background image

SPACE SHUTTLE MISSION

STS-132

Finishing Touches

PRESS KIT/May 2010

www.nasa.gov

National Aeronautics and Space Administration

background image

background image

 

MAY 2010 

CONTENTS 

i

 

CONTENTS 

Section 

Page 

STS-132/ULF4 MISSION OVERVIEW ......................................................................................  

1

 

STS-132 TIMELINE OVERVIEW ...............................................................................................  

13

 

MISSION PROFILE ...................................................................................................................  

17

 

MISSION OBJECTIVES ............................................................................................................  

19

 

MISSION PERSONNEL .............................................................................................................  

23

 

STS-132 CREW .......................................................................................................................  

25

 

PAYLOAD OVERVIEW ..............................................................................................................  

33

 

INTEGRATED CARGO CARRIER VERTICAL LIGHT DEPLOY (ICC-VLD) ...................................................  

33

 

MINI-RESEARCH MODULE-1.................................................................................................................  

36

 

RENDEZVOUS & DOCKING .......................................................................................................  

39

 

UNDOCKING, SEPARATION AND DEPARTURE .......................................................................................  

40

 

SPACEWALKS .........................................................................................................................  

43

 

EXPERIMENTS .........................................................................................................................  

51

 

SHORT-DURATION EXPERIMENTS TO BE PERFORMED ON STS-132/ULF4 ............................................  

51

 

SAMPLES/EXPERIMENTS TO BE RETURNED ON STS-132/ULF4 ............................................................   

55

 

DETAILED SUPPLEMENTARY OBJECTIVES AND DETAILED TEST OBJECTIVES .......................................  

57

 

HISTORY OF SPACE SHUTTLE ATLANTIS ................................................................................  

59

 

SHUTTLE REFERENCE DATA ....................................................................................................  

63

 

LAUNCH AND LANDING ...........................................................................................................  81

 

LAUNCH ...............................................................................................................................................  

81

 

ABORT-TO-ORBIT (ATO) ......................................................................................................................  

81

 

TRANSATLANTIC ABORT LANDING (TAL) .............................................................................................  

81

 

RETURN-TO-LAUNCH-SITE (RTLS) .......................................................................................................  

81

 

ABORT ONCE AROUND (AOA) ...............................................................................................................  

81

 

LANDING .............................................................................................................................................  

81

 

background image

 

ii CONTENTS 

MAY 

2010

 

Section 

Page 

ACRONYMS AND ABBREVIATIONS .........................................................................................  

83

 

MEDIA ASSISTANCE ...............................................................................................................  

99

 

PUBLIC AFFAIRS CONTACTS ..................................................................................................  

101

 

 

 

  

 

   
   
  
   
   
  
 
 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

1

 

STS-132/ULF4 MISSION OVERVIEW 

 

The space shuttle Atlantis鈥 crew cabin and forward cargo bay are featured in this image 

photographed by an STS-129 crew member during the mission鈥檚 first session of  

extravehicular activity. 

The final planned mission of space shuttle 
Atlantis is scheduled for 12 days and begins  
at 2:20 p.m.  EDT on Friday, May 14, with 
launch from the Kennedy Space Center.  Its 
prime payloads destined for the International 
Space Station are the second of two Russian 
Mini-Research Modules and additional spare 
parts, including a set of batteries for the 
station鈥檚 truss and a high-powered dish 
antenna assembly. 

After launch on its 32nd mission, Atlantis will 
follow the standard two-day rendezvous profile 
leading to docking Sunday morning, May 16.  
On the way, the six-member crew will power 
up the Russian module and devote time 
inspecting the shuttle鈥檚 Thermal Protection 
System for any damage that may have occurred 
during launch; check out spacesuits that will be 
used during three spacewalks; and test 
hardware used to assist with the rendezvous 
and docking. 

background image

 

2

 

MISSION OVERVIEW

 

MAY 2010

 

 

 

International Space Station Mass Numbers: 

Before STS-132 docking, the International Space 
Station weighs 795,370 lbm (360,774 kg) 

Integrated Cargo Carrier-Vertical Lightweight 
Deployable (ICC-VLD) launch mass is 
7,532 lbm (3,417 kg) 

ICC-VLD return mass is 6,466 lbm (2,933 kg) 

Space-to-Ground Antenna (SGAnt) and boom 
will be added to station; mass is 645 lbm 
(293 kg) 

Enhanced Orbital Replacement Unit (ORU) 
Temporary Platform (EOTP) is added to Special 
Purpose Dexterous Manipulator; mass is 
421 lbm (191 kg) 

Mini-Research Module-1 (MRM-1) launch mass 
is 17,670 lbm (8,015 kg) 

Miscellaneous changes accounts for cargo 
transfer and water added to station: 1,413 lbm 
(641 kg) 

After STS-132 undocks, the station will weigh 
815,519 lbm (369,914 kg) 

 

Mission 鈥淨uick Look鈥 

 

Launch:  2:20 p.m. EDT Friday, May 14 

 

OV-104 Atlantis

 

(final flight of vehicle) 

 

Mission Duration:  12+0+2 

 

7 full docked days 

 

Crew sleep shifts 4 hours earlier to support 

end of mission landing 

 

3 spacewalks based out of the Quest Airlock 

 

30 hours budgeted for shuttle middeck 

transfer 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

3

 

Leading the crew for STS-132 is Commander 
Ken Ham (Captain, U.S. Navy) flying for the 
second time following his first mission in 
May/June 2008 as pilot on the STS-124 flight of 
Discovery.  He is joined by an all-veteran crew 
that includes Pilot Dominic 鈥淭ony鈥 Antonelli 
(Captain, USN), Flight Engineer Michael Good 
(Colonel, USAF, Retired), Garrett Reisman, 
Steve Bowen (Captain, USN), and Piers Sellers. 

Antonelli flew as pilot of Discovery鈥檚 STS-119 
mission in March 2009, which delivered the 
S6 Truss and solar array pair to the space 
station.  Good flew last a year ago (May 2009) 
on the STS-125 flight of Atlantis to service the 

Hubble Space Telescope one final time.  He 
conducted two spacewalks.  Reisman spent 
95 days in space 鈥 90 aboard the space station as 
an Expedition 16/17 flight engineer.  During his 
tour on the station, Reisman conducted one 
spacewalk.  He launched with Endeavour鈥檚 
STS-123 crew in March 2008 and returned 
aboard Discovery in June 2008 at the conclusion 
of the STS-124 mission.  Bowen flew aboard 
Endeavour on the STS-126 mission in 
November 2008 during which he conducted 
three spacewalks.  Sellers flew previously on 
STS-112 aboard Atlantis in October 2002 and 
STS-121 on Discovery in July 2006.  He, too, has 
performed three spacewalks. 

 

While seated at the commander鈥檚 station, astronaut Ken Ham, STS-132 commander, participates  

in a post insertion/de-orbit training session in the Crew Compartment Trainer (CCT-2) in the  

Space Vehicle Mock-up Facility at NASA鈥檚 Johnson Space Center.  Ham is wearing a training  

version of his shuttle launch and entry suit. 

background image

 

4

 

MISSION OVERVIEW

 

MAY 2010

 

Aboard Atlantis in the payload bay is the 
Russian-built Mini-Research Module-1 
(MRM-1) named 鈥淩assvet,鈥 the Russian word 
for dawn or sunrise (pronounced Ross-vyet), 
along with a cargo carrier holding a spare set of 
batteries, a spare Ku Band antenna and 
components that will complement the 
Canadian-built Special Purpose Dextrous 
Manipulator 鈥 鈥淒extre.鈥 

While docked to the station, three crew 
members will share the spacewalking duties on 
the fourth, sixth and eighth mission days. 

The day after launch, Antonelli and Sellers will 
share the duty of gathering sensor data and 
imagery using the shuttle鈥檚 robotic arm and the 
Orbiter Boom Sensor System to transmit data to 
the ground for review to ensure the sensitive 
Thermal Protection System 鈥 particularly the 
wing leading edge panels and nose cap 鈥 was 
not damaged during launch.  The same type of 
inspection will occur late in the mission after 
Atlantis departs the station to ensure no critical 
damage was incurred from micrometeoroid 
debris while in space. 

 

NASA astronaut Tony Antonelli, STS-132 pilot, attired in a training version of his shuttle  

launch and entry suit, discusses training activities with United Space Alliance suit technician  

Andre Denard in the Space Vehicle Mock-up Facility at NASA鈥檚 Johnson Space Center. 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

5

 

While the inspection takes place, Reisman, 
Bowen and Good will prepare the spacesuits, or 
Extravehicular Mobility Units, they will wear 
for their spacewalks to be conducted out of the 
station鈥檚 Quest airlock. 

Day three marks the arrival at the space station 
with rendezvous and docking.  With Ham and 
Antonelli at the controls of Atlantis, the orbiter 
will close in for the final approach and docking 
to the station鈥檚 forward docking port on the 
Tranquility module.  After a series of jet firings 
to fine tune Atlantis鈥 path to the station, the 
shuttle will arrive at a point about 600 feet 
directly below the station about an hour before 
docking.  At that time, Ham will execute the  
R-Bar Pitch Maneuver (or RPM), a one-degree-
per-second rotational 鈥渂ackflip鈥 to enable 
station crew members to snap hundreds of 
detailed photos of the shuttle鈥檚 heat shield and 
other areas of potential interest 鈥 another data 
point for imagery analysts to pore over in 
determining the health of the shuttle鈥檚 Thermal 
Protection System. 

Once the rotation is completed, Ham will 
maneuver Atlantis to a point 310 feet in front of 
the station before slowly closing in for docking.  
Less than two hours later, hatches will be 
opened between the two spacecraft and a 
combined crew of 12 will begin six days of 
work.  Atlantis鈥 crew will be working with 
Expedition 23 commander, Russian cosmonaut 
Oleg Kotov, and flight engineers T.J. Creamer, 
and Tracy Caldwell Dyson, both of NASA; 
Soichi Noguchi, a Japan Aerospace Exploration 
Agency astronaut; and cosmonauts Alexander 
Skvortsov and Mikhail Kornienko. 

After docking, hatch opening and a safety 
briefing by the station crew for its newly 
arriving shuttle astronauts, robotics takes center 
stage as Sellers and Dyson operate the station鈥檚 

robotic arm (Canadarm2) to relocate the 
Integrated Cargo Carrier from Atlantis鈥 payload 
bay to the station鈥檚 Mobile Base System ahead 
of the next day鈥檚 first spacewalk of the mission.  
This will preposition the components in close 
proximity to the worksite. 

Flight day three ends with Reisman and Bowen 
sleeping in the Quest airlock as part of 

 

the overnight 鈥渃ampout鈥 protocol that helps 
purge nitrogen from their bloodstreams, 
preventing decompression sickness that could 
occur otherwise.  The campout is a standard 
procedure that will be repeated the night before 
each spacewalk. 

Early on day four spacewalk preparations 
resume as Reisman (EV1) and Bowen (EV2) 
conduct the first of three outside excursions.  
EVA-1 tasks include installation of the spare 
Space-to-Ground Antenna and the Enhanced 
Orbital Replacement Unit Temporary Platform 
(EOTP) designed for stowage of spare parts.  
The two also will prepare new batteries for the 
other two planned spacewalks to shift brand 
new batteries from Atlantis to an outermost 
worksite on the P6 Truss.  Reisman will wear an 
all-white spacesuit and Bowen will wear a suit 
with red stripes on the pant leg and upper 
backpack.  Each spacewalk is budgeted to last 
approximately 6.5 hours. 

extravehicular activity 

 

EVA 1 on Flight Day 4 (6.5 hrs) 鈥 

Garrett Reisman (EV1) and Steve Bowen 
(EV2) 

 

EVA 2 on Flight Day 6 (6.5 hrs) 鈥 

Steve Bowen (EV1) and Michael Good (EV2) 

 

EVA 3 on Flight Day 8 (6.5 hrs) 鈥 

Michael Good (EV1) and Garrett Reisman 
(EV2) 

background image

 

6

 

MISSION OVERVIEW

 

MAY 2010

 

The Russian Mini-Research Module-1 (MRM-1) 
installation on the station鈥檚 Zarya module 
earth-facing docking port dominates day five of 
Atlantis鈥 mission as robotics work takes center 
stage.  The mission鈥檚 primary objective involves 
using the station鈥檚 robotic arm under control of 
Reisman and Sellers to remove the module 
from Atlantis and carefully install it on the 
Russian segment.  Once capture is confirmed, 
an automatic docking sequence is initiated  
by the crew via a Russian segment laptop 
computer.  Power from the station robotic arm 
to the module would then be terminated. 

The 11,000-pound module is approximately  
19 feet long and 8 feet in diameter and will 
increase the capabilities of the Russian segment 
of the space station by providing workstations 
for payloads and the conduct of experiments.  
MRM-1 will increase the technical and 
operational capabilities as well by providing 
accommodation for arriving and departing 
transport vehicles like the Soyuz and Progress 
spacecraft. 

 

NASA astronaut Steve Bowen, STS-132 mission specialist, participates in an Extravehicular  

Mobility Unit spacesuit fit check in the Space Station Airlock Test Article in the  

Crew Systems Laboratory at NASA鈥檚 Johnson Space Center. 

Astronaut Garrett Reisman, mission specialist, assists Bowen. 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

7

 

Stored inside the module for delivery to 

 

the station is one and a half tons of food, 
clothing and supplies.  On its exterior are 
temporarily stowed items that will be relocated 
during future station spacewalks.  An airlock 
on Rassvet will be attached to the Russian 
Multi-purpose Laboratory Module (MLM) after 
its launch atop a Russian Proton rocket in 2012.  
A European robot arm elbow joint also is 
attached to the outside and a Portable Work 
Post (PWP) to assist with the arm鈥檚 activation, 
checkout and operation. 

After the MRM-1 is installed, time is budgeted 
for focused inspection of Atlantis鈥 heat shield if 
mission managers determine it is necessary.  
Reisman and Sellers would conduct the survey.  
If not required, the time allotted for focused 
inspection would free Ham, Antonelli and 
Good to help with middeck transfer activities. 

The final robotic task for flight day five is using 
the station鈥檚 robot arm Canadarm2 to grapple 
and hand off the shuttle鈥檚 Orbiter Boom Sensor 
System to the shuttle arm.  Canadarm2 will be 
prepositioned to assist with viewing for the 
next day鈥檚 spacewalk. 

Day six will see the second of the three planned 
spacewalks conducted by Bowen (EV1) and 
Good (EV2).  Bowen again will be wearing the 
suit with red stripes and Good will wear a suit 
with broken barber pole stripes. 

The focus of EVA-2 will be the removal and 
replacement of three of six batteries on the 
outermost truss segment on the port side of the 
station.  These P6 truss batteries are the oldest 
of the station鈥檚 exterior battery complement 
designed to store solar energy for use by station 
systems.  The worksite will be prepared first 鈥 a 
task deferred from the previous mission of 
Discovery in April. 

Russian Mini-Research Module-1 (MRM-1) 

 

Mini-Research Module-1 (Rassvet) 

 

Length 

19.7 feet (6.0 meters) 

 

Diameter 

7.7 ft (2.35 m) 

 

Mass (empty)  11,188 pounds 

(5,075 kilograms) 

 

Mass (loaded)  17,760 lbs (8,015 kg) 

 

ISS supplies 

3,069 lbs (1,392 kg) 

1.  Crew provisioning and support items 

2. Office 

supplies 

3. Food 

4.  Crew Health Care System (CheCS) 

equipment 

5.  Computers and accessories 

6.  Equipment for cold storage and National 

Lab Pathfinder (NLP) experiment 

 

External items 

2,889 lbs (1,310 kg) 

1.  Spare elbow joint for ESA robot arm 

(ERA) 

2.  Portable Work Post (PWP) for ERA 

activation, checkout and ops 

3.  Radiator and airlock for future Russian 

Multi-purpose Lab Module (MLM) 

 

Pressurized volume  614 cubic feet 

(17.4 cubic meters) 

 

Habitable volume 

207 cubic feet 
(5.8 cubic meters) 

background image

 

8

 

MISSION OVERVIEW

 

MAY 2010

 

 

NASA astronaut Michael Good, STS-132 

mission specialist, uses virtual reality 

hardware in the Space Vehicle Mock-up 

Facility at NASA鈥檚 Johnson Space Center to 

rehearse some of his duties on the upcoming 

mission to the International Space Station.  

This type of virtual reality training allows the 

astronauts to wear a helmet and special gloves 

while looking at computer displays 

simulating actual movements around the 

various locations on the station hardware  

with which they will be working. 

David Homan assists Good. 

The station robotic arm, under shared control of 
Reisman and Sellers, will maneuver the 
Integrated Cargo Carrier to the worksite for the 

spacewalkers to use as a platform and 
repository.  Once the spacewalk is completed, 
the robotic arm will be maneuvered clear of the 
Solar Alpha Rotary Joint so that it can be 
commanded to rotate again. 

Each battery measures 40 x 36 x 18 inches and 
weighs 375 pounds.  The battery set to be 
replaced was launched as part of the P6 Truss 
segment delivered to the space station in 
November/December 2000. 

P6 Battery 

 

40" x 36" x 18" 

 

375 pounds (170 kilograms) 

 

38 lightweight Nickel Hydrogen cells 

 

Provides 8 kilowatts of electrical power 

(two batteries connected in series) 

 

6.5 year average design life 

 

Can exceed 38,000 charge/discharge cycles at 

35 percent depth of discharge 

Flight day seven focuses on hatch opening and 
entry into the MRM-1 following leak checks.  
After the atmosphere is scrubbed, the docking 
mechanism will be removed and hatch left 
slightly ajar.  Actual ingress into the module 
will wait until after Atlantis departs and the 
station crew is back on its own.  This day also 
includes some crew off duty time ahead of day 
eight鈥檚 third spacewalk. 

The third and final planned spacewalk of the 
mission will be conducted on flight day eight 
by Good (EV1) and Reisman (EV2).  Good will 
wear a suit with the barber pole red stripes and 
Reisman once again will be wearing a suit with 
no markings. 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

9

 

Their focus will be on removal and replacement 
of the final three batteries on the P6 truss and 
returning the full set of old batteries to the 
Integrated Cargo Carrier for eventual return to 
Atlantis鈥 payload bay and return home. 

Time permitting, the spacewalkers will retrieve 
a new grapple fixture for the station鈥檚 robot arm 
from the sidewall of Atlantis and install it on 
the station.  The Power Data Grapple Fixture 
(PDGF) will provide an additional active 
location from which the robot arm can operate. 

With the outside work complete, day nine 
focuses on cleanup by relocating the Integrated 
Cargo Carrier from its temporary location on 
the station鈥檚 Mobile Base System to the shuttle鈥檚 
payload bay for return home. 

If required, the station鈥檚 orbit will be raised 
slightly using subtle thruster firings on Atlantis 
followed by some off duty time for the crews.  
A placeholder in the timeline is budgeted for 
Ham and Antonelli should the station program 
elect to exercise the reboost option. 

 

Attired in a training version of his shuttle launch and entry suit, astronaut Piers Sellers, STS-132 

mission specialist, participates in a training session on the middeck of the crew compartment trainer 

(CCT-2) in the Space Vehicle Mockup Facility at NASA鈥檚 Johnson Space Center. 

background image

 

10

 

MISSION OVERVIEW

 

MAY 2010

 

The crews of Atlantis and the station will bid 
farewell to one another early on flight day 10 
after six full days of joint operations (not 
including docking and undocking days). 

 

Shortly after undocking Antonelli will be at the 
controls of the shuttle for the traditional one lap 
fly around to document the new configuration 
of the station before departing the area. 

Left behind will be the International Space 
Station with its newest module and a mass  
in space of more than 815,000 pounds 

 

(370,000 kilograms). 

After Atlantis departs, the station crew will 
turn its attention to preparations for the next 
crew arrival on a Russian Soyuz spacecraft  
and spacewalks to outfit the MRM-1 and 
installation of a PDGF on the Zarya module. 

On flight day 11 Ham, Antonelli, Reisman and 
Sellers will again use the OBSS to inspect the 
wing leading edges and nose cap for any 
evidence of damage due to micrometeoroid 
debris before return home.  The data gathered 
will be shipped to the ground for review by 
imagery experts in Mission Control 鈥 the same 
group that pores over imagery after launch. 

The day before landing is set aside for the 
traditional tests of hydraulics, flight control 
systems and thruster jets ahead of landing.  
With cabin stowage activities ongoing in 
parallel, Ham, Antonelli and Good will 
pressurize the hydraulic system to test the 
movable surfaces on the wings and tail and fire 
steering jets setting the stage for Atlantis鈥  
return home. 

 

After Atlantis Departs 

 

21 Soyuz undocks and lands June 2 ending 

Expedition 23 

 

Oleg Kotov, Soichi Noguchi and  

T.J. Creamer return after 163 days in  
space leaving Alexander Skvortsov,  
Tracy Caldwell Dyson and Mikhail 
Kornienko behind to begin Expedition 24 

 

23 Soyuz launches June 16 and docks 18 

 

Fyodor Yurchikhin, Doug Wheelock and 

Shannon Walker join Expedition 24 

 

23 Soyuz Relocate June 22 

 

The moves Soyuz from SM Aft to MRM-1 in 

preparation for 38P docking. 

 

Russian Progress 38 Supply Craft launches 

June 30 and docks July 2 

 

STS-134/ISS ULF6 Preparations 

 

U.S. Spacewalk July 8 

 

The primary task is to install a Power and 

Data Grapple Fixture (brought inside during 
STS-132 for outfitting) on the Zarya module 
(Dyson and Wheelock) 

 

Russian Spacewalk July 23 

 

The primary tasks will focus on MRM-1 

activation. (Kornienko and Yurchikhin) 

 

background image

 

MAY 2010

 

MISSION OVERVIEW

 

11

 

 

Attired in training versions of their shuttle launch and entry suits, the STS-132 crew members take a 

brief break for a portrait in the Space Vehicle Mock-up Facility at NASA鈥檚 Johnson Space Center.  
NASA astronaut Ken Ham, commander, holds the STS-132 mission logo.  Also pictured (from the 

left) are NASA astronauts Piers Sellers, Garrett Reisman, both mission specialists; Tony Antonelli, 

pilot; Michael Good and Steve Bowen, both mission specialists. 

 
The STS-132 mission ends with landing on 
flight day 12 back at the Kennedy Space 
Center鈥檚 Shuttle Landing Facility.  Landing 
currently is planned for the early morning of 
May 26 after 12 days in space.  STS-132 is the 

132nd space shuttle mission; the 34th shuttle 
flight devoted to space station assembly and 
operation and the 32nd and final planned flight 
of Atlantis. 

 

 

background image

 

12

 

MISSION OVERVIEW

 

MAY 2010

 

This page intentionally blank 

background image

 

MAY 2010 

TIMELINE OVERVIEW 

13

 

STS-132 TIMELINE OVERVIEW 

 

Flight Day 1 

 

Launch 

 

Payload Bay Door Opening 

 

Ku-band Antenna Deployment 

 

Shuttle Robotic Arm Activation and payload 

bay survey 

 

Umbilical Well and Handheld External Tank 

Photo and TV Downlink 

Flight Day 2 

 

Atlantis鈥 Thermal Protection System Survey 

with Shuttle Robotic Arm/Orbiter Boom 
Sensor System (OBSS) 

 

Extravehicular Mobility Unit Checkout 

 

Centerline Camera Installation 

 

Orbiter Docking System Ring Extension 

 

Orbital Maneuvering System Pod Survey 

 

Rendezvous tools checkout 

Flight Day 3 

 

Rendezvous with the International Space 

Station 

 

Rendezvous Pitch Maneuver Photography  

of Atlantis鈥 Thermal Protection System by 
Expedition 23 crew members Creamer and 
Kotov  

 

Docking to Harmony/Pressurized Mating 

Adapter-2 

 

Hatch Opening and Welcoming 

 

Canadarm2 grapple of Integrated Cargo 

Carrier, unberthing from Atlantis鈥 payload 
bay and temporary park on the Mobile Base 
System鈥檚 payload attachment device 

 

Spacewalk 1 preparations by Reisman  

and Bowen 

 

Spacewalk 1 procedure review 

 

Spacewalk 1 campout by Reisman and 

Bowen in the Quest airlock 

Flight Day 4 

 

Spacewalk 1 by Reisman and Bowen 

(Installation of the backup Space-to-Ground 
Antenna on the Z1 truss and installation of a 
new tool platform on the Dextre robot) 

Flight Day 5 

 

Unberth of the Russian Rassvet module from 

Atlantis鈥 payload bay and installation on the 
Earth-facing port of the Zarya module 

 

Canadarm unberth of the Orbiter Boom 

Sensor System and handoff to the shuttle鈥檚 
robotic arm 

 

Focused inspection of Atlantis鈥 thermal 

protection heat shield, if required 

 

Spacewalk 2 preparations by Bowen and 

Good 

 

Spacewalk 2 procedure review 

 

Spacewalk 2 campout by Bowen and Good 

in the Quest airlock 

background image

 

14 

TIMELINE OVERVIEW 

MAY 2010

 

Flight Day 6 

 

Canadarm 2 removal of the Integrated Cargo 

Carrier from the Mobile Base System 
attachment device and relocation at the 
Spacewalk 2 worksite 

 

Spacewalk 2 by Bowen and Good (remove 

and replace three of the six batteries in the 
P6 truss) 

Flight Day 7 

 

Middeck cargo transfer from Atlantis to 

the space station 

 

Rassvet/Zarya leak checks and Rassvet hatch 

opening for air duct installation (complete 
outfitting of Rassvet will be delayed until 
after Atlantis departs) 

 

Crew off duty period 

 

Spacewalk 3 preparations by Reisman  

and Good 

 

Spacewalk 3 procedure review 

 

Spacewalk 3 campout by Reisman and  

Good in the Quest airlock 

Flight Day 8 

 

Spacewalk 3 by Reisman and Good (remove 

and replace the last three batteries on the P6 
truss and, if time permits, retrieve a spare 
Power and Data Grapple Fixture from the 
sidewall of Atlantis鈥 payload bay to be 
brought inside the station) 

 

Canadarm 2 returns the Integrated Cargo 

Carrier to the Mobile Base System 
attachment device 

Flight Day 9 

 

Canadarm 2 berths the Integrated Cargo 

Carrier in Atlantis鈥 cargo bay 

 

Middeck cargo transfer from Atlantis to 

the station 

 

Crew off duty time 

Flight Day 10 

 

Final middeck cargo transfer from Atlantis  

to the station 

 

Rendezvous Tool Checkout 

 

Joint Crew News Conference 

 

Farewells and Hatch Closure 

 

Centerline Camera installation 

 

Atlantis undocking from station and 

flyaround 

 

Final separation from the station 

Flight Day 11 

 

OBSS late inspection of Atlantis鈥 thermal 

heat shield 

 

OBSS berth 

Flight Day 12 

 

Cabin stowage 

 

Flight Control System checkout 

 

Reaction Control System hot-fire test 

 

Deorbit Preparation Briefing 

 

Ku-band antenna stowage 

background image

 

MAY 2010 

TIMELINE OVERVIEW 

15

 

Flight Day 13 

 

Deorbit preparations 

 

Payload Bay Door closing 

 

Deorbit burn 

 

KSC Landing 

background image

 

16 

TIMELINE OVERVIEW 

MAY 2010

 

This page intentionally blank 

background image

 

MAY 2010 

MISSION PROFILE 

17

 

MISSION PROFILE 

 

CREW 

Commander: 

Ken Ham

 

Pilot: 

Tony Antonelli

 

Mission Specialist 1: 

Garrett Reisman 

Mission Specialist 2: 

Michael Good

 

Mission Specialist 3: 

Steve Bowen

 

Mission Specialist 4: 

Piers

 

Sellers 

LAUNCH 

Orbiter:

 Atlantis 

(OV-104) 

Launch Site:

 

Kennedy Space Center 
Launch Pad 39A 

Launch Date:

 May 

14, 

2010 

Launch Time:

 

2:20 p.m. EDT (Preferred 
In-Plane launch time for 
5/14) 

Launch Window:

 10 Minutes 

Altitude:

  

22 Nautical Miles (140 Miles) 
Orbital Insertion; 190 NM 
(218 Miles) Rendezvous 

Inclination:

 51.6 

Degrees 

Duration: 

11 Days 18 Hours 23 Minutes 

VEHICLE DATA 

Shuttle Liftoff Weight:

 4,519,769 

pounds 

Orbiter/Payload Liftoff Weight:

 263,100 

pounds 

Orbiter/Payload Landing Weight:

 209,491 

pounds 

Software Version:

 OI-34 

Space Shuttle Main Engines: 

SSME 1:

 2052 

SSME 2:

 2051 

SSME 3:

 2047 

External Tank:

 ET-136 

SRB Set:

 BI-143 

RSRM Set:

 111 

SHUTTLE ABORTS 

Abort Landing Sites 

RTLS:

 

Kennedy Space Center Shuttle 
Landing Facility 

TAL:

 

Primary 鈥 Zaragoza, Spain.  
Alternates 鈥 Moron, Spain and 
Istres, France 

AOA:

 

Primary 鈥 Kennedy Space Center 
Shuttle Landing Facility 
Alternate 鈥 White Sands Space 
Harbor 

LANDING 

Landing Date:

 May 

26, 

2010 

Landing Time:

 

08:44 a.m. EDT 

Primary landing Site:

  Kennedy Space Center 

Shuttle Landing Facility 

PAYLOADS 

Mini-Research Module-1 
Integrated Cargo Carrier 

background image

 

18 MISSION 

PROFILE 

MAY 

2010

 

This page intentionally blank 

background image

 

MAY 2010 

MISSION OBJECTIVES 

19

 

MISSION OBJECTIVES 

 

MAJOR OBJECTIVES 

1.  Rendezvous and dock space shuttle Atlantis 

to the station鈥檚 Pressurized Mating Adapter 
(PMA)-2 and perform mandatory safety 
briefing for all crew members 

2.  Activate and check out Mini-Research 

Module-1 (MRM-1) in the shuttle payload 
bay 

3.  Support dual docked operations for 

23S docking (if required) 

4.  Perform robotic installation of the MRM-1 

to the Zarya nadir port 

 

Closure of a minimum of one set of 
hooks in the MRM-1/Zarya nadir 
interface 

 

Confirmation of electrical connectivity 
through the MRM-1/Zarya Interface 

5.  Transfer mandatory quantities of water 

from the shuttle to the space station per 
Flight Utilization Logistics Flight (ULF) 4 
Transfer Priority List (TPL) 

6.  Transfer critical items per Flight ULF4 TPL 

7.  Deploy Integrated Cargo Carrier 鈥 Vertical 

Lightweight Deployable-2 (ICC-VLD-2) 
with Orbital Replacement Units (ORUs) 
from the payload bay and stow on Mobile 
Transporter (MT) Payload ORU 
Accommodation (POA) 

8.  Install the Space-to-Ground Antenna 

(SGAnt) and SGAnt boom on Z1 truss 

9.  Install the Enhanced ORU Temporary 

Platform (EOTP) on the Special Purpose 
Dexterous Manipulator (SPDM) 

10.  Replace the six P6 channel 4B batteries 

currently in orbit with new batteries from 
the ICC-VLD-2 and return the old batteries 
on ICC-VLD-2 

11.  Return the ICC-VLD2 with old batteries to 

the shuttle payload bay 

12.  Transfer mission success items per the 

Flight ULF4 TPL 

13.  Remove the Payload Data Grapple 

Fixture (PDGF) from the shuttle sidewall 
carrier and transfer to the space station 

14. Perform Intravehicular Activity (IVA) tasks 

to allow for return of in-orbit hardware 

15.  Perform daily station payload status checks, 

as required 

16.  Perform nonrecoverable station 

utilization/science activities (not listed in 
priority order): 

 

Bisphosphonates 

 

Double Coldbag (DCB) packing 

 

Waving and Coiling of Arabidopsis 
Roots at Different g-levels (WAICO) bag 
packing 

 

General Laboratory Active Cryogenic 
ISS Experiment Refrigerator (GLACIER) 

 

Microbiology-2 (Micro-2) 

background image

 

20 MISSION 

OBJECTIVES 

MAY 

2010

 

 

Mycological Evaluation of Crew 
Exposure to ISS Ambient Air (Myco) 

 

National Lab Pathfinder (NLP) 
vaccine-9 

 

SPINAL long (station U.S. Operating 
Segment (USOS) crew) and SPINAL 
short (shuttle crew) 

 

Fish Scales 

17.  Transfer additional quantities of water from 

the shuttle to station per ULF4 TPL 

18.  Transfer remaining cargo items per Flight 

ULF4 TPL 

19.  The following spacewalk tasks are deemed 

to fit within the existing extravehicular 
activity (EVA) timelines; however, they may 
be deferred if the EVA is behind schedule.  
The EVA will not be extended to complete 
these tasks: 

 

Install EOTP input drive mechanism 
and two fuse ORUs 

20.  Perform daily middeck status checks to 

support payloads 

21.  Perform remaining station payload research 

operations tasks 

 

SDBI 1634 SLEEP/WAKE actigraphy 
and light exposure during spaceflight 
(鈥淪leep-Short鈥) 

22.  Perform Russian resupply 

23.  Transfer nitrogen from the shuttle to the 

station鈥檚 airlock High Pressure Gas Tanks 
(HGPTs) 

24.  Transfer oxygen from the shuttle to the 

station鈥檚 airlock HGPTs as consumables 
allow 

25.  Perform imagery survey of the station鈥檚 

exterior during fly-around after undock 

26.  Perform reboost of the station with the 

shuttle if mission resources allow and are 
consistent with station trajectory analysis 
and planning 

27.  Perform program-approved EVA get-ahead 

tasks.  The following EVA get-ahead tasks 
do not fit in the existing EVA timelines; 
however, the EVA team will be trained and 
ready to perform them, should the 
opportunity arise: 

 

Port 3 Crew and Equipment 
Transfer/Translation Aid (CETA) light 

 

Port 4/Port 5 NH3 jumper 

28.  Perform program-approved IVA get-ahead 

tasks.  The following IVA get-ahead tasks 
do not fit in the existing IVA timelines; 
however, the IVA team will be trained and 
ready to perform should the opportunity 
arise: 

 

Ingress MRM-1 

29.  Perform Station Development Test 

Objective (SDTO) 13005-U, ISS Structural 
Life Validation and Extension, during 
MRM-1 installation 

30.  Perform SDTO 13005-U, ISS Structural Life 

Validation and Extension, during shuttle-
mated reboost 

background image

 

MAY 2009 

MISSION OBJECTIVES 

21

 

31.  Perform SDTO 13005-U, ISS Structural Life 

Validation and Extension, during ULF4 
docking 

32.  Perform SDTO 13005-U, ISS Structural Life 

Validation and Extension, during ULF4 
undocking, if crew time available 

33.  Perform payload of opportunity operations 

to support Maui Analysis of Upper 
Atmospheric Injections (MAUI), Shuttle 
Exhaust Ion Turbulence Experiment 
(SEITE), Shuttle Ionospheric Modification 
with Pulsed Local Exhaust (SIMPLEX) and 
Ram Burn Observations (RAMBO-2) 

 

background image

 

22 

MISSION PRIORITIES 

NOVEMBER 2009

 

This page intentionally blank 

background image

 

MAY 2010 

MISSION PERSONNEL 

23

 

MISSION PERSONNEL 

 

KEY CONSOLE POSITIONS FOR STS-132 

 Flt. 

Director CAPCOM PAO 

Ascent 

Richard Jones 

Charlie Hobaugh 
TBD (Wx) 

Kyle Herring 

Orbit 1 (Lead) 

Mike Sarafin 

Chris Cassidy 

Kyle Herring 

Orbit 2 

Chris Edelen 

Stan Love 

Josh Byerly 

Planning 

Ginger Kerrick 

Shannon Lucid Nicole 

Cloutier-

Lemasters 

Entry 

Tony Ceccacci 

Charlie Hobaugh 
TBD (Wx) 

Josh Byerly 

Shuttle Team 4 

TBD N/A N/A 

ISS Orbit 1 

Holly Ridings 

Zach Jones 

N/A 

ISS Orbit 2 (Lead) 

Emily Nelson 

Steve Swanson 

N/A 

ISS Orbit 3 

Dina Contella 

Rob Hayhurst 

N/A 

Station Team 4 

Royce Renfrew 

 

 

JSC PAO Representative at KSC for Launch

 鈥 Kelly Humphries

 

KSC Launch Commentator

 鈥 George Diller

 

KSC Launch Director

 鈥 Mike Leinbach

 

NASA Launch Test Director

 鈥 Jeremy Graeber 

background image

 

24 MISSION 

PERSONNEL 

MAY 

2010

 

This page intentionally blank 

background image

 

MAY 2010 

CREW 

 

25

STS-132 CREW 

 

 

The STS-132 mission will be the 32nd flight of 
the space shuttle Atlantis.  The primary STS-132 
mission objective is to deliver the Russian-made 
MRM-1 (Mini-Research Module) to the 
International Space Station.  Atlantis also will 
deliver a new communications antenna and a 
new set of batteries for one of the station鈥檚 solar 
arrays.  The STS-132 mission patch features 
Atlantis flying off into the sunset as the end of 
the Space Shuttle Program approaches. 

 

However, the sun is also heralding the promise 

of a new day as it rises for the first time on a 
new station module, the MRM-1, named 
鈥淩assvet,鈥 the Russian word for dawn. 

Short biographical sketches of the crew appear 
in this package. 

More detailed biographies are available at:  

http://www.jsc.nasa.gov/bios/

 

 

background image

 

26 CREW 

APRIL 

2010

 

 

The STS-132 crew members, shown clockwise, are NASA astronauts Ken Ham (bottom), 

commander; Garrett Reisman and Michael Good, mission specialists; Tony Antonelli, pilot;  

and Piers Sellers and Steve Bowen, mission specialists. 

 

background image

 

MAY 2010 

CREW 

27

 

STS-132 CREW BIOGRAPHIES 

 

Ken Ham 

Ken Ham, a captain in the U.S. Navy, 

 

will command STS-132 and its crew.  As 
commander, he will have overall responsibility 
for the safety and execution of the mission and 
will oversee the crew and ensure mission 
objectives are met.  He will fly Atlantis during 
its rendezvous and docking to the space station 
and landing back on Earth. 

Before being selected by NASA in 1998, Ham 
was temporarily assigned to the NASA-JSC 

zero-g office at Ellington Field in Houston 
where he flew as a crew member on the NASA 
zero-g research aircraft. 

In 2008, Ham served as pilot of STS-124, which 
delivered the Kibo pressurized science 
laboratory to the space station.  He has spent 
more than 13 days in space and has logged 
more than 5,000 flight hours in more than  
40 different types of aircraft. 

background image

 

28 CREW 

MAY 

2010

 

 

Tony Antonelli 

A commander in the U.S. Navy, Tony Antonelli 
will pilot STS-132.  He will assist Ham with 
rendezvous and landing, and will fly the orbiter 
during undocking and the flyaround. 

This will be Antonelli鈥檚 second trip to space.  
Selected as a pilot by NASA in 2000, Antonelli 
has accumulated more than 3,600 hours of 

flight time in more than 41 different kinds of 
aircraft. 

He served as pilot of STS-119 in 2009, which 
delivered the S6 Integrated Truss Segment and 
the final pair of power-generating solar array 
wings to the space station. 

background image

 

MAY 2010 

CREW 

29

 

 

Garrett Reisman 

Garrett Reisman, who holds a Ph.D. in 
mechanical engineering, will serve as mission 
specialist 1 on STS-132.  Following Astronaut 
Candidate Training in 1998, he completed work 
in the Astronaut Office Robotics Branch, 
primarily working on the space station robotic 
arm, and then later served in the Astronaut 
Office Advanced Vehicles Branch, working on 
the displays and checklists to be used in the 
next-generation space shuttle cockpit.  In 2003, 
he was a crew member on NEEMO V, living on 

the bottom of the sea in the Aquarius habitat for 
two weeks. 

In 2008, Reisman completed his first 
spaceflight, spending more than three months 
in space and accruing more than seven hours of 
extravehicular activity, or EVA, time.  He 
launched to space with the STS-123 crew and 
returned home on STS-124.  He served with the 
Expedition 16 and Expedition 17 crews as a 
flight engineer. 

background image

 

30 CREW 

MAY 

2010

 

 

Michael Good 

A retired colonel in the U.S. Air Force, 

 

Michael Good will be making his second trip to 
space on STS-132, serving as mission 

 

specialist 2. 

After being selected by NASA as a mission 
specialist in 2000, Good was assigned technical 

duties in the Astronaut Office Advanced 
Vehicles Branch and the Space Shuttle Branch.  
In 2009, he served on the crew of STS-125, the 
final space shuttle mission to the Hubble Space 
Telescope, spending nearly 13 days in space 
and logging almost 16 hours of EVA time 
during two spacewalks. 

background image

 

MAY 2010 

CREW 

31

 

 

Steve Bowen 

The first-ever submarine officer selected by 
NASA, Steve Bowen, a captain in the U.S. 
Navy, is assigned to serve as mission 

 

specialist 3 on STS-132. 

Upon completion of Astronaut Candidate 
Training, Bowen was initially assigned 

technical duties in the Astronaut Office Station 
Operations Branch.  He completed his first 
spaceflight aboard STS-126 in 2008 where he 
spent more than 15 days in space and logged 
more than 19 hours of EVA time in three 
spacewalks. 

background image

 

32 CREW 

MAY 

2010

 

 

Piers Sellers 

Veteran astronaut Piers Sellers will serve as 
mission specialist 4 on STS-132.  His two 
previous spaceflights include STS-112 in 2002 
and STS-121 in 2006. 

Selected as an astronaut candidate by NASA in 
1996, Sellers was initially assigned technical 
duties in the Astronaut Office Computer 
Support Branch, then moved to the Astronaut 

Office Space Station Branch during which he 
worked part time in Moscow as a technical 
liaison on station computer software. 

He has logged more than 559 hours in space, 
including nearly 41 EVA hours in six 
spacewalks. 

 

background image

 

MAY 2010 

PAYLOAD OVERVIEW 

33

 

PAYLOAD OVERVIEW 

 

 

INTEGRATED CARGO CARRIER 
VERTICAL LIGHT DEPLOY (ICC-VLD) 

Astronauts use the Integrated Cargo Carrier 
(ICC) to help transfer unpressurized cargo such 
as Orbital Replacement Units (ORUs) from the 
space shuttle to the International Space Station 
and from the station to worksites on the truss 
assemblies.  The carrier also is used to return 
items for refurbishment. 

The Astrium ICC, formerly provided by 
SPACEHAB Inc., is an unpressurized flatbed 
pallet and keel yoke assembly housed in 

 

the shuttle鈥檚 payload bay.  Constructed of 
aluminum, it is approximately 8 feet long 
(105 inches), 13 feet wide (165 inches) and 
10 inches thick, and carries cargo on both the 
top and bottom faces of the pallet.  Using 
modular elements, several pallet configurations 
are available, accommodating various mass 
capabilities and cargo envelopes. 

The ICC configuration flown on STS-132 is 
called the ICC 鈥 VLD and provides heater 
power and electrical connections for the ORUs.  
The empty weight of the ICC 鈥 VLD is 
2,645 pounds.  The total weight of the ORUs 
and ICC 鈥 VLD is approximately 8,330 pounds.  
The STS-132 assembly mission ICC 鈥 VLD will 
carry replacement components and spare parts 
for the space station. 

The ICC is grabbed by the space shuttle and the 
space station robotic arms during its move from 
the payload bay.  It is attached to the station鈥檚 
mobile transporter and can be held at the 
various worksites by the station鈥檚 robotic arm 
while the ORUs are transferred. 

The ICC 鈥 VLD will carry six battery ORUs  
for the Port 6 (P6) Integrated Equipment 

 

Assembly (IEA).  The P6 containing the initial 
station high-power components was launched 
on Nov. 30, 2000.  The IEA contains 12 Battery 
Subassembly ORUs (six batteries) that are 
charged from the solar arrays during sunlit 

background image

 

34 

PAYLOAD OVERVIEW 

MAY 2010

 

periods and provide station power during 
eclipse and maintenance periods.  Previously, 
six of the original P6 battery ORUs were 
changed out during the STS-127 (2J/A) mission.  
Thirty-eight Individual Pressure Vessel (IPV) 
Nickel Hydrogen (Ni-H2) battery cells are 
connected in series and packaged in a battery 
ORU.  Two ORUs are connected in series, 
utilizing a total of 76 cells to form one battery.  
Each battery is designed to deliver more than 
25 amps in a low-demand orbit to as high as 
75 

amps to meet short peaking load 

requirements at a battery operating voltage 
range of 76 to 123 V dc.  The batteries will be 
replaced during two spacewalks and the old 
ones will be returned.  The six batteries weigh 
2,204 pounds and have a design life of 
approximately six and a half years. 

In addition to the batteries, the ICC 鈥 VLD will 
have one Space-to-Ground Antenna (SGANT), 
one SGANT boom, and one Enhanced Orbital 
Replacement Unit Temporary Platform (EOTP).  
These components will be stored on External 
Stowage Platform 3 (ESP-3) on the Port 3 truss.  
When the ICC 鈥 VLD with the old batteries is 
returned to Earth aboard the space shuttle, it 
will weigh 6,017 pounds. 

The SGANT provides Ku band communication 
between the space station and the Tracking 
Data and Relay (TDRS) satellites for payload 
data, video to the ground and the crew 

 

Orbiter Communications Adapter (OCA).  The 
OCA allows for telephone calls, emails and 
other two-way communications services.  The 
SGANT currently is mounted on top of the 
Zenith one (Z1) truss.  Eventually, a second  
Z1 boom will be mounted with an additional 
SGANT in a standby backup mode.  If ever 
needed, it could be brought on line quickly.  
The SGANT dish measures 6 feet (72 inches) in 

diameter, and 6 feet (72 inches) high, including 
gimbals, and weighs 194 pounds. 

The SGANT Orbital Replacement Unit (ORU), 
the SGANT Flight Support Equipment (FSE) 
Installation Kit, and the Small Adapter Plate 
Assembly (SAPA) comprise the Integrated 
Assembly, SGANT FSE Installation Kit 
(hereafter referred to as the Integrated 
Assembly).  The installation kit is composed  
of hardware that provides a mechanical, 
structural and electrical bonding interface 
between the SGANT ORU and the SAPA.  The 
SGANT FSE Installation Kit provides 

 

thermal conditioning of the SGANT ORU.  The 
hardware is extravehicular activity (EVA) 
compatible.  The FSE Installation Kit is used  
to support transportation of SGANT ORUs 
from Earth to orbit, cargo transfer to the 

 

in-orbit position on the International Space 
Station, and return from orbit to Earth.  When 
used with the proper carrier or storage 
platform, the SGANT FSE Installation Kit can 
be used to support storage of the SGANT ORU 
at in-orbit station external payload sites.  It can 
be separated from the Passive Flight Releasable 
Attachment Mechanism (PFRAM) Interface 
Plate (IP) Assembly mounted to the launch 
carrier, or the station stowage platform. 

The SGANT Boom Assembly provides power, 
data, and structural support to the redundant 
SGANT and the Space-to-Ground Transmit 
Receive Controller (SGTRC) units.  The 

 

SGANT Boom Assembly will attach to the 
Integrated Truss Structure (ITS) Z1 berthing 
face at the original SGANT launch location for 
transmission of mechanical loads and 
vibrations.  It will position and align the 
redundant SGANT to be ready for use should 
the primary SGANT fail in orbit.  The Boom 
Attached Cables (BAC) provide an electrical 

background image

 

MAY 2010 

PAYLOAD OVERVIEW 

35

 

interface to the SGANT and SGTRC units for 
power, 1553 command and control data, 

 

and Radio Frequency (RF) signals and 
Intermediate Frequency (IF) signals carrying 
International Space Station space-to-ground 
communications.  The waveguide is also 
attached to the Boom Assembly and provides a 
conduit for Radio Frequency (RF) signals 
between the SGTRC and SGANT. 

The Enhanced ORU Temporary Platform 
(EOTP) is hardware supporting the operation of 

the Special Purpose Dexterous Manipulator 
(SPDM).  It is built by MDA and provided as 
NASA Government Furnished Equipment. 

 

Return of the EOTP is not planned for this 
mission.  The EOTP has a Passive FRAM 
interface, which is used to transfer launch 
loads.  The interface structure between EOTP 
and the ICC-VLD is Flight Support Equipment 
(FSE) developed and owned by Astrium-ST.   
It interfaces with the PFRAM of the EOTP.  The 
EOTP does not require power or data interfaces 
while on the ICC. 

ICC-VLD Launch Configuration 

 

ICC-VLD Return Configuration 

 

background image

 

36 

PAYLOAD OVERVIEW 

MAY 2010

 

MINI-RESEARCH MODULE-1 

The Mini-Research Module-1 (MRM-1) is a new 
Russian module that will be delivered to the 
International Space Station by space shuttle 
Atlantis on the STS-132 mission. 

MRM-1, which has been named Rassvet, a 
Russian word meaning dawn, will be used 
primarily for cargo storage and some payload 
operations.  The module will be berthed to the 
Earth-facing port of the Zarya module using the 
station robotic arm on Flight Day 5. 

Developed at Korolev Rocket and Space Corp. 
Energia (RSC Energia), MRM-1 also will 
provide a fourth docking port on the Russian 
operation segment of the station for the docking 
of Soyuz and Progress vehicles. 

MRM-1 is 19.7 feet long (6 meters), has 

 

a maximum exterior diameter of 7.7 feet 

 

(2.35 meters) and weighs 11,188 pounds 

 

(5,075 kilograms).  For its flight to the station, 
the MRM-1 will carry a total of 6,482 pounds 
(2,940 kilograms) of cargo on its internal and 
exterior stowage locations while in Atlantis鈥 
payload bay. 

On its shell, Rassvet will carry a spare elbow 
joint for the European Robotic Arm (ERA)  
and outfitting equipment for the Russian 
Multi-Purpose Laboratory Module (MLM), 
which is scheduled to launch on a Russian 
rocket in 2012.  The outfitting equipment will 
include a radiator, an airlock for payloads,  
and a Portable Work Post (PWP) that will 
provide a spacewalk worksite for ERA 
activation, checkout, and operations. 

Once MRM-1 is installed on its Zarya port, its 
614 cubic feet (17 cubic meters) of pressurized 
volume, will increase the space station鈥檚 total 
pressurized volume to 29,561 cubic feet 

 

(837 cubic meters), and its 207 cubic feet 

 

(5.8 cubic meters) will increase the total 
habitable volume to 12,705 cubic feet 

 

(360 cubic meters).  After installation and 
Atlantis鈥 departure, the station鈥檚 total mass will 
be 815,519 pounds (369,914 kilograms). 

MRM-1 (Rassvet) Basic Specifications: 

Module launch 
mass: 

11,188 pounds 
(5,075 kilograms) 

Total launch 
mass: 

17,760 pounds 
(8,015 kilograms), including 
cargo (European Robotic 
Arm for Columbus, airlock 
for Multipurpose 
Laboratory Module and a 
portable workplace) 

Maximum hull 
diameter: 

7.7 feet (2.35 meters) 

Hull length 
between 
docking 
assembly 
planes: 

19.7 feet (6.0 meters) 

Pressurized 
volume: 

614 cubic feet  
(17.4 cubic meters) 

Habitable 
volume: 

207 cubic feet  
(5.85 cubic meters) 

 

background image

 

MAY 2010 

PAYLOAD OVERVIEW 

37

 

 

background image

 

38 

PAYLOAD OVERVIEW 

MAY 2010

 

MLM Radiator

PDA

Portable 

Work Platform

MLM Airlock

PVGF

ERA Elbow Spare

 

 

MRM-1 Overview 

 

Mini-Research Module-1 (MRM-1) was 
manufactured from the residual Dynamic 
Test Article of the Science Power 
Platform (SPP) 

 

MLM outfitting hardware is mounted 
externally on MRM-1 

 

3,086 pounds of NASA cargo launches 
inside (211 cubic feet of usable on-orbit 
stowage volume) 

 

background image

 

MAY 2010 

RENDEZVOUS & DOCKING 

39

 

RENDEZVOUS & DOCKING 

 

 

This is a high-angle view of the crew cabin of the space shuttle Atlantis during the second  

spacewalk of Atlantis鈥 visit to the International Space Station. 

Atlantis鈥 launch for the STS-132 mission is 
precisely timed to lead to a linkup with the 
International Space Station about 220 miles 
above Earth.  A series of engine firings during 
the first two days of the mission will bring the 
shuttle to a point about 50,000 feet behind the 
station.  Once there, Atlantis will start its final 
approach.  About 2.5 hours before docking, the 
shuttle鈥檚 jets will be fired during what is called 
the terminal initiation burn.  The shuttle will 
cover the final miles to the station during the 
next orbit. 

As Atlantis moves closer to the station, its 
rendezvous radar system and trajectory control 
sensor will provide the crew with range and 
closing-rate data.  Several small correction 
burns will place the shuttle about 1,000 feet 
below the station. 

Commander Ken Ham, with help from Pilot 
Tony Antonelli and other crew members, will 
manually fly the shuttle for the remainder of 
the approach and docking. 

background image

 

40 

RENDEZVOUS & DOCKING 

MAY 2010

 

Ham will stop Atlantis about 600 feet below the 
station.  Timing the next steps to occur with 
proper lighting, he will maneuver the shuttle 
through an approximate eight-minute back flip 
called the Rendezvous Pitch Maneuver, also 
known as the R-bar Pitch Maneuver since 
Atlantis is in line with an imaginary vertical  
R-bar directly below the station.  During this 
maneuver, station crew members Oleg Kotov 
and Timothy (T.J.) Creamer will photograph 
Atlantis鈥 upper and lower surfaces through 
windows of the Zvezda Service Module.  They 
will use digital cameras equipped with an 
800mm lens to provide up to one-inch 
resolution and a 400mm lens providing 

 

three-inch resolution. 

The photography is one of several techniques 
used to inspect the shuttle鈥檚 Thermal Protection 
System for possible damage.  Areas of special 
interest include the thermal protection tiles, the 
reinforced carbon-carbon panels along the wing 
leading edges and the nose cap, landing gear 
doors and the elevon cove.  The photos will be 
downlinked through the station鈥檚 Ku-band 
communications system for analysis by 
imagery experts in Mission Control. 

When Atlantis completes its back flip, it will be 
back where it started with its payload bay 
facing the station.  Ham then will fly the shuttle 
through a quarter circle to a position about  
400 feet directly in front of the station.  From 
that point he will begin the final approach to 
docking to the Pressurized Mating Adapter 2 at 
the forward end of the Harmony node. 

The shuttle crew members will operate laptop 
computers that process the navigational data, 
the laser range systems and Atlantis鈥 docking 
mechanism. 

Using a video camera mounted in the center of 
the Orbiter Docking System, Ham will line up 
the docking ports of the two spacecraft.  If 
necessary, he will pause the shuttle 30 feet from 
the station to ensure proper alignment of the 
docking mechanisms.  He will maintain the 
shuttle鈥檚 speed relative to the station at about 
one-tenth of a foot per second, while both 
Atlantis and the station are moving at about 
17,500 mph.  Ham will keep the docking 
mechanisms aligned to a tolerance of three 
inches. 

When Atlantis makes contact with the station, 
preliminary latches will automatically link the 
two spacecraft.  The shuttle鈥檚 steering jets will 
be deactivated to reduce the forces acting at the 
docking interface.  Shock absorber springs in 
the docking mechanism will dampen any 
relative motion between the shuttle and station. 

Once motion between the shuttle and the 
station has been stopped, the docking ring will 
be retracted to close a final set of latches 
between the two vehicles. 

UNDOCKING, SEPARATION AND 
DEPARTURE 

At undocking time, the hooks and latches will 
be opened and springs will push the shuttle 
away from the station.  Atlantis鈥 steering jets 
will be shut off to avoid any inadvertent firings 
during the initial separation. 

Once the shuttle is about two feet from the 
station and the docking devices are clear of one 
another, Antonelli will turn the steering jets 
back on and will manually control Atlantis 
within a tight corridor as the shuttle separates 
from the station. 

background image

 

MAY 2010 

RENDEZVOUS & DOCKING 

41

 

Atlantis will move to a distance of about  
450 feet, where Antonelli will begin to fly 
around the station.  Atlantis will circle the 
shuttle around the station at a distance of  
600-700 feet. 

Once the shuttle completes 1.5 revolutions of 
the complex, Antonelli will fire Atlantis鈥 jets to 
leave the area.  The shuttle will begin to 

increase its distance behind the station with 
each trip around Earth while ground teams 
analyze data from the late inspection of the 
shuttle鈥檚 heat shield.  However, the distance 
will be close enough to allow the shuttle to 
return to the station in the unlikely event that 
the heat shield is damaged, preventing the 
shuttle鈥檚 safe re-entry. 

background image

 

42 

RENDEZVOUS & DOCKING 

MAY 2010

 

This page intentionally blank 

background image

 

MAY 2010 

SPACEWALKS 

43

 

SPACEWALKS 

 

Astronaut Garrett Reisman, Expedition 16 flight engineer, participates in the STS-123 mission鈥檚  

first scheduled session of extravehicular activity as construction and maintenance  

continue on the International Space Station. 

Over the course of the three spacewalks of the 
STS-132 mission, the International Space Station 
will gain spare and replacement parts that will 
help it continue functioning well into the 
future. 

Mission Specialists Garrett Reisman, 

 

Michael Good and Steve Bowen will spend a 
total of 19.5 hours outside the station on flight 
days 4, 6 and 8.  As all three crew members are 
experienced spacewalkers, they have elected 
not to designate one person as lead spacewalker 
for the mission; instead they鈥檒l each take a turn 

in that role on a different spacewalk.  Bowen, 
who performed three spacewalks totaling 
19 hours and 56 minutes during the STS-126 
mission in 2008, will wear a spacesuit marked 
with a red stripe.  He鈥檒l act as lead on the 
second spacewalk.  Good, who spent 15 hours 
and 58 minutes working on the Hubble Space 
Telescope during STS-125 in 2009, will wear a 
suit with a band of red and white barber pole 
stripes and take the lead position on the third 
spacewalk.  And Reisman, who took part in one 
spacewalk during the STS-123 mission in 2008, 

background image

 

44 SPACEWALKS 

MAY 

2010

 

will sport an all-white spacesuit.  He鈥檒l lead the 
first spacewalk. 

When a spacewalk 鈥 also called extravehicular 
activity, or EVA for short 鈥 is going on 

 

outside, one crew member inside the 
International Space Station is assigned the job 
of intravehicular officer, or spacewalk 
choreographer.  In this case, that crew member 
will be Pilot Tony Antonelli.  The spacewalks 
will also require astronauts inside the station to 
be at the controls of the station鈥檚 58-foot-long 
robotic arm to maneuver ammonia tank 
assembly and other pieces of hardware. 

 

Mission Specialist Piers Sellers will be at 

 

the arm鈥檚 controls for those operations, along 
with whichever spacewalker isn鈥檛 outside the 
station on a given day and, in the case of the 
first and third spacewalks, station Flight 
Engineer Tracy Caldwell Dyson. 

Preparations will start the night before each 
spacewalk, when the astronauts spend time in 
the station鈥檚 Quest Airlock.  This practice is 
called the campout pre-breathe protocol and is 

used to purge nitrogen from the spacewalkers鈥 
systems and prevent decompression sickness, 
also known as 鈥渢he bends.鈥 

During the campout, the two astronauts 
performing the spacewalk will isolate 
themselves inside the airlock while the air 
pressure is lowered to 10.2 pounds per square 
inch, or psi.  The station is kept at the near-sea-
level pressure of 14.7 psi.  The morning of the 
spacewalk, the astronauts will wear oxygen 
masks while the airlock's pressure is raised 
back to 14.7 psi for an hour and the hatch 
between the airlock and the rest of the station is 
opened.  That allows the spacewalkers to 
perform their morning routines before 
returning to the airlock, where the air pressure 
is lowered again.  Approximately 50 minutes 
after the spacewalkers don their spacesuits, the 
pre-breathe protocol will be complete. 

The procedure enables spacewalks to begin 
earlier in the crew鈥檚 day than was possible 
before the protocol was adopted. 

background image

 

MAY 2010

 

SPACEWALKS

 

45

 

 

 

EVA-1 

Duration:

 

6 hours, 30 minutes 

EVA Crew:

  Reisman (lead) and Bowen 

IV CREW:

 Antonelli 

Robotic Arm Operators:

  Sellers, Good and 

Dyson 

EVA Operations: 

 

Install spare space-to-ground antenna 

 

Install spare parts platform on the Special 
Purpose Dexterous Manipulator (Dextre) 

 

Loosen P6 battery bolts 

The first spacewalk of the mission will be the 
only spacewalk not devoted to battery 
replacement 鈥 though there will be some prep 
work for that task before the spacewalkers 
finish for the day. 

Once they鈥檝e made their way out of the Quest 
airlock, Reisman and Bowen will move to a 
pallet of equipment brought up inside the 
shuttle鈥檚 cargo bay and moved to the robotic 
arm鈥檚 mobile base during flight day 3.  On it  
are six new batteries for the P6 solar array, a 
spare space-to-ground antenna and a new piece 
of equipment for the Special Purpose Dexterous 
Manipulator, or Dextre. 

background image

 

46 SPACEWALKS 

MAY 

2010

 

At the pallet, Bowen will prepare the space-to-
ground antenna dish for removal, then he and 
Reisman will each release four of the eight bolts 
holding the boom of the antenna onto the 
pallet.  Reisman will then climb onto the end of 
the space station鈥檚 robotic arm, so that he can 
carry the boom via the robotic arm to the 
Z1 segment of the station鈥檚 truss system.  And 
once Reisman is on his way, Bowen will 
prepare for removal a new storage platform 
brought up for Dextre. 

When the spacewalkers meet back up at the 
Z1 segment of the truss, Bowen will install the 
antenna boom by driving two mounting bolts, 
and then begin connecting six power and data 
cables to the antenna while Reisman rides the 
robotic arm back to the pallet to retrieve the 
antenna dish, a task that will require removing 
two more bolts.  Bowen should also have time 
to remove some insulation from the boom 
before Reisman returns. 

Installing the antenna dish will require the 
spacewalkers to secure four bolts, then Reisman 
will connect two final cables, and, if time 

permits, Bowen will install a heat shield on the 
antenna鈥檚 group interface tube and remove 
locks that prevent the antenna dish from 
rotating. 

Reisman will then travel back to the spare parts 
pallet to pick up Dextre鈥檚 new storage platform, 
after removing the four bolts holding it in place.  
He鈥檒l meet Bowen back at Dextre on top of the 
Destiny laboratory, where they鈥檒l install four 
bolts to secure the platform to the robot and, if 
time permits, connect two electrical fuses and 
install a maintenance tether. 

While Reisman is getting off the robotic arm, 
Bowen will wrap up the planned work for the 
spacewalk by moving out to the end of the port 
side of the station鈥檚 truss to the batteries of the 
P6 solar arrays, which will be swapped out over 
the course of the following two spacewalks.  
He鈥檒l get the six batteries ready for removal by 
loosening the two bolts holding each one in 
place, and then make his way back to the 
airlock. 

 

 

background image

 

MAY 2010 

SPACEWALKS 

47

 

 

 

EVA-2 

Duration: 

6 hours, 30 minutes 

EVA Crew: 

Bowen (lead) and Good 

IV CREW: 

Antonelli 

Robotic Arm Operators: 

Sellers and Reisman 

EVA Operations: 

 

P6 battery swap, part 1 

Bowen and Good will replace three of the six 
batteries on the B side of the P6 solar array 
during this spacewalk 鈥 each of the two wings 
of the four solar arrays at the space station are 
designated either A or B.  The six batteries on 
the A side of the P6 were replaced on STS-127. 

The new batteries will be designated by letters 
A through F, and the old batteries numbered 
one through six.  Good will remove an old 
battery from the solar array鈥檚 integrated 
electrical assembly using two 鈥渟coops鈥 that will 
been installed by Bowen to make it possible to 
maneuver the batteries.  After removing two 
bolts, Good will hand battery 1 off, get out of 
the foot restraint he was working in, move 
closer to Bowen and take hold of the battery 
again.  Bowen will then release the battery, 
move slightly further down the truss and 
position himself to take hold of the battery.  
Good will hand the battery to Bowen and then 
move himself closer to once again take hold and 
control the battery.  The process is called 

background image

 

48 SPACEWALKS 

MAY 

2010

 

鈥渟hepherding,鈥 and might appear as though the 
spacewalkers are 鈥渋nch-worming鈥 along the 
truss, except that one person is always holding 
a 367-pound battery. 

To install the battery in a temporary storage 
location on the integrated electrical assembly, 
Good will use one of the scoops to attach it  
to a multi-use tether , or ball-stack.  The 
spacewalkers will then remove battery A from 
the pallet it launched to the station on (the 
space station robotic arm will be holding the 
pallet nearby for the spacewalkers鈥 access) and 
shepherd it back to the integrated electrical 
assembly for installation in slot 1.  The next step 
will be to remove battery 2, shepherd it to the 

pallet to be installed in slot A, and remove 
battery B to be installed in slot 2. 

The process will continue until three batteries 
have been installed, then the first battery will be 
removed from its temporary storage location 
and installed in the vacant spot on the pallet.  
The order will be: 

Battery 1 to temporary storage 
Battery A to Slot 1 
Battery 2 to Slot A 
Battery B to Slot 2 
Battery 3 to Slot B 
Battery C to Slot 3 
Battery 1 to Slot C 

 

background image

 

MAY 2010 

SPACEWALKS 

49

 

 

 

EVA-3 

Duration: 

6 hours, 30 minutes 

EVA Crew: 

Good (lead) and Reisman 

IV CREW: 

Antonelli 

Robotic Arm Operators: 

Sellers, Bowen and 
Dyson 

EVA Operations: 

 

P6 battery swap, part 2 

Good and Reisman will spend the third and 
final spacewalk finishing up the battery swap 
work that Good and Bowen started.  They鈥檒l use 
the same procedure and perform the work in 
the following order: 

Battery 4 to temporary storage 
Battery D to Slot 4 
Battery 5 to Slot D 
Battery E to Slot 5 
Battery 6 to Slot E 
Battery F to Slot 6 
Battery 1 to Slow F 

background image

 

50 SPACEWALKS 

MAY 

2010

 

This page intentionally blank 

background image

 

MAY 2010 

EXPERIMENTS 

51

 

EXPERIMENTS 

 
The STS-132/ULF-4 mission will deliver 

 

Mini-Research Module-1, a Russian storage 
module that also will include a Russian 
payloads airlock destined for use on the 
Russian Multi-Purpose Laboratory Module 
(MLM) once it is launched, and continues the 
transition from International Space Station 
assembly to continuous scientific research 
though the end of the decade. 

In addition to the module, Atlantis will deliver 
inside MRM, also known as Rassvet, Crew 
Health Care System medical support 
equipment, and equipment for cold storage and 
National Laboratory Pathfinder equipments. 

Nearly 150 operating experiments in biological 
and biotechnology; human research; physical 
and materials sciences; technology 
development; Earth and space science, and 
educational activities will be conducted aboard 
the station, including several pathfinder 
investigations under the auspices of the 
station鈥檚 new role as a U.S. National 
Laboratory. 

In the past, assembly and maintenance 
activities have dominated the available time for 
crew work.  But as completion of the orbiting 
laboratory nears, additional facilities and the 
crew members to operate them is expanding 
the time devoted to research as a national and 
multinational laboratory. 

On STS-132, research continues into how the 
human body is affected by long-duration stays 
in microgravity.  Among the experiments being 
delivered to the space station, of note, is the 
Nutritional Status Assessment, the most 
comprehensive in-flight study done by NASA 

to date of human physiologic changes during 
long-duration spaceflight. 

Included in multiple experiments returning on 
STS-132 will be NASA鈥檚 Integrated Immune 
study samples, which will allow researchers to 
assess and address the adverse effects of 
spaceflight on the human immune system.  
JAXA鈥檚 NeuroRad, which has studied the 
effects of space radiation on nerve cell tumors, 
and ESA鈥檚 DOSIS-DOBIES, addressing the 
distribution and measurement of radiation 
inside the space station and crew, are returning 
as well. 

Also, three major additions to the research 
facilities aboard the station 鈥 the Minus Eighty-
Degree Laboratory Freezer for ISS (MELFI), a 
multi-purpose freezer for storing samples, the 
Window Observational Research Facility 
(WORF), a facility for Earth science remote 
sensing instruments, and Express Rack 7, a 
multi-purpose payload rack for experiments 鈥 
were delivered by Discovery鈥檚 crew on the 
recent STS-131 shuttle mission.  Those facilities 
have been installed and checked out inside the 
station and will be used by the Expedition 23 
and Expedition 24 crews to expand the station鈥檚 
research potential. 

SHORT-DURATION EXPERIMENTS TO 
BE PERFORMED ON STS-132/ULF4 

Research activities on the shuttle and station are 
integrated to maximize return during station 
assembly.  The shuttle serves as a platform for 
completing short-duration research, while 
providing supplies and sample return for 
ongoing research on station. 

background image

 

52 EXPERIMENTS 

MAY 

2010

 

Biology and Biotechnology 

Microbiology 鈥 2 (Micro-2)

 is a fundamental 

biology experiment that expands our 
understanding of the fundamental basis of how 
spaceflight affects the biological and molecular 
functions of the cell and the molecular 
mechanisms, by which cells and tissues 
respond to spaceflight conditions.  (NASA) 

National Lab Pathfinder 鈥 Cells 鈥 4 

 

(NLP-Cells-4)

 is a commercial payload serving 

as a pathfinder for the use of the space station 
as a National Laboratory after station assembly 
is complete.  It contains several different 
experiments that examine cellular replication 
and differentiation of cells.  This research is 
investigating the use of spaceflight to enhance 
or improve cellular growth processes utilized in 
ground-based research.  Principal investigator:  
Timothy Hammond, Durham Veterans Affairs 
Medical Center, Durham, N.C.  (NASA) 

National Lab Pathfinder 鈥 Vaccine 鈥 9 

 

(NLP-Vaccine-9)

 is a commercial payload 

serving as a pathfinder for the use of the space 
station as a National Laboratory.  It contains 
several different pathogenic (disease causing) 
organisms.  This research is investigating the 
use of spaceflight to develop potential vaccines 
for the prevention of different infections caused 
by these pathogens on Earth and in 
microgravity.  Principal investigator:  Timothy 
Hammond, Durham Veterans Affairs Medical 
Center, Durham, N.C. (NASA) 

Human Research 

Hypersole

 will determine how balance control 

is affected by changes in skin sensitivity 

 

pre- and post-spaceflight, specifically changes 
in skin sensitivity of the sole of the foot where 
receptors related to balance and maintaining 

balance while moving are located.  Principal 
investigator for Hypersole:  Dr. Leah R. Bent of 
the University of Guelph in Guelph, Ontario, 
Canada.  (CSA) 

Sleep-Wake Actigraphy and Light Exposure 
During Spaceflight 鈥 Short (Sleep-Short)

 will 

examine the effects of spaceflight on the sleep 
of the astronauts during space shuttle missions.  
Advancing state-of-the-art technology for 
monitoring, diagnosing and assessing 
treatment of sleep patterns is vital to treating 
insomnia on Earth and in space.  Principal 
investigator:  Charles A. Czeisler, Brigham and 
Women鈥檚 Hospital, Harvard Medical School, 
Boston, Mass.  (NASA) 

Technology 

Maui Analysis of Upper Atmospheric 
Injections (MAUI)

, a Department of Defense 

experiment, observes the space shuttle engine 
exhaust plumes from the Maui Space 
Surveillance Site in Hawaii when the space 
shuttle fires its engines at night or twilight.  A 
telescope and all-sky imagers will take images 
and data while the space shuttle flies over  
the Maui site.  The images are analyzed to 
better understand the interaction between 

 

the spacecraft plume and the upper atmosphere 
of Earth.  Principal investigator:  Rainer A. 
Dressler, Hanscom Air Force Base, Lexington, 
Mass.  (NASA) 

Ram Burn Observations (RAMBO)

 an 

experiment uses a satellite to observe space 
shuttle orbital maneuvering system engine 
burns.  Its purpose is to improve plume models, 
which predict the direction the plume, or 

 

rising column of exhaust, will move as the 
shuttle maneuvers in orbit.  Understanding the 
direction in which the spacecraft engine plume 
or exhaust flows could be significant to the safe 

background image

 

MAY 2010 

EXPERIMENTS 

53

 

arrival and departure of spacecraft on current 
and future exploration missions.  Principal 
investigator:  William L. Dimpfl, Aerospace 
Corporation, Los Angeles.  (NASA) 

Shuttle Exhaust Ion Turbulence Experiments 
(SEITE)

, a Department of Defense experiment, 

uses space-based sensors to detect the 
ionospheric turbulence inferred from the radar 
observations from previous Space Shuttle 
Orbital Maneuvering System (OMS) burn 
experiments using ground-based radar. 

 

Principal investigator:  Paul A. Bernhardt, 
Naval Research Laboratory, Washington D.C.  
(NASA) 

Shuttle Ionospheric Modification with Pulsed 
Localized Exhaust Experiments (SIMPLEX)

,  

a Department of Defense experiment, 
investigates plasma turbulence driven by 

 

rocket exhaust in the ionosphere using 

 

ground-based radars.  Principal investigator:  
Paul A. Bernhardt, Naval Research Lab, 
Washington D.C.  (NASA) 

EXPERIMENTS TO BE DELIVERED TO THE 
STATION ON STS-132/ULF4 

Biology and Biotechnology 

Gravity Related Genes in Arabidopsis 鈥 A 
(Genara-A)

 seeks to provide an understanding 

of microgravity-induced, altered-molecular 
activities that will help to find plant systems 
that compensate the negative impact on plant 
growth in space.  Principal investigator: 

 

Eugenie Carnero-Diaz, Ph.D., Universite Pierre 
et Marie Curie, Paris, France.  (ESA). 

Regulation by Gravity of Ferulate Formation 
in Cell Walls of Rice Seedlings (Ferulate)

 tests 

the hypothesis that microgravity modifies 
ferulic acid, thereby decreasing the mechanical 
strength of cell walls.  Principal investigator:  

Kazuyuki Wakabayashi, Osaka City University, 
Osaka, Japan.  (JAXA) 

Investigation of the Osteoclastic and 
Osteoblastic Responses to Microgravity Using 
Goldfish Scales (Fish Scales)

 will examine 

regenerating scales collected from anesthetized 
goldfish in microgravity using the Cell 

 

Biology Experiment Facility (CBEF); the results 
will be compared with ground controls. 

 

Principal investigator:  Nobuo Suzuki, 

 

Kanazawa University, Kanazawa, Ishikawa, 
Japan.  (JAXA) 

Hydrotropism and Auxin-Inducible Gene 
Expression in Roots Grown Under 
Microgravity Conditions (HydroTropi)

 

determines whether hydrotropic response can 
be used for the control of cucumber (

Cucumis 

sativus

) root growth orientation in microgravity.  

Principal investigator:  Hideyuki Takahashi, 
Ph.D., Tohoku University, Sendai, Japan. 

 

(JAXA) 

Microbial Dynamics in International Space 
Station (Microbe-I) 

experiment monitors 

microbes on board the space station that may 
affect the health of crew members.  Principal 
investigator:  Koichi Makimura, Teikyo 
University, Otsuka, Hachioji, Japan.  (JAXA) 

Educational Activities 

Cube Lab

 is a low-cost 1 kilogram platform for 

educational projects on the space station. 

 

(NASA) 

Japan Aerospace Exploration Agency 鈥 
Education Payload Observation (JAXA-EPO)

 

activities demonstrate educational events and 
artistic activities on board the space station to 
enlighten the general public about microgravity 
research and human spaceflight.  Principal 

background image

 

54 EXPERIMENTS 

MAY 

2010

 

investigator:  Naoko Matsuo, Japan Aerospace 
Exploration Agency, Tsukuba, Japan.  (JAXA) 

Human Research 

Bisphosphonates as a Countermeasure to 
Spaceflight Induced Bone Loss 
(Bisphosphonates)

 examines whether 

antiresorptive agents, which help reduce bone 
loss, in conjunction with the routine in-flight 
exercise program, will protect station crew 
members from the regional decreases in bone 
mineral density documented on previous space 
station missions.  Principal investigators: 

 

Adrian LeBlanc, Division of Space Life Sciences, 
Universities Space Research Association, 
Houston; Toshio Matsumoto, University of 
Tokushima, Kuramoto, Japan.  (NASA) 

Nutritional Status Assessment (Nutrition)

 is 

the most comprehensive in-flight study done by 
NASA to date of human physiologic changes 
during long-duration spaceflight.  This study 
includes measures of bone metabolism, 
oxidative damage, nutritional assessments, and 
hormonal changes.  This study will affect 

 

both the definition of nutritional requirements 
and development of food systems for 

 

future space exploration missions.  This 
experiment will also help to understand the 
impact of countermeasures (exercise and 
pharmaceuticals) on nutritional status and 
nutrient requirements for astronauts.  Principal 
investigator:  Scott M. Smith, Johnson Space 
Center, Houston.  (NASA) 

Dietary Intake Can Predict and Protect 
Against Changes in Bone Metabolism During 
Spaceflight and Recovery (Pro K)

 investigation 

is NASA鈥檚 first evaluation of a dietary 
countermeasure to lessen bone loss of 

astronauts.  Pro K proposes that a flight diet 
with a decreased ratio of animal protein to 
potassium will lead to decreased loss of bone 
mineral.  Pro K will have an impact on the 
definition of nutritional requirements and 
development of food systems for future 
exploration missions, and could yield a method 
of counteracting bone loss that would have 
virtually no risk of side effects.  Principal 
investigator:  Scott M. Smith, Johnson Space 
Center, Houston.  (NASA) 

National Aeronautics and Space 
Administration Biological Specimen 
Repository (Repository)

 is a storage bank that 

is used to maintain biological specimens over 
extended periods of time and under well-
controlled conditions.  Biological samples from 
the space station, including blood and urine, 
are collected, processed and archived during 
the preflight, in-flight and post-flight phases of 
space station missions.  This investigation has 
been developed to archive biosamples for 

 

use as a resource for future spaceflight-related 
research.  Principal investigator:  Kathleen A. 
McMonigal, Johnson Space Center, Houston.  
(NASA) 

Physical and Materials Science 

Selectable Optical Diagnostics Instrument 鈥 
Aggregation of Colloidal Suspensions 
(SODI-Colloid)

 studies the aggregation (mass) 

phenomena of colloids (tiny solid particles 
suspended in a liquid) in the microgravity 
environment on board the space station. 

 

Principal investigator:  Gerard Wegdam, Van 
der Waals-Zeeman Institute, University of 
Amsterdam, Amsterdam, The Netherlands. 

 

(ESA) 

background image

 

MAY 2010 

EXPERIMENTS 

55

 

Technology 

Japan Aerospace Exploration Agency 鈥 
Commercial Payload Program 
(JAXA-Commercial Payload Program)

 consists 

of commercial items sponsored by JAXA sent to 
the space station to experience the microgravity 
environment.  (JAXA) 

SAMPLES/EXPERIMENTS TO BE 
RETURNED ON STS-132/ULF4 

Biology and Biotechnology 

APEX-CSA2

 is one of a pair of investigations 

that use the Advanced Biological Research 
System (ABRS).  APEX-CSA2 will compare the 
genes and tissue of the white spruce (Picea 
glauca) grown in space with those grown on 
Earth to help researchers understand the 
influence of gravity on plant physiology, 
growth and wood formation.  APEX-CSA2 is 
led by Dr. Jean Beaulieu of Natural Resources 
Canada鈥檚 Canadian Wood Fibre Centre in 
Quebec City, Quebec, Canada with the close 
collaboration of the Canadian Space Agency 
(CSA) and NASA. 

Mycological Evaluation of Crew Exposure to 
Space Station Ambient Air (Myco) 

evaluates 

the risk of microorganisms via inhalation and 
adhesion to the skin to determine which fungi 
act as allergens on the space station.  Principal 
investigator:  Chiaki Mukai, Japan Aerospace 
Exploration Agency, Tsukuba, Japan.  (JAXA) 

Biomedical Analyses of Human Hair Exposed 
to a Long-term Spaceflight (Hair)

 examines  

the effect of long-duration spaceflight on 

 

gene expression and trace element metabolism 
in the human body.  Principal investigator:   
Chiaki Mukai, Japan Aerospace Exploration 
Agency, Tsukuba, Japan.  (JAXA) 

Molecular Mechanism of Microgravity-
Induced Skeletal Muscle Atrophy 鈥 
Physiological Relevance of Cbl-b Ubiquitin 
Ligase (MyoLab)

 studies a rat muscle gene 

modified cell line to determine the effects of 
microgravity.  Principal investigator:  Takeshi 
Nikawa, The University of Tokushima, 
Tokoshima, Japan.  (JAXA) 

Biological Effects of Space Radiation and 
Microgravity on Mammalian Cells 
(NeuroRad)

 studies the effects of space 

radiation on the human neuroblastoma (nerve 
cell containing a tumor) cell line in 
microgravity.  Principal investigator: 

 

 

Hideyuki Majima, Kagoshima University, 
Kagoshima, Japan.  (JAXA) 

Comprehensive Characterization of Micro-
organisms and Allergens in Spacecraft 
(SWAB)

 uses advanced molecular techniques to 

comprehensively evaluate microbes on board 
the space station, including pathogens 
(organisms that may cause disease).  It also  
will track changes in the microbial community 
as spacecraft visit the station and new station 
modules are added.  This study allows an 
assessment of the risk of microbes to the crew 
and the spacecraft.  Principal investigator: 

 

Duane L. Pierson,  Johnson Space Center, 
Houston.  (NASA) 

Waving and Coiling of Arabidopsis Roots at 
Different g-levels (WAICO)

 studies the 

interaction of circumnutation (the successive 
bowing or bending in different directions of  
the growing tip of the stems and roots) and 
gravitropism (a tendency to grow toward or 
away from gravity) in microgravity and 1-g  
of Arabidopsis thaliana.  Principal investigator:  
Guenther Scherer, Leibniz Universitat 
Hannover, Hannover, Germany.  (ESA) 

background image

 

56 EXPERIMENTS 

MAY 

2010

 

Human Research 

Mental Representation of Spatial Cues 

 

During Spaceflight (3D-Space)

 experiment 

investigates the effects of exposure to 
microgravity on the mental representation of 
spatial cues by astronauts during and after 
spaceflight.  The absence of the gravitational 
frame of reference during spaceflight could be 
responsible for disturbances in the mental 
representation of spatial cues, such as the 
perception of horizontal and vertical lines, the 
perception  of  an  object鈥檚  depth,  and  the 
perception of a target鈥檚 distance.  Principal 
investigator:  Gilles Clement, Centre National 
de la Recherche Scientifique, Toulouse, France.  
(ESA) 

Validation of Procedures for Monitoring 

 

Crew Member Immune Function (Integrated 
Immune)

 will assess the clinical risks resulting 

from the adverse effects of spaceflight on the 
human immune system and will validate a 
flight-compatible immune monitoring strategy.  
Researchers will collect and analyze blood, 
urine and saliva samples from crew members 
before, during and after spaceflight to monitor 
changes in the immune system.  Changes in the 
immune system will be monitored by collecting 
and analyzing blood and saliva samples from 
crew members during flight and blood, urine, 
and saliva samples before and after spaceflight.  
Principal investigator:  Clarence Sams, Johnson 
Space Center, Houston.  (NASA) 

IntraVenous Fluid GENeration for 
Exploration Missions (IVGEN)

 demonstrates 

the capability to purify water to the standards 
required for intravenous administration, then 
mix the water with salt crystals to produce 
normal saline.  This hardware is a prototype 
that will allow flight surgeons more options to 
treat ill or injured crew members during future 

long-duration exploration missions.  Hardware 
project scientist:  John McQuillen, Glenn 
Research Center, Cleveland.  (NASA) 

Changes in Nutrient Contents in Space Food 
After Long-term Spaceflight (Space Food 
Nutrient)

 assesses the changes in nutrient 

contents in Japanese space foods after exposure 
to the space station environment for long-
duration spaceflight.  Principal investigator:  
Akiko Matsumoto, Japan Aerospace 
Exploration Agency, Tsukuba, Japan.  (JAXA) 

Physical and Materials Science 

Materials Science Laboratory 鈥 Columnar-to-
Equiaxed Transition in Solidification 
Processing and Microstructure Formation in 
Casting of Technical Alloys Under Diffusive 
and Magnetically Controlled Convective 
Conditions (MSL-CETSOL and MICAST)

 are 

two investigations that support research into 
metallurgical solidification, semiconductor 
crystal growth (Bridgman and zone melting), 
and measurement of thermophysical properties 
of materials.  This is a cooperative investigation 
with the European Space Agency (ESA) 

 

and National Aeronautics and Space 
Administration (NASA) for accommodation 
and operation aboard the space station. 

 

Principal investigators:  Charles-Andre Gandin, 
Ecole de Mines de Paris, ARMINES-CEMEF; 
Sophia Antipolis, France (CETSOL); Lorenz 
Ratke, German Aerospace Center, Cologne, 
Germany (MICAST).  (NASA) 

Space Dynamically Responding Ultrasonic 
Matrix System (SpaceDRUMS)

 comprises 

 

a suite of hardware that enables containerless 
processing (samples of experimental materials 
can be processed without ever touching a 
container wall).  Using a collection of 

 

20 acoustic beam emitters, SpaceDRUMS can 

background image

 

MAY 2010 

EXPERIMENTS 

57

 

completely suspend a baseball-sized solid or 
liquid sample during combustion or heat-based 
synthesis.  Because the samples never contact 
the container walls, materials can be produced 
in microgravity with an unparalleled quality of 
shape and composition.  The ultimate goal of 
the SpaceDRUMS hardware is to assist with the 
development of advanced materials of a 
commercial quantity and quality, using the 
space-based experiments to guide development 
of manufacturing processes on Earth.  Principal 
investigator:  Jacques Guigne, Guigne Space 
Systems Inc., Paradise, Newfoundland, Canada.  
(NASA) 

Selectable Optical Diagnostics Instrument 鈥 
Diffusion and Soret Coefficient (SODI-DSC)

 

studies the diffusion in six different liquids 
over time in the absence of convection induced 
by the gravity field.  (ESA) 

Earth and Space Sciences 

Dose Distribution Inside ISS 鈥 Dosimetry  
for Biological Experiments in Space 

 

(DOSIS-DOBIES)

 provides documentation of 

the actual nature and distribution of the 
radiation field inside the space station and 
develops a standard method to measure the 
absorbed doses in biological samples on board 
the station.  Principal investigator:  Guenther 
Reitz, German Aerospace Center, Cologne, 
Germany.  (ESA) 

For more information on the science performed 
on the International Space Station, visit: 

http://www.nasa.gov/mission_pages/station/

science/

 

DETAILED SUPPLEMENTARY 
OBJECTIVES AND DETAILED TEST 
OBJECTIVES  

DSO-641 

Risk of Orthostatic Intolerance During 
Re-exposure to Gravity

.  One of the most 

important physiological changes that may 
negatively impact crew safety is post-flight 
orthostatic intolerance.  Astronauts who have 
orthostatic intolerance are unable to maintain a 
normal systolic blood pressure during head-up 
tilt have elevated heart rates and may 
experience presyncope or syncope with upright 
posture.  This problem affects about 30 percent 
of astronauts who fly short-duration missions 
(4鈥18 days) and 83 percent of astronauts who 
fly long-duration missions.  This condition 
creates a potential hazard for crew members 
during re-entry and after landing, especially for 
emergency egress contingencies. 

Two countermeasures are currently employed 
to ameliorate post-flight orthostatic intolerance:  
fluid loading and an antigravity suit. 

 

Unfortunately, neither of these are completely 
effective for all phases of landing and egress; 
thus, continued countermeasure development 
is important.  Preliminary evidence has shown 
that commercial compression hose that include 
abdominal compression can significantly 
improve orthostatic tolerance.  These data are 
similar to clinical studies using inflatable 
compression garments. 

Custom-fitted, commercial compression 
garments will be evaluated as countermeasures 
to immediate and longer-term post-flight 
orthostatic intolerance.  These garments will 
provide a continuous, graded compression 
from the foot to the hip, and a static 

background image

 

58 EXPERIMENTS 

MAY 

2010

 

compression over the lower abdomen.  These 
garments should provide superior fit and 
comfort as well as being easier to don.  Tilt 
testing will be used as an orthostatic challenge 
before and after spaceflight. 

DTO 805 Crosswind Landing Perfor-
mance (If opportunity) 

The purpose of this DTO is to demonstrate the 
capability to perform a manually controlled 
landing in the presence of a crosswind.  The 
testing is done in two steps. 

1.  Pre-launch: Ensure planning will allow 

selection of a runway with Microwave 
Scanning Beam Landing System support, 
which is a set of dual transmitters located 
beside the runway providing precision 
navigation vertically, horizontally and 
longitudinally with respect to the runway.  
This precision navigation subsystem helps 
provide a higher probability of a more 
precise landing with a crosswind of 10 to 
15 knots as late in the flight as possible. 

2.  Entry:  This test requires that the crew 

perform a manually controlled landing in 
the presence of a 90-degree crosswind 
component of 10 to 15 knots steady state. 

During a crosswind landing, the drag chute will 
be deployed after nose gear touchdown when 
the vehicle is stable and tracking the runway 
centerline. 

DTO 900 Solid Rocket Booster Thrust 
Oscillation 

The Space Shuttle Program is continuing to 
gather data on pressure oscillation, or periodic 
variation, a phenomenon that regularly occurs 
within solid rocket motors through the 
remaining shuttle flights.    The  data  obtained 

from five flights designated to acquire pressure 
oscillation data have provided a better 
understanding of solid rocket motor dynamics.  
The collection of these additional data points 
will provide greater statistical significance of 
the data for use in dynamic analyses of the four 
segment motors.  These analyses and computer 
models will be used for future propulsion 
system designs. 

The pressure oscillation that is observed in 
solid rocket motors is similar to the hum made 
when blowing into a bottle.  At 1.5 psi, or 
pounds per square inch, a pressure wave will 
move up and down the motor from the front to 
the rear, generating acoustic noise as well as 
physical loads in the structure.  These data are 
necessary to help propulsion engineers confirm 
modeling techniques of pressure oscillations 
and the loads they create.  As NASA engineers 
develop alternate propulsion designs for use in 
NASA, they will take advantage of current 
designs from which they can learn and 
measure. 

In an effort to obtain data to correlate pressure 
oscillation with the loads it can generate, the 
Space Shuttle Program is continuing to use the 
Enhanced Data Acquisition System to gather 
detailed information. 

The Enhanced Data Acquisition System

, or 

EDAS, is a data acquisition system that will 
record pressure data from one of the Reusable 
Solid Rocket Booster Operational Pressure 
Transducers, or OPT, and from accelerometers 
and strain gages placed on the forward skirt 
walls.  These data will provide engineers with 
time synchronized data that will allow them to 
determine the accelerations and loads that are 
transferred through the structure due to the 
pressure oscillation forces. 

background image

 

MAY 2010 

HISTORY OF SPACE SHUTTLE ATLANTIS 

59

 

HISTORY OF SPACE SHUTTLE ATLANTIS 

 
Space shuttle Atlantis鈥 spaceflight career began 
on Oct. 3, 1985, with launch on its maiden 
voyage to begin STS-51J 鈥 a dedicated 
Department of Defense mission.  It was the 
fourth orbital vehicle manufactured following 
Columbia, Challenger and Discovery. 

Construction of Atlantis, referenced internally 
by its airframe number OV-104, began in March 
1980 at the Palmdale, Calif., manufacturing 
plant.  It was transported to Kennedy Space 
Center in April 1985 ahead of its maiden 
voyage. 

BACKGROUND 

Atlantis was named after the primary research 
vessel for the Woods Hole Oceanographic 
Institute in Massachusetts from 1930 to 1966.  
The two-masted, 460-ton ketch was the first 
U.S. vessel to be used for oceanographic 
research.  Such research was considered to be 
one of the last bastions of the sailing vessel as 
steam-and-diesel-powered vessels dominated 
the waterways. 

The steel-hulled ocean research ship was 
approximately 140 feet long and 29 feet wide to 
add to her stability.  She featured a crew of 17 
and room for five scientists.  The research 
personnel worked in two onboard laboratories, 
examining water samples and marine life 
brought to the surface by two large winches 
from thousands of feet below the surface.  The 
water samples taken at different depths varied 
in temperature, providing clues to the flow of 
ocean currents.  The crew also used the first 
electronic sounding devices to map the ocean 
floor. 

Space shuttle Atlantis has carried on the spirit 
of the sailing vessel with voyages of its own, 
including missions to the Russian Space Station 
Mir, deployment of the Galileo planetary 
spacecraft in 1989 and the deployment of 

 

the Arthur Holley Compton Gamma Ray 
Observatory in 1991. 

UPGRADES AND FEATURES 

Atlantis benefited from lessons learned in 

 

the construction and testing of Enterprise, 
Columbia, Challenger and Discovery.  At 
rollout, its weight was 6,974 pounds less than 
Columbia. 

The experience gained during its assembly also 
enabled Atlantis to be completed with a 

 

49 percent reduction in man hours (compared 
to Columbia).  Much of this time savings was 
attributed to the greater use of thermal 
protection blankets on the upper orbiter body 
instead of tiles. 

During the construction of Discovery and 
Atlantis, NASA opted to have the various 
contractors manufacture a set of 鈥渟tructural 
spares鈥 to facilitate the repair of an orbiter 
should  one  be  damaged.    This  contract  was 
valued at $389 million and consisted of a spare 
aft-fuselage, mid-fuselage, forward fuselage 
halves, vertical tail and rudder, wings, elevons 
and a body flap. 

These spares were used later in the assembly of 
Endeavour. 

background image

 

60 

HISTORY OF SPACE SHUTTLE ATLANTIS 

MAY 2010

 

After the loss of Challenger, Atlantis was 
shipped to California for upgrades and 
modifications, including 

 

A drag chute 

 

New plumbing to allow for extended 
duration missions 

 

More than 800 new heat protection tiles and 
blankets 

 

New insulation for the main landing gear 
doors 

 

Structural modifications to its airframe 

Altogether, 165 modifications were made to 
Atlantis over the 20 months it spent in the 
Palmdale, Calif., manufacturing facility. 

CONSTRUCTION MILESTONES 

Jan. 29, 1979 
Contract Award 

March 3, 1980 
Start structural assembly of Crew Module 

Nov. 23, 1981 
Start structural assembly of aft-fuselage 

June 13, 1983 
Wings arrive at Palmdale from Grumman 

Dec. 2, 1983 
Start of Final Assembly 

April 10, 1984 
Complete final assembly 

March 6, 1985 
Rollout from Palmdale 

April 3, 1985 
Overland transport from Palmdale to Edwards 
Air Force Base, Calif. 

April 12-13, 1985 
Ferry Flight from Edwards to Kennedy Space 
Center (overnight 4/12 at Ellington) 

Sept. 5, 1985 
Flight Readiness Firing 

Oct. 3, 1985 
First Flight (STS-51J) 

May 14, 2010 
Final Scheduled Flight (STS-132) 

background image

 

MAY 2010 

HISTORY OF SPACE SHUTTLE ATLANTIS 

61

 

FLIGHT MILESTONES 

1.  STS-51J (Oct. 3-7, 1985) 

1,682,641 miles 

2.  STS-61B (Nov. 26-Dec. 3, 1985) 

2,466,956 miles 

   

3.  STS-27 (Dec. 2-6, 1988) 

1,812,075 miles 

   

4.  STS-30 (May 4-8, 1989) 

1,477,500 miles 

5.  STS-34 (Oct. 18-23, 1989) 

1,800,000 miles 

   

6.  STS-36 (Feb. 28-March 4, 1990) 

1,837,962 miles 

7.  STS-38 (Nov. 15-20, 1990) 

2,045,056 miles 

   

8.  STS-37 (April 5-11, 1991) 

2,487,075 miles 

9.  STS-43 (Aug. 2-11, 1991) 

3,700,400 miles 

10.  STS-44 (Nov. 24-Dec. 1, 1991) 

2,890,067 miles 

   

11.  STS-45 (March, 24-April 2, 1992) 

3,274,946 miles 

12.  STS-46 (July 31-Aug. 8, 1992) 

3,321,007 miles 

   

13.  STS-66 (Nov. 3-14, 1994) 

4,554,791 miles 

   

14.  STS-71 (June 27-July 7, 1995) 

4,100,000 miles 

15.  STS-74 (Nov. 12-20, 1995) 

3,400,000 miles 

   

16.  STS-76 (March 22-31, 1996) 

3,800,000 miles 

17.  STS-79 (Sept. 16-26, 1996) 

3,900,000 miles 

   

18.  STS-81 (Jan. 12-22, 1997) 

3,900,000 miles 

19.  STS-84 (May 15-24, 1997) 

3,600,000 miles 

20.  STS-86 (Sept. 25-Oct. 6, 1997) 

4,225,000 miles 

   

21.  STS-101 (May 19-29, 2000) 

5,076,281 miles 

22.  STS-106 (Sept. 8-20, 2000) 

4,919,243 miles 

   

23.  STS-98 (Feb. 7-20, 2001) 

5,369,576 miles 

24.  STS-104 (July 12-24, 2001) 

5,309,429 miles 

   

25.  STS-110 (April 8-19, 2002) 

4,525,299 miles 

26.  STS-112 (Oct. 7-18, 2002) 

4,513,015 miles 

   

27.  STS-115 (Sept. 9-21, 2006) 

4,910,288 miles 

   

28.  STS-117 (June 8-22, 2007) 

5,809,363 miles 

   

29.  STS-122 (Feb. 7-20,2008) 

5,296,842 miles 

   

30.  STS-125 (May 11-24, 2009) 

5,276,000 miles 

31.  STS-129 (Nov. 16-27, 2009) 

4,490,138 miles 

   

32.  STS-132 (May 14-26, 2010) 

Approx. 4.4 million 

   

  Total Atlantis Miles 

115,770,929 (through STS-129) 

 

background image

 

62 

EDUCATION ACTIVITIES 

MAY 2010

 

ATLANTIS BY THE NUMBERS 

Total Atlantis miles traveled 

115,770,929 (through STS-129) 

Total number of days in orbit 

282 

Total number of orbits 

4,462 

Total number of flights 

31 

Total number of crew members 

185 

Mir dockings 

International Space Station dockings 

10 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

63

 

SHUTTLE REFERENCE DATA 

 

SHUTTLE ABORT MODES 

Redundant Sequence Launch Sequencer 
(RSLS) Aborts 

These occur when the on-board shuttle 
computers detect a problem and command a 
halt in the launch sequence after taking over 
from the ground launch sequencer and before 
solid rocket booster ignition. 

Ascent Aborts 

Selection of an ascent abort mode may become 
necessary if there is a failure that affects vehicle 
performance, such as the failure of a space 
shuttle main engine or an orbital maneuvering 
system engine.  Other failures requiring early 
termination of a flight, such as a cabin leak, 
might also require the selection of an abort 
mode.  There are two basic types of ascent abort 
modes for space shuttle missions:  intact aborts 
and contingency aborts.  Intact aborts are 
designed to provide a safe return of the orbiter 
to a planned landing site.  Contingency aborts 
are designed to permit flight crew survival 
following more severe failures when an intact 
abort is not possible.  A contingency abort 
would generally result in a ditch operation. 

Intact Aborts 

There are four types of intact aborts:  abort to 
orbit (ATO), abort once around (AOA), 
transoceanic abort landing (TAL) and return to 
launch site (RTLS). 

Return to Launch Site 

The RTLS abort mode is designed to allow the 
return of the orbiter, crew, and payload to the 

launch site, KSC, approximately 25 minutes 
after liftoff. 

The RTLS profile is designed to accommodate 
the loss of thrust from one space shuttle main 
engine between liftoff and approximately 
four 

minutes 20 seconds, after which not 

enough main propulsion system propellant 
remains to return to the launch site.  An RTLS 
can be considered to consist of three stages 鈥 a 
powered stage, during which the space shuttle 
main engines are still thrusting; an external 
tank separation phase; and the glide phase, 
during which the orbiter glides to a landing at 
the KSC.  The powered RTLS phase begins with 
the crew selection of the RTLS abort, after solid 
rocket booster separation.  The crew selects the 
abort mode by positioning the abort rotary 
switch to RTLS and depressing the abort push 
button.  The time at which the RTLS is selected 
depends on the reason for the abort.  For 
example, a three-engine RTLS is selected at the 
last moment, about 3 minutes, 34 seconds into 
the mission; whereas an RTLS chosen due to an 
engine out at liftoff is selected at the earliest 
time, about 2 minutes, 20 seconds into the 
mission (after solid rocket booster separation). 

After RTLS is selected, the vehicle continues 
downrange to dissipate excess main propulsion 
system propellant.  The goal is to leave only 
enough main propulsion system propellant to 
be able to turn the vehicle around, fly back 
toward the KSC and achieve the proper main 
engine cutoff conditions so the vehicle can glide 
to the KSC after external tank separation. 

 

During the downrange phase, a pitch-around 
maneuver is initiated (the time depends in part 
on the time of a space shuttle main engine 

background image

 

64 

SHUTTLE REFERENCE DATA 

MAY 2010

 

failure) to orient the orbiter/external tank 
configuration to a heads-up attitude, pointing 
toward the launch site.  At this time, the vehicle 
is still moving away from the launch site, but 
the space shuttle main engines are now 
thrusting to null the downrange velocity.  In 
addition, excess orbital maneuvering system 
and reaction control system propellants are 
dumped by continuous orbital maneuvering 
system and reaction control system engine 
thrustings to improve the orbiter weight and 
center of gravity for the glide phase and 
landing. 

The vehicle will reach the desired main engine 
cutoff point with less than 2 percent excess 
propellant remaining in the external tank.  At 
main engine cutoff minus 20 seconds, a pitch 
down maneuver (called powered pitch-down) 
takes the mated vehicle to the required external 
tank separation attitude and pitch rate.  After 
main engine cutoff has been commanded, the 
external tank separation sequence begins, 
including a reaction control system maneuver 
that ensures that the orbiter does not recontact 
the external tank and that the orbiter has 
achieved the necessary pitch attitude to begin 
the glide phase of the RTLS. 

After the reaction control system maneuver has 
been completed, the glide phase of the RTLS 
begins.  From then on, the RTLS is handled 
similarly to a normal entry. 

Transoceanic Abort Landing 

The TAL abort mode was developed to 
improve the options available when a space 
shuttle main engine fails after the last RTLS 
opportunity but before the first time that an 
AOA can be accomplished with only two space 
shuttle main engines or when a major orbiter 
system failure, for example, a large cabin 

pressure leak or cooling system failure, occurs 
after the last RTLS opportunity, making it 
imperative to land as quickly as possible. 

In a TAL abort, the vehicle continues on a 
ballistic trajectory across the Atlantic Ocean to 
land at a predetermined runway.  Landing 
occurs about 45 minutes after launch.  The 
landing site is selected near the normal ascent 
ground track of the orbiter to make the most 
efficient use of space shuttle main engine 
propellant.  The landing site also must have the 
necessary runway length, weather conditions 
and U.S. State Department approval.  The three 
landing sites that have been identified for a 
launch are Zaragoza, Spain; Moron, Spain; and 
Istres, France. 

To select the TAL abort mode, the crew must 
place the abort rotary switch in the TAL/AOA 
position and depress the abort push button 
before main engine cutoff (depressing it after 
main engine cutoff selects the AOA abort 
mode).  The TAL abort mode begins sending 
commands to steer the vehicle toward the plane 
of the landing site.  It also rolls the vehicle 
heads up before main engine cutoff and sends 
commands to begin an orbital maneuvering 
system propellant dump (by burning the 
propellants through the orbital maneuvering 
system engines and the reaction control system 
engines).  This dump is necessary to increase 
vehicle performance (by decreasing weight) to 
place the center of gravity in the proper place 
for vehicle control and to decrease the vehicle鈥檚 
landing weight.  TAL is handled like a normal 
entry. 

Abort to Orbit 

An ATO is an abort mode used to boost the 
orbiter to a safe orbital altitude when 
performance has been lost and it is impossible 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

65

 

to reach the planned orbital altitude.  If a space 
shuttle main engine fails in a region that results 
in a main engine cutoff under speed, the MCC 
will determine that an abort mode is necessary 
and will inform the crew.  The orbital 
maneuvering system engines would be used to 
place the orbiter in a circular orbit. 

Abort Once Around 

The AOA abort mode is used in cases in which 
vehicle performance has been lost to such an 
extent that either it is impossible to achieve a 
viable orbit or not enough orbital maneuvering 
system propellant is available to accomplish the 
orbital maneuvering system thrusting 
maneuver to place the orbiter on orbit and the 
deorbit thrusting maneuver.  In addition, an 
AOA is used in cases in which a major systems 
problem (cabin leak, loss of cooling) makes it 
necessary to land quickly.  In the AOA abort 
mode, one orbital maneuvering system 
thrusting sequence is made to adjust the 
post-main engine cutoff orbit so a second 
orbital maneuvering system thrusting sequence 
will result in the vehicle deorbiting and landing 
at the AOA landing site (White Sands, N.M.; 
Edwards Air Force Base, Calif.; or the Kennedy 
Space Center, Fla).  Thus, an AOA results in the 
orbiter circling the Earth once and landing 
about 90 minutes after liftoff. 

After the deorbit thrusting sequence has been 
executed, the flight crew flies to a landing at the 
planned site much as it would for a nominal 
entry. 

Contingency Aborts 

Contingency aborts are caused by loss of more 
than one main engine or failures in other 
systems.  Loss of one main engine while 
another is stuck at a low thrust setting also may 

necessitate a contingency abort.  Such an abort 
would maintain orbiter integrity for in-flight 
crew escape if a landing cannot be achieved at a 
suitable landing field. 

Contingency aborts due to system failures other 
than those involving the main engines would 
normally result in an intact recovery of vehicle 
and crew.  Loss of more than one main engine 
may, depending on engine failure times, result 
in a safe runway landing.  However, in most 
three-engine-out cases during ascent, the 
orbiter would have to be ditched.  The inflight 
crew escape system would be used before 
ditching the orbiter. 

Abort Decisions 

There is a definite order of preference for the 
various abort modes.  The type of failure and the 
time of the failure determine which type of abort 
is selected.  In cases where performance loss is 
the only factor, the preferred modes are ATO, 
AOA, TAL and RTLS, in that order.  The mode 
chosen is the highest one that can be completed 
with the remaining vehicle performance. 

In the case of some support system failures, 
such as cabin leaks or vehicle cooling problems, 
the preferred mode might be the one that will 
end the mission most quickly.  In these cases, 
TAL or RTLS might be preferable to AOA or 
ATO.  A contingency abort is never chosen if 
another abort option exists. 

Mission Control Houston is prime for calling 
these aborts because it has a more precise 
knowledge of the orbiter鈥檚 position than the 
crew can obtain from on-board systems.  Before 
main engine cutoff, Mission Control makes 
periodic calls to the crew to identify which 
abort mode is (or is not) available.  If ground 
communications are lost, the flight crew has 

background image

 

66 

SHUTTLE REFERENCE DATA 

MAY 2010

 

onboard methods, such as cue cards, dedicated 
displays and display information, to determine 
the abort region.  Which abort mode is selected 
depends on the cause and timing of the failure 
causing the abort and which mode is safest or 
improves mission success.  If the problem is a 
space shuttle main engine failure, the flight 
crew and Mission Control Center select the best 
option available at the time a main engine fails. 

If the problem is a system failure that 
jeopardizes the vehicle, the fastest abort mode 
that results in the earliest vehicle landing is 
chosen.  RTLS and TAL are the quickest options 
(35 minutes), whereas an AOA requires about 
90 minutes.  Which of these is selected depends 
on the time of the failure with three good space 
shuttle main engines. 

The flight crew selects the abort mode by 
positioning an abort mode switch and 
depressing an abort push button. 

SHUTTLE ABORT HISTORY 

RSLS Abort History 

(STS-41 D) June 26, 1984 

The countdown for the second launch attempt 
for Discovery鈥檚 maiden flight ended at T-4 
seconds when the orbiter鈥檚 computers detected 
a sluggish valve in main engine No. 3.  The 
main engine was replaced and Discovery was 
finally launched on Aug. 30, 1984. 

(STS-51 F) July 12, 1985 

The countdown for Challenger鈥檚 launch was 
halted at T-3 seconds when onboard computers 
detected a problem with a coolant valve on 
main engine No. 2.  The valve was replaced and 
Challenger was launched on July 29, 1985. 

(STS-55) March 22, 1993 

The countdown for Columbia鈥檚 launch was 
halted by onboard computers at T-3 seconds 
following a problem with purge pressure 
readings in the oxidizer preburner on main 
engine No. 2.  Columbia鈥檚 three main engines 
were replaced on the launch pad, and the flight 
was rescheduled behind Discovery鈥檚 launch  
on  STS-56.    Columbia  finally  launched  on 
April 26, 1993. 

(STS-51) Aug. 12, 1993 

The countdown for Discovery鈥檚 third launch 
attempt ended at the T-3 second mark when 
onboard computers detected the failure of one 
of four sensors in main engine No. 2 which 
monitor the flow of hydrogen fuel to the 
engine.  All of Discovery鈥檚 main engines were 
ordered replaced on the launch pad, delaying 
the shuttle鈥檚 fourth launch attempt until 

 

Sept. 12, 1993. 

(STS-68) Aug. 18, 1994 

The countdown for Endeavour鈥檚 first launch 
attempt ended 1.9 seconds before liftoff when 
onboard computers detected higher than 
acceptable readings in one channel of a sensor 
monitoring the discharge temperature of the 
high pressure oxidizer turbopump in main 
engine No. 3.  A test firing of the engine at the 
Stennis Space Center in Mississippi on 
September 2nd confirmed that a slight drift in a 
fuel flow meter in the engine caused a slight 
increase in the turbopump鈥檚 temperature.  The 
test firing also confirmed a slightly slower start 
for main engine No. 3 during the pad abort, 
which could have contributed to the higher 
temperatures.  After Endeavour was brought 
back to the Vehicle Assembly Building to be 
outfitted with three replacement engines, 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

67

 

NASA managers set Oct. 2 as the date for 
Endeavour鈥檚 second launch attempt. 

Abort to Orbit History 

(STS-51 F) July 29, 1985 

After an RSLS abort on July 12, 1985, 
Challenger was launched on July 29, 1985.   
Five minutes and 45 seconds after launch, a 
sensor problem resulted in the shutdown of 
center engine No. 1, resulting in a safe 鈥渁bort to 
orbit鈥 and successful completion of the mission. 

SPACE SHUTTLE MAIN ENGINES 

Developed in the 1970s by NASA鈥檚 Marshall 
Space Flight Center, in Huntsville, Ala., the 
space shuttle main engine is the most advanced 
liquid-fueled rocket engine ever built.  Every 
space shuttle main engine is tested and proven 
flight worthy at NASA鈥檚 Stennis Space Center 
in south Mississippi, before installation on  
an orbiter.  Its main features include variable 
thrust, high performance reusability, high 
redundancy and a fully integrated engine 
controller. 

The shuttle鈥檚 three main engines are mounted 
on the orbiter aft fuselage in a triangular 
pattern.  Spaced so that they are movable 
during launch, the engines are used, in 
conjunction with the solid rocket boosters, to 
steer the shuttle vehicle. 

Each of these powerful main engines is 14 feet 
long, weighs about 7,000 pounds and is 7.5 feet 
in diameter at the end of its nozzle. 

The engines operate for about 8.5 minutes 
during liftoff and ascent, burning more than 
500,000 gallons of super-cold liquid hydrogen 
and liquid oxygen propellants stored in the 
external tank attached to the underside of the 

shuttle.  The engines shut down just before the 
shuttle, traveling at about 17,000 miles per 
hour, reaches orbit. 

The main engine operates at greater 
temperature extremes than any mechanical 
system in common use today.  The fuel, 
liquefied hydrogen at -423 degrees Fahrenheit, 
is the second coldest liquid on Earth.  When it 
and the liquid oxygen are combusted, the 
temperature in the main combustion chamber is 
6,000 degrees Fahrenheit, hotter than the 
boiling point of iron. 

The main engines use a staged combustion 
cycle so that all propellants entering the engines 
are used to produce thrust, or power, more 
efficiently than any previous rocket engine.  In 
a staged combustion cycle, propellants are first 
burned partially at high pressure and relatively 
low temperature, and then burned completely 
at high temperature and pressure in the main 
combustion chamber.  The rapid mixing of the 
propellants under these conditions is so 
complete that 99 percent of the fuel is burned. 

At normal operating level, each engine 
generates 490,847 pounds of thrust, measured 
in a vacuum.  Full power is 512,900 pounds of 
thrust; minimum power is 316,100 pounds of 
thrust. 

The engine can be throttled by varying the 
output of the preburners, thus varying the 
speed of the high-pressure turbopumps and, 
therefore, the flow of the propellant. 

At about 26 seconds into ascent, the main 
engines are throttled down to 316,000 pounds 
of thrust to keep the dynamic pressure on the 
vehicle below a specified level, about 
580 pounds per square foot, known as max q.  
Then, the engines are throttled back up to 

background image

 

68 

SHUTTLE REFERENCE DATA 

MAY 2010

 

normal operating level at about 60 seconds.  
This reduces stress on the vehicle.  The main 
engines are throttled down again at about 
seven minutes, 40 seconds into the mission to 
maintain three g鈥檚, three times the Earth鈥檚 
gravitational pull, reducing stress on the crew 
and the vehicle.  This acceleration level is about 
one-third the acceleration experienced on 
previous crewed space vehicles. 

About 10 seconds before main engine cutoff, or 
MECO, the cutoff sequence begins.  About 
three seconds later the main engines are 
commanded to begin throttling at 10 percent 
thrust per second until they achieve 65 percent 
thrust.  This is held for about 6.7 seconds, and 
the engines are shut down. 

The engine performance has the highest thrust 
for its weight of any engine yet developed.  In 
fact, one space shuttle main engine generates 
sufficient thrust to maintain the flight of two 
and one-half Boeing 747 airplanes. 

The space shuttle main engine also is the first 
rocket engine to use a built-in electronic digital 
controller, or computer.  The controller accepts 
commands from the orbiter for engine start, 
change in throttle, shutdown and monitoring of 
engine operation. 

NASA continues to increase the reliability and 
safety of shuttle flights through a series of 
enhancements to the space shuttle main 
engines.  The engines were modified in 1988, 
1995, 1998, 2001 and 2007.  Modifications 
include new high-pressure fuel and oxidizer 
turbopumps that reduce maintenance and 
operating costs of the engine, a two-duct 
powerhead that reduces pressure and 
turbulence in the engine, and a single-coil heat 
exchanger that lowers the number of post flight 
inspections required.  Another modification 

incorporates a large-throat main combustion 
chamber that improves the engine鈥檚 reliability 
by reducing pressure and temperature in the 
chamber. 

The most recent engine enhancement is the 
Advanced Health Management System, or 
AHMS, which made its first flight in 2007.  
AHMS is a controller upgrade that provides 
new monitoring and insight into the health of 
the two most complex components of the space 
shuttle main engine 鈥 the high pressure fuel 
turbopump and the high pressure oxidizer 
turbopump.  New advanced digital signal 
processors monitor engine vibration and have 
the ability to shut down an engine if vibration 
exceeds safe limits.  AHMS was developed by 
engineers at Marshall. 

After the orbiter lands, the engines are removed 
and returned to a processing facility at NASA鈥檚 
Kennedy Space Center, Fla., where they are 
rechecked and readied for the next flight.  Some 
components are returned to the main engine鈥檚 
prime contractor, Pratt & Whitney Rocketdyne, 
West Palm Beach, Fla., for regular maintenance.  
The main engines are designed to operate for 
7.5 accumulated hours. 

SPACE SHUTTLE SOLID ROCKET 
BOOSTERS (SRB) 

The two solid rocket boosters required for a 
space shuttle launch and first two minutes  
of powered flight boast the largest 
solid-propellant motors ever flown.  They are 
the first large rockets designed for reuse and 
are the only solid rocket motors rated for 
human flight.  The SRBs have the capacity to 
carry the entire weight of the external fuel tank, 
or ET, and orbiter, and to transmit the weight 
load through their structure to the mobile 
launcher platform, or MLP.

 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

69

 

The SRBs provide 

71.4 percent 

of the thrust 

required to lift the space shuttle off the launch 
pad 

and during first-stage ascent 

to an altitude 

of about 150,000 feet, or 28 miles.  

At launch, 

each booster has a sea level thrust of 
approximately 3.3 million pounds and is 
ignited after the ignition and verification of the 
three space shuttle main engines, or SSMEs. 

SRB apogee occurs at an altitude of about 
230,000 feet, or 43 miles, 75 seconds after 
separation from the main vehicle.  At booster 
separation, the space shuttle orbiter has reached 
an altitude of 24 miles and is traveling at a 
speed in excess of 3,000 miles per hour. 

The primary elements of each booster are nose 
cap, housing the pilot and drogue parachute; 
frustum, housing the three main parachutes in 
a cluster; forward skirt, housing the booster 
flight avionics, altitude sensing, recovery 
avionics, parachute cameras and range safety 
destruct system; four motor segments, 
containing the solid propellant; motor nozzle; 
and aft skirt, housing the nozzle and thrust 
vector control systems required for guidance.  
Each SRB possesses

 its own redundant 

auxiliary power units and hydraulic pumps. 

SRB impact occurs in the ocean approximately 
140 miles downrange.  SRB retrieval is 
provided after each flight by specifically 
designed and built ships.  The frustums, 

 

drogue and main parachutes are loaded onto 
the ships along with the boosters and towed 
back to NASA鈥檚 Kennedy Space Center, where 
they are disassembled and refurbished for 
reuse.  Before retirement, each booster can be 
used as many as 20 times. 

Each booster is just over 

149 feet long and  

12.17 feet in diameter.  Both boosters have a 
combined weight of 1,303,314 pounds at lift-off.  

They are

 attached to the ET at the SRB aft attach 

ring by an upper and lower attach strut and a 
diagonal attach strut.  The forward end of each 
SRB is affixed to the ET by one attach bolt and 
ET ball fitting on the forward skirt.  While 
positioned on the launch pad, the space shuttle 
is attached to the MLP by four bolts and 
explosive nuts equally spaced around each SRB.  
After ignition of the solid rocket motors, the 
nuts are severed by small explosives that allow 
the space shuttle vehicle to perform lift off. 

United Space Alliance (USA) 

USA, at Kennedy facilities, is responsible for all 
SRB operations except the motor and nozzle 
portions.  In conjunction with maintaining  
sole responsibility for manufacturing and 
processing of the non-motor hardware and 
vehicle integration, USA provides the service  
of retrieval, post flight inspection and 

 

analysis, disassembly and refurbishment of the 
hardware.  USA also exclusively retains 
comprehensive responsibility for the orbiter. 

The

 

reusable solid rocket motor segments are 

shipped from ATK Launch Systems in Utah to 
Kennedy, where they are mated by USA 
personnel to the other structural components 鈥 
the forward assembly, aft skirt, frustum and 
nose cap 鈥 in the Vehicle Assembly Building.  
Work involves the complete disassembly and 
refurbishment of the major SRB structures 鈥 the 
aft skirts, frustums, forward skirts and all 
ancillary hardware 鈥 required to complete an 
SRB stack and mate to the ET.  Work then 
proceeds to ET/SRB mate, mate with the orbiter 
and finally, space shuttle close out operations.  
After hardware restoration concerning flight 
configuration is complete, automated checkout 
and hot fire are performed early in hardware 
flow to ensure that the refurbished components 
satisfy all flight performance requirements. 

background image

 

70 

SHUTTLE REFERENCE DATA 

MAY 2010

 

ATK Launch Systems (ATK) 

ATK Launch Systems of Brigham City, Utah, 
manufactures space shuttle reusable solid 
rocket motors, or RSRMs, at their Utah facility.  
Each RSRM 鈥 just over 126 feet long and 12 feet 
in diameter 鈥 consists of four rocket motor 
segments and an aft exit cone assembly is.  
From ignition to end of burn, each RSRM 
generates an average thrust of 2.6 million 
pounds and burns for approximately 

 

123 seconds.  Of the motor鈥檚 total weight of  
1.25 million pounds, propellant accounts for  
1.1 million pounds.  The four motor segments 
are matched by loading each from the same 
batches of propellant ingredients to minimize 
any thrust imbalance.  The segmented casing 
design assures maximum flexibility in 
fabrication and ease of transportation and 
handling.  Each segment is shipped to KSC on a 
heavy-duty rail car with a specialty built cover. 

SRB Hardware Design Summary 

Hold-Down Posts 

Each SRB has four hold-down posts that fit into 
corresponding support posts on the MLP. 

 

Hold-down bolts secure the SRB and MLP posts 
together.  Each bolt has a nut at each end, but 
the top nut is frangible, or breakable.  The top 
nut contains two NASA Standard detonators, 
or NSDs, that, when ignited at solid rocket 
motor ignition command, split the upper nut in 
half. 

Splitting the upper nuts allow the hold-down 
bolts to be released and travel downward 
because of NSD gas pressure, gravity and the 
release of tension in the bolt, which is 
pretensioned before launch.  The bolt is 
stopped by the stud deceleration stand which 
contains sand to absorb the shock of the bolt 

dropping down several feet.  The SRB bolt is  
28 inches long, 3.5 inches in diameter and 
weighs approximately 90 pounds.  The 
frangible nut is captured in a blast container on 
the aft skirt specifically designed to absorb the 
impact and prevent pieces of the nut from 
liberating and becoming debris that could 
damage the space shuttle. 

Integrated Electronic Assembly (IEA) 

The aft IEA, mounted in the ET/SRB attach ring, 
provides the electrical interface between the 
SRB systems and the obiter.  The aft IEA 
receives data, commands, and electrical power 
from the orbiter and distributes these inputs 
throughout each SRB.  Components located in 
the forward assemblies of each SRB are 
powered by the aft IEA through the forward 
IEA, except for those utilizing the recovery and 
range safety batteries located in the forward 
assemblies.  The forward IEA communicates 
with and receives power from the orbiter 
through the aft IEA, but has no direct electrical 
connection to the orbiter. 

Electrical Power Distribution 

Electrical power distribution in each SRB 
consists of orbiter-supplied main dc bus power 
to each SRB via SRB buses A, B and C.  Orbiter 
main dc buses A, B and C supply main dc bus 
power to corresponding SRB buses A, B and C.  
In addition, orbiter main dc, bus C supplies 
backup power to SRB buses A and B, and 
orbiter bus B supplies backup power to SRB  
bus C.  This electrical power distribution 
arrangement allows all SRB buses to remain 
powered in the event one orbiter main bus fails. 

The nominal dc voltage is 28 V dc, with an 
upper limit of 32 V dc and a lower limit of  
24 V dc. 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

71

 

Hydraulic Power Units (HPUs) 

There are two self-contained, independent 
HPUs  on  each  SRB.    Each  HPU  consists  of  an 
auxiliary power unit, or APU; Fuel Supply 
Module, or FSM; hydraulic pump; hydraulic 
reservoir; and hydraulic fluid manifold 
assembly.  The APUs are fueled by hydrazine 
and generate mechanical shaft power to a 
hydraulic pump that produces hydraulic 
pressure for the SRB hydraulic system.  The 
APU controller electronics are located in the 
SRB aft integrated electronic assemblies on the 
aft ET attach rings.  The two separate HPUs  
and two hydraulic systems are located inside 
the aft skirt of each SRB between the SRB 
nozzle and skirt.  The HPU components are 
mounted on the aft skirt between the rock and 
tilt actuators.  The two systems operate from  
T minus 28 seconds until SRB separation from 
the orbiter and ET.  The two independent 
hydraulic systems are connected to the rock 
and tilt servoactuators. 

The HPUs and their fuel systems are isolated 
from each other.  Each fuel supply module, or 
tank, contains 22 pounds of hydrazine.  The 
fuel tank is pressurized with gaseous nitrogen 
at 400 psi to provide the force to expel via 
positive expulsion the fuel from the tank to the 
fuel distribution line.  A positive fuel supply to 
the APU throughout its operation is 
maintained. 

The fuel isolation valve is opened at APU 
startup to allow fuel to flow to the APU fuel 
pump and control valves and then to the gas 
generator.  The gas generator鈥檚 catalytic action 
decomposes the fuel and creates a hot gas.  It 
feeds the hot gas exhaust product to the APU 
two-stage gas turbine.  Fuel flows primarily 
through the startup bypass line until the APU 
speed is such that the fuel pump outlet pressure 

is greater than the bypass line鈥檚, at which point 
all the fuel is supplied to the fuel pump. 

The APU turbine assembly provides 
mechanical power to the APU gearbox, which 
drives the APU fuel pump, hydraulic pump 
and lube oil pump.  The APU lube oil pump 
lubricates the gearbox.  The turbine exhaust of 
each APU flows over the exterior of the gas 
generator, cooling it and directing it overboard 
through an exhaust duct. 

When the APU speed reaches 100 percent, the 
APU primary control valve closes and the  
APU speed is controlled by the APU controller 
electronics.  If the primary control valve logic 
fails to the open state, the secondary control 
valve assumes control of the APU at 

 

112 percent speed.  Each HPU on an SRB is 
connected to both servoactuators.  One HPU 
serves as the primary hydraulic source for the 
servoactuator and the other HPU serves as the 
secondary hydraulics for the servoactuator. 

 

Each servoactuator has a switching valve that 
allows the secondary hydraulics to power the 
actuator if the primary hydraulic pressure 
drops below 2,050 psi.  A switch contact on the 
switching valve will close when the valve is in 
the secondary position.  When the valve is 
closed, a signal is sent to the APU controller 
that inhibits the 100 percent APU speed control 
logic and enables the 112 percent APU speed 
control logic.  The 100 percent APU speed 
enables one APU/HPU to supply sufficient 
operating hydraulic pressure to both 
servoactuators of that SRB. 

The APU 100 percent speed corresponds to 
72,000 rpm, 110 percent to 79,200 rpm and  
112 percent to 80,640 rpm. 

The hydraulic pump speed is 3,600 rpm and 
supplies hydraulic pressure of 3,050, plus or 

background image

 

72 

SHUTTLE REFERENCE DATA 

MAY 2010

 

minus 50 psi.  A high-pressure relief valve 
provides overpressure protection to the 
hydraulic system and relieves at 3,750 psi. 

The APUs/HPUs and hydraulic systems are 
reusable for 20 missions. 

Thrust Vector Control (TVC) 

Each SRB has two hydraulic gimbal 
servoactuators:  one for rock and one for tilt.  
The servoactuators provide the force and 
control to gimbal the nozzle for TVC.  The 
all-axis gimbaling capability is 8 degrees.  Each 
nozzle has a carbon cloth liner that erodes  
and chars during firing.  The nozzle is a 
convergent-divergent, movable design in which 
an aft pivot-point flexible bearing is the 

 

gimbal mechanism. 

The space shuttle ascent TVC portion of the 
flight control system directs the thrust of the 
three SSMEs and the two SRB nozzles to control 
shuttle attitude and trajectory during liftoff and 
ascent.  Commands from the guidance system 
are transmitted to the ascent TVC, or ATVC, 
drivers, which transmit signals proportional to 
the commands to each servoactuator of the 
main engines and SRBs.  Four independent 
flight control system channels and four ATVC 
channels control six main engine and four  
SRB ATVC drivers, with each driver controlling 
one hydraulic port on each main and SRB 
servoactuator. 

Each SRB servoactuator consists of four 
independent, two-stage servovalves that 
receive signals from the drivers.  Each 
servovalve controls one power spool in each 
actuator, which positions an actuator ram and 
the nozzle to control the direction of thrust. 

The four servovalves in each actuator provide a 
force-summed majority voting arrangement to 

position the power spool.  With four identical 
commands to the four servovalves, the actuator 
force-sum action prevents a single erroneous 
command from affecting power ram motion.  If 
the erroneous command persists for more than 
a predetermined time, differential pressure 
sensing activates a selector valve to isolate and 
remove the defective servovalve hydraulic 
pressure.  This permits the remaining channels 
and servovalves to control the actuator ram 
spool. 

Failure monitors are provided for each channel 
to indicate which channel has been bypassed.  
An isolation valve on each channel provides the 
capability of resetting a failed or bypassed 
channel. 

Each actuator ram is equipped with transducers 
for position feedback to the thrust vector 
control system.  Within each servoactuator ram 
is a splashdown load relief assembly to cushion 
the nozzle at water splashdown and prevent 
damage to the nozzle flexible bearing. 

SRB Rate Gyro Assemblies (RGAs) 

Each SRB contains two RGAs mounted in the 
forward skirt watertight compartment.  Each 
RGA contains two orthogonally mounted 
gyroscopes 鈥 pitch and yaw axes.  In 
conjunction with the orbiter roll rate gyros, they 
provide angular rate information that describes 
the inertial motion of the vehicle cluster to the 
orbiter computers and the guidance, navigation 
and control system during first stage ascent  
to SRB separation.  At SRB separation, all 
guidance control data is handed off from the 
SRB RGAs to the orbiter RGAs.  The RGAs are 
designed and qualified for 20 missions. 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

73

 

Propellant 

The propellant mixture in each SRB motor 
consists of ammonium perchlorate, an oxidizer, 
69.6 percent by weight; aluminum, a fuel,  
16 percent by weight; iron oxide, a catalyst,  
0.4 percent by weight; polymer, a binder that 
holds the mixture together, 12.04 percent by 
weight; and epoxy curing agent, 1.96 percent by 
weight.  The propellant is an 11-point 

 

star-shaped perforation in the forward motor 
segment and a double truncated cone 
perforation in each of the aft segments and aft 
closure.  This configuration provides high 
thrust at ignition and then reduces the thrust by 
about one-third 50 seconds after liftoff to 
prevent overstressing the vehicle during 
maximum dynamic pressure. 

SRB Ignition 

SRB ignition can occur only when a manual 
lock pin from each SRB safe and arm device has 
been removed by the ground crew during 
prelaunch activities.  At T minus 5 minutes, the 
SRB safe and arm device is rotated to the arm 
position.  The solid rocket motor ignition 
commands are issued when the three SSMEs 
are at or above 90 percent rated thrust; no 
SSME fail and/or SRB ignition pyrotechnic 
initiator controller, or PIC low voltage is 
indicated; and there are no holds from the 
launch processing system, or LPS. 

The solid rocket motor ignition commands are 
sent by the orbiter computers through the 
master events controllers, or MECs, to the 
NSDs installed in the safe and arm device in 
each SRB.  A pyrotechnic initiation controller, 
or PIC, is a single-channel capacitor discharge 
device that controls the firing of each 
pyrotechnic device.  Three signals must be 
present simultaneously for the PIC to generate 

the pyro firing output.  These signals 鈥 arm, fire 
1 and fire 2 鈥 originate in the orbiter 
general-purpose computers and are transmitted 
to the MECs.  The MECs reformat them to  
28 V dc signals for the PICs.  The arm signal 
charges the PIC capacitor to 40 V dc, minimum 
20 V dc. 

The fire 2 commands cause the redundant 
NSDs to fire through a thin barrier seal down a 
flame tunnel.  This ignites a pyro booster 
charge, which is retained in the safe and arm 
device behind a perforated plate.  The booster 
charge ignites the propellant in the igniter 
initiator; and combustion products of this 
propellant ignite the solid rocket motor igniter, 
which fires down the length of the solid rocket 
motor igniting the solid rocket motor 
propellant. 

The general purpose computer, or GPC, launch 
sequence also controls certain critical main 
propulsion system valves and monitors the 
engine-ready indications from the SSMEs.  The 
main propulsion system, or MPS, start 
commands are issued by the on-board 
computers at T minus 6.6 seconds.  There is a 
staggered start 鈥 engine three, engine two, 
engine one 鈥 within 0.25 of a second, and the 
sequence monitors the thrust buildup of 

 

each engine.  All three SSMEs must reach the 
required 90 percent thrust within three seconds; 
otherwise, an orderly shutdown is commanded 
and safing functions are initiated. 

Normal thrust buildup to the required 

 

90 percent thrust level will result in the SSMEs 
being commanded to the liftoff position at  
T minus 3 seconds as well as the fire 1 
command being issued to arm the SRBs.  At  
T minus 3 seconds, the vehicle base bending 
load modes are allowed to initialize. 

background image

 

74 

SHUTTLE REFERENCE DATA 

MAY 2010

 

At T minus 0, the two SRBs are ignited by the 
four orbiter on-board computers; commands 
are sent to release the SRBs; the two T-0 
umbilicals, one on each side of the spacecraft, 
are retracted; the on-board master timing unit, 
event timer and mission event timers are 
started; the three SSMEs are at 100 percent; and 
the ground launch sequence is terminated. 

SRB Separation 

The SRB/ET separation subsystem provides for 
separation of the SRBs from the orbiter/ET 
without damage to or recontact of the elements 
鈥 SRBs, orbiter/ET 鈥 during or after separation 
for nominal modes.  SRB separation is initiated 
when the three solid rocket motor chamber 
pressure transducers are processed in the 
redundancy management middle value select 
and the head end chamber pressure of both 
SRBs  is  less  than  or  equal to 50 psi.  A backup 
cue is the time elapsed from booster ignition. 

The separation sequence is initiated, 
commanding the thrust vector control actuators 
to the null position and putting the main 
propulsion system into a second-stage 
configuration 0.8 second from sequence 
initialization, which ensures the thrust of each 
SRB is less than 100,000 pounds.  Orbiter yaw 
attitude is held for four seconds and SRB thrust 
drops to less than 60,000 pounds.  The SRBs 
separate from the ET within 30 milliseconds of 
the ordnance firing command. 

The forward attachment point consists of a ball 
on the SRB and socket on the ET, held together 
by one bolt.  The bolt contains one NSD 
pressure cartridge at each end.  The forward 
attachment point also carries the range safety 
system cross-strap wiring connecting each SRB 
range safety system, or RSS, and the ET RSS 
with each other. 

The aft attachment points consist of three 
separate struts:  upper, diagonal, and lower.  
Each strut contains one bolt with an NSD 
pressure cartridge at each end.  The upper strut 
also carries the umbilical interface between its 
SRB and the external tank and on to the orbiter. 

Redesigned Booster Separation Motors (RBSM) 

Eight Booster Separation Motors, or BSMs, are 
located on each booster 鈥 four on the forward 
section and four on the aft skirt.  BSMs provide 
the force required to push the SRBs away from 
the orbiter/ET at separation.  Each BSM weighs 
approximately 165 pounds and is 31.1 inches 
long and 12.8 inches in diameter.  Once the 
SRBs have completed their flight, the BSMs are 
fired to jettison the SRBs away from the orbiter 
and external tank, allowing the boosters to 
parachute to Earth and be reused.  The BSMs in 
each cluster of four are ignited by firing 
redundant NSD pressure cartridges into 
redundant confined detonating fuse manifolds.  
The separation commands issued from the 
orbiter by the SRB separation sequence initiate 
the redundant NSD pressure cartridge in each 
bolt and ignite the BSMs to effect a clean 
separation. 

Redesigned BSMs flew for the first time in both 
forward and aft locations on STS-125.  As a 
result of vendor viability and manifest support 
issues, space shuttle BSMs are now being 
manufactured by ATK.  The igniter has been 
redesigned and other changes include material 
upgrades driven by obsolescence issues and 
improvements to process and inspection 
techniques. 

SRB Cameras 

Each SRB flies with a complement of four 
cameras, three mounted for exterior views 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

75

 

during launch, separation and descent; and one 
mounted internal to the forward dome for main 
parachute performance assessment during 
descent. 

The ET observation camera is mounted on the 
SRB forward skirt and provides a wide-angle 
view of the ET intertank area.  The camera is 
activated at lift off by a G-switch and records 
for 350 seconds, after which the recorder is 
switched to a similar camera in the forward 
skirt dome to view the deployment and 
performance of the main parachutes to splash 
down.  These cameras share a digital tape 
recorder located within the data acquisition 
system. 

The  ET  ring  camera  is  mounted  on  the  ET 
attach ring and provides a view up the stacked 
vehicle on the orbiter underside and the bipod 
strut attach point. 

The forward skirt camera is mounted on the 
external surface of the SRB forward skirt and 
provides a view aft down the stacked vehicle of 
the orbiter underside and the wing leading 
edge reinforced carbon-carbon, or RCC, panels. 

The ET attach ring camera and forward skirt 
camera are activated by a global positioning 
system command at approximately T minus 
1 minute 56 seconds to begin recording at 
approximately T minus 50 seconds.  The camera 
images are recorded through splash down.  
These cameras each have a dedicated recorder 
and are recorded in a digital format.  The 
cameras were designed, qualified, and 
implemented by USA after Columbia to 
provide enhanced imagery capabilities to 
capture potential debris liberation beginning 
with main engine start and continuing through 
SRB separation. 

The camera videos are available for engineering 
review approximately 24 hours following the 
arrival of the boosters at KSC. 

Range Safety Systems (RSS) 

The RSS consists of two antenna couplers; 
command receivers/decoders; a dual 
distributor; a safe and arm device with two 
NSDs; two confined detonating fuse manifolds; 
seven confined detonator fuse, or CDF 
assemblies; and one linear-shaped charge. 

The RSS provides for destruction of a rocket or 
part  of  it  with  on-board  explosives  by  remote 
command if the rocket is out of control, to  
limit danger to people on the ground from 
crashing pieces, explosions, fire, and poisonous 
substances. 

The space shuttle has two RSSs, one in each 
SRB.  Both are capable of receiving two 
command messages 鈥 arm and fire 鈥 which are 
transmitted from the ground station.  The RSS 
is only used when the space shuttle violates a 
launch trajectory red line. 

The antenna couplers provide the proper 
impedance for radio frequency and ground 
support equipment commands.  The command 
receivers are tuned to RSS command 
frequencies and provide the input signal to the 
distributors when an RSS command is sent.  
The command decoders use a code plug to 
prevent any command signal other than the 
proper command signal from getting into the 
distributors.  The distributors contain the logic 
to supply valid destruct commands to the RSS 
pyrotechnics. 

The NSDs provide the spark to ignite the CDF 
that in turn ignites the linear-shaped charge for 
space shuttle destruction.  The safe and arm 
device provides mechanical isolation between 

background image

 

76 

SHUTTLE REFERENCE DATA 

MAY 2010

 

the NSDs and the CDF before launch and 
during the SRB separation sequence. 

The first message, called arm, allows the 
onboard logic to enable a destruct and 
illuminates a light on the flight deck display 
and control panel at the commander and pilot 
station.  The second message transmitted is the 
fire command.  The SRB distributors in the 
SRBs are cross-strapped together.  Thus, if one 
SRB received an arm or destruct signal, the 
signal would also be sent to the other SRB. 

Electrical power from the RSS battery in each 
SRB is routed to RSS system A.  The recovery 
battery in each SRB is used to power RSS 
system B as well as the recovery system in the 
SRB.  The SRB RSS is powered down during the 
separation sequence, and the SRB recovery 
system is powered up. 

Descent and Recovery 

After separation and at specified altitudes, the 
SRB forward avionics system initiates the 
release of the nose cap, which houses a pilot 
parachute and drogue parachute; and the 
frustum, which houses the three main 
parachutes.  Jettison of the nose cap at 

 

15,700 feet deploys a small pilot parachute and 
begins to slow the SRB decent.  At an altitude  
of 15,200 feet the pilot parachute pulls the 
drogue parachute from the frustum.  The 
drogue parachute fully inflates in stages, and at  
5,500 feet pulls the frustum away from the SRB, 
which initiates the deployment of the three 
main parachutes.  The parachutes also inflate in 
stages and further slow the decent of the SRBs 
to their final velocity at splashdown.  The 
parachutes slow each SRB from 368 mph at first 
deployment to 52 mph at splashdown, allowing 
for the recovery and reuse of the boosters. 

Two 176-foot recovery ships, Freedom Star and 
Liberty Star, are on station at the splashdown 
zone to retrieve the frustums with drogue 
parachutes attached, the main parachutes and 
the SRBs.  The SRB nose caps and solid rocket 
motor nozzle extensions are not recovered.  The 
SRBs are dewatered using an enhanced diver 
operating plug to facilitate tow back.  These 
plugs are inserted into the motor nozzle and  
air is pumped into the booster, causing it to  
lay flat in the water to allow it to be easily 
towed.  The boosters are then towed back to  
the refurbishment facilities.  Each booster is 
removed from the water and components are 
disassembled and washed with fresh and 
deionized water to limit saltwater corrosion.  
The motor segments, igniter and nozzle are 
shipped back to ATK in Utah for 
refurbishment.  The nonmotor components and 
structures are disassembled by USA and are 
refurbished to like-new condition at both KSC 
and equipment manufacturers across the 
country. 

SPACE SHUTTLE SUPER LIGHT WEIGHT 
TANK (SLWT) 

The super lightweight external tank (SLWT) 
made its first shuttle flight June 2, 1998, on 
mission STS-91.  The SLWT is 7,500 pounds 
lighter than the standard external tank.  The 
lighter weight tank allows the shuttle to deliver 
International Space Station elements (such as 
the service module) into the proper orbit. 

The SLWT is the same size as the previous 
design.  But the liquid hydrogen tank and the 
liquid oxygen tank are made of aluminum 
lithium, a lighter, stronger material than the 
metal alloy used for the shuttle鈥檚 current tank.  
The tank鈥檚 structural design has also been 

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

77

 

improved, making it 30 percent stronger and 
5 percent less dense. 

The SLWT, like the standard tank, is 
manufactured at NASA鈥檚 Michoud Assembly 
Facility, near New 

Orleans, by Lockheed 

Martin. 

The 154-foot-long external tank is the largest 
single component of the space shuttle.  It stands 
taller than a 15-story building and has a 
diameter of about 27 feet.  The external tank 
holds over 530,000 gallons of liquid hydrogen 
and liquid oxygen in two separate tanks.  The 
hydrogen (fuel) and liquid oxygen (oxidizer) 
are used as propellants for the shuttle鈥檚 three 
main engines. 

EXTERNAL TANK 

The 154-foot-long external tank is the largest 
single component of the space shuttle.  It stands 
taller than a 15-story building and has a 
diameter of about 27 feet.  The external tank 
holds more than 530,000 gallons of liquid 
hydrogen and liquid oxygen in two separate 
tanks, the forward liquid oxygen tank and the 
aft liquid hydrogen tank.  An unpressurized 
intertank unites the two propellant tanks. 

Liquid hydrogen (fuel) and liquid oxygen 
(oxidizer) are used as propellants for the 
shuttle鈥檚 three main engines.  The external tank 
weighs 58,500 pounds empty and 

 

1,668,500 pounds when filled with propellants. 

The external tank is the 鈥渂ackbone鈥 of the 
shuttle during launch, providing structural 
support for attachment with the solid rocket 
boosters and orbiter.  It is the only component 
of the shuttle that is not reused.  Approximately 
8.5 minutes after reaching orbit, with its 
propellant used, the tank is jettisoned and falls 

in a preplanned trajectory.  Most of the tank 
disintegrates in the atmosphere, and the 
remainder falls into the ocean. 

The external tank is manufactured at NASA鈥檚 
Michoud Assembly Facility in New Orleans by 
Lockheed Martin Space Systems. 

Foam Facts 

The external tank is covered with spray-on 
foam insulation that insulates the tank before 
and during launch.  More than 90 percent of the 
tank鈥檚 foam is applied using an automated 
system, leaving less than 10 percent to be 
applied manually. 

There are two types of foam on the external 
tank, known as the Thermal Protection System, 
or TPS.  One is low-density, closed-cell foam on 
the tank acreage and is known as Spray-On-
Foam-Insulation, often referred to by its 
acronym, SOFI.  Most of the tank is covered by 
either an automated or manually applied SOFI.  
Most areas around protuberances, such as 
brackets and structural elements, are applied by 
pouring foam ingredients into part-specific 
molds.  The other is a denser composite 
material made of silicone resins and cork and 
called ablator.  An ablator is a material that 
dissipates  heat  by  eroding.    It  is  used  on  areas 
of the external tank subjected to extreme heat, 
such as the aft dome near the engine exhaust, 
and remaining protuberances, such as the cable 
trays.  These areas are exposed to extreme 
aerodynamic heating. 

Closed-cell foam used on the tank was 
developed to keep the propellants that fuel the 
shuttle鈥檚 three main engines at optimum 
temperature.  It keeps the shuttle鈥檚 liquid 
hydrogen fuel at -423 degrees Fahrenheit 

 

and the liquid oxygen tank at near 

 

background image

 

78 

SHUTTLE REFERENCE DATA 

MAY 2010

 

-297 degrees Fahrenheit, even as the tank sits 
under the hot Florida sun.  At the same time, 
the foam prevents a buildup of ice on the 
outside of the tank. 

The foam insulation must be durable enough to 
endure a 180-day stay at the launch pad, 
withstand temperatures up to 115 degrees 
Fahrenheit, humidity as high as 100 percent, 
and resist sand, salt, fog, rain, solar radiation 
and even fungus.  Then, during launch, the 
foam must tolerate temperatures as high as 
2,200 degrees Fahrenheit generated by 
aerodynamic friction and radiant heating from 
the 3,000 degrees Fahrenheit main engine 
plumes.  Finally, when the external tank begins 
reentry into the Earth鈥檚 atmosphere about 
30 minutes after launch, the foam maintains the 
tank鈥檚 structural temperatures and allows it to 
safely disintegrate over a remote ocean location. 

Though the foam insulation on the majority of 
the tank is only 1-inch thick, it adds 

 

4,823 pounds to the tank鈥檚 weight.  In the areas 
of the tank subjected to the highest heating, 
insulation is somewhat thicker, between 1.5 to  
3 inches thick.  Though the foam鈥檚 density 
varies with the type, an average density is 
about 2.4 pounds per cubic foot. 

Application of the foam, whether automated by 
computer or hand-sprayed, is designed to meet 
NASA鈥檚 requirements for finish, thickness, 
roughness, density, strength and adhesion.  As 
in most assembly production situations, the 
foam is applied in specially designed, 
environmentally controlled spray cells and 
applied in several phases, often over a period of 
several weeks.  Before spraying, the foam鈥檚 raw 
material and mechanical properties are tested 
to ensure they meet NASA specifications. 

 

Multiple visual inspections of all foam surfaces 
are performed after the spraying is complete. 

Most of the foam is applied at NASA鈥檚 
Michoud Assembly Facility in New Orleans 
when the tank is manufactured, including most 
of the 鈥渃loseout鈥 areas, or final areas applied.  
These closeouts are done either by hand 
pouring or manual spraying.  Additional 
closeouts are completed once the tank reaches 
NASA鈥檚 Kennedy Space Center, Fla. 

The super lightweight external tank, or SLWT, 
made its first shuttle flight in June 1998 on 
mission STS-91.  The SLWT is 7,500 pounds 
lighter than previously flown tanks.  The SLWT 
is the same size as the previous design, but the 
liquid hydrogen tank and the liquid oxygen 
tank are made of aluminum lithium, a lighter, 
stronger material than the metal alloy used 
previously. 

Beginning with the first Return to Flight 
mission, STS-114 in June 2005, several 
improvements were made to improve safety 
and flight reliability. 

Forward Bipod 

The external tank鈥檚 forward shuttle attach 
fitting, called the bipod, was redesigned to 
eliminate the large insulating foam ramps as a 
source of debris.  Each external tank has two 
bipod fittings that connect the tank to the 
orbiter through the shuttle鈥檚 two forward 
attachment struts.  Four rod heaters were 
placed below each forward bipod, replacing the 
large insulated foam Protuberance Airload, or 
PAL, ramps. 

Liquid Hydrogen Tank & Liquid Oxygen 

Intertank Flange Closeouts 

The liquid hydrogen tank flange located at the 
bottom of the intertank and the liquid oxygen 
tank flange located at the top of the intertank 
provide joining mechanisms with the intertank.  

background image

 

MAY 2010 

SHUTTLE REFERENCE DATA 

79

 

After each of these three component tanks, 
liquid oxygen, intertank and liquid hydrogen, 
are joined mechanically, the flanges at both 
ends are insulated with foam.  An enhanced 
closeout, or finishing, procedure was added to 
improve foam application to the stringer, or 
intertank ribbing, and to the upper and lower 
area of both the liquid hydrogen and liquid 
oxygen intertank flanges. 

Liquid Oxygen Feedline Bellows 

The liquid oxygen feedline bellows were 
reshaped to include a 鈥渄rip lip鈥 that allows 
condensate moisture to run off and prevent 
freezing.  A strip heater was added to the 
forward bellow to further reduce the potential 
of high density ice or frost formation.  Joints on 
the liquid oxygen feedline assembly allow the 
feedline to move during installation and during 
liquid hydrogen tank fill.  Because it must flex, 
it cannot be insulated with foam like the 
remainder of the tank. 

Other tank improvements include: 

Liquid Oxygen & Liquid Hydrogen 
Protuberance Airload (PAL) Ramps 

External tank ET-119, which flew on the second 
Return to Flight mission, STS-121, in July 2006, 
was the first tank to fly without PAL ramps 
along portions of the liquid oxygen and 

 

liquid hydrogen tanks.  These PAL ramps were 
extensively studied and determined to not be 
necessary for their original purpose, which was 
to protect cable trays from aeroelastic instability 
during ascent.  Extensive tests were conducted 
to verify the shuttle could fly safely without 
these particular PAL ramps.  Extensions were 
added to the ice frost ramps for the pressline 
and cable tray brackets, where these PAL ramps 
were removed to make the geometry of the 

ramps consistent with other locations on 

 

the tank and thereby provide consistent 
aerodynamic flow.  Nine extensions were 
added, six on the liquid hydrogen tank and 
three on the liquid oxygen tank. 

Engine Cutoff (ECO) Sensor Modification 

Beginning with STS-122, ET-125, which 
launched on Feb. 7, 2008, the ECO sensor 
system feed-through connector on the liquid 
hydrogen tank was modified by soldering the 
connector鈥檚 pins and sockets to address false 
readings in the system.  All subsequent tanks 
after ET-125 have the same modification. 

Liquid Hydrogen Tank Ice Frost Ramps 

ET-128, which flew on the STS-124 shuttle 
mission, May 31, 2008, was the first tank to fly 
with redesigned liquid hydrogen tank ice frost 
ramps.  Design changes were incorporated at 
all 17 ice frost ramp locations on the liquid 
hydrogen tank, stations 1151 through 2057, to 
reduce foam loss.  Although the redesigned 
ramps appear identical to the previous design, 
several changes were made.  PDL* and NCFI 
foam have been replaced with BX* manual 
spray foam in the ramp鈥檚 base cutout to reduce 
debonding and cracking; Pressline and cable 
tray bracket feet corners have been rounded to 
reduce stresses; shear pin holes have been 
sealed to reduce leak paths; isolators were 
primed to promote adhesion; isolator corners 
were rounded to help reduce thermal 
protection system foam stresses; BX manual 
spray was applied in bracket pockets to reduce 
geometric voids. 

*BX  is  a  type  of  foam  used  on  the  tank鈥檚 
鈥渓oseout,鈥 or final finished areas; it is applied 
manually or hand-sprayed.  PDL is an acronym 
for Product Development Laboratory, the first 

background image

 

80 

SHUTTLE REFERENCE DATA 

MAY 2010

 

supplier of the foam during the early days of 
the external tank鈥檚 development.  PDL is 
applied by pouring foam ingredients into a 
mold.  NCFI foam is used on the aft dome, or 
bottom, of the liquid hydrogen tank. 

Liquid Oxygen Feedline Brackets 

ET-128 also was the first tank to fly with 
redesigned liquid oxygen feedline brackets.  
Titanium brackets, much less thermally 
conductive than aluminum, replaced aluminum 

brackets at four locations, XT 1129, XT 1377,  
Xt 1624 and Xt 1871.  This change minimizes ice 
formation in under-insulated areas, and 
reduces the amount of foam required to cover 
the brackets and the propensity for ice 
development.  Zero-gap/slip plane Teflon 
material was added to the upper outboard 
monoball attachment to eliminate ice adhesion.  
Additional foam has been added to the liquid 
oxygen feedline to further minimize ice 
formation along the length of the feedline. 

 

 

background image

 

MAY 2010 

LAUNCH & LANDING 

81

 

LAUNCH AND LANDING 

 

LAUNCH 

As with all previous space shuttle launches, 
Atlantis has several options to abort its ascent if 
needed after engine failures or other systems 
problems.  Shuttle launch abort philosophy is 
intended to facilitate safe recovery of the flight 
crew and intact recovery of the orbiter and its 
payload. 

Abort modes include: 

ABORT-TO-ORBIT (ATO) 

This mode is used if there is a partial loss of 
main engine thrust late enough to permit 
reaching a minimal 105 by 85 nautical mile orbit 
with the orbital maneuvering system engines.  
The engines boost the shuttle to a safe orbital 
altitude when it is impossible to reach the 
planned orbital altitude. 

TRANSATLANTIC ABORT LANDING 
(TAL) 

The loss of one or more main engines midway 
through powered flight would force a landing 
at either Zaragoza, Spain; Moron, Spain; or 
Istres, France.  For launch to proceed, weather 
conditions must be acceptable at one of these 
TAL sites. 

RETURN-TO-LAUNCH-SITE (RTLS) 

If one or more engines shut down early and 
there is not enough energy to reach Zaragoza, 
the shuttle would pitch around toward 
Kennedy until within gliding distance of the 
Shuttle Landing Facility.  For launch to 
proceed, weather conditions must be forecast to 
be acceptable for a possible RTLS landing at 
KSC about 20 minutes after liftoff. 

ABORT ONCE AROUND (AOA) 

An AOA is selected if the vehicle cannot 
achieve a viable orbit or will not have enough 
propellant to perform a deorbit burn, but has 
enough energy to circle the Earth once and land 
about 90 minutes after liftoff. 

LANDING 

The primary landing site for Atlantis on 
STS

132 is the Kennedy Space Center鈥檚 Shuttle 

Landing Facility.  Alternate landing sites that 
could be used if needed because of weather 
conditions or systems failures are at Edwards 
Air Force Base, Calif., and White Sands Space 
Harbor, N.M. 

 

background image

 

82 

LAUNCH & LANDING 

MAY 2010

 

This page intentionally blank 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

83

 

ACRONYMS AND ABBREVIATIONS 

2D-Nano Template 

Two Dimensional Nano Template 

3D-Space 

Mental Representation of Spatial Cues during Spaceflight 

A/G Alignment 

Guides 

A/L Airlock 
AAA 

Avionics Air Assembly 

ABC 

Audio Bus Controller 

ABRS 

Advanced Biological Research System 

ACBM 

Active Common Berthing Mechanism 

ACDU 

Airlock Control and Display Unit 

ACO 

Assembly Checkout Officer 

ACS 

Atmosphere Control and Supply 

ACU 

Arm Control Unit 

ADS 

Audio Distribution System 

AE Approach 

Ellipsoid 

AEP 

Airlock Electronics Package 

AI Approach 

Initiation 

AIS 

Automatic Identification System 

AJIS 

Alpha Joint Interface Structure 

ALI Alice-Like 

Insert 

ALTEA-Shield 

Anomalous Long Term Effects on Astronauts Central Nervous System-Shield 

AM Atmosphere 

Monitoring 

AMOS 

Air Force Maui Optical and Supercomputing Site 

AOH 

Assembly Operations Handbook 

APAS 

Androgynous Peripheral Attachment 

APCU 

Assembly Power Converter Unit 

APE 

Antenna Pointing Electronics 

 

Audio Pointing Equipment 

APFR 

Articulating Portable Foot Restraint 

APM 

Antenna Pointing Mechanism 

APS 

Automated Payload Switch 

APV 

Automated Procedure Viewer 

AR Atmosphere 

Revitalization 

ARCU American-to-Russian Converter Unit 
ARS 

Atmosphere Revitalization System 

ASW Application 

Software 

ATA 

Ammonia Tank Assembly 

ATCS 

Active Thermal Control System 

ATU 

Audio Terminal Unit 

background image

 

84 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

BAC 

Boom Attached Cables 

BAD 

Broadcast Ancillary Data 

BC Bus 

Controller 

BCDU 

Battery Charge/Discharge Unit 

 

Berthing Mechanism Control and Display Unit 

BEP 

Berthing Mechanism Electronics Package 

BGA 

Beta Gimbal Assembly 

BIC 

Bus Interface Controller 

BIT Built-In 

Test 

BLT 

Boundary Layer Transition 

BM Berthing 

Mechanism 

BOS 

BIC Operations Software 

BRIC 

Biological Research in Canisters 

BSS Basic 

Software 

BSTS 

Basic Standard Support Software 

C&C 

Command and Control 

C&DH 

Command and Data Handling 

C&T 

Communication and Tracking 

C&W 

Caution and Warning 

C/L Crew 

Lock 

C/O Checkout 
CAM 

Collision Avoidance Maneuver 

CAPE 

Canister for All Payload Ejections 

CAPPS 

Checkout, Assembly and Payload Process Services 

CAS 

Common Attach System 

CB Control 

Bus 

CBCS 

Centerline Berthing Camera System 

CBM 

Common Berthing Mechanism 

CCA 

Circuit Card Assembly 

CCAA 

Common Cabin Air Assembly 

CCF 

Capillary Chanel Flow 

CCIS 

Cardiovascular and Cerebrovacular on Return from Space Station 

CCM 

Cell Culture Module 

CCP 

Camera Control Panel 

CCT 

Communication Configuration Table 

CCTV Closed-Circuit 

Television 

CDR 

Space Shuttle Commander 

CDRA 

Carbon Dioxide Removal Assembly 

CETA 

Crew Equipment Transfer Aid 

 

Crew Equipment Translation Aid 

CFE-2 

Capillary Flow Experiment-2 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

85

 

CHeCS 

Crew Health Care System 

CHX 

Cabin Heat Exchanger 

CISC 

Complicated Instruction Set Computer 

CLA 

Camera Light Assembly 

CLPA 

Camera Light Pan Tilt Assembly 

CLSM-2 

Coarsening in Solid Liquid Mixtures 

CMG 

Control Moment Gyro 

COTS 

Commercial Off the Shelf 

CPA 

Control Panel Assembly 

CPB 

Camera Power Box 

CQ Crew 

Quarters 

CR Change 

Request 

CRT Cathode-Ray 

Tube 

CSA 

Canadian Space Agency 

CSA-CP 

Compound Specific Analyzer 

CTC 

Cargo Transport Container 

CVB 

Constrained Vapor Bubble 

CVIU 

Common Video Interface Unit 

CVT 

Current Value Table 

CZ Communication 

Zone 

DB Data 

Book 

DC Docking 

Compartment 

DCB Double 

Coldbag 

DCSU 

Direct Current Switching Unit 

DDCU 

DC-to-DC Converter Unit 

DECLIC-HTI 

DEvice for the Study of Critical Liquids and Crystalization-High  

 Temperature 

Insert 

DEM Demodulator 
DFL Decommutation 

Format 

Load 

DIU 

Data Interface Unit 

DMS 

Data Management System 

DMS-R 

Data Management System-Russian 

DOSIS-DOBIES 

Dose Distribution Inside ISS 鈥 Dosimetry for Biological Experiments in Space 

DPG 

Differential Pressure Gauge 

DPU 

Baseband Data Processing Unit 

DRTS 

Japanese Data Relay Satellite 

DSO 

Detailed Supplementary Objective 

DTO 

Detailed Test Objective 

DYF Display 

Frame 

background image

 

86 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

E/L Equipment 

Lock 

EATCS 

External Active Thermal Control System 

EBCS 

External Berthing Camera System 

ECC 

Error Correction Code 

ECLSS 

Environmental Control and Life Support System 

ECS 

Environmental Control System 

ECU 

Electronic Control Unit 

EDAS 

Enhanced Data Acquisition System 

EDSU 

External Data Storage Unit 

EDU EEU 

Driver 

Unit 

EE End 

Effector 

EETCS 

Early External Thermal Control System 

EEU 

Experiment Exchange Unit 

EF Exposed 

Facility 

EFBM 

Exposed Facility Berthing Mechanism 

EFHX 

Exposed Facility Heat Exchanger 

EFU 

Exposed Facility Unit 

EGIL 

Electrical, General Instrumentation, and Lighting 

EIU 

Ethernet Interface Unit 

ELC 

ExPRESS Logistics Carrier 

ELM-ES 

Japanese Experiment Logistics Module 鈥 Exposed Section 

ELM-PS 

Japanese Experiment Logistics Module 鈥 Pressurized Section 

ELPS 

Emergency Lighting Power Supply 

EMGF Electric 

Mechanical Grapple Fixture 

EMI Electro-Magnetic 

Imaging 

EMU Extravehicular 

Mobility 

Unit 

EOTP 

Enhanced Orbital Replaceable Unit (ORU) Temporary Platform 

EP Exposed 

Pallet 

EPO 

Education Payload Operations 

EPO-Robo 

Education Payload Operations 鈥 Robotics 

EPS 

Electrical Power System 

ES Exposed 

Section 

ESA 

European Space Agency 

ESC JEF 

System 

Controller 

ESP-3 

External Stowage Platform 3 

ESW 

Extended Support Software 

ET External 

Tank 

ETCS 

External Thermal Control System 

ETI 

Elapsed Time Indicator 

ETRS 

EVA Temporary Rail Stop 

ETVCG External 

Television Camera Group 

EV Extravehicular 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

87

 

EVA Extravehicular Activity 
EXP-D Experiment-D 
EXPRESS 

EXpedite the PRocessing of Experiments to Space Station 

EXT External 

FA Fluid 

Accumulator 

FAS 

Flight Application Software 

FCT 

Flight Control Team 

FD Flight 

Day 

FDDI 

Fiber Distributed Data Interface 

FDIR 

Fault Detection, Isolation, and Recovery 

FDS 

Fire Detection System 

FE Flight 

Engineer 

FET-SW 

Field Effect Transistor Switch 

FGB 

Functional Cargo Block 

FOR 

Frame of Reference 

FPMU 

Floating Potential Measurement Unit 

FPP Fluid 

Pump 

Package 

FR Flight 

Rule 

FRD 

Flight Requirements Document 

FRGF 

Flight Releasable Grapple Fixture 

FRM 

Functional Redundancy Mode 

FSE 

Flight Support Equipment 

FSEGF 

Flight Support Equipment Grapple Fixture 

FSW Flight 

Software 

GAS Get-Away 

Special 

GATOR 

Grappling Adaptor to On-orbit Railing 

GCA 

Ground Control Assist 

GLA 

General Lighting Assemblies 

 

General Luminaire Assembly 

GLACIER 

General Laboratory Active Cryogenic ISS Experiment Refrigerator 

GLONASS 

Global Navigational Satellite System 

GNC 

Guidance, Navigation, and Control 

GPC 

General Purpose Computer 

GPS 

Global Positioning System 

GPSR 

Global Positioning System Receiver 

GUI 

Graphical User Interface 

H&S Health 

and 

Status 

HCE 

Heater Control Equipment 

HCTL Heater 

Controller 

HEPA 

High Efficiency Particulate Acquisition 

background image

 

88 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

HPA 

High Power Amplifier 

HPGT 

High Pressure Gas Tank 

HPP 

Hard Point Plates 

HRDR 

High Rate Data Recorder 

HREL Hold/Release 

Electronics 

HRF 

Human Research Facility 

HRFM 

High Rate Frame Multiplexer 

HRM 

Hold Release Mechanism 

HRMS 

High Rate Multiplexer and Switcher 

HTV 

H-II Transfer Vehicle 

HTVCC 

HTV Control Center 

HTV Prox 

HTV Proximity 

HX Heat 

Exchanger 

I/F Interface 
IAA Intravehicular 

Antenna 

Assembly 

IAC 

Internal Audio Controller 

IBM 

International Business Machines 

ICB 

Inner Capture Box 

ICC 

Integrated Cargo Carrier 

ICC-VLD 

Integrated Cargo Carrier 鈥 Vertical Lightweight Deployable 

ICS 

Interorbit Communication System 

ICS-EF 

Interorbit Communication System 鈥 Exposed Facility 

IDRD 

Increment Definition and Requirements Document 

IEA 

Integrated Equipment Assembly 

IELK 

Individual Equipment Liner Kit 

IF Intermediate 

Frequency 

IFHX 

Interface Heat Exchanger 

IMCS 

Integrated Mission Control System 

IMCU 

Image Compressor Unit 

IMV Intermodule 

Ventilation 

INCO 

Instrumentation and Communication Officer 

IP Interface 

Plate 

 International 

Partner 

IP-PCDU 

ICS-PM Power Control and Distribution Unit 

IP-PDB 

Payload Power Distribution Box 

IPV 

Individual Pressure Vessel 

ISP 

International Standard Payload 

ISPR 

International Standard Payload Rack 

ISS 

International Space Station 

ISSSH 

International Space Station Systems Handbook 

ITCS 

Internal Thermal Control System 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

89

 

ITS 

Integrated Truss Segment 

IVA Intravehicular 

Activity 

IVGEN 

IntraVenous Fluid GENeration for Exploration Missions 

IVSU 

Internal Video Switch Unit 

JAXA 

Japan Aerospace Exploration Agency 

JCP 

JEM Control Processor 

JEF 

JEM Exposed Facility 

JEM 

Japanese Experiment Module 

JEM-EF 

Japanese Experiment Module Exposed Facility 

JEM-PM Japanese 

Experiment 

Module 鈥 Pressurized Module 

JEMAL JEM 

Airlock 

JEMRMS 

Japanese Experiment Module Remote Manipulator System 

JEUS 

Joint Expedited Undocking and Separation 

JFCT 

Japanese Flight Control Team 

JLE 

Japanese Experiment Logistics Module 鈥 Exposed Section 

JLP 

Japanese Experiment Logistics Module 鈥 Pressurized Section 

JLP-EDU 

JLP-EFU Driver Unit 

JLP-EFU 

JLP Exposed Facility Unit 

JPM 

Japanese Pressurized Module 

JPM WS 

JEM Pressurized Module Workstation 

JSC 

Johnson Space Center 

JTVE 

JEM Television Equipment 

Kbps 

Kilobit per second 

KOS 

Keep Out Sphere 

LB Local 

Bus 

LCA 

LAB Cradle Assembly 

LCD 

Liquid Crystal Display 

LCS 

Laser Camera System 

LED 

Light Emitting Diode 

LEE 

Latching End Effector 

LEO Low 

Earth 

Orbit 

LIDAR 

Light Detection and Ranging 

LMC Lightweight 

Multipurpose Experiment Support Structure Carrier 

LMM 

Light Microscopy Module 

LSW Light 

Switch 

LTA Launch-to-Activation 
LTAB Launch-to-Activation 

Box 

LTL 

Low Temperature Loop 

background image

 

90 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

MA Main 

Arm 

MARES Muscle 

Atrophy 

Research and Exercise System 

MAUI 

Main Analysis of Upper-Atmospheric Injections 

Mb Megabit 
Mbps 

Megabit per second 

MBS 

Mobile Base System 

MBSU 

Main Bus Switching Unit 

MCA 

Major Constituent Analyzer 

MCC 

Mission Control Center 

MCC-H 

Mission Control Center 鈥 Houston 

MCC-M 

Mission Control Center 鈥 Moscow 

MCDS Multifunction 

Cathode-Ray Tube Display System 

MCS 

Mission Control System 

MDA 

MacDonald, Dettwiler and Associates Ltd. 

MDM Multiplexer/Demultiplexer 
MDP 

Management Data Processor 

MELFI 

Minus Eighty-Degree Laboratory Freezer for ISS 

MERLIN 

Microgravity Experiment Research Locker Incubator II 

MGB 

Middle Grapple Box 

Micro-2 Microbiology-2 
Microbe-1 

Microbial Dynamics in International Space Station 

MIP 

Mission Integration Plan 

MISSE 

Materials International Space Station Experiment 

MKAM 

Minimum Keep Alive Monitor 

MLE 

Middeck Locker Equivalent 

MLI Multi-layer 

Insulation 

MLM 

Multipurpose Laboratory Module 

MMOD Micrometeoroid/Orbital 

Debris 

MOD Modulator 
MON Television 

Monitor 

MPC 

Main Processing Controller 

MPESS 

Multi-Purpose Experiment Support Structure 

MPEV 

Manual Pressure Equalization Valve 

MPL 

Manipulator Retention Latch 

MPLM Multi-Purpose 

Logistics 

Module 

MPM Manipulator 

Positioning 

Mechanism 

MPV 

Manual Procedure Viewer 

MRM-1 Mini-Research 

Module-1 

MSD 

Mass Storage Device 

MSFC 

Marshall Space Flight Center 

MSL-CETSOL 

Material Science Laboratory 鈥 Columnar-to-Equiaxcol Transition in Solidification 

MSP 

Maintenance Switch Panel 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

91

 

MSS 

Mobile Servicing System 

MT Mobile 

Tracker 

 Mobile 

Transporter 

MTL 

Moderate Temperature Loop 

MUX Data 

Multiplexer 

Myco-2 

Mycological Evaluation of Crew Exposure to Space Station Ambient Air-2 

MyoLab Molecular 

Mechanism 

of 

Micrograivty-Induced Skeletal Muscle Atrophy 

n.mi. nautical 

mile 

NASA National 

Aeronautics 

and Space Administration 

NCS 

Node Control Software 

NET 

No Earlier Than 

NeuroRad 

Biological Effects of Space Radiation and Microgravity on Mammalian Cells 

Ni-H2 Nickel 

Hydrogen 

NLP 

National Lab Pathfinder 

NLP-Cells-4 

National Lab Pathfinder-Cells-4 

NLP-Vaccine-9 

National Lab Pathfinder-Vaccine-9 

NLT 

No Less Than 

NPGS 

Naval post Graduate School 

NPRV 

Negative Pressure Relief Valve 

NSV Network 

Service 

NTA 

Nitrogen Tank Assembly 

NTSC  National Television Standard Committee 
NUTRITION 

Nutritional Status Assessment 

OBSS 

Orbiter Boom Sensor System 

OCA 

Orbital Communications Adapter 

OCAD 

Operational Control Agreement Document 

OCAS 

Operator Commanded Automatic Sequence 

ODF 

Operations Data File 

ODS 

Orbiter Docking System 

OI Orbiter 

Interface 

OIU 

Orbiter Interface Unit 

OMS 

Orbital Maneuvering System 

OODT 

Onboard Operation Data Table 

OPT 

Operational Pressure Tranducers 

ORCA 

Oxygen Recharge Compressor Assembly 

ORU 

Orbital Replacement Unit 

OS Operating 

System 

OSA 

Orbiter-based Station Avionics 

OSE 

Orbital Support Equipment 

background image

 

92 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

OTCM 

ORU and Tool Changeout Mechanism 

OTP 

ORU and Tool Platform 

P3R Plants, 

Protocals, 

Procedures and Requirements 

P/L Payload 
PACE 

Preliminary Advanced Colloids Experiment 

PADLES 

Passive Dosimeter for Lifescience Experiment in Space 

PAL 

Planning and Authorization Letter 

PAM 

Payload Attach Mechanism 

PAO 

Public Affairs Office 

PAS 

Payload Adapter System 

PBA 

Portable Breathing Apparatus 

PCA 

Pressure Control Assembly 

PCBM 

Passive Common Berthing Mechanism 

PCN 

Page Change Notice 

PCS 

Portable Computer System 

PCU 

Plasma Contactor Unit 

 

Power Control Unit 

PDA 

Payload Disconnect Assembly 

PDB 

Power Distribution Box 

PDGF 

Power and Data Grapple Fixture 

PDH 

Payload Data Handling unit 

PDRS 

Payload Deployment Retrieval System 

PDU 

Power Distribution Unit 

PEC 

Passive Experiment Container 

PEHG 

Payload Ethernet Hub Gateway 

PEMS II 

Percutaneous Electrical Muscle Stimulator 

PFE 

Portable Fire Extinguisher 

PFRAM 

Passive Flight Releasable Attachment Mechanism 

PGSC 

Payload General Support Computer 

PIB 

Power Interface Box 

PIU 

Payload Interface Unit 

PLB Payload 

Bay 

PLBD 

Payload Bay Door 

PLC 

Pressurized Logistics Carrier 

PLT 

Payload Laptop Terminal 

 

Space Shuttle Pilot 

PM Pressurized 

Module 

 Pump 

Module 

PMA 

Pressurized Mating Adapter 

PMCU 

Power Management Control Unit 

PMU 

Pressurized Mating Adapter 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

93

 

POA 

Payload ORU Accommodation 

POR 

Point of Resolution 

PPRV 

Positive Pressure Relief Valve 

PRCS 

Primary Reaction Control System 

PREX Procedure 

Executor 

PRLA 

Payload Retention Latch Assembly 

PRO 

Payload Rack Officer 

PROX 

Proximity Communications Center 

psia 

Pounds per Square Inch Absolute 

PSP 

Payload Signal Processor 

PSRR 

Pressurized Section Resupply Rack 

PTCS 

Passive Thermal Control System 

PTR 

Port Thermal Radiator 

PTU Pan/Tilt 

Unit 

PVCU Photovoltaic 

Controller 

Unit 

PVM Photovoltaic 

Module 

PVR Photovoltaic 

Radiator 

PVTCS 

Photovoltaic Thermal Control System 

PWP 

Power Work Post 

QD Quick 

Disconnect 

R&MA 

Restraint and Mobility Aid 

RACU 

Russian-to-American Converter Unit 

RAM 

Read Access Memory 

RAMBO 

Ram Burn Observations 

RBVM 

Radiator Beam Valve Module 

RCC 

Range Control Center 

RCT 

Rack Configuration Table 

Repository 

National Aeronautics and Space Administration Biological Specimen Repository 

RF Radio 

Frequency 

RGA 

Rate Gyro Assemblies 

RHC 

Rotational Hand Controller 

RIC 

Rack Interface Controller 

RIGEX 

Rigidizable Inflatable Get-Away Special Experiment 

RIP 

Remote Interface Panel 

RLF 

Robotic Language File 

RLT 

Robotic Laptop Terminal 

RMS 

Remote Manipulator System 

ROEU 

Remotely Operated Electrical Umbilical 

ROM 

Read Only Memory 

R-ORU 

Robotics Compatible Orbital Replacement Unit 

background image

 

94 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

ROS 

Russian Orbital Segment 

RPC 

Remote Power Controller 

RPCM 

Remote Power Controller Module 

RPDA 

Remote Power Distribution Assembly 

RPM 

Roll Pitch Maneuver 

RS Russian 

Segment 

RSP 

Resupply Stowage Platform 

 

Return Stowage Platform 

RSR 

Resupply Stowage Rack 

RT Remote 

Terminal 

RTAS 

Rocketdyne Truss Attachment System 

RVFS 

Rendezvous Flight Software 

RWS Robotics 

Workstation 

SAFER 

Simplified Aid for EVA Rescue 

SAM 

SFA Airlock Attachment Mechanism 

SAPA 

Small Adapter Plate Assembly 

SARJ 

Solar Alpha Rotary Joint 

SASA 

S-Band Antenna Sub-Assembly 

SCU 

Sync and Control Unit 

SD Smoke 

Detector 

SDS 

Sample Distribution System 

SDTO 

Station Development Test Objective 

SEDA 

Space Environment Data Acquisition equipment 

SEDA-AP 

Space Environment Data Acquisition equipment 鈥 Attached Payload 

SEITE 

Shuttle Exhaust Ion Turbulence Experiments 

SELS 

SpaceOps Electronic Library System 

SEU 

Single Event Upset 

SFA 

Small Fine Arm 

SFAE SFA 

Electronics 

SGANT 

Space to Ground Antenna 

SGAnt 

Space to Ground Antenna 

SGTRC 

Space-to-Ground Transmit Receive Control 

SI Smoke 

Indicator 

SIMPLEX 

Shuttle Ionospheric Modification with Pulsed Localized Exhaust Experiments 

Sleep-Short 

Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Short 

SLM 

Structural Latch Mechanism 

SLP-D 

Spacelab Pallet 鈥 D 

SLP-D1 

Spacelab Pallet 鈥 Deployable 

SLP-D2 

Spacelab Pallet 鈥 D2 

SLT 

Station Laptop Terminal 

 

System Laptop Terminal 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

95

 

SM Service 

Module 

SMDP 

Service Module Debris Panel 

SOC 

System Operation Control 

SODF 

Space Operations Data File 

SODI-Colloid 

Selectable Optical Diagnostics Instrument 鈥 Aggregation of Colloidal 
Suspensions 

SODI-DSC 

Selectable Optical Diagnostics Instrument 鈥 Diffusion and Soret Coefficient 

SPA 

Small Payload Attachment 

SpaceDRUMS 

Space Dynamically Responding Ultrasonic Matrix System 

SPB Survival 

Power 

Distribution Box 

SPDA 

Secondary Power Distribution Assembly 

SPDM 

Special Purpose Dexterous Manipulator 

SPEC Specialist 
SRAM Static 

RAM 

SRB 

Solid Rocket Booster 

SRMS 

Shuttle Remote Manipulator System 

SSAS 

Segment-to-Segment Attach System 

SSC 

Station Support Computer 

SSCB 

Space Station Control Board 

SSE 

Small Fine Arm Storage Equipment 

SSIPC 

Space Station Integration and Promotion Center 

SSME 

Space Shuttle Main Engine 

SSOR Space-to-Space 

Orbiter 

Radio 

SSP 

Standard Switch Panel 

SSPTS 

Station-to-Shuttle Power Transfer System 

SSRMS 

Space Station Remote Manipulator System 

STC 

Small Fire Arm Transportation Container 

STEM Science, 

Technology, 

Engineering and Mathematics 

STL 

Space Tissue Lost 

STORRM 

Sensor Test for Orion Relative Navigation Risk Mitigation 

STR 

Starboard Thermal Radiator 

STS 

Space Transfer System 

STVC 

SFA Television Camera 

SVS 

Space Vision System 

SWAB 

Surface, Water, and Air Biocharacterization 

TA Thruster 

Assist 

TAC 

TCS Assembly Controller 

TAC-M 

TCS Assembly Controller 鈥 M 

TCA 

Thermal Control System Assembly 

TCB 

Total Capture Box 

TCCS 

Trace Contaminant Control System 

background image

 

96 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

TCCV 

Temperature Control and Check Valve 

TCS 

Trajectory Control Sensor 

 

Thermal Control System 

TCV 

Temperature Control Valve 

TDK 

Transportation Device Kit 

TDRS 

Tracking and Data Relay Satellite 

THA 

Tool Holder Assembly 

THC 

Temperature and Humidity Control 

 

Translational Hand Controller 

THCU 

Temperature and Humidity Control Unit 

TIU 

Thermal Interface Unit 

TKSC 

Tsukuba Space Center (Japan) 

TLM Telemetry 
TMA 

Russian vehicle designation 

TMR 

Triple Modular Redundancy 

TPL 

Transfer Priority List 

TRRJ 

Thermal Radiator Rotary Joint 

TUS Trailing 

Umbilical 

System 

TVC Television 

Camera 

UCCAS Unpressurized 

Cargo 

Carrier Attach System 

UCM 

Umbilical Connect Mechanism 

UCM-E 

UCM 鈥 Exposed Section Half 

UCM-P 

UCM 鈥 Payload Half 

UHF Ultrahigh 

Frequency 

UIL 

User Interface Language 

ULC 

Unpressurized Logistics Carrier 

ULF Utilization 

Logistics 

Flight 

UMA Umbilical 

Mating 

Adapter 

UOP 

Utility Outlet Panel 

UPC Up 

Converter 

USA 

United Space Alliance 

US LAB 

United States Laboratory 

USOS 

United States On-Orbit Segment 

UTA 

Utility Transfer Assembly 

VAJ 

Vacuum Access Jumper 

VBSP 

Video Baseband Signal Processor 

VCAM 

Vehicle Cabin Atmosphere Monitor 

VCU 

Video Control Unit 

VDS 

Video Distribution System 

VLU 

Video Light Unit 

background image

 

MAY 2010 

ACRONYMS/ABBREVIATIONS 

97

 

V02maX 

Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of V02max 

 

Before, During, and After Long Duration International Space Station Missions 

VNS 

Vision Navigation Sensor 

VPU 

Vegetable Production Unit 

VRA 

Vent Relief Assembly 

VRCS 

Vernier Reaction Control System 

VRCV 

Vent Relief Control Valve 

VRIV 

Vent Relief Isolation Valve 

VSU 

Video Switcher Unit 

VSW Video 

Switcher 

WAICO 

Waiving and Coiling 

WCL 

Water Cooling Loop 

WETA 

Wireless Video System External Transceiver Assembly 

WIF Work 

Interface 

WORF 

Window Observational Research Facility 

WRM 

Water Recovery and Management 

WRS 

Water Recovery System 

WS Water 

Separator 

 Work 

Site 

 Work 

Station 

WVA Water 

Vent 

Assembly 

Z1 Zenith 

One 

ZSR 

Zero-g Stowage Rack 

background image

 

98 ACRONYMS/ABBREVIATIONS 

MAY 

2010

 

This page intentionally blank 

background image

 

MAY 2010 

MEDIA ASSISTANCE 

99

 

MEDIA ASSISTANCE 

 

NASA TELEVISION TRANSMISSION 

NASA Television is carried on an MPEG

digital signal accessed via satellite AMC

6, at 

72 degrees west longitude, transponder 17C, 
4040 MHz, vertical polarization.  For those in 
Alaska or Hawaii, NASA Television will be 
seen on AMC

7, at 137 degrees west longitude, 

transponder 18C, at 4060 MHz, horizontal 
polarization.  In both instances, a Digital Video 
Broadcast, or DVB

compliant Integrated 

Receiver  Decoder,  or  IRD,  with  modulation  of 
QPSK/DBV, data rate of 36.86 and FEC 3/4 will 
be needed for reception.  The NASA Television 
schedule and links to streaming video are 
available at: 

http://www.nasa.gov/ntv 

NASA TV鈥檚 digital conversion will require 
members of the broadcast media to upgrade 
with an 鈥渁ddressable鈥 Integrated Receiver 
De

coder, or IRD, to participate in live news 

events and interviews, media briefings and 
receive NASA鈥檚 Video File news feeds on a 
dedicated Media Services channel.  NASA 
mission coverage will air on a digital NASA 
Public Services 鈥淔ree to Air鈥 channel, for which 
only a basic IRD will be needed. 

Television Schedule 

A schedule of key in

orbit events and media 

briefings during the mission will be detailed in 
a NASA TV schedule posted at the link above.  
The schedule will be updated as necessary and 
will also be available at: 

http://www.nasa.gov/multimedia/nasatv/ 

mission_schedule.html

 

Status Reports 

Status reports on launch countdown and 
mission progress, in

orbit activities and landing 

operations will be posted at: 

http://www.nasa.gov/shuttle 

This site also contains information on the crew 
and will be updated regularly with photos and 
video clips throughout the flight. 

More Internet Information 

Information on the ISS is available at: 

http://www.nasa.gov/station 

Information on safety enhancements made 
since the Columbia accident is available at: 

http://www.nasa.gov/returntoflight/ 

system/index.html 

Information on other current NASA activities is 
available at: 

http://www.nasa.gov 

Resources for educators can be found at the 
following address: 

http://education.nasa.gov 

background image

 

100 

MEDIA ASSISTANCE 

MAY 2010

 

This page intentionally blank 

background image

 

MAY 2010 

PUBLIC AFFAIRS CONTACTS 

101

 

PUBLIC AFFAIRS CONTACTS 

 

NASA HEADQUARTERS 
WASHINGTON, DC 

John Yembrick 
International Partners & Shuttle, 
Space Station Policy 
202-358-1100 

john.yembrick-1@nasa.gov

 

Michael Curie 
Shuttle, Space Station Policy 
202-358-1100 

michael.curie@nasa.gov

 

Stephanie Schierholz 
Shuttle, Space Station Policy 
202-358-1100 

stephanie.schierholz@nasa.gov

 

Joshua Buck 
Shuttle, Space Station Policy 
202-358-1100 

jbuck@nasa.gov

 

Michael Braukus 
Research in Space 
202-358-1979 

michael.j.braukus@nasa.gov

 

Ashley Edwards 
Research in Space 
202-358-1756 

ashley.edwards-1@nasa.gov

 

JOHNSON SPACE CENTER 
HOUSTON, TEXAS 

James Hartsfield 
News Chief 
281-483-5111 

james.a.hartsfield@nasa.gov

 

Kyle Herring 
Public Affairs Specialist 
Space Shuttle Program Office 
281-483-5111 

kyle.j.herring@nasa.gov

 

Rob Navias 
Program and Mission Operations Lead 
281-483-5111 

rob.navias-1@nasa.gov

 

Kelly Humphries 
Public Affairs Specialist 
International Space Station and Mission 
Operations Directorate 
281-483-5111 

kelly.o.humphries@nasa.gov

 

Nicole Cloutier-Lemasters 
Public Affairs Specialist 
Astronauts 
281-483-5111 

nicole.cloutier-1@nasa.gov

 

background image

 

102 

PUBLIC AFFAIRS CONTACTS 

MAY 2010

 

KENNEDY SPACE CENTER 
CAPE CANAVERAL, FLORIDA 

Allard Beutel 
News Chief 
321-867-2468 

allard.beutel@nasa.gov

 

Candrea Thomas 
Public Affairs Specialist 
Space Shuttle 
321-867-2468 

candrea.k.thomas@nasa.gov

 

Tracy Young 
Public Affairs Specialist 
International Space Station 
321-867-2468 

tracy.g.young@nasa.gov

 

MARSHALL SPACE FLIGHT CENTER 
HUNTSVILLE, ALABAMA 

Dom Amatore 
Public Affairs Manager 
256-544-0034 

dominic.a.amatore@nasa.gov

 

June Malone 
News Chief/Media Manager 
256-544-0034 

june.e.malone@nasa.gov

 

Steve Roy 
Public Affairs Specialist 
Space Shuttle Propulsion 
256-544-0034 

steven.e.roy@nasa.gov

 

STENNIS SPACE CENTER 
BAY ST. LOUIS, MISSISSIPPI 

Rebecca Strecker 
News Chief 
228-688-3249 

rebecca.a.strecker@nasa.gov

 

Paul Foerman 
Public Affairs Officer 
228-688-1880 

paul.foerman-1@nasa.gov

 

AMES RESEARCH CENTER 
MOFFETT FIELD, CALIFORNIA 

Mike Mewhinney 
News Chief 
650-604-3937 

michael.s.mewhinney@nasa.gov

 

Rachel Prucey 
Public Affairs Officer 
650-604-0643 

Rachel.L.Prucey@nasa.gov

 

Ruth Marlaire 
Public Affairs Officer 
650-604-4709 

ruth.marlaire@nasa.gov

 

Cathy Weselby 
Public Affairs Officer 
650-604-2791 

cathy.weselby@nasa.gov

 

Karen Hanner 
Public Affairs Officer 
650-604-4034 

karen.c.hanner@nasa.gov

 

background image

 

MAY 2010 

PUBLIC AFFAIRS CONTACTS 

103

 

DRYDEN FLIGHT RESEARCH CENTER 
EDWARDS, CALIFORNIA 

Kevin Rohrer 
Director, Public Affairs 
661-276-3595 

kevin.j.rohrer@nasa.gov

 

Alan Brown 
News Chief 
661-276-2665 

alan.brown@nasa.gov

 

Leslie Williams 
Public Affairs Specialist 
661-276-3893 

leslie.a.williams@nasa.gov

 

GLENN RESEARCH CENTER 
CLEVELAND, OHIO 

Lori Rachul 
News Chief 
216-433-8806 

lori.j.rachul@nasa.gov

 

Sally Harrington 
Public Affairs Specialist 
216-433-2037 

sally.v.harrington@nasa.gov

 

Katherine Martin 
Public Affairs Specialist 
216-433-2406 

katherine.martin@nasa.gov

 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

Marny Skora 
Head, Office of Communications 
757-864-6121 

marny.skora@nasa.gov

 

Keith Henry 
News Chief 
757-864-6120 

h.k.henry@nasa.gov

 

Kathy Barnstorff 
Public Affairs Officer 
757-864-9886 

katherine.a.barnstorff@nasa.gov

 

Amy Johnson 
Public Affairs Officer 
757-864-7022 

amy.johnson@nasa.gov

 

UNITED SPACE ALLIANCE 

Jessica Pieczonka 
Houston Operations 
281-212-6252 
832-205-0480 

jessica.b.pieczonka@usa-spaceops.com

 

Tracy Yates 
Florida Operations 
321-861-3956 
(c) 321-750-1739 

tracy.e.yates@usa-spaceops.com

 

background image

 

104 

PUBLIC AFFAIRS CONTACTS 

MAY 2010

 

BOEING 

Edmund G. Memi 
Manager, Communications 
The Boeing Co. 
Space Exploration Division 
281-226-4029 

edmund.g.memi@boeing.com

 

Adam Morgan 
Boeing 
International Space Station 
281-226-4030 

adam.k.morgan@boeing.com

 

JAPAN AEROSPACE EXPLORATION 
AGENCY (JAXA) 

Kumiko Sagara 
JAXA Public Affairs Representative 
Houston 
281-792-7468 

sagara.kumiko@jaxa.jp

 

JAXA Public Affairs Office 
Tokyo, Japan 
011-81-50-3362-4374 

proffice@jaxa.jp

 

CANADIAN SPACE AGENCY (CSA) 

Jean-Pierre Arseneault 
Manager, Media Relations & Information 
Services 
Canadian Space Agency 
514-824-0560 (cell) 

jean-pierre.arseneault@asc-csa.gc.ca

 

Media Relations Office 
Canadian Space Agency 
450-926-4370 


Document Outline