background image

Revolutionary Concepts for 

Human Outer Planet Exploration 

(HOPE)

Revolutionary Concepts for 

Human Outer Planet Exploration 

(HOPE)

Pat Troutman

NASA Langley Research Center

Kristen Bethke

Princeton University

February 3, 2003

Pat Troutman

NASA Langley Research Center

Kristen Bethke

Princeton University

February 3, 2003

Presentation for

STAIF-2003

Fission Propulsion Systems for Human Missions

background image

2

Why Look at A Crewed Mission 

Beyond Mars?

Science ?.......No

Flags & Footprints?...........Been There, Done That

Tourism ?.......No

Our Destiny ? ……….We can argue all day

Monoliths and Monkeys?.............

Because it is Hard?.......  The problem pushes us beyond our Mars 

mission “norms” with respect to architecture and technology….

“If I can make it there, 

I'll make it anywhere”

as sung by Frank Sinatra

background image

3

Analogous Task

Herding Cats

in a room with

Smoke & 

Mirrors

where the floor is 

covered with

Apples & 

Oranges

background image

Human Outer Planet Exploration

Human/Robotic

Surface Systems

Apples-to-Apples 

Propulsion 

Technology Comparison

Vehicle 

Concep

ts 

and Co

nfigura

tions 

Supporting 

Infrastructure 

Requirements

Precursor Missions

Trip Tim

e

Radiati

on Exp

osure

Microg

ravity

Bimodal Nuclear Thermal Rocket

Advanced Plasma

Fusion Propulsion

Objective:

Develop revolutionary aerospace systems 

concepts for human space exploration of the solar system 
beyond Mars orbit and identify critical technology 
requirements for the realization of these systems concepts.

JPL  – JSC  – GRC  – MSFC  - LaRC

background image

5

2045 + :

Earlier robotic probes have identified what appear to 
be life forms floating in the oceans of Europa and 
embedded in the ice crust near an asteroid impact site 
on the surface of Callisto.

A crewed expedition is to be sent to the surface of 
Callisto to teleoperate the Europa submarine and 
excavate Callisto surface samples near the impact 
site.

The expedition will also establish a reusable surface 
base with an ISRU plant to support future Jovian 
system exploration     

The Mission

background image

6

Mission Requirements

Mission Requirements:

Leave from Earth-moon L1 

Crew of 6 to the Jovian system, minimum of three to the surface of Callisto.

Minimum surface stay time of 30 days

Maximum crew mission time away from L1 is 5 years

Max radiation exposure limits for crew must not be exceeded

Maximum of one year accumulated time under 1/8th G during mission for each 
crewmember

Deploy/construct surface habitat, reusable 3 crew lander and nuclear powered 
ISRU plant

Tele-operate Europa submarine for 30 days

Perform Callisto surface science

background image

7

- Fourth moon of Jupiter:  mostly outside of radiation belts
- About the size of the planet Mercury, surface at 1/8 G
- Most heavily cratered place in the solar system
- Covered with ice and asteroid dust

Mission Destination - Callisto

Asgard Impact Structure on Callisto

background image

8

Callisto Precursor Mission 

Architecture

Coast: ~5KW

E

For Data &

Controls

Subsequent

NTP Burn

Precursor Mission to Callisto including landing and and 

exploration <4 years total time.

Earth

Conventional
Launch Vehicle

Nuclear Safe Orbit

NTP Burn

Orbit Callisto

Release Probe

(Pathfinders)

Land On Callisto

Propulsive

Tether

Shock

MITEE B Bimodal NTP System

While on Cruise: ~5KW

E, 

On Surface: ~20 KW

E

For Science, Communication & Controls

Ram Manvi;08/22/02

background image

9

HOPE Piloted Vehicle Concepts

“Bimodal” Nuclear 

Thermal Rocket (BNTR)

Propulsion

MagnetoPlasmaDynamic 

(MPD) Propulsion

Variable Specific Impulse 

Magnetoplasma Rocket 

(VASIMR) Propulsion

Magnetized Target Fusion 

(MTF) Propulsion

background image

10

RASC / HOPE

Space Transportation

Radiation Environment

Earth to Callisto and back (30 day stay)

Daily Dose Equivalent

Accumulated Mission Exposure

55M

55F
45M

35M
45F
25M
35F
25F

• Two year class missions can be supported by 35 to 45 year old crew members who have logged few 
hours in space

• Four year class missions will require advanced materials such as hydrogenated nanofibers or crew areas 
shielded by hydrogen tanks

background image

11

RASC / HOPE

Space Transportation

Front View

Note differences in color scales

Half full tank

Full tank

Comments on Fuel as 
Shielding

• Fuel congregates at 
far end of rotating arm 
from centrifugal forces

• Locate crew quarters 
near outer wall within 
the last remaining fuel

• Shielding model must 
account for fuel 
depletion

• Must be coupled to 
variability of space 
environment during 
mission duration

Effects of Fuel Consumption on 

Radiation Exposure Rates

background image

Vehicle Option

P

rop

ul

si

on T

ec

hno

lo

gy

 

TR

L

T

ec

hno

log

y,

E

ng

in

ee

ring

 

& P

hys

ic

s I

ssu

es

C

om

pl

ex

ity

 o

f V

ehi

cl

es

S

upp

or

ting

 

In

fr

as

tr

uc

tu

re

 

Re

qu

irem

en

ts

# V

ehi

cl

es

 t

o P

er

fr

om

 

En

tir

e M

iss

io

n

In

itia

l T

ot

al 

V

ehic

le(

s)

 

D

ry M

ass

 a

L1

 

(inc

ludi

ng pa

yl

oa

d)

In

iti

al

 T

ot

al

 P

ro

pel

lant

 

Lo

ad

 at

 L

1

T

ot

al m

as

of

 all 

ve

hic

les

, p

rop

ella

nt

 an

pa

yl

oa

d init

ially

 at

 L

1

C

rew t

im

e i

n l

es

than

 

1/

8t

h G

C

rew 

T

im

e o

n S

ur

fac

e

Cr

ew

 T

rip

 T

im

A

w

ay

 

fr

om

 L

1

S

pec

ifi

c I

m

pl

us

e

P

er

fo

rma

nc

e Ma

rg

in

C

re

w

 S

afe

ty

BNTR Propulsion

4

G

G

R

3

TBD

980+

Y

R

NEP/MPD Propulsion

3

Y

Y

Y

3

558

190

748

30 to 365 Y(120) 4.5 years

8000

Y

Y

NEP/VASIMR Propulsion

2

R

R

Y

3

594

190

784

<30 days

R(32)

5 years 5000-30000

R

G

MTF Propulsion (30 day surface stay)

1

R

Y

Y

1

510

140

650

263

R(30)

<2 years

75000

G

G

MTF Propulsion(180 day surface stay)

1

R

Y

Y

1

550

200

750

212

G(180) < 2 years 75000

G

G

Qualitative Comparison Chart Across Vehicle Concepts

Better than other options
Comparable across options
Not as good as other options

Mission Design

Mission Performance

All vehicle options meet mission requirements

background image

HOPE Surface 

Operations 

Concepts

background image

Surface Operations

• What tasks will need to be completed on Callisto’s 

surface?

• What surface systems will exist to enable the tasks to 

be completed?

• How will the tasks be distributed among the crew and 

the automated systems?

background image

Surface Operations

Driving Assumptions

Technology Assumptions

Advanced space suits

- Adequate radiation and cold temperature protection enable up to 15 

3-hour 

excursions

during a 30-day Callisto surface stay

Precision landing capabilities

- Landing target can be reached with an error of no more than 30 meters

Autonomous deployment and operation of surface systems

- Habitat, power system, ISRU system, and navigation/communication system can 
all be autonomously deployed before crew arrival

Prevention of loss during liquid cryogen transfer over 30+ meters

Super-cold materials

- Metals that withstand 100 K enable surface vehicle mechanisms
- Structural materials that are flexible at 100 K enable inflatable surface hab
design

Brayton nuclear reactor

- Power system can deliver 400 kW

e

power at a mass of 30kg/kW

e

background image

Callisto Surface Operations Visualization

background image

Surface Hab

ISRU

30 m

Reactor

1000 m

RA

DIO

AC

TIV

ZO

NE

 – N

CR

EW

30 m

Crew Lander

TARGET ZONE 
FOR SURFACE 
HAB AND CREW 
LANDER

ICE MOUND 
BUILT TO ADD 
TO RADIATION 
SHIELD

Bulldozer/
Rover

Large Robot

CONCEPT #1

Motherbot

Small Rover

CONCEPT #2

Small 
Robots

Surface System Layout

Surface System Architecture

background image

Vehicle and Robotic Systems Concepts

Surface System Architecture

Concept #1 - “Large-scale”

• Large autonomous vehicles
• Multi-task humanoid robots
• Many points of failure on each system

Concept #2 - “Small-scale”

• No large bulldozer of large regolith transporter
• Tasks distributed among many miniaturized, single-
task robots
• Builds on micro-robots of precursor mission’s Phase 2

background image

• Crew Lander 
• Surface Habitat
• ISRU Fuel Production Plant
• Brayton Nuclear Reactor Power System                            

(2 Reactors, ~ 400 kW

e

total)

• Antennas and transmitters

Surface Hab

Crew Lander

Common
Descent
Systems

Surface System Architecture

Common Components

background image

• 2 unpressurized bulldozer/rovers
• 3 “Robonauts”

Surface System Architecture

Large-Scale Concept: Unique Components

background image

• Small rover - transports two crew members
• “Motherbot” platform - deploys and commands robots
• Miniature robots - transport surface material, perform 

science tasks

Surface System Architecture

Small-Scale Concept: Unique Components

background image

Small-Scale Concept: Miniature Robots

Surface System Architecture

Crawling

Hovering

Linked as snake

Burrowing

background image

Now that we have all these 

robots…

Why humans?

Surface Operations

background image

Surface Operations

Robotics

• All set-up and deployment activities
• All transport of surface material to ISRU plant
• All sample collection
• Scout all EVA routes

Humans

• Outside on surface only for decision-making and analysis
• Interpret information from robots and direct their subsequent actions
• Respond to contingencies
• Select  samples
• Discover what they are not told to look for

background image

Surface Operations

Autonomous Set-Up Tasks

Deploy reactors and 1000-meter cable to power 

ISRU plant and surface hab

Build ice mound to function as shielding for 

reactors

Deploy surface communication system

Transport surface material to ISRU plant

Test operation of ISRU plant and begin fuel 

production; top off tanks in surface hab lander

Inflate surface hab

Ensure connection of surface hab to 

communication system and to reactors via ISRU

background image

Surface Operations

CREW

Select sites for traversal

Select samples for 

retrieval

Curate retrieved 

samples

Examine samples -

biomarker detection

Select samples for 

return to Earth

Monitor crew health

Teleoperate robotic 

submarines in Europa’s 

subsurface ocean

ROBOTICS

Map area local to 

surface hab and 

catalogue field features

Prepare surface for 

sample collection

Collect samples

Initial sample analysis in 

field

Prevent forward and 

back contamination of 

and by samples

Science Tasks

background image

Conclusion

Concepts and technology requirements to enable 
human exploration of the outer planets have been 
identified

Roundtrip crewed mission times from 2 to 5 years to the 
Jupiter system are achievable given significant 
advances in propulsion technologies

Anonymous quote:

“HOPE sees the invisible, feels the intangible and 
achieves the impossible”