (New England Regional Assessment Group [NERAG] 2001; also see 
data in “Climate and Air Quality” above).  The cascade of impacts of such warming is 
highly complex and still difficult to predict.  Among the factors that could impact the Trail 
and its users are: 1) an increased incidence of Lyme disease; 2) more days that are 
classified with unhealthful ozone levels; and 3) more days with extreme heat levels 
(NERAG 2001).  Some general circulation models predict a higher frequency of extreme 
storm events, including ice storms and hurricanes (which would result in significant tree 
and Trail damage); however, this prediction is variable among models and is difficult to 
refine at a regional level.    
 
 

Another facet of global change of concern is increased nitrogen pollution.  Total 

reactive Nitrogen levels in the atmosphere have increased considerably in the Northeast 
in the past 50 years, from approximately 30 terragrams/year to 160 terragrams/year 
(Hubbard Brook Research Foundation 2003).  Nitrogen is released into the atmosphere 
and waterways through food production and consumption (fertilizer inputs, fixation by 
crops, production by livestock, sewage outputs) and by emissions from motor vehicles 
and power plants.  Nitrogen emissions contribute to the formation of ground-level ozone 
that impacts human health and may reduce primary productivity in Northeastern forests 
by an estimated 14% (Hubbard Brook Research Foundation 2003).  Reactive Nitrogen 
also contributes to acid precipitation, increased nitrate contents of runoff, and 
acidification of water bodies.  Nitrgoenous pollution of lakes, rivers, and estuaries can 
cause algal blooms and fish die-off.  Elevated soil Nitrogen has also been implicated in 
fostering invasions by certain plant species that are efficient at taking up and using 
nutrients for growth (e.g., Bertness et al. 2002).  Increased tree mortality, water 
pollution, and prevalence of invasive species reduce biodiversity and may significantly 
alter ecosystem processes in the forests and wetlands associated with the Trail. 
 
 

Together, the threats of development, bedrock extraction, improper trail use, and 

global change will have to be addressed through a combination of local and national 
legislation, public education, and negotiation with private and industrial landowners.  
Fortunately, a variety of regional interests, town planning agencies, conservation 
organizations, Connecticut Forest and Park Association and others — many with long 
standing and broad influence in the state — can work together to devise judicious 
strategies for Trail protection.   
 

background image

40 

 

Conclusions

 

 

The Metacomet-Mattabesett Trail roams a variety of diverse habitats that are 

unique in Connecticut, and in North America.  It is a critical corridor of semi-protected 
land that many organisms – including humans – find to be essential refuge.  National 
Scenic Trail designation will help to ensure that these significant hotspots are conserved 
and will promote the aesthetic and educational potential of the Trail for its many users. 
 
 

 

Figure 49

.  View of Merimere Reservoir from South Mountain, Meriden, Connecticut. 

 

background image

41 

 

Literature Cited 

 
Anderson, M. G. and M. D. Merrill.  1998.  Connecticut River watershed: Natural 
communities and neotropical migrant birds.  Report for The Nature Conservancy, 
Boston, Massachusetts. 
 
Anonymous.  1932.  Hiking interest is increasing in Connecticut: Trail building in state 
results in more than 200 miles of trails. 

 Christian Science Monitor

, July 9. 

 
Anonymous.  1933.  Connecticut trail system lures many hikers: Forests, lakes, 
woodland brooks provide setting.  

Telephone News

 Volume VII, No. 11, July 1933. 

 
Bell, M.  1985.  

The Face of Connecticut: People, Geology, and the Land

.  Bulletin 110 

of the State Geological and Natural History Survey, Hartford, Connecticut. 
 
Berlin Conservation Commission, Meriden Conservation Commission, and Middletown 
Conservation Commission.  1994.  Lamentation Mountain Tri-Town Project Land Use 
Plan, Connecticut, USA.   
 
Bertness, M. D., P. Ewanchuk, and B. R. Silliman.  2002.  Anthropogenic modification of 
New England salt marsh landscapes.  

Proceedings of the National Academy of Science 

99:1395-1398. 
 
Bonneau, L. R., K. S. Shields, and D. L. Civco.  1999.  Using satellite images to classy 
and analyze the health of hemlock forests. 

 Biological Invasions

 1: 255-267. 

 
Brumbach, J. J.  1965.  

The Climate of Connecticut

.  Bulletin 19 of the Connecticut 

State Geological and Natural History Survey, Hartford, Connecticut. 
 
Camacho, A., S. A. Canham, R. Ferik, H. H. Moore, and H. M. Richards.  2002.  A 
management plan for Yale University's Peabody Museum Natural Area, Branford and 
Guilford, Connecticut.  Yale School of Forestry and Environmental Studies, New Haven, 
Connecticut. 
 
Clapp, M. and D. Kohl.  1978.  The Metacomet trail: A resource guide.  Revised Edition, 
New Britain Youth Museum, New Britain, Connecticut. 
 
Connecticut Department of Labor.  2004.  Connecticut Economic Digest, June 2004.  
Available at http://www.ctdol.state.ct.us/lmi/misc/cedjun04.htm. 
 
Connecticut Forest and Park Association.  1997.  Connecticut Walk Book, 60th 
Anniversary Edition.  Rockfall, Connecticut. 
 
Connecticut Office of Policy and Management.  2003.  Census 2000 Population Counts 
for Connecticut Municipalities & Counties.  Available at 
http://www.opm.state.ct.us/pdpd3/data/estimate.htm. 

background image

42 

 

 
Connecticut State Climate Center.  2004.  Overview of climate in Connecticut.  Available 
at: http://www.canr.uconn.edu/nrme/cscc/CTweatherstationintroduction/ 
conncticutintroduction.htm 
 
Connecticut State Climate Center.  2004b.  Summary climatic data for Bradley 
International Airport, Windsor Locks, Connecticut.  Available at 
http://www.canr.uconn.edu/nrme/cscc/ CTweatherstationintroduction/mIddletown.htm 
 
Connecticut State Climate Center.  2004c.  Summary climatic data for Middletown, 
Connecticut.  Available at http://www.canr.uconn.edu/nrme/cscc/ 
CTweatherstationintroduction/mIddletown.htm 
 
Cronon, W.  1983.  

Changes in the Land: Indians, Colonists, and the Ecology of New 

England

.  Hill and Wang, New York, New York. 

 
Doezema, M. (Editor).  2002.  

Changing Prospects: The View From Mount Holyoke.

  

Cornell University Press, Ithaca, New York. 
 
Dowhan, J. J. and R. J. Craig.  1976.  

Rare and Endangered Species of Connecticut 

and Their Habitats

.  State Geological and Natural History Survey of Connecticut, Report 

of Investigations No. 6, Hartford, Connecticut.  
 
Environmental Protection Agency.  2004.  AirData Monitor Values Report for 
Connecticut.  Available at 
http://www.epa.gov/air/data/monvals.html?st~CT~Connecticut. 
 
Farnsworth, E. J.  2001.  

Corydalis flavula

 (Yellow Corydalis) Conservation and 

Research Plan.  New England Wild Flower Society, Framingham, Massachusetts. 
 
Farnsworth, E. J.  2003.  Planning for the future of over 100 rare species. 

 New England 

Wild Flower

 7: 6. 

 
Farnsworth, E. J.  In press.  The rich get richer while the poor get poorer: A 
conservation biologist’s perspective on invasive and rare species.  

Trends in Ecology 

and Evolution

, commissioned article.  

 
Fitzgerald, H.  2001.  Establishing conservation priorities on Connecticut’s traprock 
ridges: A site conservation plan.  Report prepared for The Nature Conservancy, 
Middletown, Connecticut. 
 
Griffith, G. E., J. M. Omernik, and S. M. Pierson.  2004.  Ecoregions of Massachusetts, 
Connecticut, and Rhode Island.  U. S. Environmental Protection Agency, Western 
Ecology Division, Corvallis, Oregon.  Available at 
http://www.epa.gov/wed/pages/ecoregions/mactri_eco.htm. 
 

background image

43 

 

Hall, B., G. Motzkin, D. R. Foster, M. Syfert, and J. Burk.  2002.  Three hundred years of 
forest and land use change in Massachusetts.  Journal of Biogeography 29: 1319-1336.  
 
Higbee, M.  2003.  Mother’s Day hike becomes nightmare.  

The Middletown Press

 119: 

1, May 12. 
 
Hitchcock, E.  1857.  On surface geology, especially that in the Connecticut Valley in 
New England.  Pages 1-76 in 

Smithsonian Contributions to Knowledge: Illustrations of 

Surface Geology

.  Collins Publishers, Philadelphia. 

 
Hubbard Brook Research Foundation.  2003.  Nitrogen pollution from the sources to the 
sea.  Science Links Report, Concord, New Hampshire.  Available from 
http://www.hubbardbrook.org/hbrf/page.php3?subject=Publications. 
 
IPCC (Intergovernmental Panel on Climate Change).  2001.  

Climate Change 2001: The 

Scientific Basis.  Contribution of Working Group I to the Third Assessment Report of the 
Intergovernmental Panel on Climate Change

.  Cambridge University Press, Cambridge, 

UK. 
 
Juli, H. D.  1994.  Late prehistory of the Thames River: Survey, landscape, and 
preservation along a Connecticut estuary.  

Northeast Anthropology

 47: 21-44. 

 
Keegan, W. F. and K. Noble Keegan.  1999.  

The Archaeology of Connecticut: The 

Human Era – 11,000 Years Ago to the Present

.  Bibliopola Press, UConn Co-op, Storrs, 

Connecticut. 
 
Kerlinger, P.  1989.  

Flight Strategies of Migrating Hawks

.  Chicago University Press, 

Chicago, Illinois. 
 
Klemens, M. W.  1993.  Amphibians and reptiles of Connecticut and adjacent regions.  
State Geological and Natural History Survey, Hartford, Connecticut. 
 
Kizlinski, M. L., D. A. Orwig, R. C. Cobb, and D. R. Foster.  2002.  Direct and indirect 
ecosystem consequences of an invasive pest on forests dominated by eastern hemlock.  

Journal of Biogeography

 29: 1489-1504. 

 
Lapin, B.  1992.  Lamentation Mountain natural resources inventory report.  
Unpublished report for The Nature Conservancy, Middletown, Connecticut. 
 
Lareau, A.  1997.  Needless discord: The debate over the future of Connecticut’s 
traprock ridges.  Thesis, Wesleyan University, Middletown, Connecticut. 
 
Leary, J.  2004.  

A Shared Landscape: A Guide and History of Connecticut’s State 

Parks and Forests.

  Friends of Connecticut State Parks, Rockfall, Connecticut. 

 

background image

44 

 

Lee, C.  1985.  West Rock to the Barndoor Hills: The Traprock Ridges of Connecticut.  
Vegetation of Connecticut Natural Areas No. 4, State Geological and Natural History 
Survey, Hartford, Connecticut. 
 
Little, R. D.  2003.  

Dinosaurs, Dunes, and Drifting Continents: The Geology of the 

Connecticut River Valley

.  Third Edition.  Earth View, L. L. C., Easthampton, 

Massachusetts. 
 
Lobel, M., D. Ballon, A. Hausman-Rogers, and M. Mirvis.  2002.  Progress, triage, and 
traprock: A study of traprock ridge protection efforts in Middletown.  Unpublished report, 
Wesleyan University, Middletown, Connecticut. 
 
Longwell, C. R. and E. S. Dana.  1932.  

Walks and Rides in Central Connecticut and 

Massachusetts

.  Yale University Press, New Haven, Connecticut. 

 
Lyell, C. Sir.  1865.  

Elements of Geology; Or, The Ancient Changes of the Earth and Its 

Inhabitants as Illustrated by Geological Monuments

.  J. Murray Publishers, London. 

 
McCartney, J. M., P. T. Gregory, and K. W. Larsen.  1988.  A tabular survey of data on 
movements and home ranges of snakes.  

Journal of Herpetology

 22: 61-73.   

 
McDonald, N.  1996.  

The Connecticut Valley in the Age of Dinosaurs: A Guide to the 

Geologic Literature, 1681-1995

.  Bulletin 116, State Geological and Natural History 

Survey, Hartford, Connecticut. 
 
McShea, W. J., H. B. Underwood, and J. H. Rappole  1997.  

The Science of 

Overabundance : Deer Ecology and Population Management

.  Smithsonian Institution 

Press, Washington, D. C.   
 
Menunkatuck Audubon Society.  2001.  Biodiversity Day 2001: Report of the survey of 
biodiversity in Guilford, Connecticut, September 8, 2001.  Guilford, Connecticut. 
 
Metzler, K. J. and D. L. Wagner.  1998.  Thirteen of Connecticut’s most imperiled 
ecosystems.  Connecticut Department of Environmental Protection, Hartford, 
Connecticut. 
 
Moorhead, W. H. III.  2003.  Farmington River Watershed Association 2002 Biodiversity 
Project, rare plant and natural community inventory.  Summary Report, Farmington, 
Connecticut. 
 
Motts, W. and O'Brien, Geology and hydrology of wetlands in Massachusetts, 
Publication No. 123, Special report, Water resources research center, University of 
Massachusetts at Amherst, 1981 
 

background image

45 

 

National Oceanic and Atmospheric Administration.  2004.  Connecticut climate 
summary, April 2004.  Available at http://www.ncdc.noaa.gov/oa/climate/research/ 
cag3/CT.html 
 
NatureServe Explorer.  2004.  NatureServe: An online encyclopedia of life [web 
application].  2000.  Version 1.0.  NatureServe, Arlington, Virginia.  Available at: 
http://www.natureserve.org.   
 
New England Regional Assessment Group.  2001. 

 Preparing for a Changing Climate: 

The Potential Consequences of Climate Variability and Change

.  New England Regional 

Overview.  U. S. Global Change Research Program, University of New Hampshire, 
Durham, New Hampshire. 
 
Orwig, D. A.  2002.  Ecosystem to regional impacts of introduced pests and pathogens: 
historical context, questions and issues.  

Journal of Biogeography

 29: 1471-1474.  

 
Orwig, D. A., D. R. Foster, and D. L. Mausel.  2002.  Landscape patterns of hemlock 
decline in New England due to the introduced hemlock woolly adelgid.  

Journal of 

Biogeography

 29: 1475-1488. 

 
Parshall, T. and D. R. Foster.  2002.  Fire on the New England landscape: regional and 
temporal variation, cultural and environmental controls.  

Journal of Biogeography

 29: 

1305-1318. 
 
Peterson, R. C. and R. W. Fritsch, II.  1986.  Connecticut’s venomous snakes: The 
timber rattlesnake and northern copperhead.  Bulletin 111, State Geological and Natural 
History Survey, Hartford, Connecticut. 
 
Reynolds, C.  1979.  Soil survey of Middlesex County, Connecticut.  United States 
Department of Agriculture, Soil Conservation Service, Washington DC. 
 
Ruf, C.  1985a.  Natural Resources Inventory of Higby Mountain Preserve.  Report for 
The Nature Conservancy, 55 High Street, Middletown, Connecticut. 
 
Ruf, C.  1985b.  Natural Resources Inventory of Bluff Head Preserve.  Report for The 
Nature Conservancy, 55 High Street, Middletown, Connecticut. 
 
Searcy, K. B., B. F. Wilson, and J. H. Fownes.  2003.  Influence of bedrock and aspect 
on soils and plant distribution in the Holyoke Range, Massachusetts.  

Journal of the 

Torrey Botanical Society

 130: 158-169. 

 
Shaw, H. B.  1989.  

Connecticut’s Central Park

.  M. A. Thesis, Wesleyan University, 

Middletown, Connecticut. 
 
Sultzmann, L.  1997.  First Nations Histories.  Available at 
http://www.tolatsga.org/Compacts.html 

background image

46 

 

 
The Mineral Database.  2004.  Regional report: Connecticut, USA.  Available at 
http://www.mindat.org/rloc.php?loc=Connecticut%2C+USA. 
 
Thorson, R. M.  2002.  

Stone by Stone

.  Walker and Company, New York, New York. 

 
Tuttle, M. D.  1995.  The little-known world of hoary bats.  

Bats Magazine

 13: 3-6. 

 
Twain, M.  1876.  

Old Times on the Mississippi.

  Belford Brothers Publishers, Toronto, 

Ontario.  Quote from reprint of “A literary nightmare” from the 

Atlantic Monthly

, February 

1876.  
 
U. S. Fish and Wildlife Service.  1996.  No ordinary refuge: The Silvio O. Conte National 
Fish and Wildlife Refuge Action Plan.  Turner’s Falls, Massachusetts. 
 
Waterman, L. and G. Waterman.  1989.  

Forest and Crag : A History of Hiking, Trail 

Blazing, and Adventure in the Northeast Mountains

.  Appalachian Mountain Club, 

Boston, Massachusetts.  
 
Wetherell, D. V.  1992.  Traprock Ridges of Connecticut: A Naturalist’s Guide.  
Department of Environmental Protection Bulletin 25, Hartford, Connecticut. 
 
Woodside, C.  2004.  The trail pioneers.  

Connecticut Woodlands

 69: 8-15.