background image

 

background image

 

background image

 

 

NOVEMBER 2008 

CONTENTS 

 

Section

 

Page

 

STS-126 MISSION OVERVIEW................................................................................................ 

1

 

TIMELINE OVERVIEW .............................................................................................................. 

9

 

MISSION PROFILE................................................................................................................... 13

 

MISSION PRIORITIES ............................................................................................................. 15

 

MISSION PERSONNEL ............................................................................................................. 

17

 

STS-126 ENDEAVOUR CREW .................................................................................................. 

19

 

PAYLOAD OVERVIEW .............................................................................................................. 

29

 

MULTI-PURPOSE LOGISTICS MODULE .................................................................................................  29

 

RENDEZVOUS AND DOCKING .................................................................................................. 

35

 

UNDOCKING, SEPARATION AND DEPARTURE .......................................................................................  

36

 

ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM (ECLSS) ....................................... 

39

 

SOLAR ALPHA ROTARY JOINT (SARJ)..................................................................................... 

47

 

SPACEWALKS ......................................................................................................................... 55

 

EXPERIMENTS ......................................................................................................................... 63

 

DETAILED TEST OBJECTIVES ...............................................................................................................  63

 

SHORT-DURATION U.S. INTEGRATED RESEARCH TO BE COMPLETED DURING STS-126/ULF2 .............  

65

 

ADVANCED RESISTIVE EXERCISE DEVICE .............................................................................. 

73

 

SHUTTLE REFERENCE DATA .................................................................................................... 

77

 

CONTENTS 

background image

 

 

ii CONTENTS 

NOVEMB

08 

R 20

E

 

 

Section

 

Page

 

LAUNCH AND LANDING ........................................................................................................... 

95

 

LAUNCH ...............................................................................................................................................  95

 

ABORT-TO-ORBIT ................................................................................................................................  95

 

TRANSATLANTIC ABORT LANDING ......................................................................................................  95

 

RETURN-TO-LAUNCH-SITE...................................................................................................................  95

 

ABORT ONCE AROUND .........................................................................................................................  95

 

LANDING .............................................................................................................................................  95

 

ACRONYMS AND ABBREVIATIONS ......................................................................................... 97

 

MEDIA ASSISTANCE ............................................................................................................... 109

 

PUBLIC AFFAIRS CONTACTS .................................................................................................. 111

 

 

 

  

 

   
 
   
  
   

  

background image

 

 

NOVEMBER 2008

 

MISSION OVERVIEW

 

1

 

STS-126 MISSION OVERVIEW 

 

The STS-126 crew members take a break during a training session at NASA’s Johnson Space Center.  

From the left are astronauts Heidemarie Stefanyshyn-Piper, Shane Kimbrough, both mission 

specialists; Eric Boe, pilot; Chris Ferguson, commander; Steve Bowen, Sandra Magnus and  

Donald Pettit, all mission specialists. 

 
When the fourth space shuttle mission of the 
year is complete, the International Space Station 
will have all of the key systems needed to turn 
what is now a three-bedroom, one-bathroom 
home for three into a five-bedroom, two-bath 
residence for six. 

Space shuttle Endeavour, commanded by 
veteran space flier Navy Capt. Chris Ferguson, 
47, is scheduled to launch at 7:55 p.m. EST on 
Nov. 14 and arrive at the space station two days 
later.  The shuttle and station crews will 
collaborate on the delivery of key life support 

background image

 

 

2

 

MISSION OVERVIEW

 

NOVEMBER 2008

 

Astronauts Sandra Magnus (foreground), Expedition 18/19 flight engineer;  

Shane Kimbrough and Heidemarie Stefanyshyn-Piper, both STS-126 mission specialists,  

give a “thumbs-up” signal during a training session in one of the full-scale trainers  

in the Space Vehicle Mockup Facility at Johnson Space Center. 

and habitability systems that will enable long-
term, self-sustaining station operations after the 
shuttle fleet is retired. 

The crew will conduct four spacewalks to 
service and lubricate the complex’s two Solar 
Alpha Rotary Joints (SARJ) that allow the 

station’s photovoltaic cells to revolve like 
paddlewheels and point at the sun.  The 
starboard SARJ has had limited use since 
September 2007.  The spacewalkers also will 
install a new nitrogen tank, a global positioning 
system, antenna, and a camera on the station’s 
Integrated Truss Assembly. 

 

background image

 

 

NOVEMBER 2008

 

MISSION OVERVIEW

 

3

 

 

This graphic depicts the location of the STS-126 payload hardware. 

 
The shuttle will deliver a new flight engineer, 
Sandra Magnus, 44, to join the Expedition 18 
crew, and return Flight Engineer 
Greg Chamitoff (SHAM-eh-tawf), 45, to Earth.  
Air Force Col. Eric A. Boe, 44, will serve as 
Endeavour’s pilot.  The mission specialists are 
Navy Capt. Steve Bowen, 44; Army Lt. Col. 
Shane Kimbrough (KIM-bro), 41; Navy Capt. 
Heidemarie Stefanyshyn-Piper (stef-uh-NIH-
shun PIE-pur), 45; Donald Pettit, 53; and 
Magnus.  STS-126 will be the second spaceflight 
for Ferguson and Piper, who flew together on 
STS-115 in September 2006, and for Pettit, who 
spent six months aboard the station in 
2002-2003. 

Endeavour will carry an Italian-built reusable 
logistics module named Leonardo, which will 
deliver 14,416 pounds of supplies and 
equipment, including an advanced resistive 
exercise device, a second toilet, a galley, two 
sleep stations and a water-recycling plumbing 
system that will be integrated into the station’s 
regenerative life support system.  Leonardo will 
return to Earth aboard Endeavour at the 
conclusion of STS-126, bringing home an 
estimated 3,441 pounds of equipment and 
scientific samples from station research. 

A few hours after Endeavour’s docking on the 
third day of the flight, Magnus and Chamitoff 

background image

 

 

4

 

MISSION OVERVIEW

 

NOVEMBER 2008

 

will exchange custom-made Russian Soyuz 
spacecraft seat liners.  With that exchange, 
Magnus will become a part of the Expedition 18 
space station crew, and Chamitoff will become 
part of Endeavour’s crew. 

Magnus will join Expedition Commander and 
Air Force Col. E. Michael Fincke and Flight 
Engineer Cosmonaut Yury Lonchakov, a 
colonel in the Russian Air Force, who were 
launched to the complex in the Soyuz TMA-13 
spacecraft  on  Oct.  12  from  the  Baikonur 
Cosmodrome in Kazakhstan.  In the spring, 
Magnus will return to Earth on shuttle mission 
STS-119, while Fincke and Lonchakov will 
return in the Soyuz. 

After launch, Endeavour’s thermal protection 
heat shield will be inspected, using the 
standard procedures.  However, once 
Endeavour is docked to the station and the 
Multipurpose Logistics Module is installed at 
its Harmony common berthing port, any 
focused inspections of the shuttle’s starboard 
wing would require a hand-off of the Orbiter 
Boom Sensor System (OBSS) from the shuttle’s 
robotic arm to the station’s arm.  The OBSS uses 
laser devices and cameras to map the shuttle’s 
wings and nose cap. 

Ferguson will be at Endeavour’s aft flight deck 
controls on the third day as the shuttle 
approaches the station for docking.  Flying just 
600 feet below the complex, Endeavour will 
execute a slow rotational back flip maneuver, 
presenting its belly and other areas of its heat 
protective tiles to station residents Fincke and 
Chamitoff, who will use digital cameras 
equipped with 400 and 800 millimeter lenses to 
acquire detailed imagery. 

Endeavour is scheduled to dock to the forward 
docking port at the end of the station’s 
Harmony module at 4:56 p.m. EST Nov. 16.  
About two hours later, hatches will be opened 
between the two spacecraft to allow the 

 

10 crew members to greet one another for the 
start of nine days of joint operations. 

Following a standard safety briefing by station 
Commander Fincke, the crews will exchange 
Magnus for Chamitoff as the new station crew 
member, prepare for the next day’s spacewalk, 
and activate a Station-to-Shuttle Power Transfer 
System to provide additional electricity for the 
longer operation of shuttle systems. 

The night before the first spacewalk, Piper and 
Bowen will move into the Quest airlock for the 
overnight “campout.”  The “campout” helps to 
purge nitrogen from their bloodstreams, 
preventing decompression sickness once they 
move out into the vacuum of space.  Piper, who 
conducted two spacewalks on STS-115, will be 
designated EV 1, or extravehicular crew 
member 1.  She will wear the suit bearing the 
solid red stripes for the spacewalks that will be 
conducted on flight days 5, 7 and 9.  Bowen will 
be performing his first spacewalks as 
extravehicular crew member 2 and will wear 
the solid white suit on flight days 5, 9 and 11.  
Kimbrough will serve as extravehicular crew 
member 3 and will wear the suit with broken 
red and white stripes on flight days 7 and 11.  
The spacewalkers will repeat the “campout” 
preparations the nights before the second, third 
and fourth spacewalks. 

background image

 

 

NOVEMBER 2008

 

MISSION OVERVIEW

 

5

 

 

Astronaut Steve Bowen, STS-126 mission specialist, participates in an Extravehicular Mobility  

Unit (EMU) spacesuit fit check in the Space Station Airlock Test Article (SSATA) in the Crew 

Systems Laboratory at NASA’s Johnson Space Center.  Astronaut Shane Kimbrough, mission 

specialist, assisted Bowen. 

On the fifth day of the flight, Piper and Bowen 
will begin the first spacewalk by replacing a 
depleted nitrogen tank and a device used to 
help coolant flow along the truss, the backbone 
of the station.  They will get help from Pettit 
and Magnus, who will operate the station’s 
robotic arm, plucking the new tank and Flex 
Hose Rotary Coupler (FHRC) from 
Endeavour’s Lightweight Mission Peculiar 
Equipment Support Structure Carrier (LMC) 
and positioning them for the spacewalkers.  
Piper and Bowen will remove the old units and 
secure them for return to Earth.  Piper and 
Bowen also will remove covers from the front 

of the Japanese Kibo (in English, “Hope”) 
module to prepare for the installation of the 
module’s exposed facility during the STS-127 
mission in 2009.  The pair also will begin 
inspecting, cleaning and lubricating the 
starboard SARJ race ring and replacing 11 of its 
12 trundle bearings.  One trundle bearing was 
replaced on STS-124 in June.  The bearings will 
be returned to Earth for inspection and 
additional failure analysis. 

On flight day seven, Piper and Kimbrough will 
relocate two Crew Equipment Translation Aid 
(CETA) carts, setting the stage for the 

 

background image

 

 
relocation of External Stowage Platform 3.  The 
spacewalkers also will lubricate the end 
effector, or hand, on the one end of Canadarm2, 
the station’s robotic arm.  There are two such 
Latching End Effectors, one on each end of the 
arm, which allow it to move about the station 
and maneuver equipment for assembly and 
maintenance.  Piper and Kimbrough will wrap 
up the spacewalk with additional lubrication 
and trundle bearing replacement on the 
starboard SARJ. 

On flight day nine, Piper and Bowen will 
devote their entire spacewalk to additional 
cleaning, lubricating and replacement of 
starboard SARJ trundle bearings. 

The final spacewalk of the mission is scheduled 
for flight day 11.  Bowen and Kimbrough will 
team up to remove a multi-layer insulation 
blanket from Kibo.  Kimbrough then will move 
to the opposite end of the station’s truss to 
lubricate the port SARJ.  Bowen will install a 
protective cover on Kibo’s berthing mechanism, 
where its External Facility Berthing Mechanism 
will be connected.  Bowen also will install a 
handrail and a Global Positioning System 
antenna on Kibo’s logistics module and a new 
television camera on the truss.  Kimbrough will 
replace insulation on several cooling loops on 
the port truss.  At the end of the spacewalk, 
both will perform any get-ahead tasks time will 
allow. 

On flight day 12, the crew will complete the 
transfer of equipment and supplies from 
Leonardo and the space shuttle’s middeck to 
the station.  They then will button up Leonardo 
for its move back to Endeavour’s payload bay 
on the following day and transfer spacewalk 
equipment and two spacesuits back to 
Endeavour. 

6

 

MISSION OVERVIEW

 

NOVEMBER 2008

 

On flight day 13, Endeavour’s crew will take 
half the day off while the expedition crews 
continue handover discussions. 

Endeavour is scheduled to undock from the 
station at 10:31 a.m. EST on Thanksgiving Day, 
flight day 14.  Boe, flying the shuttle from the 
aft flight deck, will guide the orbiter on a fly 
around of the complex so the crew can capture 
detailed imagery of the station’s configuration.  
Once Endeavour’s maneuvering jets are fired to 
separate it from the station, Boe, Pettit and 
Kimbrough will take turns manipulating the 
shuttle’s robotic arm and the OBSS to conduct a 
“late” inspection of the shuttle’s heat shield, a 
final opportunity to confirm Endeavour’s 
readiness to return to Earth. 

On flight day 15, Ferguson, Boe and Pettit also 
will conduct the traditional checkout of the 
orbiter’s flight control surfaces and steering jets 
in preparation for landing the next day.  The 
shuttle crew will stow equipment and supplies 
that were used during the mission, berth the 
OBSS onto the right-hand sill of the payload 
bay, and shut down the shuttle’s robotic arm 
systems for the remainder of the mission.  The 
entire crew will conduct a review of landing 
procedures. 

Boe and Kimbrough will spring-deploy a small 
satellite, the Picosat Solar Cell (PSSC) 
Experiment, from the shuttle cargo bay after 
undocking from the station.  The 5-by-10-inch 
satellite, a Department of Defense Space Test 
Program experiment sponsored by the Air 
Force Research Laboratory and The Aerospace 
Corp., will test two types of new solar cells in 
the harsh space environment.  The performance 
of the solar cells and their degradation over 
time will be recorded and used to determine 
their flight worthiness. 

background image

 

 

NOVEMBER 2008

 

MISSION OVERVIEW

 

7

 

 

Backdropped by a blue and white Earth, space shuttle Endeavour approaches the  

International Space Station during STS-123 rendezvous and docking operations in March 2008. 

On flight day 16, the crew will stow any 
remaining equipment, and Chamitoff will set 
up a special “recumbent” seat in the middeck to 
assist him as he readapts to Earth’s gravity 
following three months of weightlessness. 

Endeavour is scheduled to return to Earth on 
Saturday, Nov. 29, at 2 p.m. EST, landing at 
NASA’s Kennedy Space Center in Florida, and 
bringing to an end its 22nd mission, the 27th 
shuttle flight to the International Space Station 
and the 124th flight in shuttle program history. 

background image

 

 

8

 

MISSION OVERVIEW

 

NOVEMBER 2008

 

 

Astronaut Chris Ferguson (right), STS-126 commander, briefs his crew in preparation for a  

training session.  From the left are astronauts Donald Pettit, Shane Kimbrough, Steve Bowen, 

Heidemarie Stefanyshyn-Piper, all mission specialists; Sandra Magnus, Expedition 18/19 flight 

engineer; and Eric Boe, pilot. 

 

background image

 

 

TIMELINE OVERVIEW 

 

NOVEMBER 2008 

TIMELINE OVERVIEW 

9

 

Flight Day 1 

 

Launch 

 

Payload Bay Door Opening 

 

Ku-Band Antenna Deployment 

 

Shuttle Robotic Arm Activation 

 

Umbilical Well and Handheld External 
Tank Photo Downlink 

Flight Day 2 

 

Endeavour Thermal Protection System 
Survey with Shuttle Robotic Arm/Orbiter 
Boom Sensor System (OBSS) 

 

Extravehicular Mobility Unit Checkout 

 

Centerline Camera Installation 

 

Orbiter Docking System Ring Extension 

 

Orbital Maneuvering System Pod Survey 

 

Rendezvous Tools Checkout 

Flight Day 3 

 

Rendezvous with the International Space 
Station 

 

Rendezvous Pitch Maneuver Photography 
by the Expedition 18 Crew 

 

Docking to Harmony/Pressurized Mating 
Adapter-2 

 

Hatch Opening and Welcoming 

 

Magnus and Chamitoff Exchange Soyuz 
Seatliners; Magnus Joins Expedition 18, 
Chamitoff Joins the STS-126 Crew 

 

OBSS Handoff from Canadarm2 to Shuttle 
Robotic Arm 

Flight Day 4 

 

Canadarm2 Grapple and Unberthing of 
Leonardo Multi-Purpose Logistics Module 
(MPLM) from Endeavour’s cargo bay 

 

Installation of Leonardo MPLM onto Nadir 
Port of Harmony/Node 2 

 

Shuttle/ISS Transfers 

 

Leonardo MPLM Ingress 

 

EVA 1 Procedure Review 

 

EVA 1 Campout by Piper and Bowen 

Flight Day 5 

 

EVA Preparations 

 

EVA 1 by Piper and Bowen (Nitrogen Tank 
Assembly replacement, assorted station 
assembly tasks, start of cleaning and 
lubrication of starboard Solar Alpha Rotary 
Joint) 

 

Shuttle/ISS Transfers 

background image

 

 

10 TIMELINE 

OVERVIEW 

NOVEMBER 

2008

 

Flight Day 6 

 

Start of Installation of New Environmental 
Systems and Crew Habitability Equipment 
for Six-Person Crew 

 

Shuttle Robotic Arm/OBSS Focused 
Inspection of Endeavour’s Thermal 
Protection System, if Required 

 

Shuttle/ISS Transfers 

 

EVA 2 Procedure Review 

 

EVA 2 Campout by Piper and Kimbrough 

Flight Day 7 

 

EVA Preparations 

 

EVA 2 by Piper and Kimbrough (Crew and 
Equipment Translation Aid (CETA) Cart 
Relocation, lubrication of Canadarm2 end 
effector, continuation of cleaning and 
lubrication of starboard Solar Alpha Rotary 
Joint) 

 

GPS Antenna Assembly 

 

Shuttle/ISS Transfers 

Flight Day 8 

 

Kibo Experiment Facility Berthing 
Mechanism Checkout 

 

Camera System Assembly 

 

Joint Crew News Conference 

 

Crew Off Duty Time 

 

Shuttle/ISS Transfers 

 

EVA 3 Procedure Review 

 

EVA 3 Campout by Piper and Bowen 

Flight Day 9 

 

EVA Preparations 

 

EVA 3 by Piper and Bowen (continuation of 
cleaning and lubrication of starboard Solar 
Alpha Rotary Joint) 

 

Shuttle/ISS Transfers 

Flight Day 10 

 

Crew Off Duty Period 

 

Shuttle/ISS Transfers 

 

EVA 4 Procedure Review 

 

EVA 4 Campout by Bowen and Kimbrough 

Flight Day 11 

 

EVA Preparations 

 

EVA 4 by Bowen and Kimbrough (Thermal 
cover removal from Kibo module, 
lubrication of port Solar Alpha Rotary Joint, 
installation of GPS antenna on Kibo, 
thermal cover removal from P3 truss, 
installation of camera system on truss) 

 

Shuttle/ISS Transfers 

Flight Day 12 

 

Final Shuttle/ISS Transfers 

 

Leonardo MPLM Egress and 
Depressurization 

 

Canadarm2 Removal of Leonardo MPLM 
from Harmony/Node 2 and Berthing in 
Endeavour’s Cargo Bay 

background image

 

 

NOVEMBER 2008 

TIMELINE OVERVIEW 

11

 

Flight Day 13 

 

Crew Off Duty Time 

 

Rendezvous Tool Checkout 

 

Final Farewells and Hatch Closure 

 

Centerline Camera Installation 

Flight Day 14 

 

Undocking 

 

Flyaround of the International Space Station 

 

Final Separation 

 

OBSS Late Inspection of Endeavour’s 
Thermal Protection System 

Flight Day 15 

 

Flight Control System Checkout 

 

Reaction Control System Hot-Fire Test 

 

Picosat Deployment 

 

Cabin Stowage 

 

Chamitoff’s Recumbent Seat Set Up 

 

Crew Deorbit Briefing 

 

Ku-Band Antenna Stowage 

Flight Day 16 

 

Deorbit Preparations 

 

Payload Bay Door Closing 

 

Deorbit Burn 

 

NASA’s Kennedy Space Center Landing 

background image

 

 

12 TIMELINE 

OVERVIEW 

NOVEMBER 

2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

13

MISSION PROFILE 

 

MISSION PROFILE 

 

CREW 

Commander:

 Chris 

Ferguson 

Pilot:

 Eric 

Boe 

Mission Specialist 1:

 Donald 

Pettit 

Mission Specialist 2:

 Steve 

Bowen 

Mission Specialist 3:

 Heidemarie 

 Stefanyshyn-Piper

Mission Specialist 4:

 Shane 

Kimbrough 

Mission Specialist 5:

  Sandra Magnus (up) 

Mission Specialist 6: 

Greg Chamitoff (down)

 

LAUNCH 

Orbiter: 

Endeavour (OV-105) 

Launch Site: 

Kennedy Space Center 
Launch Pad 39A 

Launch Date: 

Nov. 14, 2008 

Launch Time: 

7:55 p.m. EST (Preferred 
In-Plane launch time for 
11/14) 

Launch Window: 

5 minutes 

Altitude: 

122 Nautical Miles 
(140.4 miles) Orbital 
Insertion; 190 nautical 
miles (218.6 miles) ISS 
rendezvous altitude 

Inclination: 

51.6 Degrees 

Duration: 

14 Days 18 Hours 
5 Minutes 

VEHICLE DATA 

Shuttle Liftoff Weight:

 4,523,132 

pounds 

Orbiter/Payload Liftoff Weight:

 266,894 

pounds 

Orbiter/Payload Landing Weight:

 223,422 

pounds 

Software Version:

 OI-33 

 

Space Shuttle Main Engines: 

SSME 1:

 2047 

SSME 2:

 2052 

SSME 3:

 2054 

External Tank:

 ET-129 

SRB Set:

 BI-136 

RSRM Set:

 104 

SHUTTLE ABORTS 

Abort Landing Sites 

RTLS: 

Kennedy Space Center Shuttle 
Landing Facility 

TAL: 

Primary – Zaragoza 

AOA: 

Primary – Kennedy Space Center 

LANDING 

Landing Date: 

Nov. 29, 2008 

Landing Time: 

2 p.m. EST 

Primary landing Site: 

Kennedy Space Center 
Shuttle Landing Facility 

PAYLOADS 

27th station flight (ULF2), Multi-Purpose 
Logistics Module (MPLM) 

background image

 

 

14 

MISSION PROFILE 

NOVEMBER 2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

MISSION PRIORITIES 

15

 

MISSION PRIORITIES 

 

1.  Dock Endeavour to Pressurized Mating 

Adapter-2 and perform mandatory safety 
briefing for all crew members 

2.  Rotate Expedition 17/18 Flight Engineer and 

NASA Science Officer Greg Chamitoff with 
Expedition 18 Flight Engineer and NASA 
Science Officer Sandra Magnus 

3.  Berth, activate and check out Multi-Purpose 

Logistics Module (MPLM) Leonardo using 
the space station’s robotic arm 

4.  Perform MPLM Passive Common Berthing 

Mechanism (PCBM) sealing surface 
inspection 

5.  Transfer mandatory quantities of water 

from Endeavour to the International Space 
Station 

6.  Transfer critical items per Utilization 

Logistics Flight-2 transfer priority list 

7.  Return MPLM to the shuttle cargo bay 

8.  Transfer and install space station MPLM 

items/racks to the space station: 

 

Water Recovery System (WRS) 1 to 
Destiny laboratory, WRS 2 to Destiny 
laboratory, Waste and Hygiene 
Compartment (WHC) to Destiny 
laboratory 

 

Relocate cycle ergometer with vibration 
isolation and stabilization (CEVIS) using 
the CEVIS relocation adaptation bracket 
hardware to accommodate the 
installation of the WHC 

 

Expedite the Processing of Experiments 
to Space Station rack No. 6 (includes 
galley) to Destiny laboratory 

 

Zero-gravity Stowage Rack (ZSR) to 
Columbus laboratory 

 

Crew quarters to Harmony module 

 

Advanced Resistive Exercise Device to 
space station temp stow 

 

Crew Health Care System 2 (ZSR) to 
Kibo laboratory 

 

Combustion Integration Rack Passive 
Rack Isolation System to Destiny 
laboratory 

 

ZSR to Kibo laboratory 

9.  Transfer flex hose rotary coupler from the 

Lightweight Multi-Purpose Experiment 
Support Structure Carrier (LMC) to the 
External Stowage Platform (ESP) 3 

10.  Return empty nitrogen tank assembly flight 

support equipment from the ESP 3 to the 
LMC 

11.  Relocate two Crew and Equipment 

Translation Aid (CETA) carts from 
starboard-starboard to port-port 

12.  Perform starboard Solar Alpha Rotary Joint 

(SARJ) activities 

13. Perform minimum crew handover of 

12 hours per rotating crew member 
(including crew safety handover) 

14.  Transfer additional cargo items 

background image

 

 

16 

MISSION PRIORITIES 

NOVEMBER 2008

 

15.  Install and return respiratory support packs 

and radiation area monitors 

16.  Perform space station daily payload status 

checks as required 

17.  Perform assembly and activation of six-

person crew system hardware 

18.  Remove WRS launch restraint and install 

Orbital Replacement Unit 

19.  Perform space station payload research 

operations tasks, sortie experiment activities 
and short-duration bioastronautics 
investigations 

20.  Deploy pico-satellite solar cell experiment 

21.  Transfer and install Harmony resupply 

stowage to MPLM for return 

22.  Perform external facility berthing 

mechanism activities 

23.  Install/remove Antimicrobial Applicator 

(AmiA) in the Japanese Experiment Module 

24.  Remove failed Columbus return fan 

assembly for return 

background image

 

 

NOVEMBER 2008 

MISSION PERSONNEL 

17

 

MISSION PERSONNEL 

 

KEY CONSOLE POSITIONS FOR STS-126 (ENDEAVOUR) 

 Flt. 

Director CAPCOM PAO 

Ascent 

Bryan Lunney 

Alan Poindexter 
Greg (Box) Johnson 
(Weather) 

Kelly Humphries 

Orbit 1 (Lead) 

Mike Sarafin 

Steve Robinson 

Kelly Humphries 
(Lead) 

Orbit 2 

Tony Ceccacci 
(FD 1-12) 
Paul Dye 
(FD 13-EOM) 

Jim Dutton 

Brandi Dean 

Planning 

Paul Dye  
(FD 1-3) 
Kwatsi Alibaruho  

Shannon Lucid 

John Ira Petty 

(FD 4-EOM) 

Entry 

Bryan Lunney 

Alan Poindexter 
Greg (Box) Johnson 
(Weather) 

Kelly Humphries 

Shuttle Team 4 

Richard Jones 

N/A 

N/A 

ISS Orbit 1 

Holly Ridings 

Terry Virts 

N/A 

ISS Orbit 2 (Lead) 

Ginger Kerrick 

Mark Vande Hei 

N/A 

ISS Orbit 3 

Brian Smith 

Robert Hanley 

N/A 

Station Team 4 

Courtenay McMillan 

 

 

HQ PAO Representative at KSC for Launch – 

John Yembrick

 

JSC PAO Representative at KSC for Launch

 – Nicole Cloutier

 

KSC Launch Commentator

 – Candrea Thomas

 

KSC Launch Director

 – Mike Leinbach

 

NASA Launch Test Director

 – Charlie Blackwell-Thompson 

background image

 

 

18 

MISSION PERSONNEL 

NOVEMBER 2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

CREW 

 

19

STS-126 ENDEAVOUR CREW 

 

 
The STS-126 patch represents space shuttle 
Endeavour on its mission to help complete  
the assembly of the International Space 

 

Station (ISS).  The inner patch outline depicts 
the Multi-Purpose Logistics Module (MPLM) 
Leonardo.  This reusable logistics module will 
carry the equipment necessary to sustain a crew 
of six onboard the station and will include 
additional crew quarters, exercise equipment, 
galley, and life support equipment. 

In addition, a single expedition crew member 
will launch on STS-126 to remain on the space 

station, replacing an expedition crew member 
who will return home with the shuttle crew.  
Near the center of the patch, the constellation 
Orion reflects the goals of the human 
spaceflight program to return us to the moon 
and prepare us for journeys to Mars.  The moon 
and the Red Planet are also shown.  At the top 
of the patch is the gold symbol of the astronaut 
office.  The sunburst, just clearing the horizon 
of the magnificent Earth, powers all these 
efforts through the solar arrays of the space 
station orbiting high above. 

 

background image

 

 

20 CREW 

NOVEMBER 

2008

 

 

 

The STS-126 crew members take a break during a training session at NASA’s Johnson Space Center.  

From the left are astronauts Heidemarie Stefanyshyn-Piper, Shane Kimbrough, both mission 

specialists; Eric Boe, pilot; Chris Ferguson, commander; Steve Bowen, Sandra Magnus and Donald 

Pettit, all mission specialists. 

 

Short biographical sketches of the crew follow 
with detailed background available at: 

http://www.jsc.nasa.gov/Bios/

 

background image

 

 

NOVEMBER 2008 

CREW 

21

 

STS-126 CREW BIOGRAPHIES 

 

Chris Ferguson 

 
Navy Capt. Chris Ferguson will lead the crew 
of STS-126 on the 27th shuttle mission to the 
International Space Station.  Ferguson served as 
the pilot of STS-115 in 2007 and has logged 
more than 12 days in space.  He has overall 
responsibility for the execution of the mission, 
orbiter systems operations and flight 

operations, including landing.  In addition, 
Ferguson will fly the shuttle in a procedure 
called the rendezvous pitch maneuver while 
Endeavour is 600 feet below the complex to 
enable the station crew to photograph the 
shuttle’s heat shield.  He then will dock 
Endeavour to the station. 

background image

 

 

 

Eric Boe 

 

Air Force Col. Eric Boe will serve as the pilot  
for the 15-day mission.  He has more than 
4,000 flight hours in more than 45 different 
aircraft.  STS-126 will be his first spaceflight.  
Since selection as an astronaut in 2000, Boe has 
served as the director of operations at the 
Gagarin Cosmonaut Training Center in 

 

Star City, Russia, and worked on the new  

 

22 CREW 

NOVEMBER 2008

 

Ares I crew launch vehicle and Orion crew 
exploration vehicle.  During the mission, Boe 
will be responsible for orbiter systems 
operations and shuttle robotic arm operations 
and will aid Ferguson in the rendezvous and 
docking with the station.  Boe will fly 
Endeavour around the station at the end of the 
joint mission. 

background image

 

 

NOVEMBER 2008 

CREW 

23

 

 

Donald Pettit 

Veteran astronaut Donald Pettit will make his 
second spaceflight as mission specialist 1 on 
STS-126.  Pettit, who holds a doctorate in 
chemical engineering, has more than five and a 
half months of spaceflight experience.  He 
served as a flight engineer during Expedition 6 

on the International Space Station.  As part of 
his long-duration mission, he performed two 
spacewalks.  His role on this shuttle mission 
will include operating the shuttle robotic arm 
and serving as the lead for the transfer of cargo 
from the shuttle to the station. 

background image

 

 

24 CREW 

NOVEMBER 

2008

 

 

Steve Bowen 

Navy Capt. Steve Bowen will be making his 
first spaceflight as mission specialist 2 on 

 

STS-126.  Bowen is the first submarine officer 
selected by NASA as an astronaut.  He joined 
the astronaut corps in 2000 and served technical 

duties in the space station operations branch.  
For this mission, he will conduct three 
spacewalks to replace a nitrogen tank, clean the 
solar alpha rotary joint and replace trundle 
bearing assemblies. 

background image

 

 

NOVEMBER 2008 

CREW 

25

 

 

Heidemarie Stefanyshyn-Piper 

Navy Capt. Heidemarie Stefanyshyn-Piper will 
be on her second spaceflight.  She served as a 
mission specialist on STS-115, logging more 
than 12 days in space.  She also completed two 

spacewalks on her first mission.  She serves as 
the lead spacewalker for this mission and is 
scheduled to perform three spacewalks. 

background image

 

 

26 CREW 

NOVEMBER 

2008

 

 

Shane Kimbrough 

Army Lt. Col. Shane Kimbrough will serve as 
mission specialist 4 for his first spaceflight 
mission.  Kimbrough first worked for the 
NASA team as part of the Aircraft Operations 
Division at Ellington Field in Houston, where 

he served as a flight simulation engineer on the 
Shuttle Training Aircraft.  He was selected as an 
astronaut in 2004.  Kimbrough will perform two 
spacewalks during the mission. 

background image

 

 

NOVEMBER 2008 

CREW 

27

 

 

Sandra Magnus 

Astronaut Sandra Magnus will be making her 
second flight to space on STS-126, her ride for a 
longer mission on the space station.  Magnus, 
who holds a doctorate from the Georgia 
Institute of Technology, first flew as a mission 
specialist aboard STS-112 in 2002.  On that 
mission, she acquired nearly 11 days of 

spaceflight experience.  Following that flight, 
she was assigned to work with the Canadian 
Space Agency to prepare Dextre, the Special 
Dexterous Manipulator robot, for installation 
on the space station.  Magnus is scheduled to 
return to Earth on STS-119. 

background image

 

 

28 CREW 

NOVEMBER 

2008

 

 

Greg Chamitoff 

Astronaut Greg Chamitoff is serving as flight 
engineer and NASA science officer of the 
Expedition 18 crew on the space station. 

 

Chamitoff, who is on his first spaceflight, rode 
to the station as part of the STS-124 crew and 
will have accrued nearly six months in space 
when STS-126 arrives.  He holds a doctorate in 
aeronautics and astronautics.  Selected by 

NASA in 1998, Chamitoff has worked in the 
astronaut office robotics branch, was the lead 
CAPCOM for Expedition 9 and was a crew 
support astronaut for Expedition 6.  Chamitoff 
served as an aquanaut for nine days as part of 
the third NEEMO mission in 2002. 

background image

 

 

NOVEMBER 2008 

PAYLOAD OVERVIEW 

29

 

PAYLOAD OVERVIEW 

 

In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Boeing 

technicians prepare to close the hatch on the Multi-Purpose Logistics Module Leonardo.  The 

module is the payload for space shuttle Endeavour’s STS-126 mission to the  

International Space Station.  Photo courtesy of NASA. 

 

MULTI-PURPOSE LOGISTICS MODULE 

Leonardo Makes Fifth Voyage to the 
International Space Station 

The primary goal of the STS-126/ULF2 mission 
is to provide additional capability for the 
International Space Station to house astronauts 
and to increase the station crew size from three 
to the desired six crew members by spring 2009. 

Leonardo, a large cargo container inside 
Endeavour’s payload bay, will bring supplies 
and equipment to the International Space 

Station to help prepare the outpost for a six-
member crew.  The supplies include 
replacement Trundle Bearing Assemblies 
(TBAs) for the station’s ailing Starboard Solar 
Alpha Rotary Joint (SARJ).  In all, more than 
1,000 items will be delivered in the Multi-
Purpose Logistics Module (MPLM). 

Leonardo is one of three differently named 
large, reusable pressurized MPLMs used to 
ferry cargo back and forth to the station.  
Including STS-126, the MPLMs have flown 
eight times since 2001.  Leonardo was the first 

background image

 

 
MPLM to deliver supplies to the station and 
STS-126 is its fifth flight.  The cylindrical 
modules include components that provide life 
support, fire detection and suppression, 
electrical distribution and computers when 
attached to the station. 

30 PAYLOAD 

OVERVIEW 

NOVEMBER 2008

 

 

Leonardo Specifications 

Dimensions: 

Length: 21 

feet 

Diameter: 15 feet 

Weighs: 4.5 

tons 

Payload Mass: 

27,899 lbs 

 

 

The Italian-built, U.S.-owned logistics modules 
are capable of carrying more than 7.5 tons 
(15,000 pounds) of cargo, spares and supplies, 
the equivalent of a semi-truck trailer.  The 
modules bring equipment to and from the 
space station, such as container racks with 
science equipment, science experiments from 
NASA and its international partners, spare 
parts, and other hardware items for return, 
such as completed experiments, system racks, 

space station hardware that needs repair and 
refuse.  Some of the items are intended for 
disposal on Earth, while others are for analysis 
and data collection by hardware providers and 
scientists.  In addition to Leonardo, Endeavour 
will carry the Lightweight Multi-Purpose 
Experiment Support Structure Carrier and a 
spare Flex Hose Rotary Coupler Unit (FHRC) 
for a future replacement spare.  The shuttle will 
return a depleted Nitrogen Tank Assembly 
(NTA), which will be refilled and sent back to 
the station in 2010.  The FHRC provides two 
isolated paths for distribution of ammonia 
between the space station radiators and the rest 
of the station.  The NTA provides a high-
pressure gaseous nitrogen supply to control the 
flow of ammonia out of the Ammonia Tank 
Assembly (ATA). 

Carrying 16 system and cargo racks, Leonardo 
will fly with modifications that will allow  
12 additional cargo bags the size of carry-on 
suitcases to be flown inside the module’s rear 
end cone. 

 

Foot Restraint Assembly.

 

Two additional foot restraints will be flown on

 

Leonardo

 

to elevate shorter crew members. 

background image

 

 

NOVEMBER 2008 

PAYLOAD OVERVIEW 

31

 

 

The above image is a crew quarter rack.  Similar equipment will be carried to the  

space station on STS-126. 

background image

 

 

32 PAYLOAD 

OVERVIEW 

NOVEMBER 

2008

 

 

The above image is the advanced Resistive Exercise Device, 

designated aRED. 

Leonardo will carry two crew quarters racks 
that will be installed inside the Harmony node, 
an advanced Resistive Exercise Device, 
designated aRED, two Water Reclamation 
Racks that will recycle urine into potable water, 
a Combustion Integration Rack that will 
analyze the physics of combustible gases, a 
Waste and Hygiene Compartment (WHC) rack 
including a toilet, a galley that will be located in 
the U.S. Destiny laboratory, three Zero-Gravity 
storage racks for stowage of large quantities of 

hardware, four handrail extender assemblies to 
increase crew members’ mobility as they float 
about the station, an antimicrobial applicator to 
remove bacteria from cooling and fluid lines, 
and two additional foot restraints to elevate 
shorter crew members. 

Also included in Leonardo is the General 
Laboratory Active Cryogenic ISS Experiment 
Refrigerator, or GLACIER, a double locker 
cryogenic freezer for transporting and 

background image

 

 

NOVEMBER 2008 

PAYLOAD OVERVIEW 

33

 

preserving science experiments that will remain 
in orbit at the end of the mission.  The freezer 
provides thermal control between +4° Celsius 
and -160° Celsius and can operate in both the 
space shuttle’s middeck and the EXPRESS Rack 
in orbit.  The EXPRESS Rack system supports 
science payloads in several disciplines, such as 
biology, chemistry, physics, ecology and 
medicine, including commercial activities.  In 
the active mode, GLACIER can be transported 
in the middeck, but for passive transport, it is 
flown in the logistics module.  Additionially, an 
incubator/refrigerator, the Microgravity 
Experiment Research Locker Incubator, or 
MERLIN, will fly in the MPLM.  Though 
originally used for thermal control of scientific 
experiments, it will remain on the outpost and 
be used to store drinking beverages and food 
for a six-member station crew. 

Spare parts that are being transported include 
11 SARJ trundle bearing assemblies that 
lubricate and allow the giant rotary joint to turn 
the Starboard 4 and Starboard 6 Solar Array 
Wings, a new ISS External Television camera 
that will be installed during the mission’s 
fourth spacewalk, two hydrogen sensor units 
for detecting cross-contamination in the 
station’s Oxygen Generation System, and two 
crew headsets with cabling and controls for 
improved space-to-ground and crew-to-crew 
communications. 

The rear end cone section where the 
12 

additional bags will be located was 

redesigned to allow the MPLM to carry up to 
an additional 480 to 600 pounds of cargo.  The 
redesign created a structural support rack, like 
the cargo rack on top of vans and sport utility 
vehicles, to hold items in place.  This also will 
allow for expanded cargo capacity for the 
remaining MPLM flights. 

 

GLACIER 

background image

 

 

34 PAYLOAD 

OVERVIEW 

NOVEMBER 

2008

 

The space shuttle flies MPLMs in its cargo bay 
when a large quantity of hardware has to be 
ferried to the station at one time.  The modules 
are attached to the inside of the bay for launch 
and landing.  When in the cargo bay, the 
modules are independent of the shuttle cabin, 
and there is no passageway for shuttle crew 
members to travel from the shuttle cabin to the 
module.  After the shuttle has docked to the 
station, the MPLM is mated to the Node 2 nadir 
port of the station, using the station’s robotic 
arm.  In the event of a failure or issue that 
prevents the successful latching of the MPLM 
to the nadir port, the MPLM can be mated to 
the zenith port.  Nodes are modules that 
connect the elements to the station.  For its 

return trip to Earth, Leonardo will be detached 
from the station and positioned back into the 
shuttle’s cargo bay. 

Leonardo is named after the Italian inventor 
and scientist Leonardo da Vinci.  The two other 
modules are named Raffaello, after master 
painter and architect Raffaello Sanzio, and 
Donatello, for one of the founders of modern 
sculpture, Donato di Niccolo Di Betto Bardi.  
Raffaello has flown three times.  Leonardo has 
flown the most because it is equipped with 
programmable heater thermostats on the 
outside of the module that allow for more 
mission flexibility.  There are only two more 
MPLM flights scheduled before the station is 
complete and the space shuttle retires in 2010. 

 

Antimicrobial Applicator 

The applicator removes bacteria from cooling and fluid lines on the space station. 

 

 

background image

 

 

NOVEMBER 2008 

RENDEZVOUS & DOCKING 

35

 

RENDEZVOUS AND DOCKING 

 
Rendezvous begins with a precisely timed 
launch which puts the shuttle on a trajectory to 
chase the International Space Station.  A series 
of engine firings over the next two days will 
bring Endeavour to a point about 50,000 feet 
behind the station. 

Once there, Endeavour will start its final 
approach.  About 2.5 hours before docking, the 
shuttle’s jets will be fired during what is called 
the terminal initiation burn.  The shuttle will 
cover the final miles to the station during the 
next orbit. 

As Endeavour moves closer to the station, its 
rendezvous radar system and trajectory control 

sensor will give the crew range and closing-rate 
data.  Several small correction burns will place 
Endeavour about 1,000 feet below the station. 

Commander Chris Ferguson, with help from 
Pilot Eric Boe and other crew members, will 
manually fly the shuttle for the remainder of 
the approach and docking. 

He will stop Endeavour about 600 feet below 
the station.  Once he determines there is proper 
lighting, he will maneuver Endeavour through 
a nine-minute back flip called the Rendezvous 
Pitch Maneuver.  That allows the station crew 
to take as many as 300 digital pictures of the 
shuttle’s heat shield. 

 

The above image illustrates Endeavour conducting the Rendezvous Pitch Maneuver before 

docking to the space station. 

background image

 

 

36 

RENDEZVOUS & DOCKING 

NOVEMBER 2008

 

Station crew members E. Michael Fincke and 
Greg Chamitoff will use digital cameras with 
400 mm and 800 mm lenses to photograph 
Endeavour’s upper and bottom surfaces 
through windows of the Zvezda Service 
Module.  The 400 mm lens provides up to  
3-inch resolution and the 800 mm lens up to  
1-inch resolution. 

The photography is one of several techniques 
used to inspect the shuttle’s thermal protection 
system for possible damage.  Areas of special 
interest include the thermal protection tiles, the 
reinforced carbon-carbon of the nose and 
leading edges of the wings, landing gear doors 
and the elevon cove. 

The photos will be downlinked through the 
station’s Ku-band communications system for 
analysis by systems engineers and mission 
managers. 

When Endeavour completes its back flip, it will 
be back where it started, with its payload bay 
facing the station. 

Ferguson then will fly Endeavour through a 
quarter circle to a position about 400 feet 
directly in front of the station.  From that point 
he will begin the final approach to docking to 
the Pressurized Mating Adapter 2 at the 
forward end of the Harmony node. 

The shuttle crew members operate laptop 
computers processing the navigational data, the 
laser range systems and Endeavour’s docking 
mechanism. 

Using a video camera mounted in the center of 
the Orbiter Docking System, Ferguson will line 
up the docking ports of the two spacecraft.  If 
necessary, he will pause 30 feet from the station 

to ensure proper alignment of the docking 
mechanisms. 

He will maintain the shuttle’s speed relative to 
the station at about one-tenth of a foot per 
second, while both Endeavour and the station 
are moving at about 17,500 mph.  He will keep 
the docking mechanisms aligned to a tolerance 
of three inches. 

When Endeavour makes contact with the 
station, preliminary latches will automatically 
attach the two spacecraft.  The shuttle’s steering 
jets will be deactivated to reduce the forces 
acting at the docking interface.  Shock absorber 
springs in the docking mechanism will dampen 
any relative motion between the shuttle and 
station. 

Once motion between the shuttle and the 
station has been stopped, the docking ring will 
be retracted to close a final set of latches 
between the two vehicles. 

UNDOCKING, SEPARATION AND 
DEPARTURE 

At undocking time, the hooks and latches will 
be opened and springs will push the shuttle 
away from the station.  Endeavour’s steering 
jets will be shut off to avoid any inadvertent 
firings during the initial separation. 

Once Endeavour is about two feet from the 
station and the docking devices are clear of one 
another, Boe will turn the steering jets back on 
and will manually control Endeavour within a 
tight corridor as the shuttle separates from the 
station. 

background image

 

 

NOVEMBER 2008 

RENDEZVOUS & DOCKING 

37

 

 

This image depicts Endeavour’s undocking and initial separation from the space station  

during the STS-126 mission. 

Endeavour will move to a distance of about  
450 feet, where Boe will begin to fly around  
the station.  This maneuver will occur only if 
propellant margins and mission timeline 
activities permit. 

Once Endeavour completes 1.5 revolutions of 
the complex, Boe will fire Endeavour’s jets to 

leave the area.  The shuttle will move about  
46 miles from the station and remain there 
while ground teams analyze data from the late 
inspection of the shuttle’s heat shield.  The 
distance is close enough to allow the shuttle to 
return to the station in the unlikely event that 
the heat shield is damaged, preventing the 
shuttle’s safe re-entry. 

background image

 

 

38 

RENDEZVOUS & DOCKING 

NOVEMBER 2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

ECLSS 

39

 

ENVIRONMENTAL CONTROL AND LIFE SUPPORT 

SYSTEM (ECLSS) 

Water Recovery System 

 

WRS Rack 1

WRS Rack 2

WPA 
Particulate
Filter

WPA 
Microbial
Check
Valve

WPA 
Reactor
Health
Sensor

WPA Gas
Separator

WPA 
Catalytic
Reactor

WPA 
Controller

Avionics
Air Assy.

WPA Water
Storage

WPA Water
Delivery

UPA Pressure
Control & Purge
Assy.

UPA Firmware
Controller
Assy.

WPA Pump/
Separator

UPA Fluids
Control &
Pump Assy.

UPA Recycle
Filter Tank
Assy.

WPA Waste-
water

UPA Waste-
water Storage
Tank Assy.

WPA Multi-
Filtration Beds

UPA Distillation
Assy.

 

NEW WATER RECLAMATION SYSTEM 
HEADED FOR DUTY ON SPACE STATION 

The Water Recovery System (WRS) is the 
newest part of a comprehensive life support 
system for the station.  The Oxygen Generation 
System (OGS), which was launched on space 
shuttle Discovery in July 2006, and the WRS 
will form the core of NASA’s Regenerative 
Environmental Control and Life Support 
System (ECLSS). 

The Water Recovery System uses a series of 
chemical processes and filters to treat the 
astronauts’ urine, perspiration and hygiene 
water, and provide water clean enough to 
drink.  In fact, part of the same process has  
been used in remote areas of the world to 
produce drinkable water. 

A distillation process is used to recover water 
from urine.  The process occurs within a 
rotating distillation assembly that compensates 
for the absence of gravity, aiding in the 

background image

 

 

40 ECLSS 

NOVEMBER 

2008

 

separation of liquids and gases in space.  Once 
distilled, the water from the urine processor is 
combined with other wastewaters and 
delivered to the water processor for treatment. 

The water processor removes free gas and solid 
materials such as hair and lint, before the water 
goes through a series of filtration beds for 
further purification.  Any remaining organic 
contaminants and microorganisms are removed 
by a high-temperature catalytic reaction.  These 
rigorous treatment processes create water that 
meets stringent purity standards for human 
consumption. 

During docked operations, the joint 

 

Expedition 18 and STS-126 crew will transfer 
the racks containing the WRS and a new toilet, 
the Waste and Hygiene Compartment (WHC), 
to the Destiny Laboratory.  They will hook up 
all necessary electrical and fluid utilities to 

these systems and activate the WRS, beginning 
a six-month checkout period. 

The joint crew also will activate the Total 
Organic Carbon Analyzer (TOCA II), which 
will be used for on-board water quality 
monitoring.  The crew will process previously 
collected urine through the WRS.  They will 
then collect samples of drinking water 
processed by the WRS and send it back to Earth 
for analysis.  This will begin a 90-day water 
quality validation that is required before crews 
can begin consuming the recycled drinking 
water. 

Engineers at Marshall Space Flight Center, 
Huntsville, Ala., and at Hamilton Sundstrand 
Space Systems International Inc., Windsor 
Locks, Conn., led the design and development 
of the Water Recovery System. 

 

Total Organic Carbon Analyzer (TOCA II) 

background image

 

 

NOVEMBER 2008 

ECLSS 

41

 

 

NASA engineers Tom Phillips, Philip West and Robert Rutherford prepare one 

of the two International Space Station Water Recovery System racks from transport. 

The system will help the station accommodate six crew members. 

(NASA/MSFC/D. Higginbotham) 

background image

 

 

42 ECLSS 

NOVEMBER 

2008

 

ENVIRONMENTAL CONTROL AND LIFE 
SUPPORT SYSTEM 

Earth’s natural life support system supplies the 
air we breathe, the water we drink and other 
conditions that support life.  For people to live 
in space, however, these functions must be 
provided by artificial means. 

The life support systems on the Mercury, 
Gemini and Apollo spacecraft in the 1960s were 
designed to be used once and discarded. 

 

Oxygen for breathing was provided from 

 

high-pressure or cryogenic storage tanks. 

 

Carbon dioxide was removed from the air by 
lithium hydroxide in replaceable canisters. 

 

Contaminants in the air were removed by 
replaceable filters and activated charcoal 
integrated with the lithium hydroxide canisters.  
Water for the Mercury and Gemini missions 
was stored in tanks, while fuel cells on the 
Apollo spacecraft produced electricity and 
provided water as a byproduct.  Urine and 
wastewater were collected and stored or vented 
overboard. 

The space shuttle is a reusable vehicle, unlike 
those earlier spacecraft, and its life support 
system incorporates some advances.  It still 
relies heavily on the use of consumables, 
however, limiting the time it can stay in space. 

The space station includes further advances in 
life support technology and relies on a 
combination of expendable and limited 
regenerative life support technologies located 
in the U.S. Destiny lab module and the Russian 
Zvezda service module.  Advances include the 
development of regenerable methods for 
supplying oxygen, by electrolysis of water, and 

water, by recovering potable water from 
wastewater. 

Because it is expensive to continue launching 
fresh supplies of air, water and expendable life 
support equipment to the station and returning 
used equipment to Earth, these advances will 
help to reduce costs. 

By recycling urine and condensation collected 
from the atmosphere, the ECLSS will reduce the 
dependence on Earth resupply by cutting the 
amount of water and consumables needed to be 
launched by about 15,000 pounds per year. 

The space station’s ECLSS performs several 
functions: 

 

Provides oxygen for metabolic consumption; 

 

Provides potable water for consumption, 
food preparation and hygiene uses; 

 

Removes carbon dioxide from the cabin air; 

 

Filters particulates and microorganisms 
from the cabin air;

 

 

Removes volatile organic trace gases from 
the cabin air;

 

 

Monitors and controls cabin air partial 
pressures of nitrogen, oxygen, carbon 
dioxide, methane, hydrogen and water 
vapor in the cabin air;

 

 

Maintains total cabin pressure;

 

 

Maintains cabin temperature and humidity 
levels;

 

 

Distributes cabin air between connected 
modules.

 

background image

 

 

NOVEMBER 2008 

ECLSS 

43

 

Providing Clean Water and Air 

 

 

Portable Water Dispenser 

The space station’s ECLSS includes two key 
components – the WRS and the OGS – which 
are packaged into three refrigerator-sized racks 
that will be located in the U.S. lab of the station. 

The WRS provides clean water by reclaiming 
wastewater, including water from crew 
member urine, cabin humidity condensate and 
Extravehicular Activity (EVA) wastes.  The 
recovered water must meet stringent purity 
standards before it can be used to support crew, 
spacewalking and payload activities. 

The WRS is designed to recycle crew member 
urine and wastewater for reuse as clean water. 

Each crew member uses about 3.5 liters 

 

(0.9 gallons) of water a day.  Enough for  
2 liters (0.52 gallons) a day is provided by 
deliveries from Russian Progress resupply 
vehicles, ESA’s Jules Verne Automatic Transfer 
Vehicle and the space shuttles.  The remaining 
1.5 liters (0.4 gallons) is recovered condensate 
from the Russian water processor.  The two 
cargo vehicles carry water to the station in 
onboard supply tanks.  The shuttle delivers 
water produced as a byproduct of the fuel cells 
that generate its electricity.  The WRS will 
reduce the amount of water that needs to be 
delivered to the station for each crew member 
by 1.3 liters (0.34 gallons) a day, or about  
65 percent.  Over the course of a year, it will 

background image

 

 

44 ECLSS 

NOVEMBER 2008

 

 

reduce water deliveries to the station for a  
six-person crew by 2,850 liters (743 gallons). 

Water Recovery System 

The WRS consists of a Urine Processor 
Assembly (UPA) and a Water Processor 
Assembly (WPA).  A low-pressure vacuum 
distillation process is used to recover water 
from urine.  The entire process occurs within a 
rotating distillation assembly that compensates 
for the absence of gravity and aids in the 
separation of liquids and gases in space. 

Water from the urine processor is combined 
with all other wastewaters and delivered to the 

water processor for treatment.  The water 
processor removes free gas and solid materials 
such as hair and lint, before the water goes 
through a series of multifiltration beds for 
further purification.  Any remaining organic 
contaminants and microorganisms are removed 
by a high-temperature catalytic reactor 
assembly. 

The purity of water is checked by electrical 
conductivity sensors.  The conductivity of 
water is increased by the presence of 

 

typical contaminants.  Unacceptable water is 
reprocessed, and clean water is sent to a storage 
tank, ready for use by the crew. 

Water Use on Earth Compared to Space 

Item 

On Earth 
kg per person 
per day

1

 

 
gallons per 
person per day 

In Space 
kg per person 
per day

2

 

 
gallons per 
person per day 

% Reduction 

Oxygen 0.84 

 

0.84 

 

0.0 

Drinking Water 

10 

2.64 

1.62 

0.43 

83.8 

Dried Food 

1.77 

 

1.77 

 

0.0 

Water for Food 

1.06 

0.80 

0.21 

80.0 

Water for Brushing 
Teeth 

5 1.32 

0.81 

0.21 

83.8 

Water to Flush Toilet 

88 

23.2 

0.50 

0.13 

99.4 

Water to Shower 

50 

13.2 

3.64 

0.96 

92.7 

Water to Wash Hands 

20 

5.28 

1.82 

0.48 

90.9 

Water to Wash Clothes 

16 

4.23 

12.5 

3.3 

21.9 

Water to Wash Dishes 

12 

3.17 

5.45 

1.44 

54.6 

1

  From Water Quality by Tchobanoglous and Schroeder, 1987 Addison-Wesley Pub.; Reading Mass, USA 

2

  From Space Station Architectural Control Document 

The items that the astronauts need are in the left-hand column of the table.  The average amounts used on Earth 
are in the second and third columns, and the amounts allowed for space are in the fourth and fifth columns.  The 
space allotments are so much smaller because water is very heavy and we can’t carry that much water with us.  
Also, on Earth people spend a lot of time running the faucet waiting for the water to get hotter or colder, for 
instance.  In addition, our washing machines and dishwashers are not as efficient as they could be, because water 
is not in scarce supply on Earth.  The dish and clothes wash waters aren’t quite as high a reduction because we 
haven’t spent as much time developing those technologies for space.  Greyed rows are not done on the station. 

background image

 

 

Oxygen Generation System 

The OGS produces oxygen for breathing air for 
the crew and laboratory animals, as well as for 
replacement of oxygen lost due to experiment 
use, airlock depressurization, module leakage 
and carbon dioxide venting.  The system 
consists mainly of the Oxygen Generation 
Assembly (OGA) and a Power Supply Module. 

The heart of the Oxygen Generation Assembly 
is the cell stack, which electrolyzes, or breaks 
apart, water provided by the WRS, yielding 
oxygen and hydrogen as byproducts.  The 
oxygen is delivered to the cabin atmosphere, 
and the hydrogen is vented overboard.  The 
Power Supply Module provides the power 
needed by the OGA to electrolyze the water. 

The OGS is designed to generate oxygen at a 
selectable rate and is capable of operating both 
continuously and cyclically.  It provides from  
5 to 20 pounds of oxygen per day during 
continuous operation and a normal rate of  
12 pounds of oxygen per day during cyclic 
operation. 

The OGS will accommodate the testing of an 
experimental Carbon Dioxide Reduction 
Assembly.  Once deployed, the reduction 
assembly will cause hydrogen produced by the 
OGA to react with carbon dioxide removed 
from the cabin atmosphere to produce water 
and  methane.    This  water  will  be  available  for 
processing and reuse, thereby further reducing 
the amount of water to be resupplied to the 
space station from the ground. 

NOVEMBER 2008 

ECLSS 

45

 

 

Comparison between Earth and  

ISS Water Cycles 

Storage (Clouds, 
ground water, rivers, 
lakes, ocean) 

Tanks 

Runoff 

All liquid water 
movement is in 
plumbing 

Evaporation and 
Transpiration 

From wet towels and 
crew’s perspiration 
and respiration 

Condensation 

In the air conditioner’s 
condensing heat 
exchanger 

Precipitation 

In our case, this is the 
condensate collecting 
in the condensate tanks 

 

Comparison between ISS and Earth systems 

Earth ISS 

Sewage treatment plant  Urine processor 

assembly 

Sewage tank 

UPA wastewater 
storage tank assembly 

Water treatment 
holding tank 

WPA wastewater tank 

Water treatment plan 

Water processor 
assembly 

Water tower 

WPA water storage 

Water lift station and 

WPA water delivery 

distribution 

Kitchen sink (food 

Potable water dispenser 

preparation, cleaning, 

(hot and ambient water 

drinking) 

for food and drinking, 
only source of hot 
water is here) 

Bathroom sink and 

Hygiene water hose 

shower (personal and 

(ambient temperature 

oral hygiene) 

water only) 

Toilet (gravity driven) 

Toilet (air flow driven 

background image

 

 

46 ECLSS 

NOVEMBER 

2008

 

FUTURE 

Ultimately, expendable life support equipment 
is not suitable for long-duration, crewed 
missions away from low Earth orbit due to the 
resupply requirements.  On deep space 
missions in the future, such resupply will not 
be possible because of the distances involved, 

and it will not be possible to take along all the 
water and air that would be required for a 
voyage of months or years.  Regenerative life 
support hardware, which can be used 
repeatedly to generate and recycle the life 
sustaining elements required by human 
travelers, is essential for long-duration trips 
into space. 

background image

 

 

NOVEMBER 2008 

SOLAR ALPHA ROTARY JOINT 

47

 

SOLAR ALPHA ROTARY JOINT (SARJ) 

There are two Solar Alpha Rotary Joints 
(SARJs) on the International Space Station.  
They connect the Port 3 and Port 4 

 

(left side) truss segments and the Starboard 3 
and Starboard 4 (right side) segments.  P3/P4 
was flown up on the STS-115 mission on  
Sept. 9, 2006, while S3/S4 was flown up on the 
STS-117 mission June 8, 2007.  The SARJ is a  
10.5-foot diameter (129.5 inch) rotary joint that 
tracks the sun in the alpha axis that turns four 
port and four starboard solar arrays wings.  The 
eight solar array wings (on P4, P6, S4 and S6) 
are used to convert solar energy to electrical 
power.  The SARJ continuously rotates to keep 
the solar array wings on S4 and S6 and P4 and 
P6 oriented toward the sun as the station orbits 
the Earth.  The SARJ rotates 360 degrees every 
orbit or about 4 degrees per minute. 

The SARJ weighs approximately 2,506 pounds 
and is made of aluminum and corrosion 
resistant steel.  The major components of the 
SARJ are the Utility Transfer Assembly (UTA), 
Trundle Bearing Assemblies (TBA) (12 per 
joint), race rings (2 per joint) and Drive/Lock 
Assembly (DLA) (2 per joint) and the Rotary 
Joint Motor Controller (RJMC) (2 per joint).  The 
SARJ can spin 360 degrees using bearing 
assemblies and a control system to turn.  All of 
the power flows through the UTA in the center 
of the SARJ.  A large 10.5-foot (129.5-inch 
diameter), 229-pound geared race ring is 

secured to the structure by the TBAs and driven 
by the DLA using the software control 
commanded from the DLA/RJMC pair.  The 
DLA engages the teeth of the race ring to rotate 
the SARJ.  The gold plating on the TBA rollers 
is transferred from the roller to the race ring to 
lubricate the ring to create a lubricating film.  
Each SARJ has two race rings, an inboard race 
ring that is attached to the P3 or S3 truss and an 
outboard race ring that is attached to the P4 or 
S4 truss segment.  The 12 TBAs are attached to 
the inboard SARJ race ring via mounts that do 
not rotate.  The TBAs are the structural 
connection in orbit between the inboard and 
outboard race rings.  The DLA also are attached 
to the inboard SARJ structure and have 
“follower assemblies” that act in the same 
fashion as the TBAs, helping to locate the 
driving gear relative to the race ring teeth.  The 
UTA is an electrical roll ring assembly that 
allows transmission of data and power across 
the rotating interface so it never has to unwind.  
The UTA passes through the center, or hub, of 
the joint so it interfaces with both the inboard 
and outboard segments.  The roll ring 
assemblies allow the outboard elements to 
rotate relative to the inboard elements while 
providing continuous data and power 
transmission.  Under contract to Boeing, the 
SARJ was designed, built and tested by 
Lockheed Martin in Sunnyvale, Calif. 

background image

 

 

48 

SOLAR ALPHA ROTARY JOINT 

NOVEMBER 2008

 

Solar Alpha Rotary Joint (SARJ) 

 

 

background image

 

 

 

NOVEMBER 2008 

SOLAR ALPHA ROTARY JOINT 

49

 

Race Ring, Gear Teeth, and Trundle Bearing Assembly 

Trundle Bearing Assembly 

 

background image

 

 

50 

SOLAR ALPHA ROTARY JOINT 

NOVEMBER 2008

 

STARBOARD OUTBOARD RACE RING DAMAGE 

 

Damage to the race ring and magnetized debris 

NASA and Boeing engineers noticed a vibration 
and increased electrical currents on the 
starboard SARJ in September 2007.  The 
increased currents were intermittent, not 
constant.  The readings, indicating increased 
friction, ran as high as 0.9 amps, whereas  
the port SARJ has continued to operate 
nominally with a drive current of 

approximately one-seventh of an amp (0.136 to 
0.152 amps).  Subsequent spacewalks confirmed 
that there was damage to the surface of the 
outboard race ring, which has a triangular 
cross-section that the 12 trundle bearings roll 
on. 

NASA has since limited movement of the 
starboard SARJ as a result of this damage 

background image

 

 

NOVEMBER 2008 

SOLAR ALPHA ROTARY JOINT 

51

 

Gold rollers from the TBA 

because of unacceptable vibrations and the 
desire not to propagate the race ring surface 
damage.  The principal concern is accelerated 
fatigue of surrounding hardware due to 
increased vibration caused from the damaged 
surface.  The damaged race ring was not 
designed to be removed.  As a result, the SARJ 
is no longer in automated continuous tracking 
mode and is rotated only when needed. 

Analysis by a NASA-led industry team 
concluded that the most probable cause of the 
damage was a lack of adequate lubrication 
between the trundle bearings and the race ring 
surface.  The lack of lubrication led to excessive 
friction which caused tipping of the rollers 
which put a stress on the race ring great enough 
to crack the hardened steel surface.  The loss of 
gold on a subset of the rollers on the starboard 
SARJ was documented during component 
development.  The system effect of the lack of 
the gold lubricant on these rollers was not fully 

realized at the time.  The loss of gold could 
have been caused by improper application of 
gold to the bearing assemblies.  The failure 
investigation team also is investigating if the 
lubrication properties of gold in the system 
application are adequate.  The team recreated 
the failure with a gold-coated roller after an 
equivalent six-month run time in orbit.  It is not 
understood why the gold lubrication did not 
properly transfer to the rolling surface.  The 
port side SARJ continues to function normally. 

At the time of development, there was little 
data on how long liquid lubricants would 
survive in a space environment in the presence 
of atomic oxygen.  The design community 
agreed that a gold lubricant via TBAs would be 
a better choice to meet design life because of its 
insensitivity to atomic oxygen.  In addition, 
gold’s lubrication has been proven through 
testing to provide a lower coefficient of friction 
than that of bare steel-on-steel contact. 

 

background image

 

 

52 

SOLAR ALPHA ROTARY JOINT 

NOVEMBER 2008

 

THE TEMPORARY FIX 

 

 

 

Braycote Grease Gun 

 
Based on current understanding of operations 
on the International Space Station, a Braycote 
grease can provide a lower coefficient of 
friction and will be applied to both SARJ units 
during the STS-126 mission.  Braycote grease is 
a special, heavy, vacuum stable grease that has 
been designed to operate in the extreme 
temperature space environment.  The grease 
will be applied in the same manner that caulk is 
applied from a caulk gun.  The grease gun is 
very similar to the application methods used to 
apply the space shuttle tile repair materials.  
NASA has done extensive testing of the tools 
and procedures during earlier spacewalks. 

On the starboard SARJ, the crew will be 
applying 1/8 inch bead of grease to the entire 
outboard ring on all three surfaces.  On the port 
SARJ, the crew will be applying the grease in 
about three foot segments to all three surfaces 
separated by about three feet of unlubricated 
race ring surfaces.  As the SARJ rotates after the 
lubricant is applied, the trundle bearing rollers 
will spread the grease to the entire race ring.  
The process consists of the astronauts removing 

the multi-layer insulation covers, cleaning the 
area first with a dry cloth wipe, then with a 
greased wipe, and finally applying multiple 
beads of grease.  On the starboard side, they 
also will use a putty-like scraper tool to clean 
up  some  of  the  debris  and  they  will 
additionally replace 11 of the 12 trundle 
bearings, since they have some metal shavings 
and debris on them.  The TBAs will be returned 
to Earth to aid in the root cause investigation as 
well as provide optimal chance for success of 
cleaning operation.  One of the TBAs had been 
removed on an earlier spacewalk for analysis 
and was subsequently replaced.  During this 
mission, the astronauts also will apply the 
Braycote grease to the port SARJ. 

Engineers will monitor SARJ operation by 
evaluating the DLA operating current as well as 
on-board accelerometer data after cleaning the 
starboard race ring and applying the Braycote 
grease.  NASA will not go into the continuous 
autotrack mode with the starboard side SARJ 
until a permanent fix is implemented. 

background image

 

 

NOVEMBER 2008 

SOLAR ALPHA ROTARY JOINT 

53

 

THE PERMANENT REPAIR 

Although the starboard SARJ has a redundant 
inboard race ring that could be used, NASA 
instead chose not to use this ring to ensure 
there will always be an available backup. 

 

Instead NASA approved a permanent fix on 
Sept. 2, 2008, that would involve installation of 
a third race ring assembly, new trundle 
bearings, new DLAs and a modified UTA to 
repair the starboard SARJ system.  The debris-
contaminated TBAs and DLAs will be removed 

and returned to Earth for refurbishment and 
the ring areas will be cleaned before insertion of 
the third ring and new TBA/DLA hardware.  
The normal UTA will be swapped out with the 
modified UTA.  An estimated 10 spacewalks 
will be required for the repairs and are 
scheduled to occur in 2010 after the new ring 
assembly is brought up by the space shuttle.  
Boeing and its subcontractor Lockheed Martin 
will be responsible for designing the new 
hardware to allow insertion of the third ring. 

background image

 

 

54 

SOLAR ALPHA ROTARY JOINT 

NOVEMBER 2008

 

This page intentionally blank 

background image

 

 

SPACEWALKS 

NOVEMBER 2008 

SPACEWALKS 

55

 

 

Anchored to a Canadarm2 mobile foot restraint, astronaut Rick Linnehan, STS-123 mission 

specialist, participates in the mission’s first scheduled session of extravehicular activity as 

construction and maintenance continue on the International Space Station. 

 
Four spacewalks, three astronauts and two 
Solar Alpha Rotary Joints (SARJ) – that 
summarizes the spacewalk plan for STS-126.  
Mission Specialists Heidemarie Stefanyshyn-
Piper, Steve Bowen and Shane Kimbrough will 
spend a combined total of 26.5 hours on flight 
days 5, 7, 9 and 11 working outside the station, 
and the bulk of that time will be used cleaning 
and lubricating the station’s two 10-foot-wide 
rotary joints, known as SARJs. 

Piper, the lead spacewalker for the mission, will 
suit up for the first three spacewalks in a 
spacesuit marked with solid red stripes.  She is 
a veteran spacewalker, with two extravehicular 
activities, or EVAs, performed during STS-115 
in 2006. 

Bowen and Kimbrough both will perform their 
first spacewalks.  Bowen will participate in the 
first, third and fourth EVAs and wear an all 
white spacesuit, while Kimbrough will wear a 

background image

 

 

56 SPACEWALKS 

NOVEMBER 2008

 

 

spacesuit with broken red stripes for 
spacewalks two and four. 

Meanwhile, on the inside, Mission Specialists 
Donald Pettit and Sandra Magnus will operate 
the station’s robotic arm during the first and 
second spacewalks.  Kimbrough will act as the 
mission’s intravehicular officer, or spacewalk 
choreographer, for the spacewalks that he is not 
performing.  Eric Boe will coreograph those 
that Kimbrough performs. 

Preparations will start the night before each 
spacewalk, when the astronauts spend the 
night in the station’s Quest Airlock.  This 
practice is called the campout prebreathe 
protocol and is used to purge nitrogen from the 
spacewalkers’ systems and prevent 
decompression sickness, also known as “the 
bends.” 

During the campout, the two astronauts 
performing the spacewalk will isolate 
themselves inside the airlock while the airlock’s 
air pressure is lowered to 10.2 pounds per 
square inch, or psi.  The station is kept at the 
near-sea-level pressure of 14.7 psi.  The 
morning of the spacewalk, the astronauts will 
wear oxygen masks while the airlock’s pressure 
is raised back to 14.7 psi for an hour and the 
hatch between the airlock and the rest of the 
station is opened.  That allows the spacewalkers 
to perform their morning routines before 
returning to the airlock, where the air pressure 
is lowered again.  About 50 minutes after the 
spacewalkers don their spacesuits, the 
prebreathe protocol will be complete. 

The procedure enables spacewalks to begin 
earlier in the crew’s day than was possible 
before the protocol was adopted. 

EVA-1 

Duration:

 

6 hours, 30 minutes

 

Crew:

 

Piper and Bowen 

EVA Operations 

 

Transfer an empty nitrogen tank assembly 
from external stowage platform 3 to the 
shuttle’s cargo bay for return to Earth 

 

Transfer a new flex hose rotary coupler to 
external stowage platform 3 for future use 
when needed 

 

Remove an insulation cover on the Kibo 
External Facility berthing mechanism 

 

Begin cleaning and lubrication for the 
starboard SARJ and replacement of its 
12 trundle bearing assemblies 

The first order of business will be to swap the 
external equipment just delivered by the space 
shuttle with equipment that will be brought 
back to Earth.  Piper will remove an empty 
nitrogen tank assembly that has been waiting 
on the external stowage platform 3 on the port, 
or left, side of the station’s truss since the June 
STS-124 mission.  After installing a foot 
restraint on the end of the station’s robotic arm 
to stand in, Piper will remove the tank and 
carry it as she rides the arm to the shuttle’s 
cargo bay. 

Bowen will help Piper remove the nitrogen 
tank, then take care of some minor tasks, 
including retrieving a camera and closing a 
window flap on Harmony’s zenith common 
berthing mechanism.  Bowen will meet Piper in 
the cargo bay to help stow the tank and remove 
a spare flex hose rotary coupler, or FHRC.  
FHRCs are used to transfer liquid ammonia 
across the rotary joints that allow the station’s 
radiators to rotate. 

background image

 

 

NOVEMBER 2008 

SPACEWALKS 

57

 

 

 
Piper will carry the FHRC back to the stowage 
platform via robotic arm, where she and Bowen 
will install it for future use.  Then, while Piper 
climbs off of the robotic arm, Bowen will 
remove some insulation from the common 
berthing mechanism that will be used to attach 
the Japanese external facility to the Kibo 
laboratory. 

When those tasks are done, the spacewalkers 
will start the mission’s first round of starboard 
SARJ maintenance.  The rotary joint has 

 

22 protective insulation covers, of which no 
more than six can be removed at any one time.  
Piper will begin by opening cover eight.  Cover 
seven was removed and left off during an 
inspection on a previous spacewalk.  With the 
insulation covers removed, Piper will have 
access to the 10th of the joint’s trundle bearing 
assemblies, or TBAs, which connect the two 
halves of the joint and allow one side to rotate 

while the other stays still.  Meanwhile, Bowen 
will work under covers 22 and one, on TBA six. 

With the covers removed, Piper and Bowen 
then will remove their respective TBAs and 
stow them in special bags designed to hold one 
TBA apiece.  With that equipment out of the 
way, the spacewalkers will be able to begin 
cleaning the area under the open covers.  First, 
they will use a wet wipe to remove debris from 
the cleaner areas of the joint, then to clean off 
the damaged outboard outer canted surface. 

Next, they will use a grease gun to add a line of 
grease to the outer canted surface and use a 
scraper similar to a putty knife to remove some 
of the debris that has become “pancaked” on 
the surface.  They will clean the scrapers off 
inside of a debris container to prevent metal 
flakes from floating away, and then use a dry 
wipe to remove the grease from the area.  Then 

background image

 

 

58 SPACEWALKS 

NOVEMBER 

2008

 

they will give the entire area a final wipe with a 
dry wipe to remove any residual grease and 
debris. 

Once the area is clean, the astronauts can begin 
lubricating the surface of the outboard ring.  
They will use a grease gun with a special,  
j-shaped nozzle to add grease to the inner 
canted surface, and a straight-nozzle grease gun 
for the outer canted and datum A surfaces. 

Finally, before closing the covers, Piper and 
Bowen will install clean trundle bearing 
assemblies in place of the ones they removed.  
Piper then will then repeat the process on  
TBA 11, under covers nine and 10.  However, 
she will not reinstall TBA 11 until the second 
spacewalk. 

EVA-2 

Duration:

 

6 hours, 30 minutes

 

Crew:

 

Piper and Kimbrough 

EVA Operations 

 

Relocate the two Crew and Equipment 
Translation Aid (CETA) carts from the 
starboard side of the Mobile Transporter to 
the port side 

 

Lubricate the station robotic arm’s latching 
end effector A snare bearings 

 

Continue cleaning and lubrication for the 
starboard SARJ and replacement of its 
12 trundle bearing assemblies 

The first task of the second spacewalk will give 
Kimbrough a chance to ride the station’s robotic 
arm.  He and Piper will move the station’s  

two Crew and Equipment and Translation Aid, 
or CETA, carts, the rail carts that allow 
astronauts to move equipment along the 
station’s truss, from their current homes on the 
starboard side of the station’s Mobile 
Transporter (MT) to the port side. 

Piper will get the carts ready for transfer by 
moving them into position and unlocking their 
wheel bogies.  Kimbrough first will carry 

 

CETA 1 and then CETA 2 as he is flown on the 
robotic arm from one side of the MT to the 
other.  Piper will meet him there each time, to 
install the carts in their new locations. 

When that task is done, Kimbrough will climb 
off of the robotic arm and remove the foot 
restraint Piper installed on the first spacewalk.  
This will give him access to the arm’s latching 
end effector, or LEE, the snares that allow it to 
grasp equipment.  Inside the station, Pettit and 
Magnus will command the LEE, which has 
been experiencing some sticky spots, to open 
and close its snares.  Kimbrough will apply 
lubricant to the LEE’s snare bearings and rotate 
the bearings using needlenose pliers to ensure 
the lubricant covers the bearings. 

Meanwhile, Piper will return to the starboard 
SARJ to continue its cleaning and lubrication.  
Following the first spacewalk, the SARJ will be 
rotated so that the areas Piper and Bowen 
already cleaned will be under the joint’s two 
drive lock assemblies, which cannot be 
removed easily.  Piper will reopen covers nine 
and 10 and clean the new area under them, 
before reinstalling TBA 11, which she removed 
during the first spacewalk, and reclosing the 
covers. 

background image

 

 

NOVEMBER 2008 

SPACEWALKS 

59

 

 

 

Next Piper will remove and replace TBAs eight 
and nine under cover five.  When Kimbrough 
finishes his work on the robotic arm, he’ll join 
her at the SARJ and work on TBAs 12, under 
covers 11 and 12. 

EVA-3 

Duration: 

7 hours 

Crew: 

Piper and Bowen 

EVA Operations: 

 

Complete cleaning, lubrication and TBA 
replacement for the starboard SARJ 

The third and longest spacewalk of the mission 
will be completely devoted to work on the 
starboard SARJ.  Using the same methods, 
Piper will open covers 13 and 14, remove TBA 
one, clean and lubricate the area, install a new 
TBA and close the covers.  She will repeat the 
process on TBA two under covers 15 and 16 
and TBA three under covers 17 and 18. 

Bowen will do the same for TBA four under 
covers 19 and 20, TBA six under covers 22 and 
one and TBA seven under covers two and three.  
He also will remove TBA five under cover 20; 
however, it was replaced on a previous 
spacewalk, so he will simply clean and 

 

re-install it. 

background image

 

 

60 SPACEWALKS 

NOVEMBER 

2008

 

 

 

EVA-4 

Duration: 

6 hours, 30 minutes

 

Crew: 

Bowen and Kimbrough

 

EVA Operations: 

 

Lubricate the port SARJ 

 

Install video camera 

 

Re-install insulation cover on the Kibo 
External Facility berthing mechanism 

 

Perform Kibo robotic arm grounding tab 
maintenance 

 

Install spacewalk handrails on Kibo 

 

Install Global Positioning Satellite (GPS) 
antennae on Kibo 

 

Photograph radiators 

 

Photograph trailing umbilical system cables 

The mission’s final spacewalk will require 
careful coordination, as the spacewalkers 
perform preventative maintenance on the 
station’s port SARJ, which currently is 
functioning well.  Kimbrough will have just the 
one spacewalk to lubricate the same surface 
area that was lubricated over three spacewalks 
on the starboard side. 

To make that possible, he and Bowen will open 
covers 6, 7, 10, 11, 14 and 15, and leave them 
open for most of the spacewalk.  Kimbrough 
then will lubricate the exposed area and move 
away so that flight controllers on the ground 
can rotate the joint 180 degrees.  That will help 
spread the grease, and expose new, 
unlubricated areas under the open covers. 

background image

 

 

NOVEMBER 2008 

SPACEWALKS 

61

 

While the joint is rotating, Kimbrough will 
return to the Quest airlock to retrieve a video 
camera.  He will install the camera on the first 
port segment of the station’s truss, where it will 
be used next year to provide views of the 
robotic arm’s capture and docking of the first 
Japanese H-2 Transfer Vehicle. 

Kimbrough then will move back to the port 
SARJ, grease the newly exposed areas and close 
the covers. 

Meanwhile, Bowen will work on several 
projects at the Japanese Kibo module.  He will 
reinstall the common berthing mechanism’s 
insulation that he removed during the first 
spacewalk.  Next, he will tuck in the module’s 
robotic arm grounding tabs, which are 
obscuring the view of the arm’s camera, by 
wrapping the tabs around a cable and 
Velcroing them together. 

Afterward, Bowen will install three spacewalk 
handrails, two worksite interfaces and two 
Global Positioning Satellite (GPS) antennae on 
Kibo’s exterior.  The H-2 Transfer Vehicle will 
use the GPS antennae to navigate to the space 
station. 

Both astronauts will wrap up the spacewalks by 
taking photographs.  Bowen will photograph 
the radiators on the first port and starboard 
truss segments, using both regular and infrared 
cameras.  In September, ground controllers 
noticed damage to one panel of the starboard 
radiator. 

Blemishes have been noticed on the trailing 
umbilical system cable of the mobile 
transporter, so Kimbrough has been asked to 
photograph it as well.  The photographs will be 
used by teams on the ground to determine the 
cause of the damage and blemishes and decide 
what action, if any, should be taken. 

background image

 

 

62 SPACEWALKS 

NOVEMBER 

2008

 

This page intentionally blank 

background image

 

 

EXPERIMENTS 

 

NOVEMBER 2008 

EXPERIMENTS 

63

 

The space shuttle and International Space 
Station have an integrated research program 
that optimizes the use of shuttle crew members 
and long-duration space station crew members 
to address research questions in a variety of 
disciplines. 

For information on science on the station, visit: 

http://www.nasa.gov/mission_pages/station/

science/index.html 

or 

http://iss-science.jsc.nasa.gov/index.cfm 

Detailed information is located at: 

http://www.nasa.gov/mission_pages/station/

science/experiments/Expedition.html 

DETAILED TEST OBJECTIVES 

Detailed Test Objectives (DTOs) are aimed at 
testing, evaluating or documenting space 
shuttle systems or hardware or proposed 
improvements to the space shuttle or space 
station hardware, systems and operations. 

SDTO 13005-U ISS Structural Life and 
Life Validation and Extension 

The purpose of this Station Development Test 
Objective (SDTO) is to guarantee safety of the 
station structure and crew by validating the  
in-orbit math models that were created for the 
space station.  The test will be used to 
authenticate critical interface loads and to help 
improve predictions for fatigue of components 
on the station. 

The test will provide dynamic loads 
information for engineers to use in creating 

precise models that can be used for analysis.  
In-orbit data may aid in detecting structural 
anomalies, and the station’s response to actual 
loading events aids in postflight reconstruction 
of loads that help determine structural life 
usage. 

The test requires actual or educated estimates 
of input and actual in-orbit sensor 
measurements of the station response. 

 

Measurement of the force input, such as 
thruster firing sequences or video of crew 
activity, and the station’s response will aid in 
the reconstruction of station loads and 
structural life usage over the lifetime of the 
station, thus allowing the structure’s life to be 
extended. 

All of the in-orbit dynamic tests previously 
were performed on models in which the 
International Space Station and orbiter were 
docked. 

There are six such tests planned for STS-126. 

Space Shuttle Solid Rocket Motor 
Pressure Oscillation Data Gathering 

The Space Shuttle Program is gathering data on 
five shuttle flights, beginning with STS-126, to 
gain a greater understanding of the pressure 
oscillation, or periodic variation, phenomena 
that regularly occurs within solid rocket 
motors.  The pressure oscillation that is 
observed in solid rocket motors is similar to the 
hum made when blowing into a bottle.  At  
1.5 psi, or pounds per square inch, a pressure 
wave will move up and down the motor from 
the front to the rear, generating acoustic noise 
as well as physical loads in the structure.  These 
data are necessary to help propulsion engineers 

background image

 

 

64 EXPERIMENTS 

NOVEMBER 

2008

 

Intelligent Pressure Transducer 

confirm modeling techniques of pressure 
oscillations and the loads they create.  As 
NASA engineers develop alternate propulsion 
designs for use in NASA, they will take 
advantage of current designs from which they 
can learn and measure.  In an effort to obtain 
data to correlate pressure oscillation with the 
loads it can generate, the shuttle program is 
using two data systems to gather detailed 
information.  Both systems are located on the 
top of the solid rocket motors inside the 
forward skirt. 

The Intelligent Pressure Transducer,

 or IPT, is 

a stand-alone pressure transducer with an 
internal data acquisition system that will record 
pressure data to an internal memory chip.  The 
data will be downloaded to a computer after 
the booster has been recovered and returned to 

the Solid Rocket Booster Assembly and 
Refurbishment Facility at NASA’s Kennedy 
Space Center, Fla.  This system has been used 
on numerous full-scale static test motors in 
Utah and will provide engineers with a 
common base to compare flight data to ground 
test data. 

The Enhanced Data Acquisition System

, or 

EDAS, is a data acquisition system that will 
record pressure data from one of the Reusable 
Solid Rocket Booster Operational Pressure 
Transducers, or OPT, and from accelerometers 
and strain gages placed on the forward skirt 
walls.  These data will provide engineers with 
time synchronized data that will allow them to 
determine the accelerations and loads that are 
transferred through the structure due to the 
pressure oscillation forces. 

 

background image

 

 

NOVEMBER 2008 

EXPERIMENTS 

65

 

 

Data Acquisition System 

SHORT-DURATION U.S. INTEGRATED 
RESEARCH TO BE COMPLETED DURING 
STS-126/ULF2 

Validation of Procedures for Monitoring Crew 
Member Immune Function – Short Duration 
Biological Investigation (Integrated Immune-
SDBI)

 will assess the clinical risks resulting 

from the adverse effects of spaceflight on the 
human immune system and will validate a 
flight-compatible immune monitoring strategy.  
It will collect and analyze blood, urine and 
saliva samples from crew members before, 
during and after spaceflight to monitor changes 
in the immune system. 

Maui Analysis of Upper Atmospheric 
Injections (MAUI)

 will observe the space 

shuttle engine exhaust plumes from the Maui 
Space Surveillance Site in Hawaii.  The 
observations will occur when the space 

 

shuttle fires its engines at night or twilight.  A 

telescope and all-sky imagers will record 
images and data while the shuttle flies over the 
Maui site.  The images will be analyzed to 
understand better the interaction between the 
spacecraft plume and the upper atmosphere of 
Earth. 

National Lab Pathfinder – Vaccine – 2 (NLP-
Vaccine-2)

 is a commercial payload serving as a 

pathfinder for the use of the space station as a 
National Laboratory after station assembly is 
complete.  It contains Salmonella enterica, a 
disease-causing organism, and will use 
spaceflight to develop potential vaccines for the 
prevention of infections on Earth and in 
microgravity. 

The Pico-Satellite Solar Cell Experiment 
(PSSC) 

is a picosatellite designed to test space 

environment effects on new solar cell 
technologies. 

background image

 

 

Shuttle Exhaust Ion Turbulence Experiments 
(SEITE)

 will use space-based sensors to detect 

the ionospheric turbulence inferred from the 
radar observations of a previous space shuttle 
Orbital Maneuvering System burn experiment 
using ground-based radar. 

Sleep-Wake Actigraphy and Light Exposure 
During Spaceflight – Short (Sleep-Short)

 will 

examine the effects of spaceflight on the sleep-
wake cycles of the astronauts during space 
shuttle missions.  Advancing state-of-the-art 
technology for monitoring, diagnosing and 
assessing treatment of sleep patterns is vital to 
treating insomnia on Earth and in space. 

SAMPLES/HARDWARE RETURNING 
FROM ISS ON STS-126 

U.S. Research 

Analyzing Interferometer for Ambient Air 
(ANITA)

 will monitor 32 potential gaseous 

contaminants in the atmosphere aboard the 
station, including formaldehyde, ammonia and 
carbon monoxide.  The experiment will test the 
accuracy and reliability of this technology as a 
potential next-generation atmosphere trace-gas 
monitoring system for the station. 

Cardiovascular and Cerebrovascular Control 
on Return from ISS (CCISS)

 will study the 

effects of long-duration spaceflight on crew 
members’ heart functions and the blood vessels 
that supply the brain.  Learning more about the 
cardiovascular and cerebrovascular systems 
could lead to specific countermeasures that 
might better protect future space travelers.  This 
experiment is collaborative effort with the 
Canadian Space Agency. 

Commercial Generic Bioprocessing Apparatus 
Science Insert – 02 (CSI-02)

 is an educational 

payload designed to interest middle school 

66 EXPERIMENTS 

NOVEMBER 

2008

 

students in science, technology, engineering 
and math through participation in near real-
time research conducted aboard the station.  
Students will observe a silicate garden 
experiment through data and imagery 
downlinked and distributed directly into the 
classroom via the Internet. 

Stability of Pharmacotherapeutic and 
Nutritional Compounds (Stability)

 will study 

the effects of radiation in space on complex 
organic molecules, such as vitamins and other 
compounds in food and medicine.  This will 
help researchers develop more stable and 
reliable pharmaceutical and nutritional 
countermeasures suitable for future long-
duration missions to the moon and Mars. 

Validating Vegetable Production Unit (VPU) 
Plants, Protocols, Procedures and 
Requirements (P3R) Using Currently Existing 
Flight Resources (Lada-VPU-P3R)

 is a study to 

advance the technology required for plant 
growth in microgravity and to research related 
food safety issues.  Lada-VPU-P3R also 
investigates the non-nutritional value to the 
flight crew of developing plants in orbit.  The 
Lada-VPU-P3R uses the Lada hardware on the 
space station and falls under a cooperative 
agreement between NASA and the Russian 
Federal Space Agency. 

European Space Agency Research 

Role of Apoptosis in Lymphocyte Depression 
(ROALD)

 will determine the role of apoptosis, 

or programmed cell death, in loss of 

 

T-lymphocyte (white blood cells originating in 
the thymus) activity in microgravity.  Various 
aspects of the apoptotic process will be 
assessed, using human T-lymphocytes, by 
analyzing gene expressions of metabolites of 

background image

 

 

NOVEMBER 2008 

EXPERIMENTS 

67

 

reactive oxygen specie and membrane 
properties. 

SOdium LOading in Microgravity (SOLO)

 

This proposal is a continuation of extensive 
research into the mechanisms of fluid and salt 
retention in the body during bed rest and 
spaceflights.  It is a metabolically controlled 
study.  During long-term space missions, 
astronauts will participate in two study phases 
of five days each.  Subjects follow a diet of 
constant either low or normal sodium intake, 
fairly high fluid consumption and isocaloric 
nutrition. 

Simulation of Geophysical Fluid Flow under 
Microgravity (Geoflow)

 will investigate the 

flow of a viscous incompressible fluid between 
two concentric spheres, rotating about a 
common axis, under the influence of a 
simulated central force field.  This flow is of 
importance for astrophysical and geophysical 
problems, like global scale flow in the 
atmosphere, the oceans and in the liquid 
nucleus of planets.  There is also an applied 
interest in this work:  the electro-hydrodynamic 
force that simulates the central gravity field 
may find applications in high-performance heat 
exchangers, and in the study of electro-viscous 
phenomena. 

Japan Aerospace Exploration Agency 
Research 

Chaos, Turbulence and its Transition Process 
in Marangoni Convection (Marangoni)

 is a 

surface-tension-driven flow experiment.  A 
liquid bridge of silicone oil (5 or 10 cSt) is 
formed  into  a  pair  of  disks.    Convection  is 
induced by imposing the temperature 
difference between disks.  Due to the fluid 
instability, flow transits from laminar to 
oscillatory, chaos, and turbulence flows one by 

one as the driving force increases.  The flow 
and temperature fields are observed in each 
stage and the transition conditions and 
processes precisely investigated. 

EXPERIMENTS AND HARDWARE TO BE 
DELIVERED TO INTERNATIONAL SPACE 
STATION 

U.S. Research 

Commercial Generic Bioprocessing Apparatus 
Science Insert – 03 (CSI-03)

 is the third set of 

investigations in the CSI program series.  The 
CSI program provides the K-12 community 
opportunities to use the unique microgravity 
environment of the station as part of the regular 
classroom to encourage learning and interest in 
science, technology, engineering and math. 

 

CSI-03 will examine the complete life cycle of 
the painted lady butterfly and the ability of an 
orb-weaving spider to spin a web, eat and 
remain healthy in space. 

The JPL Electronic Nose (ENose)

 is a full-time, 

continuously operating event monitor designed 
to detect air contamination from spills and 
leaks in the crew habitat in the station.  It fills 
the long-standing gap between onboard alarms 
and complex analytical instruments.  ENose 
provides rapid, early identification and 
quantification of atmospheric changes caused 
by chemical species to which it has been 
trained.  ENose also can be used to monitor 
cleanup processes after a leak or a spill. 

Test of Midodrine as a Countermeasure 
Against Post-Flight Orthostatic Hypotension – 
Long (Midodrine-Long)

 is a test of the ability 

of the drug midodrine to reduce the incidence 
or severity of orthostatic hypotension.  If 
successful, it will be employed as a 
countermeasure to the dizziness caused by the 

background image

 

 

68 EXPERIMENTS 

NOVEMBER 

2008

 

blood pressure decrease that many astronauts 
experience upon returning to the Earth’s 
gravity. 

The Shear History Extensional Rheology 
Experiment (SHERE)

 is designed to investigate 

the effect of preshearing (rotation) on the stress 
and strain response of a polymeric liquid (a 
fluid consisting of many molecular chains) 
being stretched in microgravity.  The 
fundamental understanding and measurement 
of the extensional rheology of complex fluids 
also allows Earth-based manufacturing 
processes to be controlled and improved. 

Sleep-Wake Actigraphy and Light Exposure 
During Spaceflight – Long (Sleep-Long)

 will 

examine the effects of spaceflight and ambient 
light exposure on the sleep-wake cycles of the 
crew members during long-duration stays on 
the space station. 

Space Acceleration Measurement System – II 
(SAMS-II)

 sensors called Triaxial Sensor 

 

Head-Ethernet Standalone will operate within 
the Combustion Integrated Rack and the 
Microgravity Science Glovebox facilities.  These 
two SAMS sensors will provide acceleration 
data for fluid physics, material science and 
combustion experiments performed on the 
space station where the effects of gravity are 
important to the results of the research and 
affect the outcome of the research.  The SAMS 
acceleration data provides measurement of the 
microgravity influence on a payload during 
science operations on board the station. 

The Agricultural Camera (AgCam)

 will take 

frequent images, in visible and infrared light, of 
vegetated areas on Earth, principally of 
growing crops, rangeland, grasslands, forests, 
and wetlands in the northern Great Plains and 
Rocky Mountain regions of the United States.  

Images will be delivered within two days 
directly to requesting farmers, ranchers, 
foresters, natural resource managers and tribal 
officials to help improve their environmental 
stewardship of the land.  Images also will  
be shared with educators for classroom use.  
The Agricultural Camera was built and will be 
operated primarily by students and faculty at 
the University of North Dakota, Grand Forks, 
N.D. 

As a countermeasure to spaceflight-induced 
bone loss, 

Bisphosphonates

 will determine 

whether antiresorptive agents (help reduce 
bone loss), in conjunction with the routine 
in-flight exercise program, will protect station 
crew members from the regional decreases in 
bone mineral density documented on previous 
station missions. 

Multi-User Droplet Combustion Apparatus – 
FLame Extinguishment Experiment (MDCA-
FLEX)

 will assess the effectiveness of fire 

suppressants in microgravity and quantify the 
effect of different possible crew exploration 
atmospheres on fire suppression.  The goal of 
this research is to provide definition and 
direction for large-scale fire suppression tests 
and selection of the fire suppressant for next-
generation crew exploration vehicles. 

Nutritional Status Assessment (Nutrition)

 is 

the most comprehensive in-flight study done  
by NASA to date of human physiologic 
changes during long-duration spaceflight. 

 

 

This includes measures of bone metabolism, 
oxidative damage, nutritional assessments, and 
hormonal changes.  This study will impact both 
the definition of nutritional requirements and 
development of food systems for future 

 

space exploration missions to the moon and 
Mars.  This experiment also will help to 
improve understanding of the impact of 

background image

 

 

NOVEMBER 2008 

EXPERIMENTS 

69

 

countermeasures such as exercise and 
pharmaceuticals on nutritional status and 
nutrient requirements for astronauts. 

The National Aeronautics and Space 
Administration Biological Specimen
Repository (Repository)

 is a storage bank that 

is used to maintain biological specimens over 
extended periods of time and under 
well-controlled conditions.  Biological samples 
from the space station, including blood and 
urine, will be collected, processed and archived 
during the preflight, in-flight and postflight 
phases of space station missions.  This 
investigation has been developed to archive 
biosamples for use as a resource for future 
spaceflight-related research. 

The goal of 

Space-Dynamically Responding 

Ultrasonic Matrix System (SpaceDRUMS)

 is  

to provide a suite of hardware capable of 
facilitating containerless advanced materials 
science, including combustion synthesis and 
fluid physics.  That is, inside SpaceDRUMS, 
samples of experimental materials can be 
processed without ever touching a container 
wall. 

The Smoke Point In Co-flow Experiment 
(SPICE)

 determines the point at which gas-jet 

flames, which are similar to a butane-lighter 
flame, begin to emit soot (dark carbonaceous 
particulate formed inside the flame) in 
microgravity.  Studying a soot emitting flame  
is important in understanding the ability of 
fires to spread and in the control of soot in 
practical combustion systems space. 

European Space Agency Research 

Motion Perception:  Vestibular Adaptation to 
G-Transitions (MOP)

 seeks to obtain insight 

into the process of vestibular adaptation to 
gravity transitions and to correlate the 

 

cosmonauts’ susceptibility to the Space 
Adaptation Syndrome (SAS) with the 
susceptibility to Sickness Induced by 
Centrifugation (SIC). 

The 

Study of Lower Back Pain in 

Crewmembers During Space Flight (Mus)

 

studies the details on development of Low Back 
Pain (LBP) during flight in astronauts and 
cosmonauts.  According to the biomechanical 
model, strain on the ilio-lumbar ligaments 
increases with backward tilt of the pelvis 
combined with forward flexion of the spine.  
This is what astronauts may experience due to 
loss of spinal curvature in space.  The objective 
is to assess astronaut deep muscle corset 
atrophy in response to microgravity exposure. 

Japan Aerospace Exploration Agency 

Research 

The 

Study on Microgravity Effect for Pattern 

Formation of Dendritic Crystal by a Method 
of in-situ Observation (Ice Crystal)

 will 

precisely analyze the factors concerning the 
pattern formation of crystal growth, an ice 
crystal growing freely in supercooled bulk 
water, in-situ

using an interference microscope 

under microgravity condition, in which the free 
convection in the growth chamber cannot 
occur.  Three-dimensional patterns of ice 
crystals and the thermal diffusion field around 
the crystal will be analyzed from the 
experimental results. 

Changes in LOH Profile of TK mutants of 
Human Cultured Cells (LOH) – Gene 
Expression of p53-Regulated Genes in 
Mammalian Cultured Cells After Exposure to 
Space Environment (RadGene)

 is a two-part 

investigation addressing genetic alterations in 
immature immune cells.  LOH uses immature 
immune, or lymphoblastoid, cells to detect 

background image

 

 

70 EXPERIMENTS 

NOVEMBER 

2008

 

potential changes on the chromosome after 
exposure to cosmic radiation.  RadGene looks 
for changes in gene expression of p53, a tumor 
suppressive protein, after cosmic radiation 
exposure. 

Commercial Payload Program (Commercial)

 is 

a to-be-determined commercial investigation 
sponsored by the Japan Aerospace and 
Exploration Agency. 

U.S. INTEGRATED INTERNATIONAL 
SPACE STATION FACILITIES TO BE 
DELIVERED ON STS-126 

EXpedite the PRocessing of Experiments to 
Space Station Rack 6 (EXPRESS Rack 6)

 are 

multipurpose payload rack systems that store 
and support experiments aboard the space 
station.  The EXPRESS Rack system supports 
science experiments in any discipline by 
providing structural interfaces, power, data, 
cooling, water and other items needed to 
operate science experiments in space. 

The 

Combustion Integrated Rack (CIR)

 is one 

of two racks being developed for the Fluids and 
Combustion Facility (FCF) on the space station.  
CIR will be customizable so it can be used in 
different scenarios and experiments; it will first 
operate independently, then together with 
other components of the FCF.  Fluids and 
combustion science experiments aboard the 
space station are very sensitive to disruption 
from undesired vibrations.  CIR will protect the 
samples from vibrations using the Passive Rack 
Isolation System (PaRIS). 

background image

 

 

NOVEMBER 2008 

EXPERIMENTS 

71

 

EXPRESS Rack 6 

 

background image

 

 

72 EXPERIMENTS 

NOVEMBER 

2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

aRED 

73

 

ADVANCED RESISTIVE EXERCISE DEVICE 

 
Earth-based studies have demonstrated the 
effectiveness of high-load resistive exercise to 
prevent musculoskeletal deconditioning.  The 
advanced Resistive Exercise Device (aRED) 

 

was developed to improve existing 
International Space Station exercise capabilities 
by providing more complete protection to the 
musculoskeletal system during long-duration 
spaceflight.  Specifically, the aRED uses 
vacuum cylinders to provide a concentric 
workloads up to 600 pounds, with an eccentric 
load up to 90 percent of the concentric force.  
The aRED also provides feedback to the 
astronaut during use and data to the NASA 
exercise physiologists monitoring crew member 
prescriptions.  The original space station 
countermeasure equipment, an interim 
Resistive Exercise Device (iRED), has no 
feedback to the user with functional limitations 
of 300 pounds concentric loading and only  
60 percent eccentric force. 

The aRED mimics the force loading 
characteristics of traditional resistive exercises 
(weighted bars or dumbbells) by providing a 
more constant force throughout the range of 
motion using inertial flywheels in the load path 
of vacuum cylinders to simulate the 
characteristics of free weight exercise. 

The aRED is part of the mandatory in-flight 
exercise countermeasures program and will be 
used up to six days a week during a mission  
in combination with treadmill and cycle 
ergometer exercises to prevent deconditioning 
of astronauts.  It offers traditional upper and 
lower-body exercises, such as squats, dead lift, 
heel raises, bicep curls, bench press, and 

 

many others.  Flight surgeons, trainers and 
physiologists expect that the greater loads 
provided by aRED will result in more efficient 
and effective exercise, thereby preventing the 
muscle and bone loss that astronauts sometimes 
experience during long space missions. 

background image

 

 

74 aRED 

NOVEMBER 

2008

 

 

Frame

Vacuum Cylinder 
 Assemblies 

Flywheel  
Assemblies  

Arm Base Assembly 

Main Arm  
Assembly 

Exercise  
Platform 

 

advanced Resistive Exercise Device (aRED) 

 

 

background image

 

 

NOVEMBER 2008 

aRED 

75

 

 

 

background image

 

 

76 aRED 

NOVEMBER 

2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

77

 

SHUTTLE REFERENCE DATA 

 

SHUTTLE ABORT MODES 

Redundant Sequence Launch Sequencer 
(RSLS) Aborts 

These occur when the on-board shuttle 
computers detect a problem and command a 
halt in the launch sequence after taking over 
from the ground launch sequencer and before 
solid rocket booster ignition. 

Ascent Aborts 

Selection of an ascent abort mode may become 
necessary if there is a failure that affects vehicle 
performance, such as the failure of a space 
shuttle main engine or an orbital maneuvering 
system engine.  Other failures requiring early 
termination of a flight, such as a cabin leak, 
might also require the selection of an abort 
mode.  There are two basic types of ascent abort 
modes for space shuttle missions:  intact aborts 
and contingency aborts.  Intact aborts are 
designed to provide a safe return of the orbiter 
to a planned landing site.  Contingency aborts 
are designed to permit flight crew survival 
following more severe failures when an intact 
abort is not possible.  A contingency abort 
would generally result in a ditch operation. 

Intact Aborts 

There are four types of intact aborts:  abort to 
orbit (ATO), abort once around (AOA), 
transoceanic abort landing (TAL) and return to 
launch site (RTLS). 

Return to Launch Site 

The RTLS abort mode is designed to allow the 
return of the orbiter, crew, and payload to the 
launch site, KSC, approximately 25 minutes 
after liftoff. 

The RTLS profile is designed to accommodate 
the loss of thrust from one space shuttle main 
engine between liftoff and approximately 
four 

minutes 20 seconds, after which not 

enough main propulsion system propellant 
remains to return to the launch site.  An RTLS 
can be considered to consist of three stages – a 
powered stage, during which the space shuttle 
main engines are still thrusting; an external 
tank separation phase; and the glide phase, 
during which the orbiter glides to a landing at 
the KSC.  The powered RTLS phase begins with 
the crew selection of the RTLS abort, after solid 
rocket booster separation.  The crew selects the 
abort mode by positioning the abort rotary 
switch to RTLS and depressing the abort push 
button.  The time at which the RTLS is selected 
depends on the reason for the abort. For 
example, a three-engine RTLS is selected at the 
last moment, about 3 minutes, 34 seconds into 
the mission; whereas an RTLS chosen due to an 
engine out at liftoff is selected at the earliest 
time, about 2 minutes, 20 seconds into the 
mission (after solid rocket booster separation). 

After RTLS is selected, the vehicle continues 
downrange to dissipate excess main propulsion 
system propellant.  The goal is to leave only 
enough main propulsion system propellant to 
be able to turn the vehicle around, fly back 
toward the KSC and achieve the proper main 
engine cutoff conditions so the vehicle can glide 
to the KSC after external tank separation. 

 

During the downrange phase, a pitch-around 
maneuver is initiated (the time depends in part 
on the time of a space shuttle main engine 
failure) to orient the orbiter/external tank 
configuration to a heads-up attitude, pointing 
toward the launch site.  At this time, the vehicle 
is still moving away from the launch site, but 

background image

 

 

78 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

the space shuttle main engines are now 
thrusting to null the downrange velocity.  In 
addition, excess orbital maneuvering system 
and reaction control system propellants are 
dumped by continuous orbital maneuvering 
system and reaction control system engine 
thrustings to improve the orbiter weight and 
center of gravity for the glide phase and 
landing. 

The vehicle will reach the desired main engine 
cutoff point with less than 2 percent excess 
propellant remaining in the external tank.  At 
main engine cutoff minus 20 seconds, a pitch 
down maneuver (called powered pitch-down) 
takes the mated vehicle to the required external 
tank separation attitude and pitch rate.  After 
main engine cutoff has been commanded, the 
external tank separation sequence begins, 
including a reaction control system maneuver 
that ensures that the orbiter does not recontact 
the external tank and that the orbiter has 
achieved the necessary pitch attitude to begin 
the glide phase of the RTLS. 

After the reaction control system maneuver has 
been completed, the glide phase of the RTLS 
begins.  From then on, the RTLS is handled 
similarly to a normal entry. 

Transoceanic Abort Landing 

The TAL abort mode was developed to 
improve the options available when a space 
shuttle main engine fails after the last RTLS 
opportunity but before the first time that an 
AOA can be accomplished with only two space 
shuttle main engines or when a major orbiter 
system failure, for example, a large cabin 
pressure leak or cooling system failure, occurs 
after the last RTLS opportunity, making it 
imperative to land as quickly as possible. 

In a TAL abort, the vehicle continues on a 
ballistic trajectory across the Atlantic Ocean to 
land at a predetermined runway.  Landing 
occurs about 45 minutes after launch.  The 
landing site is selected near the normal ascent 
ground track of the orbiter to make the most 
efficient use of space shuttle main engine 
propellant.  The landing site also must have the 
necessary runway length, weather conditions 
and U.S. State Department approval.  The three 
landing sites that have been identified for a 
launch are Zaragoza, Spain; Moron, Spain; and 
Istres, France. 

To select the TAL abort mode, the crew must 
place the abort rotary switch in the TAL/AOA 
position and depress the abort push button 
before main engine cutoff (Depressing it after 
main engine cutoff selects the AOA abort 
mode).  The TAL abort mode begins sending 
commands to steer the vehicle toward the plane 
of the landing site.  It also rolls the vehicle 
heads up before main engine cutoff and sends 
commands to begin an orbital maneuvering 
system propellant dump (by burning the 
propellants through the orbital maneuvering 
system engines and the reaction control system 
engines).  This dump is necessary to increase 
vehicle performance (by decreasing weight) to 
place the center of gravity in the proper place 
for vehicle control and to decrease the vehicle’s 
landing weight.  TAL is handled like a normal 
entry. 

Abort to Orbit 

An ATO is an abort mode used to boost the 
orbiter to a safe orbital altitude when 
performance has been lost and it is impossible 
to reach the planned orbital altitude.  If a space 
shuttle main engine fails in a region that results 
in a main engine cutoff under speed, the MCC 
will determine that an abort mode is necessary 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

79

 

and will inform the crew.  The orbital 
maneuvering system engines would be used to 
place the orbiter in a circular orbit. 

Abort Once Around 

The AOA abort mode is used in cases in which 
vehicle performance has been lost to such an 
extent that either it is impossible to achieve a 
viable orbit or not enough orbital maneuvering 
system propellant is available to accomplish the 
orbital maneuvering system thrusting 
maneuver to place the orbiter on orbit and the 
deorbit thrusting maneuver.  In addition, an 
AOA is used in cases in which a major systems 
problem (cabin leak, loss of cooling) makes it 
necessary to land quickly.  In the AOA abort 
mode, one orbital maneuvering system 
thrusting sequence is made to adjust the 
post-main engine cutoff orbit so a second 
orbital maneuvering system thrusting sequence 
will result in the vehicle deorbiting and landing 
at the AOA landing site (White Sands, N.M.; 
Edwards Air Force Base, Calif.; or the Kennedy 
Space Center, Fla).  Thus, an AOA results in the 
orbiter circling the Earth once and landing 
about 90 minutes after liftoff. 

After the deorbit thrusting sequence has been 
executed, the flight crew flies to a landing at the 
planned site much as it would for a nominal 
entry. 

Contingency Aborts 

Contingency aborts are caused by loss of more 
than one main engine or failures in other 
systems.  Loss of one main engine while 
another is stuck at a low thrust setting also may 
necessitate a contingency abort.  Such an abort 
would maintain orbiter integrity for in-flight 
crew escape if a landing cannot be achieved at a 
suitable landing field. 

Contingency aborts due to system failures other 
than those involving the main engines would 
normally result in an intact recovery of vehicle 
and crew.  Loss of more than one main engine 
may, depending on engine failure times, result 
in a safe runway landing.  However, in most 
three-engine-out cases during ascent, the 
orbiter would have to be ditched.  The inflight 
crew escape system would be used before 
ditching the orbiter. 

Abort Decisions 

There is a definite order of preference for the 
various abort modes.  The type of failure and the 
time of the failure determine which type of abort 
is selected.  In cases where performance loss is 
the only factor, the preferred modes are ATO, 
AOA, TAL and RTLS, in that order.  The mode 
chosen is the highest one that can be completed 
with the remaining vehicle performance. 

In the case of some support system failures, 
such as cabin leaks or vehicle cooling problems, 
the preferred mode might be the one that will 
end the mission most quickly.  In these cases, 
TAL or RTLS might be preferable to AOA or 
ATO.  A contingency abort is never chosen if 
another abort option exists. 

Mission Control Houston is prime for calling 
these aborts because it has a more precise 
knowledge of the orbiter’s position than the 
crew can obtain from on-board systems.  Before 
main engine cutoff, Mission Control makes 
periodic calls to the crew to identify which 
abort mode is (or is not) available.  If ground 
communications are lost, the flight crew has 
on-board methods, such as cue cards, dedicated 
displays and display information, to determine 
the abort region.  Which abort mode is selected 
depends on the cause and timing of the failure 
causing the abort and which mode is safest or 

background image

 

 

80 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

improves mission success.  If the problem is a 
space shuttle main engine failure, the flight 
crew and Mission Control Center select the best 
option available at the time a main engine fails. 

If the problem is a system failure that 
jeopardizes the vehicle, the fastest abort mode 
that results in the earliest vehicle landing is 
chosen.  RTLS and TAL are the quickest options 
(35 minutes), whereas an AOA requires about 
90 minutes.  Which of these is selected depends 
on the time of the failure with three good space 
shuttle main engines. 

The flight crew selects the abort mode by 
positioning an abort mode switch and 
depressing an abort push button. 

SHUTTLE ABORT HISTORY 

RSLS Abort History 

(STS-41 D) June 26, 1984 

The countdown for the second launch attempt 
for Discovery’s maiden flight ended at T-4 
seconds when the orbiter’s computers detected 
a sluggish valve in main engine No. 3.  The 
main engine was replaced and Discovery was 
finally launched on Aug. 30, 1984. 

(STS-51 F) July 12, 1985 

The countdown for Challenger’s launch was 
halted at T-3 seconds when on-board 
computers detected a problem with a coolant 
valve on main engine No. 2.  The valve was 
replaced and Challenger was launched on 
July 29, 1985. 

(STS-55) March 22, 1993 

The countdown for Columbia’s launch was 
halted by on-board computers at T-3 seconds 
following a problem with purge pressure 
readings in the oxidizer preburner on main 

engine No. 2.  Columbia’s three main engines 
were replaced on the launch pad, and the flight 
was rescheduled behind Discovery’s launch on 
STS-56. Columbia finally launched on 
April 26, 1993. 

(STS-51) Aug. 12, 1993 

The countdown for Discovery’s third launch 
attempt ended at the T-3 second mark when 
onboard computers detected the failure of one of 
four sensors in main engine No. 2 which monitor 
the flow of hydrogen fuel to the engine.  All of 
Discovery’s main engines were ordered replaced 
on the launch pad, delaying the shuttle’s fourth 
launch attempt until Sept. 12, 1993. 

(STS-68) Aug. 18, 1994 

The countdown for Endeavour’s first launch 
attempt ended 1.9 seconds before liftoff when 
on-board computers detected higher than 
acceptable readings in one channel of a sensor 
monitoring the discharge temperature of the 
high pressure oxidizer turbopump in main 
engine No. 3.  A test firing of the engine at the 
Stennis Space Center in Mississippi on 
September 2nd confirmed that a slight drift in a 
fuel flow meter in the engine caused a slight 
increase in the turbopump’s temperature.  The 
test firing also confirmed a slightly slower start 
for main engine No. 3 during the pad abort, 
which could have contributed to the higher 
temperatures.  After Endeavour was brought 
back to the Vehicle Assembly Building to be 
outfitted with three replacement engines, 
NASA managers set Oct. 2 as the date for 
Endeavour’s second launch attempt. 

Abort to Orbit History 

(STS-51 F) July 29, 1985 

After an RSLS abort on July 12, 1985, 
Challenger was launched on July 29, 1985.   

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

81

 

Five minutes and 45 seconds after launch, a 
sensor problem resulted in the shutdown of 
center engine No. 1, resulting in a safe “abort to 
orbit” and successful completion of the mission. 

SPACE SHUTTLE MAIN ENGINES 

Developed in the 1970s by NASA’s Marshall 
Space Flight Center, MSFC in Huntsville, Ala., 
the space shuttle main engine is the most 
advanced liquid-fueled rocket engine ever built.  
Every space shuttle main engine is tested and 
proven flight worthy at NASA’s Stennis Space 
Center in south Mississippi, before installation 
on an orbiter.  Its main features include variable 
thrust, high performance reusability, high 
redundancy and a fully integrated engine 
controller. 

The shuttle’s three main engines are mounted 
on the orbiter aft fuselage in a triangular 
pattern.  Spaced so that they are movable 
during launch, the engines are used, in 
conjunction with the solid rocket boosters, to 
steer the shuttle vehicle. 

Each of these powerful main engines is 14 feet 
long, weighs about 7,000 pounds and is 7.5 feet 
in diameter at the end of its nozzle. 

The engines operate for about 8.5 minutes 
during liftoff and ascent, burning more than 
500,000 gallons of super-cold liquid hydrogen 
and liquid oxygen propellants stored in the 
external tank attached to the underside of the 
shuttle.  The engines shut down just before the 
shuttle, traveling at about 17,000 miles per 
hour, reaches orbit. 

The main engine operates at greater 
temperature extremes than any mechanical 
system in common use today.  The fuel, 
liquefied hydrogen at -423 degrees Fahrenheit, 
is the second coldest liquid on Earth.  When it 

and the liquid oxygen are combusted, the 
temperature in the main combustion chamber is 
6,000 degrees Fahrenheit, hotter than the 
boiling point of iron. 

The main engines use a staged combustion 
cycle so that all propellants entering the engines 
are used to produce thrust, or power, more 
efficiently than any previous rocket engine.  In 
a staged combustion cycle, propellants are first 
burned partially at high pressure and relatively 
low temperature, and then burned completely 
at high temperature and pressure in the main 
combustion chamber.  The rapid mixing of the 
propellants under these conditions is so 
complete that 99 percent of the fuel is burned. 

At normal operating level, each engine 
generates 490,847 pounds of thrust, measured 
in a vacuum.  Full power is 512,900 pounds of 
thrust; minimum power is 316,100 pounds of 
thrust. 

The engine can be throttled by varying the 
output of the pre-burners, thus varying the 
speed of the high-pressure turbopumps and, 
therefore, the flow of the propellant. 

At about 26 seconds into ascent, the main 
engines are throttled down to 316,000 pounds 
of thrust to keep the dynamic pressure on the 
vehicle below a specified level,about 
580 pounds per square foot, known as max q.  
Then, the engines are throttled back up to 
normal operating level at about 60 seconds.  
This reduces stress on the vehicle.  The main 
engines are throttled down again at about 
seven minutes, 40 seconds into the mission to 
maintain three g’s, three times the Earth’s 
gravitational pull, reducing stress on the crew 
and the vehicle.  This acceleration level is about 
one-third the acceleration experienced on 
previous crewed space vehicles. 

background image

 

 

82 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

About 10 seconds before main engine cutoff, or 
MECO, the cutoff sequence begins.  About 
three seconds later the main engines are 
commanded to begin throttling at 10 percent 
thrust per second until they achieve 65 percent 
thrust.  This is held for about 6.7 seconds, and 
the engines are shut down. 

The engine performance has the highest thrust 
for its weight of any engine yet developed.  In 
fact, one space shuttle main engine generates 
sufficient thrust to maintain the flight of two 
and one-half Boeing 747 airplanes. 

The space shuttle main engine also is the first 
rocket engine to use a built-in electronic digital 
controller, or computer.  The controller accepts 
commands from the orbiter for engine start, 
change in throttle, shutdown and monitoring of 
engine operation. 

NASA continues to increase the reliability and 
safety of shuttle flights through a series of 
enhancements to the space shuttle main 
engines.  The engines were modified in 1988, 
1995, 1998, 2001 and 2007.  Modifications 
include new high-pressure fuel and oxidizer 
turbopumps that reduce maintenance and 
operating costs of the engine, a two-duct 
powerhead that reduces pressure and 
turbulence in the engine, and a single-coil heat 
exchanger that lowers the number of post flight 
inspections required.  Another modification 
incorporates a large-throat main combustion 
chamber that improves the engine’s reliability 
by reducing pressure and temperature in the 
chamber. 

The most recent engine enhancement is the 
Advanced Health Management System, or 
AHMS, which made its first flight in 2007.  
AHMS is a controller upgrade that provides 
new monitoring and insight into the health of 

the two most complex components of the space 
shuttle main engine—the high pressure fuel 
turbopump and the high pressure oxidizer 
turbopump.  New advanced digital signal 
processors monitor engine vibration and have 
the ability to shut down an engine if vibration 
exceeds safe limits.  AHMS was developed by 
engineers at Marshall. 

After the orbiter lands, the engines are removed 
and returned to a processing facility at 
Kennedy Space Center, Fla., where they are 
rechecked and readied for the next flight.  Some 
components are returned to the main engine’s 
prime contractor, Pratt & Whitney Rocketdyne, 
West Palm Beach, Fla., for regular maintenance.  
The main engines are designed to operate for 
7.5 accumulated hours. 

SPACE SHUTTLE SOLID ROCKET 
BOOSTERS 

The combination of reusable solid rocket motor 
segments and solid rocket booster 
subassemblies makes up the flight 
configuration of the space shuttle solid rocket 
boosters, or SRBs.  The two SRBs provide the 
main thrust to lift the space shuttle off the 
launch pad and up to an altitude of about 
150,000 feet, or 28 miles.  The two SRBs carry 
the entire weight of the external tank and 
orbiter and transmit the weight load through 
their structure to the mobile launcher platform. 

The primary elements of each booster are the 
motor, including case, propellant, igniter and 
nozzle; separation systems; operational flight 
instrumentation; recovery avionics; 
pyrotechnics; deceleration system; thrust vector 
control system; and range safety destruct 
system. 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

83

 

Each booster is attached to the external tank at 
the SRB aft frame by two lateral sway braces 
and a diagonal attachment.  The forward end of 
each SRB is attached to the external tank at the 
forward end of the SRB forward skirt.  On the 
launch pad, each booster also is attached to the 
mobile launcher platform at the aft skirt by four 
bolts and nuts that are severed by small 
explosives at liftoff. 

Each booster has a sea level thrust of about 
3.3 million pounds at launch.  The SRBs are 
ignited after the three space shuttle main 
engines’ thrust level is verified.  They provide 
71.4 percent of the thrust at liftoff and during 
first-stage ascent.  Seventy-five seconds after 
separation, SRB apogee occurs at an altitude of 
about 220,000 feet, or 40 miles.  Impact occurs 
in the ocean about 140 miles downrange. 

The SRBs are used as matched pairs, each made 
up of four solid rocket motor segments.  They 
are matched by loading each of the four motor 
segments from the same batches of propellant 
ingredients to minimize any thrust imbalance.  
The segmented-casing design assures 
maximum flexibility in fabrication and ease of 
transportation and handling.  Each segment is 
shipped to the launch site on a heavy-duty rail 
car with a specially built cover. 

Reusable Solid Rocket Motor (RSRM) 

ATK Launch Systems of Brigham City, Utah, 
manufactures the Space Shuttle Reusable Solid 
Rocket Motor (RSRM) at its Utah facility.  The 
RSRM is the largest solid rocket motor ever to 
fly, the only solid rocket motor rated for human 
flight and the first designed for reuse, one of 
the most important cost-saving factors in the 
nation’s space program. 

Each RSRM consists of four rocket motor 
segments, thrust vector control and an aft exit 

cone assembly.  Each motor is just over 126 feet 
long and 12 feet in diameter.  Of the motor’s 
total weight of 1.25 million pounds, propellant 
accounts for 1.1 million pounds. 

 

Approximately 110,000 quality-control 
inspections, in addition to static tests, are 
conducted on each RSRM flight set to verify 
flawless operation. 

Each space shuttle launch requires the boost of 
two RSRMs to lift the 4.5-million-pound shuttle 
vehicle.  From ignition to the end of burn, about 
123 seconds later, each RSRM generates an 
average thrust of 2.6 million pounds.  By the 
time the twin SRBs have completed their task, 
the space shuttle orbiter has reached an altitude 
of 28 miles and is traveling at a speed in excess 
of 3,000 miles per hour.  Before retirement, each 
RSRM can be used as many as 20 times. 

The propellant mixture in each SRB motor 
consists of:  ammonium perchlorate, an 
oxidizer; aluminum fuel; iron oxide, a catalyst; 
a polymer, which is a binder that holds the 
mixture together; and an epoxy curing agent.  
The propellant has the consistency of a pencil 
eraser.  It has a molded internal geometry 
designed to provide required performance. 

 

This configuration provides high thrust at 
ignition and then reduces the thrust by about 
one-third 50 seconds after liftoff to prevent 
overstressing the vehicle during maximum 
dynamic pressure. 

The RSRM segments are shipped by rail from 
ATK’s Utah facility to the Kennedy Space 
Center, Fla.  At KSC, United Space Alliance 
joins the segments with the forward assembly, 
aft skirt, frustum, and nose cap.  The 
subassemblies contain the booster guidance 
system, the hydraulics system that steers the 
nozzles, Booster Separation Motors built by 
ATK, and parachutes. 

background image

 

 

84 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

Following the Challenger accident, detailed 
structural analyses were performed on critical 
structural elements of the SRB.  Analyses were 
primarily focused in areas where anomalies had 
been noted during postflight inspection of 
recovered hardware. 

One of these areas was the attach ring where 
the SRBs connect to the external tank.  Areas of 
distress were noted in some of the fasteners 
where the ring attaches to the SRB motor case.  
The distress was attributed to the high loads 
encountered during water impact.  To correct 
the situation and ensure higher strength 
margins during ascent, the attach ring was 
redesigned to encircle the motor case 
completely.  Previously, the attach ring formed 
a “C” and encircled the motor case 270 degrees. 

Additionally, special structural tests were done 
on the aft skirt.  During this test program, an 
anomaly occurred in a critical weld between the 
hold-down post and skin of the skirt.  A 
redesign was implemented to add
reinforcement brackets and fittings in the aft 
ring of the skirt. 

These two modifications added about 
450 pounds to the weight of each SRB. 

Beginning with the STS-8 mission, the nozzle 
expansion ratio of each booster is 7-to-79.  The 
nozzle is gimbaled for thrust vector, or 
direction, control.  Each SRB has its own 
redundant auxiliary power units and hydraulic 
pumps.  The all-axis gimbaling capability is 8 
degrees.  Each nozzle has a carbon cloth liner 
that erodes and chars during firing.  The nozzle 
is a convergent-divergent, movable design in 
which an aft pivot-point flexible bearing is the 
gimbal mechanism. 

The cone-shaped aft skirt supports the weight 
of the entire vehicle as it rests on the mobile 

 

launcher platform.  The four aft separation 
motors are mounted on the skirt.  The aft 
section contains:  avionics; a thrust vector 
control system that consists of two auxiliary 
power units and hydraulic pumps; hydraulic 
systems; and a nozzle extension jettison system. 

The forward section of each booster contains 
avionics, a sequencer, forward separation 
motors, a nose cone separation system, drogue 
and main parachutes, a recovery beacon, a 
recovery light, a parachute camera on selected 
flights and a range safety system. 

Each SRB has two integrated electronic 
assemblies, one forward and one aft.  After 
burnout, the forward assembly turns on the 
recovery aids and initiates the release of the 
nose cap and frustum, a transition piece 
between the nose cone and solid rocket motor.  
The aft assembly, mounted in the external tank-
to-SRB attach ring, connects with the forward 
assembly and the shuttle avionics systems for 
SRB ignition commands and nozzle thrust 
vector control.  Each integrated electronic 
assembly has a multiplexer/demultiplexer, 
which sends or receives more than one 
message, signal or unit of information on a 
single communication channel. 

Eight Booster Separation Motors, four in the 
nose frustum and four in the aft skirt of each 
SRB, thrust for 1.02 seconds when the SRBs 
separate from the external tank.  Each solid 
rocket separation motor is 31.1 inches long and 
12.8 inches in diameter. 

After separation from the tank, the boosters 
descend.  At a predetermined altitude, 
parachutes are deployed to decelerate them for 
a safe splashdown in the ocean.  Just prior to 
splashdown, the aft exit cones, or nozzle 
extensions, are separated from the vehicles to 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

85

 

reduce water impact loads.  Splashdown occurs 
approximately 162 miles from the launch site. 

Location aids are provided for each SRB, 
frustum and drogue chutes, and main 
parachutes.  These include a transmitter, 
antenna, strobe/converter, battery and
salt-water switch electronics.  The location aids 
are designed for a minimum operating life of 
72 hours and, when refurbished, are considered 
usable up to 20 times.  The flashing light is an 
exception.  It has an operating life of 280 hours.  
The battery is used only once. 

The recovery crew retrieves the SRBs, frustum 
and drogue chutes, and main parachutes.  The 
nozzles are plugged, the solid rocket motors are 
dewatered, and the SRBs are towed back to the 
launch site.  Each booster is removed from the 
water, and its components are disassembled 
and washed with fresh and deionized water to 
limit salt-water corrosion.  The motor segments, 
igniter and nozzle are shipped back to ATK in 
Utah for refurbishment.  The SRB nose caps and 
nozzle extensions are not recovered. 

Each SRB incorporates a range safety system 
that includes a battery power source, receiver 
and decoder, antennas, and ordnance. 

Hold-Down Posts 

Each SRB has four hold-down posts that fit into 
corresponding support posts on the mobile 
launcher platform.  Hold-down bolts secure the 
SRB and launcher platform posts together.  
Each bolt has a nut at each end, but only the top 
nut is frangible.  The top nut contains two 
NASA standard detonators, or NSDs, which are 
ignited at solid rocket motor ignition 
commands. 

When the two NSDs are ignited at each 
hold-down, the hold-down bolt travels 

 

downward because of the release of tension in 
the bolt (pretensioned before launch), NSD gas 
pressure and gravity.  The bolt is stopped by 
the stud deceleration stand, which contains 
sand.  The SRB bolt is 28 inches long and  
3.5 inches in diameter.  The frangible nut is 
captured in a blast container. 

The solid rocket motor ignition commands are 
issued by the orbiter’s computers through the 
master events controllers to the hold-down 
pyrotechnic initiator controllers, or PICs, on the 
mobile launcher platform.  They provide the 
ignition to the hold-down NSDs.  The launch 
processing system monitors the SRB hold-down 
PICs for low voltage during the last 16 seconds 
before launch.  PIC low voltage will initiate a 
launch hold. 

SRB Ignition 

SRB ignition can occur only when a manual 
lock pin from each SRB safe and arm device has 
been removed.  The ground crew removes the 
pin during prelaunch activities.  At T minus 
five minutes, the SRB safe and arm device is 
rotated to the arm position.  The solid rocket 
motor ignition commands are issued when the 
three SSMEs are at or above 90 percent rated 
thrust, no SSME fail and/or SRB ignition PIC 
low voltage is indicated, and there are no holds 
from the Launch Processing System, or LPS. 

The solid rocket motor ignition commands are 
sent by the orbiter computers through the 
master events controllers, or MECs, to the safe 
and  arm  device  NSDs  in  each  SRB.    A 
programmable interval clock, or PIC, 
single-channel capacitor discharge device 
controls the firing of each pyrotechnic device.  
Three signals must be present simultaneously 
for the PIC to generate the pyro firing output.  
These signals – arm, fire 1 and fire 2 – originate 

background image

 

 

86 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

in the orbiter General Purpose Computers, or 
GPCs, and are transmitted to the MECs.  The 
MECs reformat them to 28-volt dc signals for 
the programmable interval clock.  The arm 
signal charges the PIC capacitor to 40 volts dc. 

The fire 2 commands cause the redundant 
NSDs to fire through a thin barrier seal down a 
flame tunnel.  This ignites a pyro booster 
charge, which is retained in the safe and arm 
device behind a perforated plate.  The booster 
charge ignites the propellant in the igniter 
initiator; and combustion products of this 
propellant ignite the solid rocket motor 
initiator, which fires down the length of the 
solid rocket motor, igniting the solid rocket 
motor propellant. 

The GPC launch sequence also controls certain 
critical main propulsion system valves and 
monitors the engine-ready indications from the 
SSMEs.  The Main Propulsion System, or MPS, 
start commands are issued by the on-board 
computers at T minus 6.6 seconds in a 
staggered start – engine three, engine two, 
engine one – all about within 0.25 of a second, 
and the sequence monitors the thrust buildup 
of each engine.  All three SSMEs must reach the 
required 90 percent thrust within three seconds, 
otherwise, an orderly shutdown is commanded 
and safing functions are initiated. 

Normal thrust buildup to the required 

 

90 percent thrust level will result in the SSMEs 
being commanded to the liftoff position at 
T minus three seconds as well as the fire 1 
command being issued to arm the SRBs.  At 

minus three seconds, the vehicle base 

bending load modes are allowed to initialize, 
with a movement of 25.5 inches measured at 
the tip of the external tank, with movement 
towards the external tank. 

At T minus zero, the two SRBs are ignited 
under command of the four onboard 
computers; separation of the four explosive 
bolts on each SRB is initiated; the two T-0 
umbilicals, one on each side of the spacecraft, 
are retracted; the onboard master timing unit, 
event timer and mission event timers are 
started; the three SSMEs are at 100 percent; and 
the ground launch sequence is terminated. 

The solid rocket motor thrust profile is tailored 
to reduce thrust during the maximum dynamic 
pressure region. 

Electrical Power Distribution 

Electrical power distribution in each SRB 
consists of orbiter-supplied main dc bus power 
to each SRB via SRB buses A, B and C.  In 
addition, orbiter main dc bus C supplies 
backup power to SRB buses A and B, and 
orbiter bus B supplies backup power to SRB 
bus 

C.  This electrical power distribution 

arrangement allows all SRB buses to remain 
powered in the event one orbiter main bus fails. 

The nominal dc voltage is 28 volts dc, with an 
upper limit of 32 volts dc and a lower limit of 
24 volts dc. 

Hydraulic Power Units 

There are two self-contained, independent 
HPUs  on  each  SRB.    Each  HPU  consists  of  an 
auxiliary power unit, fuel supply module, 
hydraulic pump, hydraulic reservoir and 
hydraulic fluid manifold assembly.  The 
auxiliary power units, or APUs, are fueled by 
hydrazine and generate mechanical shaft power 
to a hydraulic pump that produces hydraulic 
pressure for the SRB hydraulic system.  The two 
separate HPUs and two hydraulic systems are 
located on the aft end of each SRB between the 
SRB nozzle and aft skirt.  The HPU components 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

87

 

are mounted on the aft skirt between the rock 
and tilt actuators.  The two systems operate 
from T minus 28 seconds until SRB separation 
from the orbiter and external tank.  The two 
independent hydraulic systems are connected 
to the rock and tilt servoactuators. 

The APU controller electronics are located in 
the SRB aft integrated electronic assemblies on 
the aft external tank attach rings. 

The APUs and their fuel systems are isolated 
from each other.  Each fuel supply module tank 
contains 22 pounds of hydrazine.  The fuel tank 
is pressurized with gaseous nitrogen at 400 psi, 
which provides the force to expel the fuel from 
the tank to the fuel distribution line, 
maintaining a positive fuel supply to the APU 
throughout its operation. 

The fuel isolation valve is opened at APU 
startup to allow fuel to flow to the APU fuel 
pump and control valves and then to the gas 
generator.  The gas generator’s catalytic action 
decomposes the fuel and creates a hot gas.  It 
feeds the hot gas exhaust product to the APU 
two-stage gas turbine.  Fuel flows primarily 
through the startup bypass line until the APU 
speed is such that the fuel pump outlet pressure 
is greater than the bypass line’s.  Then all the 
fuel is supplied to the fuel pump. 

The APU turbine assembly provides 
mechanical power to the APU gearbox.  The 
gearbox drives the APU fuel pump, hydraulic 
pump and lube oil pump.  The APU lube oil 
pump lubricates the gearbox.  The turbine 
exhaust of each APU flows over the exterior of 
the gas generator, cooling it, and is then 
directed overboard through an exhaust duct. 

When the APU speed reaches 100 percent, the 
APU primary control valve closes, and the APU 
speed is controlled by the APU controller 

electronics.  If the primary control valve logic 
fails to the open state, the secondary control 
valve assumes control of the APU at 

 

112 percent speed.  Each HPU on an SRB is 
connected to both servoactuators on that SRB.  
One HPU serves as the primary hydraulic 
source for the servoactuator, and the other  
HPU serves as the secondary hydraulics for  
the servoactuator.  Each servoactuator has a 
switching valve that allows the secondary 
hydraulics to power the actuator if the primary 
hydraulic pressure drops below 2,050 psi.  A 
switch contact on the switching valve will close 
when the valve is in the secondary position.  
When the valve is closed, a signal is sent to the 
APU controller that inhibits the 100 percent 
APU speed control logic and enables the 
112 percent APU speed control logic.  The 
100 

percent APU speed enables one APU/ 

HPU to supply sufficient operating hydraulic 
pressure to both servoactuators of that SRB. 

The APU 100 percent speed corresponds to 
72,000 rpm, 110 percent to 79,200 pm, and 
112 percent to 80,640 rpm. 

The hydraulic pump speed is 3,600 rpm and 
supplies hydraulic pressure of 3,050, plus or 
minus 50, psi.  A high-pressure relief valve 
provides overpressure protection to the 
hydraulic system and relieves at 3,750 psi. 

The APUs/HPUs and hydraulic systems are 
reusable for 20 missions. 

Thrust Vector Control 

Each SRB has two hydraulic gimbal 
servoactuators, one for rock and one for tilt.  
The servoactuators provide the force and 
control to gimbal the nozzle for thrust vector 
control. 

background image

 

 

88 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

The space shuttle ascent thrust vector control, 
or ATVC, portion of the flight control system 
directs the thrust of the three shuttle main 
engines and the two SRB nozzles to control 
shuttle attitude and trajectory during liftoff and 
ascent.  Commands from the guidance system 
are transmitted to the ATVC drivers, which 
transmit signals proportional to the commands 
to each servoactuator of the main engines and 
SRBs.  Four independent flight control system 
channels and four ATVC channels control six 
main engine and four SRB ATVC drivers, with 
each driver controlling one hydraulic port on 
each main and SRB servoactuator. 

Each SRB servoactuator consists of four 
independent, two-stage servovalves that 
receive signals from the drivers.  Each 
servovalve controls one power spool in each 
actuator, which positions an actuator ram and 
the nozzle to control the direction of thrust. 

The four servovalves in each actuator provide a 
force-summed majority voting arrangement to 
position the power spool.  With four identical 
commands to the four servovalves, the actuator 
force-sum action prevents a single erroneous 
command from affecting power ram motion.  If 
the erroneous command persists for more than 
a predetermined time, differential pressure 
sensing activates a selector valve to isolate and 
remove the defective servovalve hydraulic 
pressure, permitting the remaining channels 
and servovalves to control the actuator ram 
spool. 

Failure monitors are provided for each channel 
to indicate which channel has been bypassed.  
An isolation valve on each channel provides the 
capability of resetting a failed or bypassed 
channel. 

Each actuator ram is equipped with transducers 
for position feedback to the thrust vector 
control system.  Within each servoactuator ram 
is a splashdown load relief assembly to cushion 
the nozzle at water splashdown and prevent 
damage to the nozzle flexible bearing. 

SRB Rate Gyro Assemblies 

Each SRB contains two RGAs, with each RGA 
containing one pitch and one yaw gyro.  These 
provide an output proportional to angular rates 
about the pitch and yaw axes to the orbiter 
computers and guidance, navigation and 
control system during first-stage ascent flight in 
conjunction with the orbiter roll rate gyros until 
SRB separation.  At SRB separation, a 
switchover  is  made  from  the  SRB  RGAs  to  the 
orbiter RGAs. 

The SRB RGA rates pass through the orbiter 
flight aft multiplexers/demultiplexers to the 
orbiter GPCs.  The RGA rates are then 
mid-value-selected in redundancy management 
to provide SRB pitch and yaw rates to the  
user software.  The RGAs are designed for 
20 missions. 

SRB Separation 

SRB separation is initiated when the three solid 
rocket motor chamber pressure transducers are 
processed in the redundancy management 
middle value select and the head-end chamber 
pressure of both SRBs is less than or equal to  
50 psi.  A backup cue is the time elapsed from 
booster ignition. 

The separation sequence is initiated, 
commanding the thrust vector control actuators 
to the null position and putting the main 
propulsion system into a second stage 
configuration 0.8 second from sequence 
initialization, which ensures the thrust of each 
SRB is less than 100,000 pounds.  Orbiter yaw 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

89

 

attitude is held for four seconds, and SRB thrust 
drops to less than 60,000 pounds.  The SRBs 
separate from the external tank within 
30 

milliseconds of the ordnance firing 

command. 

The forward attachment point consists of a ball 
on the SRB and socket on the external tank held 
together by one bolt.  The bolt contains one 
NSD pressure cartridge at each end.  The 
forward attachment point also carries the Range 
Safety System, or RSS, cross-strap wiring 
connecting each SRB RSS and the ET RSS with 
each other. 

The aft attachment points consist of three 
separate struts, upper, diagonal, and lower.  
Each strut contains one bolt with an NSD 
pressure cartridge at each end.  The upper strut 
also carries the umbilical interface between its 
SRB and the external tank and on to the orbiter. 

There are four Booster Separation Motors, or 
BSMs on each end of each SRB.  The BSMs 
separate the SRBs from the external tank.  The 
solid  rocket  motors  in  each  cluster  of  four  are 
ignited by firing redundant NSD pressure 
cartridges into redundant confined detonating 
fuse manifolds.  The separation commands 
issued from the orbiter by the SRB separation 
sequence initiate the redundant NSD pressure 
cartridge in each bolt and ignite the BSMs to 
achieve a clean separation 

SRB Cameras 

A new camera, the External Tank Observation 
Camera, was added on the first Return to Flight 
mission.  Named because it was originally 
certified to give NASA engineers a closer look 
at the insulating foam on the external tank’s 
inter-tank, the mid-section that joins the liquid 
hydrogen and liquid oxygen tanks.  It consists 
of an off-the-shelf SuperCircuits PC 17 video 
camera and Sony mini-DV tape recorder 

positioned in each forward skirt section of the 
two boosters and offers a view of the Orbiter’s 
nose, the tank’s intertank and, at separation, the 
booster opposite the camera. 

The camera’s 2.5 mm lens provides a wide-
angle, 90 degree horizontal field of view. 

 

Recording begins at launch and continues until 
after drogue parachute deployment, when the 
recorder switches over to a second identical 
camera looking out the top to record main 
parachute deployment.  Audio is also recorded, 
which allows some correlation between the 
video and various flight events.  The recorder 
battery pack is a 7.2 volt Lithium Ion battery 
which supports 90 minutes of operation, 
enough to support launch and then descent 
back to the Atlantic Ocean.  The camera battery 
pack is a 24V Ni-Cad battery pack. 

Video from the cameras is available for 
engineering review approximately 24 hours 
after the arrival of the boosters on the dock at 
Kennedy Space Center, usually about 52 hours 
after the launch. 

Redesigned Booster Separation Motors 

Redesigned Booster Separation Motors will fly 
the first time in both forward and aft locations 
on STS-125.  As a result of vendor viability and 
manifest support issues, space shuttle BSMs are 
now being manufactured by ATK.  The igniter 
has been redesigned and other changes include 
material upgrades driven by obsolescence 
issues and improvements to process and 
inspection techniques. 

As before, eight BSMs are located on each 
booster, four on the forward section and four 
on the aft skirt.  Once the SRBs have completed 
their flight, the eight BSMs are fired to jettison 
the boosters away from the orbiter and external 
tank, allowing the solid rocket motors to 
parachute to Earth and be reused. 

background image

 

 

90 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

SPACE SHUTTLE SUPER LIGHT WEIGHT 
TANK (SLWT) 

The super lightweight external tank (SLWT) 
made its first shuttle flight June 2, 1998, on 
mission STS-91.  The SLWT is 7,500 pounds 
lighter than the standard external tank.  The 
lighter weight tank allows the shuttle to deliver 
International Space Station elements (such as 
the service module) into the proper orbit. 

The SLWT is the same size as the previous 
design.  But the liquid hydrogen tank and the 
liquid oxygen tank are made of aluminum 
lithium, a lighter, stronger material than the 
metal alloy used for the shuttle’s current tank.  
The tank’s structural design has also been 
improved, making it 30 percent stronger and 
5 percent less dense. 

The SLWT, like the standard tank, is 
manufactured at Michoud Assembly, near 
New Orleans, by Lockheed Martin. 

The 154-foot-long external tank is the largest 
single component of the space shuttle.  It stands 
taller than a 15-story building and has a 
diameter of about 27 feet.  The external tank 
holds over 530,000 gallons of liquid hydrogen 
and liquid oxygen in two separate tanks.  The 
hydrogen (fuel) and liquid oxygen (oxidizer) 
are used as propellants for the shuttle’s three 
main engines. 

EXTERNAL TANK 

The 154-foot-long external tank is the largest 
single component of the space shuttle.  It stands 
taller than a 15-story building and has a 
diameter of about 27 feet.  The external tank 
holds more than 530,000 gallons of liquid 
hydrogen and liquid oxygen in two separate 
tanks, the forward liquid oxygen tank and the 

aft liquid hydrogen tank.  An unpressurized 
intertank unites the two propellant tanks. 

Liquid hydrogen (fuel) and liquid oxygen 
(oxidizer) are used as propellants for the 
shuttle’s three main engines.  The external tank 
weighs 58,500 pounds empty and 

 

1,668,500 pounds when filled with propellants. 

The external tank is the “backbone” of the 
shuttle during launch, providing structural 
support for attachment with the solid rocket 
boosters and orbiter.  It is the only component 
of the shuttle that is not reused.  Approximately 
8.5 minutes after reaching orbit, with its 
propellant used, the tank is jettisoned and falls 
in a preplanned trajectory.  Most of the tank 
disintegrates in the atmosphere, and the 
remainder falls into the ocean. 

The external tank is manufactured at NASA’s 
Michoud Assembly Facility in New Orleans by 
Lockheed Martin Space Systems. 

Foam Facts 

The external tank is covered with spray-on 
foam insulation that insulates the tank before 
and during launch.  More than 90 percent of the 
tank’s foam is applied using an automated 
system, leaving less than 10 percent to be 
applied manually. 

There are two types of foam on the external 
tank, known as the Thermal Protection System, 
or TPS.  One is low-density, closed-cell foam on 
the tank acreage and is known as Spray-On-
Foam-Insulation, often referred to by its 
acronym, SOFI.  Most of the tank is covered by 
either an automated or manually applied SOFI.  
Most areas around protuberances, such as 
brackets and structural elements, are applied by 
pouring foam ingredients into part-specific 
molds.  The other is a denser composite 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

91

 

material made of silicone resins and cork and 
called ablator.  An ablator is a material that 
dissipates  heat  by  eroding.    It  is  used  on  areas 
of the external tank subjected to extreme heat, 
such as the aft dome near the engine exhaust, 
and remaining protuberances, such as the cable 
trays.  These areas are exposed to extreme 
aerodynamic heating. 

Closed-cell foam used on the tank was 
developed to keep the propellants that fuel the 
shuttle’s three main engines at optimum 
temperature.  It keeps the shuttle’s liquid 
hydrogen fuel at minus 423 degrees Fahrenheit 
and the liquid oxygen tank at near minus  
297 degrees Fahrenheit, even as the tank sits 
under the hot Florida sun.  At the same time, 
the foam prevents a buildup of ice on the 
outside of the tank. 

The foam insulation must be durable enough to 
endure a 180-day stay at the launch pad, 
withstand temperatures up to 115 degrees 
Fahrenheit, humidity as high as 100 percent, 
and resist sand, salt, fog, rain, solar radiation 
and even fungus.  Then, during launch, the 
foam must tolerate temperatures as high as 
2,200 degrees Fahrenheit generated by 
aerodynamic friction and radiant heating from 
the 3,000 degrees Fahrenheit main engine 
plumes.  Finally, when the external tank begins 
reentry into the Earth’s atmosphere about 
30 minutes after launch, the foam maintains the 
tank’s structural temperatures and allows it to 
safely disintegrate over a remote ocean location. 

Though the foam insulation on the majority of 
the tank is only 1-inch thick, it adds 

 

4,823 pounds to the tank’s weight.  In the areas 
of the tank subjected to the highest heating, 
insulation is somewhat thicker, between 1.5 to  
3 inches thick.  Though the foam’s density 

varies with the type, an average density is 
about 2.4 pounds per cubic foot. 

Application of the foam, whether automated by 
computer or hand-sprayed, is designed to meet 
NASA’s requirements for finish, thickness, 
roughness, density, strength and adhesion.  As 
in most assembly production situations, the 
foam is applied in specially designed, 
environmentally controlled spray cells and 
applied in several phases, often over a period of 
several weeks.  Before spraying, the foam’s raw 
material and mechanical properties are tested 
to ensure they meet NASA specifications. 

 

Multiple visual inspections of all foam surfaces 
are performed after the spraying is complete. 

Most of the foam is applied at NASA’s 
Michoud Assembly Facility in New Orleans 
when the tank is manufactured, including most 
of the “closeout” areas, or final areas applied.  
These closeouts are done either by hand 
pouring or manual spraying.  Additional 
closeouts are completed once the tank reaches 
Kennedy Space Center, Fla. 

The super lightweight external tank, or SLWT, 
made its first shuttle flight in June 1998 on 
mission STS-91.  The SLWT is 7,500 pounds 
lighter than previously flown tanks.  The SLWT 
is the same size as the previous design, but the 
liquid hydrogen tank and the liquid oxygen 
tank are made of aluminum lithium, a lighter, 
stronger material than the metal alloy used 
previously. 

Beginning with the first Return to Flight 
mission, STS-114 in June 2005, several 
improvements were made to improve safety 
and flight reliability. 

background image

 

 

92 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

Forward Bipod 

The external tank’s forward shuttle attach 
fitting, called the bipod, was redesigned to 
eliminate the large insulating foam ramps as a 
source of debris.  Each external tank has two 
bipod fittings that connect the tank to the 
orbiter through the shuttle’s two forward 
attachment struts.  Four rod heaters were 
placed below each forward bipod, replacing the 
large insulated foam Protuberance Airload, or 
PAL, ramps. 

Liquid Hydrogen Tank & Liquid Oxygen 
Intertank Flange Closeouts 

The liquid hydrogen tank flange located at the 
bottom of the intertank and the liquid oxygen 
tank flange located at the top of the intertank 
provide joining mechanisms with the intertank.  
After each of these three component tanks, 
liquid oxygen, intertank and liquid hydrogen, 
are joined mechanically, the flanges at both 
ends are insulated with foam.  An enhanced 
closeout, or finishing, procedure was added to 
improve foam application to the stringer, or 
intertank ribbing, and to the upper and lower 
area of both the liquid hydrogen and liquid 
oxygen intertank flanges. 

Liquid Oxygen Feedline Bellows 

The liquid oxygen feedline bellows were 
reshaped to include a “drip lip” that allows 
condensate moisture to run off and prevent 
freezing.  A strip heater was added to the 
forward bellow to further reduce the potential 
of high density ice or frost formation.  Joints on 
the liquid oxygen feedline assembly allow the 
feedline to move during installation and during 
liquid hydrogen tank fill.  Because it must flex, 
it cannot be insulated with foam like the 
remainder of the tank. 

Other tank improvements include: 

Liquid Oxygen & Liquid Hydrogen 
Protuberance Airload (PAL) Ramps 

External tank ET-119, which flew on the second 
Return to Flight mission, STS-121, in July 2006, 
was the first tank to fly without PAL ramps 
along portions of the liquid oxygen and 

 

liquid hydrogen tanks.  These PAL ramps were 
extensively studied and determined to not be 
necessary for their original purpose, which was 
to protect cable trays from aeroelastic instability 
during ascent.  Extensive tests were conducted 
to verify the shuttle could fly safely without 
these particular PAL ramps.  Extensions were 
added to the ice frost ramps for the pressline 
and cable tray brackets, where these PAL ramps 
were removed to make the geometry of the 
ramps consistent with other locations on 

 

the tank and thereby provide consistent 
aerodynamic flow.  Nine extensions were 
added, six on the liquid hydrogen tank and 
three on the liquid oxygen tank. 

Engine Cutoff (ECO) Sensor Modification 

Beginning with STS-122, ET-125, which 
launched on Feb. 7, 2008, the ECO sensor 
system feed through connector on the liquid 
hydrogen tank was modified by soldering the 
connector’s pins and sockets to address false 
readings in the system.  All subsequent tanks 
after ET-125 have the same modification. 

Liquid Hydrogen Tank Ice Frost Ramps 

ET-128, which flew on the STS-124 shuttle 
mission, May 31, 2008, was the first tank to fly 
with redesigned liquid hydrogen tank ice frost 
ramps.  Design changes were incorporated at 
all 17 ice frost ramp locations on the liquid 
hydrogen tank, stations 1151 through 2057, to 
reduce foam loss.  Although the redesigned 

background image

 

 

NOVEMBER 2008 

SHUTTLE REFERENCE DATA 

93

 

ramps appear identical to the previous design, 
several changes were made.  PDL* and NCFI 
foam have been replaced with BX* manual 
spray foam in the ramp’s base cutout to reduce 
debonding and cracking; Pressline and cable 
tray bracket feet corners have been rounded to 
reduce stresses; shear pin holes have been 
sealed to reduce leak paths; isolators were 
primed to promote adhesion; isolator corners 
were rounded to help reduce thermal 
protection system foam stresses; BX manual 
spray was applied in bracket pockets to reduce 
geometric voids. 

*BX  is  a  type  of  foam  used  on  the  tank’s 
“loseout,” or final finished areas; it is applied 
manually or hand-sprayed.  PDL is an acronym 
for Product Development Laboratory, the first 
supplier of the foam during the early days of 
the external tank’s development.  PDL is 

 

applied by pouring foam ingredients into a 
mold.  NCFI foam is used on the aft dome, or 
bottom, of the liquid hydrogen tank. 

Liquid Oxygen Feedline Brackets 

ET-128 also was the first tank to fly with 
redesigned liquid oxygen feedline brackets.  
Titanium brackets, much less thermally 
conductive than aluminum, replaced aluminum 
brackets at four locations:  XT 1129, XT 1377,  
Xt 1624 and Xt 1871.  This change minimizes ice 
formation in under-insulated areas, and 
reduces the amount of foam required to cover 
the brackets and the propensity for ice 
development. Zero-gap/slip plane Teflon 
material was added to the upper outboard 
monoball attachment to eliminate ice adhesion.  
Additional foam has been added to the liquid 
oxygen feedline to further minimize ice 
formation along the length of the feedline. 

background image

 

 

94 

SHUTTLE REFERENCE DATA 

NOVEMBER 2008

 

This page intentionally left blank 

background image

 

 

NOVEMBER 2008 

LAUNCH & LANDING 

95

 

LAUNCH AND LANDING 

 

LAUNCH 

As with all previous space shuttle launches, 
Endeavour has several options to abort its 
ascent if needed after engine failures or other 
systems problems.  Shuttle launch abort 
philosophy is intended to facilitate safe 
recovery of the flight crew and intact recovery 
of the orbiter and its payload. 

Abort modes include: 

ABORT-TO-ORBIT 

This mode is used if there’s a partial loss of 
main engine thrust late enough to permit 
reaching a minimal 105 by 85 nautical mile orbit 
with the orbital maneuvering system engines.  
The engines boost the shuttle to a safe orbital 
altitude when it is impossible to reach the 
planned orbital altitude. 

TRANSATLANTIC ABORT LANDING 

The loss of one or more main engines midway 
through powered flight would force a landing 
at either Zaragoza, Spain; Moron, Spain; or 
Istres, France.  For launch to proceed, weather 
conditions must be acceptable at one of these 
TAL sites. 

RETURN-TO-LAUNCH-SITE 

If one or more engines shuts down early and 
there’s not enough energy to reach Zaragoza, 
the shuttle would pitch around toward 
Kennedy until within gliding distance of the 
Shuttle Landing Facility.  For launch to 
proceed, weather conditions must be forecast to 
be acceptable for a possible RTLS landing at 
KSC about 20 minutes after liftoff. 

ABORT ONCE AROUND 

An AOA is selected if the vehicle cannot 
achieve a viable orbit or will not have enough 
propellant to perform a deorbit burn, but has 
enough energy to circle the Earth once and land 
about 90 minutes after liftoff. 

LANDING 

The primary landing site for Endeavour on 
STS

126 is the Kennedy Space Center’s Shuttle 

Landing Facility.  Alternate landing sites that 
could be used if needed because of weather 
conditions or systems failures are at Edwards 
Air Force Base, Calif., and White Sands Space 
Harbor, N.M. 

background image

 

 

96 

LAUNCH & LANDING 

NOVEMBER 2008

 

This page intentionally blank 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

97

 

A/G Alignment 

Guides 

A/L Airlock 
AAA 

Avionics Air Assembly 

ABC 

Audio Bus Controller 

ACBM 

Active Common Berthing Mechanism 

ACDU 

Airlock Control and Display Unit 

ACO 

Assembly Checkout Officer 

ACS 

Atmosphere Control and Supply 

ACU 

Arm Control Unit 

ADS 

Audio Distribution System 

AE Approach 

Ellipsoid 

AEP 

Airlock Electronics Package 

AI Approach 

Initiation 

AJIS 

Alpha Joint Interface Structure 

AM Atmosphere 

Monitoring 

AMOS 

Air Force Maui Optical and Supercomputing Site 

AOH 

Assembly Operations Handbook 

APAS 

Androgynous Peripheral Attachment 

APCU 

Assembly Power Converter Unit 

APE 

Antenna Pointing Electronics 
Audio Pointing Equipment 

APFR 

Articulating Portable Foot Restraint 

APM 

Antenna Pointing Mechanism 

APS 

Automated Payload Switch 

APV 

Automated Procedure Viewer 

AR Atmosphere 

Revitalization 

ARCU American-to-Russian Converter Unit 
ARS 

Atmosphere Revitalization System 

ASW Application 

Software 

ATA 

Ammonia Tank Assembly 

ATCS 

Active Thermal Control System 

ATU 

Audio Terminal Unit 

BAD 

Broadcast Ancillary Data 

BC Bus 

Controller 

BCDU 

Battery Charge/Discharge Unit 
Berthing Mechanism Control and Display Unit 

BEP 

Berthing Mechanism Electronics Package 

BGA 

Beta Gimbal Assembly 

ACRONYMS AND ABBREVIATIONS 

 

background image

 

 

98 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

BIC 

Bus Interface Controller 

BIT Built-In 

Test 

BM Berthing 

Mechanism 

BOS 

BIC Operations Software 

BSS Basic 

Software 

BSTS 

Basic Standard Support Software 

C&C 

Command and Control 

C&DH 

Command and Data Handling 

C&T 

Communication and Tracking 

C&W 

Caution and Warning 

C/L Crew 

Lock 

C/O Checkout 
CAM 

Collision Avoidance Maneuver 

CAPE 

Canister for All Payload Ejections 

CAS 

Common Attach System 

CB Control 

Bus 

CBCS 

Centerline Berthing Camera System 

CBM 

Common Berthing Mechanism 

CCA 

Circuit Card Assembly 

CCAA 

Common Cabin Air Assembly 

CCHA 

Crew Communication Headset Assembly 

CCP 

Camera Control Panel 

CCT 

Communication Configuration Table 

CCTV Closed-Circuit 

Television 

CDR 

Space Shuttle Commander 

CDRA 

Carbon Dioxide Removal Assembly 

CETA 

Crew Equipment Translation Aid 

CHeCS 

Crew Health Care System 

CHX 

Cabin Heat Exchanger 

CISC 

Complicated Instruction Set Computer 

CLA 

Camera Light Assembly 

CLPA 

Camera Light Pan Tilt Assembly 

CMG 

Control Moment Gyro 

COTS 

Commercial Off the Shelf 

CPA 

Control Panel Assembly 

CPB 

Camera Power Box 

CR Change 

Request 

CRT Cathode-Ray 

Tube 

CSA 

Canadian Space Agency 

CSA-CP 

Compound Specific Analyzer 

CVIU 

Common Video Interface Unit 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

99

 

CVT 

Current Value Table 

CZ Communication 

Zone 

DB Data 

Book 

DC Docking 

Compartment 

DCSU 

Direct Current Switching Unit 

DDCU 

DC-to-DC Converter Unit 

DEM Demodulator 
DFL Decommutation 

Format 

Load 

DIU 

Data Interface Unit 

DMS 

Data Management System 

DMS-R 

Data Management System-Russian 

DPG 

Differential Pressure Gauge 

DPU 

Baseband Data Processing Unit 

DRTS 

Japanese Data Relay Satellite 

DYF Display 

Frame 

E/L Equipment 

Lock 

EATCS 

External Active Thermal Control System 

EBCS 

External Berthing Camera System 

ECC 

Error Correction Code 

ECLSS 

Environmental Control and Life Support System 

ECS 

Environmental Control System 

ECU 

Electronic Control Unit 

EDSU 

External Data Storage Unit 

EDU EEU 

Driver 

Unit 

EE End 

Effector 

EETCS 

Early External Thermal Control System 

EEU 

Experiment Exchange Unit 

EF Exposed 

Facility 

EFBM 

Exposed Facility Berthing Mechanism 

EFHX 

Exposed Facility Heat Exchanger 

EFU 

Exposed Facility Unit 

EGIL 

Electrical, General Instrumentation, and Lighting 

EIU 

Ethernet Interface Unit 

ELM-ES 

Japanese Experiment Logistics Module – Exposed Section 

ELM-PS 

Japanese Experiment Logistics Module – Pressurized Section 

ELPS 

Emergency Lighting Power Supply 

EMGF Electric 

Mechanical Grapple Fixture 

EMI Electro-Magnetic 

Imaging 

EMU Extravehicular 

Mobility 

Unit 

E-ORU 

EVA Essential ORU 

EP Exposed 

Pallet 

background image

 

 

100 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

EPS 

Electrical Power System 

ES Exposed 

Section 

ESA 

European Space Agency 

ESC JEF 

System 

Controller 

ESW 

Extended Support Software 

ET External 

Tank 

ETCS 

External Thermal Control System 

ETI 

Elapsed Time Indicator 

ETRS 

EVA Temporary Rail Stop 

ETVCG 

External Television Camera Group 

EV Extravehicular 
EVA Extravehicular 

Activity 

(Spacewalk) 

EXP-D Experiment-D 
EXT External 

FA Fluid 

Accumulator 

FAS 

Flight Application Software 

FCT 

Flight Control Team 

FD Flight 

Day 

FDDI 

Fiber Distributed Data Interface 

FDIR 

Fault Detection, Isolation, and Recovery 

FDS 

Fire Detection System 

FE Flight 

Engineer 

FET-SW 

Field Effect Transistor Switch 

FGB 

Functional Cargo Block 

FOR 

Frame of Reference 

FPP Fluid 

Pump 

Package 

FR Flight 

Rule 

FRD 

Flight Requirements Document 

FRGF 

Flight Releasable Grapple Fixture 

FRM 

Functional Redundancy Mode 

FSE 

Flight Support Equipment 

FSEGF 

Flight Support Equipment Grapple Fixture 

FSW Flight 

Software 

GAS Get-Away 

Special 

GCA 

Ground Control Assist 

GLA 

General Lighting Assemblies 
General Luminaire Assembly 

GLONASS 

Global Navigational Satellite System 

GNC 

Guidance, Navigation, and Control 

GPC 

General Purpose Computer 

GPS 

Global Positioning System 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

101

 

GPSR 

Global Positioning System Receiver 

GUI 

Graphical User Interface 

H&S Health 

and 

Status 

HCE 

Heater Control Equipment 

HCTL Heater 

Controller 

HEPA 

High Efficiency Particulate Acquisition 

HPA 

High Power Amplifier 

HPP 

Hard Point Plates 

HRDR 

High Rate Data Recorder 

HREL Hold/Release 

Electronics 

HRFM 

High Rate Frame Multiplexer 

HRM 

Hold Release Mechanism 

HRMS 

High Rate Multiplexer and Switcher 

HTV 

H-II Transfer Vehicle 

HTVCC 

HTV Control Center 

HTV Prox 

HTV Proximity 

HX Heat 

Exchanger 

I/F Interface 
IAA Intravehicular 

Antenna 

Assembly 

IAC 

Internal Audio Controller 

IBM 

International Business Machines 

ICB 

Inner Capture Box 

ICC 

Integrated Cargo Carrier 

ICS 

Interorbit Communication System 

ICS-EF 

Interorbit Communication System – Exposed Facility 

IDRD 

Increment Definition and Requirements Document 

IELK 

Individual Equipment Liner Kit 

IFHX 

Interface Heat Exchanger 

IMCS 

Integrated Mission Control System 

IMCU 

Image Compressor Unit 

IMV Intermodule 

Ventilation 

INCO 

Instrumentation and Communication Officer 

IP International 

Partner 

IP-PCDU 

ICS-PM Power Control and Distribution Unit 

IP-PDB 

Payload Power Distribution Box 

ISP 

International Standard Payload 

ISPR 

International Standard Payload Rack 

ISS 

International Space Station 

ISSSH 

International Space Station Systems Handbook 

ITCS 

Internal Thermal Control System 

ITS 

Integrated Truss Segment 

background image

 

 

102 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

IVA Intravehicular 

Activity 

IVSU 

Internal Video Switch Unit 

JAL 

JEM Air Lock 

JAXA 

Japan Aerospace Exploration Agency 

JCP 

JEM Control Processor 

JEF 

JEM Exposed Facility 

JEM 

Japanese Experiment Module 

JEMAL JEM 

Airlock 

JEM-PM 

JEM – Pressurized Module 

JEMRMS 

Japanese Experiment Module Remote Manipulator System 

JEUS 

Joint Expedited Undocking and Separation 

JFCT 

Japanese Flight Control Team 

JLE 

Japanese Experiment Logistics Module – Exposed Section 

JLP 

Japapese Experiment Logistics Module – Pressurized Section 

JLP-EDU 

JLP-EFU Driver Unit 

JLP-EFU 

JLP Exposed Facility Unit 

JPM 

Japanese Pressurized Module 

JPM WS 

JEM Pressurized Module Workstation 

JSC 

Johnson Space Center 

JTVE 

JEM Television Equipment 

Kbps 

Kilobit per second 

KOS 

Keep Out Sphere 

LB Local 

Bus 

LCA 

LAB Cradle Assembly 

LCD 

Liquid Crystal Display 

LED 

Light Emitting Diode 

LEE 

Latching End Effector 

LMC 

Lightweight MPESS Carrier 

LSW Light 

Switch 

LTA Launch-to-Activation 
LTAB Launch-to-Activation 

Box 

LTL 

Low Temperature Loop 

MA Main 

Arm 

MAUI 

Main Analysis of Upper-Atmospheric Injections 

Mb Megabit 
Mbps 

Megabit per second 

MBS 

Mobile Base System 

MBSU 

Main Bus Switching Unit 

MCA 

Major Constituent Analyzer 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

103

 

MCC 

Mission Control Center 

MCC-H 

Mission Control Center – Houston 

MCC-M 

Mission Control Center – Moscow 

MCDS Multifunction 

Cathode-Ray Tube Display System 

MCS 

Mission Control System 

MDA 

MacDonald, Dettwiler and Associates Ltd. 

MDM Multiplexer/Demultiplexer 
MDP 

Management Data Processor 

MELFI 

Minus Eighty-Degree Laboratory Freezer for ISS 

MGB 

Middle Grapple Box 

MIP 

Mission Integration Plan 

MISSE 

Materials International Space Station Experiment 

MKAM 

Minimum Keep Alive Monitor 

MLE 

Middeck Locker Equivalent 

MLI Multi-layer 

Insulation 

MLM 

Multipurpose Laboratory Module 

MMOD Micrometeoroid/Orbital 

Debris 

MOD Modulator 
MON Television 

Monitor 

MPC 

Main Processing Controller 

MPESS 

Multipurpose Experiment Support Structure 

MPEV 

Manual Pressure Equalization Valve 

MPL 

Manipulator Retention Latch 

MPLM Multi-Purpose 

Logistics 

Module 

MPM Manipulator 

Positioning 

Mechanism 

MPV 

Manual Procedure Viewer 

MSD 

Mass Storage Device 

MSFC 

Marshall Space Flight Center 

MSP 

Maintenance Switch Panel 

MSS 

Mobile Servicing System 

MT Mobile 

Tracker 

MTL 

Moderate Temperature Loop 

MUX Data 

Multiplexer 

NASA National 

Aeronautics 

and Space Administration 

NCS 

Node Control Software 

NET 

No Earlier Than 

NLT 

No Less Than 

n.mi. nautical 

mile 

NPRV 

Negative Pressure Relief Valve 

NSV Network 

Service 

background image

 

 

104 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

NTA 

Nitrogen Tank Assembly 

NTSC 

National Television Standard Committee 

OBSS 

Orbiter Boom Sensor System 

OCA 

Orbital Communications Adapter 

OCAD 

Operational Control Agreement Document 

OCAS 

Operator Commanded Automatic Sequence 

ODF 

Operations Data File 

ODS 

Orbiter Docking System 

OI Orbiter 

Interface 

OIU 

Orbiter Interface Unit 

OMS 

Orbital Maneuvering System 

OODT 

Onboard Operation Data Table 

ORCA 

Oxygen Recharge Compressor Assembly 

ORU 

Orbital Replacement Unit 

OS Operating 

System 

OSA 

Orbiter-based Station Avionics 

OSE 

Orbital Support Equipment 

OTCM 

ORU and Tool Changeout Mechanism 

OTP 

ORU and Tool Platform 

P/L Payload 
PAL 

Planning and Authorization Letter 

PAM 

Payload Attach Mechanism 

PAO 

Public Affairs Office 

PBA 

Portable Breathing Apparatus 

PCA 

Pressure Control Assembly 

PCBM 

Passive Common Berthing Mechanism 

PCN 

Page Change Notice 

PCS 

Portable Computer System 

PCU 

Power Control Unit 

PDA 

Payload Disconnect Assembly 

PDB 

Power Distribution Box 

PDGF 

Power and Data Grapple Fixture 

PDH 

Payload Data Handling unit 

PDRS 

Payload Deployment Retrieval System 

PDU 

Power Distribution Unit 

PEC 

Passive Experiment Container 

PEHG 

Payload Ethernet Hub Gateway 

PFE 

Portable Fire Extinguisher 

PGSC 

Payload General Support Computer 

PIB 

Power Interface Box 

PIU 

Payload Interface Unit 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

105

 

PLB Payload 

Bay 

PLBD 

Payload Bay Door 

PLC 

Pressurized Logistics Carrier 

PLT 

Payload Laptop Terminal 
Space Shuttle Pilot 

PM Pressurized 

Module 

PMA 

Pressurized Mating Adapter 

PMCU 

Power Management Control Unit 

POA 

Payload ORU Accommodation 

POR 

Point of Resolution 

PPRV 

Positive Pressure Relief Valve 

PRCS 

Primary Reaction Control System 

PREX Procedure 

Executor 

PRLA 

Payload Retention Latch Assembly 

PROX 

Proximity Communications Center 

psia 

Pounds per Square Inch Absolute 

PSP 

Payload Signal Processor 

PSRR 

Pressurized Section Resupply Rack 

PTCS 

Passive Thermal Control System 

PTR 

Port Thermal Radiator 

PTU Pan/Tilt 

Unit 

PVCU Photovoltaic 

Controller 

Unit 

PVM Photovoltaic 

Module 

PVR Photovoltaic 

Radiator 

PVTCS 

Photovoltaic Thermal Control System 

QD Quick 

Disconnect 

R&MA 

Restraint and Mobility Aid 

RACU Russian-to-American Converter Unit 
RAM 

Read Access Memory 

RBVM 

Radiator Beam Valve Module 

RCC 

Range Control Center 

RCT 

Rack Configuration Table 

RF Radio 

Frequency 

RGA 

Rate Gyro Assemblies 

RHC 

Rotational Hand Controller 

RIGEX 

Rigidizable Inflatable Get-Away Special Experiment 

RIP 

Remote Interface Panel 

RLF 

Robotic Language File 

RLT 

Robotic Laptop Terminal 

RMS 

Remote Manipulator System 

ROEU 

Remotely Operated Electrical Umbilical 

background image

 

 

106 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

ROM 

Read Only Memory 

R-ORU 

Robotics Compatible Orbital Replacement Unit 

ROS 

Russian Orbital Segment 

RPC 

Remote Power Controller 

RPCM 

Remote Power Controller Module 

RPDA 

Remote Power Distribution Assembly 

RPM 

Roll Pitch Maneuver 

RS Russian 

Segment 

RSP 

Return Stowage Platform 

RSR 

Resupply Stowage Rack 

RT Remote 

Terminal 

RTAS 

Rocketdyne Truss Attachment System 

RVFS 

Rendezvous Flight Software 

RWS Robotics 

Workstation 

SAFER 

Simplified Aid for EVA Rescue 

SAM 

SFA Airlock Attachment Mechanism 

SARJ 

Solar Alpha Rotary Joint 

SCU 

Sync and Control Unit 

SD Smoke 

Detector 

SDS 

Sample Distribution System 

SEDA 

Space Environment Data Acquisition equipment 

SEDA-AP 

Space Environment Data Acquisition equipment – Attached Payload 

SELS 

SpaceOps Electronic Library System 

SEU 

Single Event Upset 

SFA 

Small Fine Arm 

SFAE SFA 

Electronics 

SI Smoke 

Indicator 

SLM 

Structural Latch Mechanism 

SLP-D 

Spacelab Pallet – D 

SLP-D1 

Spacelab Pallet – Deployable 

SLP-D2 

Spacelab Pallet – D2 

SLT 

Station Laptop Terminal 
System Laptop Terminal 

SM Service 

Module 

SMDP 

Service Module Debris Panel 

SOC 

System Operation Control 

SODF 

Space Operations Data File 

SPA 

Small Payload Attachment 

SPB 

Survival Power Distribution Box 

SPDA 

Secondary Power Distribution Assembly 

SPDM 

Special Purpose Dexterous Manipulator 

background image

 

 

NOVEMBER 2008 

ACRONYMS/ABBREVIATIONS 

107

 

SPEC Specialist 
SRAM Static 

RAM 

SRB 

Solid Rocket Booster 

SRMS 

Shuttle Remote Manipulator System 

SSAS 

Segment-to-Segment Attach System 

SSC 

Station Support Computer 

SSCB 

Space Station Control Board 

SSE 

Small Fine Arm Storage Equipment 

SSIPC 

Space Station Integration and Promotion Center 

SSME 

Space Shuttle Main Engine 

SSOR Space-to-Space 

Orbiter 

Radio 

SSP 

Standard Switch Panel 

SSPTS 

Station-to-Shuttle Power Transfer System 

SSRMS 

Space Station Remote Manipulator System 

STC 

Small Fire Arm Transportation Container 

STR 

Starboard Thermal Radiator 

STS 

Space Transfer System 

STVC 

SFA Television Camera 

SVS 

Space Vision System 

TA Thruster 

Assist 

TAC 

TCS Assembly Controller 

TAC-M 

TCS Assembly Controller – M 

TCA 

Thermal Control System Assembly 

TCB 

Total Capture Box 

TCCS 

Trace Contaminant Control System 

TCCV 

Temperature Control and Check Valve 

TCS 

Thermal Control System 

TCV 

Temperature Control Valve 

TDK 

Transportation Device Kit 

TDRS 

Tracking and Data Relay Satellite 

THA 

Tool Holder Assembly 

THC 

Temperature and Humidity Control 
Translational Hand Controller 

THCU 

Temperature and Humidity Control Unit 

TIU 

Thermal Interface Unit 

TKSC 

Tsukuba Space Center (Japan) 

TLM Telemetry 
TMA 

Russian vehicle designation 

TMR 

Triple Modular Redundancy 

TPL 

Transfer Priority List 

TRRJ 

Thermal Radiator Rotary Joint 

background image

 

 

108 ACRONYMS/ABBREVIATIONS 

NOVEMBER 

2008

 

TUS Trailing 

Umbilical 

System 

TVC Television 

Camera 

UCCAS 

Unpressurized Cargo Carrier Attach System 

UCM 

Umbilical Connect Mechanism 

UCM-E 

UCM – Exposed Section Half 

UCM-P 

UCM – Payload Half 

UHF Ultrahigh 

Frequency 

UIL 

User Interface Language 

ULC 

Unpressurized Logistics Carrier 

UMA Umbilical 

Mating 

Adapter 

UOP 

Utility Outlet Panel 

UPC Up 

Converter 

USA 

United Space Alliance 

US LAB 

United States Laboratory 

USOS 

United States On-Orbit Segment 

VAJ 

Vacuum Access Jumper 

VBSP 

Video Baseband Signal Processor 

VCU 

Video Control Unit 

VDS 

Video Distribution System 

VLU 

Video Light Unit 

VRA 

Vent Relief Assembly 

VRCS 

Vernier Reaction Control System 

VRCV 

Vent Relief Control Valve 

VRIV 

Vent Relief Isolation Valve 

VSU 

Video Switcher Unit 

VSW Video 

Switcher 

WAICO 

Waiving and Coiling 

WCL 

Water Cooling Loop 

WETA 

Wireless Video System External Transceiver Assembly 

WIF Work 

Interface 

WRM 

Water Recovery and Management 

WRS 

Water Recovery System 

WS Water 

Separator 

Work Site 
Work Station 

WVA Water 

Vent 

Assembly 

ZSR 

Zero-g Stowage Rack 

 

background image

 

 

NOVEMBER 2008 

MEDIA ASSISTANCE 

109

 

MEDIA ASSISTANCE 

 

NASA TELEVISION TRANSMISSION 

NASA Television is carried on an MPEG

digital signal accessed via satellite AMC

6, at 

72 degrees west longitude, transponder 17C, 
4040 MHz, vertical polarization.  For those in 
Alaska or Hawaii, NASA Television will be 
seen on AMC

7, at 137 degrees west longitude, 

transponder 18C, at 4060 MHz, horizontal 
polarization.  In both instances, a Digital Video 
Broadcast, or DVB

compliant Integrated 

Receiver  Decoder,  or  IRD,  with  modulation  of 
QPSK/DBV, data rate of 36.86 and FEC 3/4 will 
be needed for reception.  The NASA Television 
schedule and links to streaming video are 
available at: 

http://www.nasa.gov/ntv 

NASA TV’s digital conversion will require 
members of the broadcast media to upgrade 
with an ‘addressable’ Integrated Receiver 
De

coder, or IRD, to participate in live news 

events and interviews, media briefings and 
receive NASA’s Video File news feeds on a 
dedicated Media Services channel.  NASA 
mission coverage will air on a digital NASA 
Public Services “Free to Air” channel, for which 
only a basic IRD will be needed. 

Television Schedule 

A schedule of key in

orbit events and media 

briefings during the mission will be detailed in 
a NASA TV schedule posted at the link above.  
The schedule will be updated as necessary and 
will also be available at: 

http://www.nasa.gov/multimedia/nasatv/ 

mission_schedule.html

 

Status Reports 

Status reports on launch countdown and 
mission progress, in

orbit activities and landing 

operations will be posted at: 

http://www.nasa.gov/shuttle 

This site also contains information on the crew 
and will be updated regularly with photos and 
video clips throughout the flight. 

More Internet Information 

Information on the ISS is available at: 

http://www.nasa.gov/station 

Information on safety enhancements made 
since the Columbia accident is available at: 

http://www.nasa.gov/returntoflight/ 

system/index.html 

Information on other current NASA activities is 
available at: 

http://www.nasa.gov 

Resources for educators can be found at the 
following address: 

http://education.nasa.gov 

background image

 

 

110 MEDIA 

ASSISTANCE 

NOVEMBER 

2008

 

This page intentionally left blank. 

background image

 

 

NOVEMBER 2008 

PUBLIC AFFAIRS CONTACTS 

111

 

PUBLIC AFFAIRS CONTACTS 

 

HEADQUARTERS 
WASHINGTON, DC 

Space Operations Mission Directorate 

Michael Braukus 
International Partners 
202-358-1979 

michael.j.braukus@nasa.gov

 

Katherine Trinidad 
Shuttle, Space Station Policy 
202-358-3749 

katherine.trinidad@nasa.gov

 

John Yembrick 
Shuttle, Space Station Policy 
202-358-0602 

john.yembrick-1@nasa.gov

 

Mike Curie 
Shuttle, Space Station Policy 
202-358-4715 

michael.curie@nasa.gov

 

Science Mission Directorate 

Grey Hautaluoma 
Research in Space 
202-358-0668 

grey.hautaluoma-1@nasa.gov

 

Ashley Edwards 
Research in Space 
202-358-1756 

ashley.edwards-1@nasa.gov

 

JOHNSON SPACE CENTER 
HOUSTON, TEXAS 

James Hartsfield 
News Chief 
281-483-5111 

james.a.hartsfield@nasa.gov

 

Kyle Herring 
Public Affairs Specialist 
Space Shuttle Program Office 
281-483-5111 

kyle.j.herring@nasa.gov

 

Rob Navias 
Program and Mission Operations Lead 
281-483-5111 

rob.navias-1@nasa.gov

 

Kelly Humphries 
Public Affairs Specialist 
International Space Station and Mission 
Operations Directorate 
281-483-5111 

kelly.o.humphries@nasa.gov

 

Nicole Cloutier-Lemasters 
Public Affairs Specialist 
Astronauts 
281-483-5111 

nicole.cloutier-1@nasa.gov

 

background image

 

 

112 

PUBLIC AFFAIRS CONTACTS 

NOVEMBER 2008

 

KENNEDY SPACE CENTER 
CAPE CANAVERAL, FLORIDA 

Allard Beutel 
News Chief 
321-867-2468 

allard.beutel@nasa.gov

 

Candrea Thomas 
Public Affairs Specialist 
Space Shuttle 
321-861-2468 

candrea.k.thomas@nasa.gov

 

Tracy Young 
Public Affairs Specialist 
International Space Station 
321-867-2468 

tracy.g.young@nasa.gov

 

MARSHALL SPACE FLIGHT CENTER 
HUNTSVILLE, ALABAMA 

Dom Amatore 
Public Affairs Manager 
256-544-0034 

dominic.a.amatore@nasa.gov

 

June Malone 
Public Affairs Specialist 
News Chief/Media Manager 
256-544-0034 

june.e.malone@nasa.gov

 

Steve Roy 
Public Affairs Specialist 
Space Shuttle Propulsion 
256-544-0034 

steven.e.roy@nasa.gov

 

STENNIS SPACE CENTER 
BAY ST. LOUIS, MISSISSIPPI 

Linda Theobald 
Public Affairs Officer 
228-688-3249 

linda.l.theobald@nasa.gov

 

Paul Foerman 
News Chief 
228-688-1880 

paul.foerman-1@nasa.gov

 

AMES RESEARCH CENTER 
MOFFETT FIELD, CALIFORNIA 

Mike Mewhinney 
News Chief 
650-604-3937 

michael.mewhinney@nasa.gov

 

Jonas Dino 
Public Affairs Specialist 
650-604-5612 

jonas.dino@nasa.gov

 

DRYDEN FLIGHT RESEARCH CENTER 
EDWARDS, CALIFORNIA 

Fred Johnsen 
Director, Public Affairs 
661-276-2998 

frederick.a.johnsen@nasa.gov

 

Alan Brown 
News Chief 
661-276-2665 

alan.brown@nasa.gov

 

Leslie Williams 
Public Affairs Specialist 
661-276-3893 

leslie.a.williams@nasa.gov

 

background image

 

 

NOVEMBER 2008 

PUBLIC AFFAIRS CONTACTS 

113

 

GLENN RESEARCH CENTER 
CLEVELAND, OHIO 

Lori Rachul 
News Chief 
216-433-8806 

lori.j.rachul@nasa.gov

 

Katherine Martin 
Public Affairs Specialist 
216-433-2406 

katherine.martin@nasa.gov

 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

Marny Skora 
Head, News Media Office 
757-864-3315 

marny.skora@nasa.gov

 

Chris Rink 
Public Affairs Officer 
757-864-6786 

christopher.p.rink@nasa.gov

 

Kathy Barnstorff 
Public Affairs Officer 
757-864-9886 

katherine.a.barnstorff@nasa.gov

 

UNITED SPACE ALLIANCE 

Jessica Pieczonka 
Houston Operations 
281-212-6252 
832-205-0480 

jessica.b.pieczonka@usa-spaceops.com 

David Waters 
Florida Operations 
321-861-3805 

david.waters@usa-spaceops.com 

BOEING 

Tanya Deason-Sharp 
Media Relations 
Boeing Space Exploration 
281-226-6070 

tanya.e.deason-sharp@boeing.com

 

Ed Memi 
Media Relations 
Boeing Space Exploration 
281-226-4029 

edmund.g.memi@boeing.com

 

JAPAN AEROSPACE EXPLORATION 
AGENCY (JAXA) 

JAXA Public Affairs Office 
Tokyo, Japan 
011-81-3-6266-6414, 6415, 6416, 6417 

proffice@jaxa.jp

 

CANADIAN SPACE AGENCY (CSA) 

Jean-Pierre Arseneault 
Manager, Media Relations & Information 
Services 
514-824-0560 (cell) 

jean-pierre.arseneault@space.gc.ca

 

Media Relations Office 
Canadian Space Agency 
450-926-4370 

EUROPEAN SPACE AGENCY (ESA) 

Clare Mattok 
Communication Manager 
Paris, France 
011-33-1-5369-7412 

clare.mattok@esa.int

 

 

background image

 

 

114 

PUBLIC AFFAIRS CONTACTS 

NOVEMBER 2008

 

This page intentionally blank 


Document Outline