background image

W W W . S H U T T L E P R E S S K I T . C O M

U p d a t e d   J u l y   7 ,   2 0 0 0

Z V E Z D A

C O R N E R S T O N E   F O R   E A R L Y

H U M A N   H A B I T A T I O N   O F   T H E

I N T E R N A T I O N A L   S P A C E   S T A T I O N

background image

ZVEZDA TABLE OF CONTENTS

 

International Space Station Update: The ISS: Continued Assembly & 
Performance
 ..................................................................................................................

1

 

 
Zvezda Service Module: Cornerstone of Russia's International Space Station 
Modules .........................................................................................................................

5

 

 
The Proton Rocket: A Russian Booster for Early Station Components ................

25

 

 

Zvezda Launch Countdown

 ...........................................................................................................27 

 
Zvezda Orbital Events Summary

 ..................................................................................................30 

 

ISS Missions Accomplished

 ..........................................................................................................32 

 

Early Assembly Flights Overview

.................................................................................................34 

 

International Space Station Video Products

............................................................................42 

 

Media Assistance  .......................................................................................................

44

 

 
ISS Media Contacts   ...................................................................................................

46 

background image

Zvezda

 

 

 

 

Zvezda

 

 

Launch Date:

 

07/12/00

 

Launch Time:

 

12:56 AM eastern time

 

Vehicle:

 

Proton

 

Launch Site:

 

Baikonur Cosmodrome, Kazakhstan

 

Launch Window:

 

10:00

 

Altitude:

 

 

240 statute miles

 

Inclination:

 

51.6 degrees

 

Liftoff Weight:

 

Zvezda - 42,000 lbs; Proton - 1,540,000 lbs.

 

 

 

 

International Space Station Update 

 

The ISS: Continued Assembly and Performance 

 
When Zvezda reaches the International Space Station in July, the station will have 
completed more than 9,300 Earth orbits since the first two components were brought 
together in December 1998 beginning the largest and most complex international 
project ever undertaken. 

background image

Zvezda

 

 

 

 

Current International Space Station 

 
 

Quick Look Facts: Zvezda

 

 
Length (end-to-end) - 43 feet 
Gross launching weight - 42,000 pounds 
Launch vehicle - 3-stage Proton rocket 
Launch site - Baikonur Cosmodrome, Kazakhstan 
Inclination of orbit - 51.6 degrees 
Orbit at Rendezvous - 240 statute miles circular 
Wingspan - 98 feet 
Pressurized compartments - three 
Windows - 13 
 

background image

Zvezda

 

 

 

Zvezda Means "Star"

 

 
Zvezda (Russian word for Star), the primary Russian contribution to the ISS, is 
scheduled for launch July 12 from the Baikonur Cosmodrome in Kazakhstan.  In 
addition to serving as the early station living quarters, Zvezda will be the main docking 
port for Russian Progress cargo resupply vehicles.  It also will provide early propulsive 
attitude control and reboost capabilities for the station.  A remote-controlled, unpiloted 
Progress resupply module will follow on a logistics and reboost mission, with docking to 
the ISS planned for early August. 

 

Russian Service Module, Zvezda, photographed at RSC-Energia, Moscow 

 
 
The crew of the most recent logistics mission, STS-101/2A.2a, prepared ISS for 
Zvezda’s arrival.  The crew performed life-extension maintenance tasks on the Zarya 
module, and delivered supplies to the inside and outside of the station for use by future 
crews. 
 
The next mission to the ISS, STS-106/2A.2b, is scheduled for September and will see 
astronauts and cosmonauts continue to prepare the station for the arrival of its first 
houseguests – the Expedition One crew of William Shepherd, Yuri Gidzenko and Sergei 
Krikalev. 
 
Space Shuttle Discovery will be the platform for a major ISS assembly mission (ISS 3A), 
scheduled for a late September launch.  Its cargo will consist of the Boeing-built "Z1" 
truss and Pressurized Mating Adapter (PMA-3), four Control Moment Gyros (CMGs), 
and a Ku-band communication system. 

background image

Zvezda

 

 

 

 

Z1 truss will house four CMGs (above) that  will provide ISS attitude control 

 
 
The Z1 truss will house the four large gyroscopes that later will be activated to provide 
ISS attitude (orientation) control.  It also will serve as an early exterior framework where 
the first U.S.  solar arrays will be temporarily mounted for early power.  During the flight, 
astronauts will install a Ku-band communications system, which eventually will support 
early science, and U.S. television capability. 
 
Expedition One is scheduled for launch atop a Soyuz rocket from Baikonur in late 
October.  Their capsule will dock at the ISS two days later, connecting to the recently 
arrived Zvezda.  The crew will stay for about four months, performing installation, 
checkout and flight test duties.  They also will assist in continued ISS assembly.  Their 
replacement crew will arrive aboard the shuttle in February 2001.  The two crews will 
swap places, as the Expedition One crew returns on the shuttle, leaving the Soyuz 
capsule behind as an emergency return vehicle, if needed. 

 

ISS after completion of Mission 2R 

 
 
Today, 16 countries are members of the International Space Station Team: the United 
States, Russia, Japan, Canada, Italy, Belgium, The Netherlands, Denmark, Norway, 
France, Spain, Germany, Sweden, Switzerland, the United Kingdom, and Brazil. 

background image

Zvezda

 

 

 

Zvezda Service Module: Cornerstone of Russia's 
International Space Station Modules 

The Zvezda service module is the first fully Russian contribution to the International 
Space Station and serves as the cornerstone for early human habitation of the station.  
Named for the Russian word for ‘Star,’ the service module is scheduled to be launched 
unpiloted at 12:56:28 AM EDT on July 12 as the third station component, docking by 
remote control with the already orbiting Zarya and Unity modules at an altitude of about 
245 by 230 statute miles (394 x 371 kilometers). 
 
The 42,000-pound module, similar in layout to the core module of Russia’s Mir space 
station, will provide the early station living quarters; life support system; electrical power 
distribution; data processing system; flight control system; and propulsion system.  It 
also will provide a communications system that includes remote command capabilities 
from ground flight controllers. 

 

Zvezda provides life support, command and control and early living quarters to the ISS 

background image

Zvezda

 

 

 

 
Although many of these systems will be supplemented or replaced by later U.S. station 
components, Zvezda always will remain the structural and functional center of the 
Russian segment of the International Space Station. 
 
The module has a solar array wingspan of 98 feet tip to tip, and is 43 feet long from end 
to end.  Zvezda contains three pressurized compartments: a small, spherical Transfer 
Compartment at the forward end; the long, cylindrical main Work Compartment; and the 
small, cylindrical Transfer Chamber at the aft end.  An unpressurized Assembly 
Compartment is wrapped around the exterior of the Transfer Chamber at the aft of the 
module and holds external equipment such as propellant tanks, thrusters and 
communications antennas. 
 
The module includes four docking ports, one in the aft Transfer Chamber and three in 
the spherical forward Transfer Compartment -- one facing forward, one facing up and 
one facing down.  The aft docking port has a probe and cone docking mechanism to 
allow dockings by Progress resupply spacecraft and Soyuz piloted spacecraft.  Zvezda 
is also outfitted with an automated rendezvous and docking system.  The Zarya control 
module will dock to the forward docking port.  Other modules and equipment, including 
a Russian Science Power Platform and a Russian Universal Docking Module, 
eventually will occupy the remaining two forward docking ports. 
 
Living accommodations on Zvezda include personal sleeping quarters for the crew; a 
toilet and hygiene facilities; a kitchen with a refrigerator-freezer; and a table for securing 
meals while eating.  The module will have a total of 13 windows, including three 9-inch 
diameter windows in the forward Transfer Compartment for viewing docking activities; 
one large 16-inch diameter window in the Working Compartment; an individual window 
in each crew compartment.  Additional windows are positioned for Earth and 
intramodule observations.   
 
Exercise equipment will include a NASA-provided treadmill and a stationary bicycle.  
The crew’s wastewater and condensation water will be recycled for use in oxygen-
generating devices on the module, but it is not planned to be recycled for use as 
drinking water.  Spacewalks using Russian Orlan-M spacesuits can be performed from 
Zvezda by using the Transfer Compartment as an airlock.  The module also will provide 
data, voice and television communications with Mission Control Centers in Moscow and 
in Houston. 
 
Zvezda will be launched on a Russian Proton booster from the Baikonur Cosmodrome, 
Kazahkstan.  At launch, many systems will be in standby mode and will activate via 
preprogrammed commands onboard.  The solar arrays will be deployed as will various 
communications antennas. 
 

background image

Zvezda

 

 

 

The European Space Agency (ESA) provided the Data Management System, which 
serves as the "brain" of Zvezda.  This computer system not only will control service 
module functions, but also will provide control of Russian station elements as well as 
the guidance and navigation for the station until the launch of the U.S. Destiny 
laboratory on the STS-98 mission.  Destiny contains the systems, which will assume 
management and control of ISS operations.   
 
Control of the orientation of the ISS will be an integrated responsibility of both the U.S. 
and Russian elements with the service module continuing to provide propulsive 
capability for the ISS for activities such as the periodic reboost of the station.  Zvezda's 
navigation system will provide data to the motion control system of Destiny for U.S. 
commanding of ISS maneuvers until U.S. Global Positioning System hardware is 
delivered to the ISS on a future assembly flight. 
 
The Data Management System is the first European hardware to be delivered to ISS.  It 
was developed and manufactured in Europe by an industrial consortium led by Daimler-
Chrysler of Bremen, Germany.  ESA is supplying the system to the Russian partner in 
return for two flight-unit docking systems (no exchange of funds) for use with a later 
ESA element, the Automated Transfer Vehicle. 
 

Rendezvous and Docking

 

 
Once on orbit, Zvezda becomes the passive vehicle for a rendezvous with the already-
orbiting International Space Station comprised of the Zarya control module and the 
Unity module.  As the passive "target" vehicle, Zvezda will maintain a station-keeping 
orbit as Zarya performs the rendezvous and docking under ground control using the 
Russian automated rendezvous and docking system (Kurs). 
 
Following the docking, Zvezda assumes responsibility for attitude control and reboost.  
Many of the systems aboard Zarya are deactivated and the station’s first ISS 
component then serves primarily as a propellant storage facility and provider of 
pressurized volume for stowage. 
 
Approximately three weeks after ISS docking to Zvezda, the first Progress resupply 
vehicle will dock automatically to the rear of the service module, which contains a probe 
and drogue docking assembly.  Progress then will assume temporary responsibility for 
reboost and propulsive maneuvers of the ISS.  The Progress will transfer excess 
propellant to Zarya’s propellant tanks by lines routed through Zvezda. 
 
In the event the ISS cannot dock automatically with Zvezda, a two-man Russian 
cosmonaut crew would be launched on a Soyuz rocket from the Baikonur Cosmodrome 
about 15 days later on a mission to accomplish the docking manually. 
 

background image

Zvezda

 

 

 

The cosmonaut crew would dock its Soyuz capsule to the rear of Zvezda two days after 
launch, board the new module, and assemble a teleoperated rendezvous control 
system (TORU) in Zvezda.  Two days later, they would use the TORU system to guide 
the ISS toward Zvezda for a linkup. 
 
The flight plan calls for the cosmonauts to activate a number of service module systems 
before departing, in preparation for the arrival of a Progress resupply craft and the 
Shuttle Atlantis to outfit Zvezda during the STS-106 mission. 

 

 

An automatic sequence of computer commands on Zvezda will order deployment of 

antennas for its Kurs rendezvous and docking system, and for the Lira communications 

system 

background image

Zvezda

 

 

 

 
 

 

At about the same time, Zvezda's solar arrays are to deploy and immediately begin 

following the sun; meanwhile, automatic commands will order the activation of the 

module's major systems 

background image

Zvezda

 

 

 

10 

 
 

 

One orbit later, as the module flies high over Russian communications stations on the 
ground, Mission Controllers will verify the proper activation of the major systems; then 

they will command the drifting Zvezda into an orientation designed to minimize 

propellant usage while allowing the solar arrays to gather sunlight 

background image

Zvezda

 

 

 

11 

 
 

 

On the next ground station pass, controllers will reconfigure the module's on-board 

attitude sensors, activate it star tracker, and test the ability of a new communications 

system to relay information to Russian ground controllers 

background image

Zvezda

 

 

 

12 

 
 

 

Next day, when Zvezda again comes into the range of Russian ground stations, Flight 

Controllers will first command it to a different attitude, and later will test-fire its 

maneuvering engines 

 
 

 

background image

Zvezda

 

 

 

13 

 

That will set the stage for the following day's two firings of the module's main engines, 

raising Zvezda's orbit to approximately the altitude of the International Space Station 

 
 

 

background image

Zvezda

 

 

 

14 

 

Over the course of the next several days, controllers will first test the ability of the 

module's motion control system to orient the solar arrays while flying in darkness, and 

then test the efficiency of the solar arrays themselves.  They will also verify telemetry to 

and from the motion control system computer to ensure that Zvezda is ready to meet 

ISS 

 
 

 

background image

Zvezda

 

 

 

15 

 

A day prior to docking, Zvezda will be maneuvered to its docking orientation and its 

solar arrays moved into the proper docking position, to verify any impact that orientation 

will have on battery charging 

 
 

 

background image

Zvezda

 

 

 

16 

 

The next day the Kurs rendezvous system will be activated, and Zvezda will become the 

passive partner to the International Space Station as it moves toward a docking with its 

newest member 

 
 

 

background image

Zvezda

 

 

 

17 

 

With the Zarya module controlling, the station will chase and catch up to Zvezda.  

Ground commands through Zarya's automated rendezvous system, will slowly pull the 

station next to the module, and then capture Zvezda 

background image

Zvezda

 

 

 

18 

 
 

 

It will take approximately 25 minutes for the hooks and latches on the two modules to 
fully close, achieving a hard mate and adding a third module to the International Space 
Station.  Over the following 16 to 24 hours, Flight Controllers will closely monitor 
pressure between the newly-joined modules to ensure an airtight seal, and then they'll 
begin work to turn control of most station functions over from Zarya, its first component, 
to Zvezda, the future home of the permanent crews on the International Space Station 
 
 

background image

Zvezda

 

 

 

19 

International Partner Contribution

 

 
The international partners, Canada, Japan, the European Space Agency, and Russia, 
will contribute the following key elements to the ISS: 
 
Canada is providing a 55-foot-long robotic arm to be used for assembly and 
maintenance tasks on the Space Station. 

 

 

Canadian Robotics 

 
 

background image

Zvezda

 

 

 

20 

The European Space Agency is building a pressurized laboratory to be launched on the 
Space Shuttle and logistics transport vehicles to be launched on the Ariane 5 launch 
vehicle. 

 

 

ESA Columbus Lab 

 
 
 

background image

Zvezda

 

 

 

21 

Japan is building a laboratory with an attached exposed exterior platform for 
experiments, as well as logistics transport vehicles. 

 

 

Japan's Kibo Lab 

 
 
 

background image

Zvezda

 

 

 

22 

Russia is providing two research modules; the Service Module with its own life support 
and habitation systems; a science power platform of solar arrays that can supply about 
20 kilowatts of electrical power; logistics transport vehicles, and Soyuz spacecraft for 
crew return and transfer. 

 

 

Russian Segment 

 
 
 
In addition, Brazil and Italy are contributing some equipment to the ISS through 
agreements with the United States. 
 

background image

Zvezda

 

 

 

23 

Research on the International Space Station

 

 
The ISS will become an unprecedented state-of-the-art laboratory complex in orbit, 
more than four times the size and with almost 60 times the electrical power for 
experiments of Russia's Mir space station.  Research in the six ISS laboratories will lead 
to discoveries in medicine, materials and fundamental science that will benefit people all 
over the world.  Through its research and technology, the ISS also will serve as an 
indispensable step in preparation for future human space exploration. 
 
Examples of the types of U.S. research that will be performed aboard the station 
include: 
 

Protein crystal studies:

 More pure protein crystals may be grown in space than on 

Earth.  Analysis of these crystals helps scientists better understand the nature of 
proteins, enzymes and viruses, perhaps leading to the development of new drugs and a 
better understanding of the fundamental building blocks of life.  Similar experiments 
have been conducted on the Space Shuttle, although they are limited by the short 
duration of Shuttle flights.  This type of research could lead to the study of possible 
treatments for cancer, diabetes, emphysema and immune system disorders, among 
other research.   
 

Tissue culture:

 Living cells can be grown in a laboratory environment in space where 

they are not distorted by gravity.  NASA already has developed a Bioreactor device that 
is used on Earth to simulate, for such cultures, the effect of reduced gravity.  Still, these 
devices are limited by gravity.  Growing cultures for long periods aboard the station will 
further advance this research.  Such cultures can be used to test new treatments for 
cancer without risking harm to patients, among other uses. 
 

Life in low gravity:

 The effects of long-term exposure to reduced gravity on humans – 

weakening muscles; changes in how the heart, arteries and veins work; and the loss of 
bone density, among others â€“ will be studied aboard the ISS.  Studies of these effects 
may lead to a better understanding of the body’s systems and similar ailments on Earth.  
A thorough understanding of such effects and possible methods of counteracting them 
is needed to prepare for future long-term human exploration of the solar system.  In 
addition, studies of gravity's effects on plants, animals and the function of living cells will 
be conducted aboard the station.  A centrifuge, in the Centrifuge Accommodation 
Module, will use centrifugal force to generate simulated gravity ranging from almost zero 
to twice that of Earth.  This facility will imitate Earth’s gravity for comparison purposes; 
eliminate variables in experiments; and simulate the gravity on the moon or Mars for 
experiments that can provide information useful for future space travels. 
 

background image

Zvezda

 

 

 

24 

Flames, fluids and metal in space:

 Fluids, flames, molten metal and other materials 

will be the subjects of basic research on the station.  Flames burn differently without 
gravity.  Reduced gravity reduces convection currents, the currents that cause warm air 
or fluid to rise and cool air or fluid to sink on Earth.  This absence of convection alters 
the flame shape in orbit and allows studies of the combustion process that are 
impossible on Earth, a research field called combustion science.  The absence of 
convection allows molten metals or other materials to be mixed more thoroughly in orbit 
than on Earth.  Scientists plan to study this field, called materials science, to create 
better metal alloys and more perfect materials for applications such as computer chips.  
The study of all of these areas may lead to developments that can add value to many 
industries on Earth.   
 

The nature of space:

 Some experiments aboard the station will take place on the 

exterior of the station modules.  Such exterior experiments can study the space 
environment and how long-term exposure to space, the vacuum and the debris, affects 
materials.  This research can provide future spacecraft designers and scientists a better 
understanding of the nature of space and enhance spacecraft design.  Some 
experiments will study the basic forces of nature, a field called fundamental physics, 
where experiments take advantage of weightlessness to study forces that are weak and 
difficult to study when subject to gravity on Earth.  Experiments in this field may help 
explain how the universe developed.  Investigations that use lasers to cool atoms to 
near absolute zero may help us understand gravity itself.  In addition to investigating 
basic questions about nature, this research could lead to down-to-Earth developments 
that may include clocks a thousand times more accurate than today’s atomic clocks; 
better weather forecasting; and stronger materials. 
 

Watching the Earth:

 Observations of the Earth from orbit help the study of large-scale, 

long-term changes in the environment.  Studies in this field can increase understanding 
of the forests, oceans and mountains.  The effects of volcanoes, ancient meteorite 
impacts, hurricanes and typhoons can be studied.  In addition, changes to the Earth that 
are caused by the human race can be observed.  The effects of air pollution, such as 
smog over cities; of deforestation, the cutting and burning of forests; and of water 
pollution, such as oil spills, are visible from space and can be captured in images that 
provide a global perspective unavailable from the ground. 
 

Commercialization:

 As part of the commercialization of space research on the station, 

industries will participate in research by conducting experiments and studies aimed at 
developing new products and services.  The results may benefit those on Earth not only 
by providing innovative new products as a result, but also by creating new jobs to make 
the products. 

background image

Zvezda

 

 

 

25 

The Proton Rocket: A Russian Booster for Early 
Station Components 

 
The three-stage Russian Proton rocket that will be used to launch the first fully Russian 
contribution â€“ the Zvezda service module â€“ has successfully flown more than 200 times. 
 
The Proton originally was introduced in 1965 as a booster for heavy military payloads 
and for space stations.  It was designed by the Salyut Design Bureau and is 
manufactured by the Khrunichev State Research and Production Space Center in 
Moscow.  The Proton is among the most reliable heavy-lift launch vehicles in operation, 
with a reliability rating of about 98 percent.  In addition to Zvezda, the three-stage 
Proton was used to boost the first component of the International Space Station known 
as Zarya, or Sunrise, into orbit Nov. 20, 1998. 

 

The Zvezda service module atop the Proton booster 

 
 
With the Zvezda module, launch fairing and adapter in place atop the booster, the 
Proton measures about 180 feet tall, 24 feet in diameter at its widest point and weighs 
about 1,540,000 pounds when fully fueled for launch.  The engines use nitrogen 
tetroxide, an oxidizer, and unsymmetrical dimethyl hydrazine, a fuel, as propellants.  
The first stage includes six engines that are fed propellants from a single, center 
oxidizer tank surrounded by six outboard fuel tanks.  At launch, the first stage engines 
combine to provide about 1.9 million pounds of thrust.  The first stage, which measures 
about 68 feet long by 24 feet in diameter, burns out and is jettisoned two minutes, six 
seconds after launch at an altitude of 27 statute miles and traveling more than 3,700 
miles per hour. 
 
Four engines creating 475,000 pounds of thrust power the Proton’s second stage, which 
measures 56 feet long by 13.5 feet in diameter.  While the second stage is in operation, 
the protective fairing covering Zvezda for liftoff is jettisoned at three minutes, three 
seconds into the flight.  The second stage burns for a total of about three  minutes, 28 
seconds and is jettisoned at about five and half minutes after launch.  When the second 
stage is jettisoned, the spacecraft is at an altitude of about 86 miles, traveling more than 
9,900 miles per hour. 
 

background image

Zvezda

 

 

 

26 

The Proton's third and final stage measures 13.5 feet long by 13 feet in diameter, and is 
powered by a single engine that creates 125,000 pounds of thrust.  The third stage is 
jettisoned nine minutes, 47 seconds into the flight, at an altitude of 115 statute miles 
and traveling about 16,900 miles per hour.  Zvezda then will be in an elliptical orbit with 
a high point of 220 statute miles and a low point of 115 statute miles.  Firings of 
Zvezda's engines during the following days will raise the orbit to an altitude of about 240 
statute miles for the rendezvous and capture by the orbiting station under control of 
Zarya. 

Zvezda Proton Launch Profile 

 

Time Event 

Altitude 

Speed 

T-0 Liftoff  n/a  n/a 

T+2:06 

1st state jettison 

27 miles 

3,700 mph 

T+3:03 

Zvezda fairing jettison 

48 miles 

4,700 mph 

T+5:30 

2nd stage jettison 

86 miles 

9,900 mph 

T+9:47 

3rd stage jettison 

115 miles 

16,900 mph 

 
Orbit at 3rd stage jettison: approximately 115 x 220 statute miles 
Orbit at ISS rendezvous: 240 statute miles 

background image

Zvezda

 

 

 

27 

Zvezda Launch Countdown 

MET

 

GMT

 

 Eastern Time 

 

EVENT

 

T-8 hrs

 

2056:28

 

4:56:28 p.m.

 

-- Power up Proton booster avionics & verify 
condition of main avionics systems

 

T-7 hrs, 20 min

 

2136:28

 

4:36:28 p.m.

 

-- Power up 'Zvezda' command & control 
system heaters

 

T-7 hrs

 

2156:28

 

5:56:28 p.m.

 

-- Power up 'Zvezda' telemetry to verify 
onboard systems 
-- Start data recorders

 

T-6 hrs, 30 min

 

2126:28

 

5:26:28 p.m.

 

-- Turn off telemetry system and power down 
electric buses

 

T-6 hrs

 

22:56:28

 

6:56:28 p.m.

 

-- Begin loading Proton oxidizer (2 hrs, 40 min 
duration)

 

T-4 hrs, 20 min

 

0036:28

 

8:36:28 p.m.

 

-- Begin loading Proton propellant (1 hr, 10 
min duration)

 

T-2 hrs, 40 min

 

0216:28

 

10:16:28 p.m.

 

-- Thermal conditioning of Proton and 'Zvezda'

 

T-1 hr, 10 min

 

0346:28

 

11:46:28 p.m.

 

-- Retract service umbilical 
-- Ventilate & purge gas cavities of Proton 
propellant tanks 
-- Activate ground system electrical bus 
-- Set start time for launch sequence 
mechanism and synchronize it with the 
universal time system

 

T-1 hr, 5 min

 

0351:28

 

11:51:28 p.m.

 

-- Adjust Proton booster trajectory

 

T-1 hr

 

0356:28

 

11:56:28 p.m.

 

-- Power up ground station data handling 
complex 
-- Power up 'Zvezda' electrical buses and 
telemetry systems

 

T-45 min

 

0411:28

 

12:11:28 a.m.

 

-- 'Zvezda' launch sequence initiated

 

T-40 min

 

0416:28

 

12:16:28 a.m.

 

-- Radiotelemetry sy stem activated

 

T-35 min

 

0421:28

 

12:21:28 a.m.

 

-- Thermal control system activated

 

T- 33 min

 

0423:28

 

12:23:28 a.m.

 

-- Motion Control System activated in pre-
launch mode

 

T- 32 min

 

0424:28

 

12:24:28 a.m.

 

-- Final alignment of gyroscopes for required 
liftoff azimuth

 

T-30 min

 

0426:28

 

12:26:28 a.m.

 

-- Command and control system activated

 

T-25 min

 

0431:28

 

12:31:28 a.m.

 

-- Fine tuning of gyro-stabilized launch 
platform of the Proton's trajectory control 
system in the horizon plane and line of the 
azimuth

 

T-20 min

 

0436:28

 

12:36:28 a.m.

 

-- Trajectory measurement system activated

 

T-18 min

 

0438:28

 

12:38:28 a.m.

 

-- 'Zvezda' telemetry system activated

 

background image

Zvezda

 

 

 

28 

MET

 

GMT

 

 Eastern Time 

 

EVENT

 

T-15 min

 

0441:28

 

12:41:28 a.m.

 

-- Onboard telemetry monitoring system 
activated 
-- Thermal monitoring of Proton booster 
engines

 

T-12 min

 

0444:28

 

12:44:28 a.m.

 

-- Initiate rotation of gyro-stabilized platform of 
Proton trajectory control system

 

T-10 min

 

0446:28

 

12:46:28 a.m.

 

-- Ground systems ready

 

T-9 min

 

0447:28

 

12:47:28 a.m.

 

-- Power switched from ground to 'Zvezda' 
onboard batteries

 

T-8 min

 

0448:28

 

12:48:28 a.m.

 

-- Steering jets of all booster stages confirmed 
in 'zero position' 
-- Ground command receives 'control systems 
ready' message 
-- Ground command receives 'auxiliary 
systems read' message

 

T-5 min

 

0451:28

 

12:51:28 a.m.

 

-- Final launch operation program initiated

 

T-4 min

 

0452:28

 

12:52:28 a.m.

 

-- Telemetry monitoring system switched to 
onboard power supply

 

T-3 min, 30 sec

 

0452:58

 

12:52:58 a.m.

 

-- 'Zvezda' telemetry system recording 
activated

 

T-3 min

 

0453:28

 

12:53:28 a.m.

 

-- Power up of ground station recorders

 

T-2 min

 

0454:28

 

12:54:28 a.m.

 

-- Ground command receives 'main block 
ready' command

 

T-1 min

 

0455:28

 

12:55:28 a.m.

 

-- Ground station recorders activated

 

T-2.5 sec

 

0456:25.5

 

12:56:25.5 
a.m.

 

-- Time launch sequence mechanism issues 
ignition command for first stage engines 
-- Proton control system switched to onboard 
power supply

 

T-1.6 sec

 

0456:26.4

 

12:56:26.4 
a.m.

 

-- Onboard system issues full-thrust command 
to engines

 

T Zero

 

0456:28

 

12:56:28 a.m.

 

-- LAUNCH

 

+2 min, 6 sec

 

0458:34

 

12:58:34 a.m.

 

-- First stage separation (27.1 miles, 43.6 
kilometers)

 

+3 min, 3 sec

 

0459:31

 

12:59:31 a.m.

 

-- Launch shroud jettison (48.6 miles, 78.2 km 
- removal of Proton nose fairing) 
-- Shroud panels deploy two folded command 
and control antennae and the telemetry 
system antenna on 'Zvezda'

 

+5 min

 

0501:28

 

1:01:28 a.m.

 

-- Begin telemetry recording of 'Zvezda' 
module

 

+5 min, 34 sec

 

0502:02

 

1:02:02 a.m.

 

-- Second stage separation (85.9 miles, 138.3 
km)

 

+5 min, 50 sec

 

0502:18

 

1:02:18 a.m.

 

-- Prepare 'Zvezda' propulsion system for 
operations (30 seconds in duration)

 

background image

Zvezda

 

 

 

29 

MET

 

GMT

 

 Eastern Time 

 

EVENT

 

+9 min, 37 sec

 

0506:05

 

1:06:05 a.m.

 

-- Third stage main engine shutdown 
command initiated

 

+9 min, 47 sec

 

0506:15

 

1:06:15 a.m.

 

-- Third stage separation command (114.9 
miles, 185 km) 
-- Third stage steering jet is deactivated 
-- Pyro locks securing 'Zvezda' to booster are 
released 
-- Third stage solid body fuel jets fire to 
separate booster from 'Zvezda'

 

+9 min, 49 sec

 

0506:17

 

1:06:17 a.m.

 

-- 'Zvezda' command and control system 
activated 
-- External elements deployment program 
initiated

 

+10 min, 5 sec

 

0506:33

 

1:06:33 a.m.

 

-- Fire pyro pins to deploy 'Kurs' docking 
system antennae

 

+10 min, 9 sec

 

0506:37

 

1:06:37 a.m.

 

-- Deactivate telemetry system used during 
ascent

 

+10 min, 11 sec

 

0506:39

 

1:06:39 a.m.

 

-- Start spin-up of control system gyro motors

 

+10 min, 37 sec

 

0507:05

 

1:07:05 a.m.

 

-- Initiate 'Kurs' rendezvous antennae 
deployment 
-- 'Lira' telemetry antenna deployment

 

+12 min, 20 sec

 

0508:48

 

1:08:48 a.m.

 

-- Initiate trim of residual angular rates (27 
seconds in duration)

 

+13 min, 20 sec

 

0509:48

 

1:09:48 a.m.

 

-- Solar array deployment (two minutes in 
duration)

 

 

background image

Zvezda

 

 

 

30 

Zvezda Orbital Events Summary 

Launch reference date is July 12, 2000  

FLIGHT 

DAY

 

DATE

 

EVENT

 

1

 

07/12/00

 

-- Launch, ascent, orbit insertion 
-- Antennae/solar array deploy 
-- Motion Control System activation 
-- Systems activation 
-- Propulsion system preparation 
-- Star tracker activation and test 
-- External black and white television camera test

 

2

 

07/13/00

 

-- Verification burn #1 (approx. one meter per second) 
-- Verification burn #2 (approx. one m/s) - Preparations for 
flight day three orbit raising burns 
-- Solar array test (first set of drive motors) - verifies accuracy 
of solar array positioning 
-- Inertial navigation system telemetry test 
-- Star tracker navigation system test

 

3

 

07/14/00

 

-- Maneuver to attitude for raising burns 
-- Perform two orbit raising burns (approx. 16 m/s and 26 m/s) 
-- Solar array test (second set of drive motors) - verifies 
accuracy of solar array positioning

 

4

 

07/15/00

 

-- Maneuver to burn attitude 
-- Perform one orbit correction burn (approx. four m/s) 
-- 'Regul' telemetry system test

 

6

 

07/17/00

 

-- Motion Control System test 
-- Inertial navigation system test 
-- Battery cycling test 
-- External black and white television camera test

 

8

 

07/19/00

 

-- Zvezda maneuvered to inertial docking attitude 
-- Zvezda, 'Kurs' and 'Regul' systems tests

 

9

 

07/20/00

 

-- Telemetry analysis 
-- Zvezda battery current measurements 
-- Solar array system test 
-- Zarya's Motion Control System activated

 

11

 

07/22/00

 

-- ISS maneuvered to initial docking attitude

 

background image

Zvezda

 

 

 

31 

FLIGHT 

DAY

 

DATE

 

EVENT

 

13

 

07/24/00

 

-- Two Zvezda rendezvous burns 
-- Zarya Motion Control System activated 
-- Zarya docking mechanism extended 
-- Unity systems powered down 
-- ISS orbital correction burn 
-- Unity systems reactivated 
-- Zarya Motion Control System deactivated

 

14

 

07/25/00

 

-- One Zvezda orbit correction burn 
-- Zarya Motion Control System activated 
-- Final Zvezda maneuver to docking attitude 
-- ISS orbital correction burn 
-- Zvezda automatic rendezvous system (Kurs) activated 
-- Solar arrays locked for docking  
-- ISS (Zarya) automatic rendezvous system (Kurs) activated 
-- ISS DOCKING TO ZVEZDA 
-- Solar arrays resume Sun tracking 
-- Zarya Motion Control System deactivated 
-- Hooks between Zarya and Zvezda closed for hard mate 
-- Zvezda assumes attitude control of the ISS complex

 

 

background image

Zvezda

 

 

 

32 

ISS Missions Accomplished - Four Flights Completed 

 
The International Space Station is in good shape without any significant problems as it 
hurtles at a speed of more than 17,000 mph (27,300 kph), circling Earth about every 92 
minutes in an orbit of 245 by 230 statute miles (394 x 371 kilometers).  The Station 
currently weighs about 74,000 pounds and will weigh about 1 million pounds when 
completed. 
 
The first module, Zarya, was launched by Russia’s Proton rocket from the Baikonur 
Cosmodrome in Kazakhstan on Nov. 20, 1998 (ISS flight 1A/R).  Two weeks later, on 
Dec. 4, Space Shuttle Endeavour carried America’s Unity module into orbit (ISS flight 
2A). 
 
Two astronauts completed the linkup of the first two modules during three spacewalks 
totaling 21 hours, 22 minutes and prepared the ISS for future assembly missions.  
Endeavour returned home Dec. 15. 
 
On May 27, 1999, the first logistics mission (ISS 2A.1) got under way with the launch of 
Space Shuttle Discovery.  More than 2,000 pounds of supplies and hardware was 
loaded aboard the ISS to await future crews that would live on the station. 
 
During the mission’s only spacewalk, the initial pieces of a Russian cargo crane Strela 
("Arrow") and a U.S. crane were attached to the outside of the station during a seven 
hour, 55 minute spacewalk.  Discovery returned home June 6, 1999. 

 

Astronaut James Newman performs EVA on STS-88 

 
 

background image

Zvezda

 

 

 

33 

Atlantis launched a crew of seven on May 19, 2000, carryin g more supplies and 
maintenance equipment to ISS.  This fourth mission dedicated to the ISS Program (ISS 
2A.2a) was designed to prepare the station for the next station module, the Russian-
built Zvezda service module, scheduled for launch in mid July from Baikonur.  The crew 
spent five days docked to the ISS delivering more supplies, while conducting 
maintenance tasks to restore the station’s electrical power system back to full 
redundancy.  More than 2,000 pounds of supplies were left onboard for use by 
astronauts and cosmonauts scheduled to begin permanent residence by the late fall of 
this year. 
 
Two crewmembers spent more than six and a half hours outside Atlantis completing a 
variety of planned assembly and maintenance tasks on ISS.  The EVA marked the fifth 
spacewalk conducted for construction of ISS.   
 
The launch was Atlantis' first since September 1997 following major modifications, 
including installation of a state-of-the-art, glass cockpit filled with computer displays to 
replace the old cockpit dials and switches. 

background image

Zvezda

 

 

 

34 

Early Assembly Flights Overview 

 

Zarya control module

 

 

 

Zarya 

 
 
Launched Nov. 20, 1998, from the Baikonur Cosmodrome, Kazakhstan, Zarya is 
providing the early propulsion, steering and communications for the station until Zvezda 
arrives.  Afterward, Zarya is used as a passageway, stowage facility, docking port and 
fuel tank. 
 

background image

Zvezda

 

 

 

35 

Unity Node

 

(Shuttle Mission STS-88) 

 

Zarya/Unity 

 
 
The first wholly U.S. component was launched Dec. 4, 1998, aboard Space Shuttle 
Endeavour.  Unity provides six docking ports, one on each side.  With Zarya 
permanently attached to one of those, the remaining five will serve as attach points, to 
which all future U.S. modules will be joined. 
 

Logistics Flight

 

(Shuttle Mission STS-96) 
Discovery launched May 27, 1999 and docked with the ISS two days later.  Aboard was 
2,000 pounds of supplies and logistics to prepare the orbiting facility with equipment that 
eventually will be used by crews that live aboard for long durations.  It was the second 
shuttle mission dedicated to the assembly and outfitting of the station. 
 

background image

Zvezda

 

 

 

36 

Maintenance/Logistics Flight

 

(Shuttle Mission STS-101) 
Atlantis returned to space on May 19, 2000, following two years of upgrades, including a 
newly designed, state-of-the-art forward cockpit.  It’s cargo included more than 2,000 
pounds of supplies and equipment to extend the lifetime of the Zarya module.  During 
the mission, four of six batteries and associated electrical components were swapped to 
restore the electrical power system to full redundancy.  This was the third shuttle flight 
for station assembly. 
 

Zvezda service module

 

 

 

Service Module attached 

 
 
Zvezda will be the core of the Russian segment when launched in July 2000.  The ISS 
performs an automatic rendezvous and docking with Zvezda, which provides living area, 
life support, navigation, propulsion and communications through the early assembly 
phases.  It then will assume most of Zarya’s functions. 
 

Logistics Flight

 

(Shuttle Mission STS-106) 
Atlantis returns to the ISS after the arrival of the Zvezda to provide additional supplies 
and serve as the first opportunity for astronauts and cosmonauts to enter the newest 
module after it becomes a permanent part of the station.  Crewmembers not only will 
unload supplies from the shuttle, but also from a recently docked Progress vehicle.  The 
mission currently is targeted for launch in September 2000. 
 

background image

Zvezda

 

 

 

37 

Gyroscopes and Framework

 

(Shuttle Mission STS-92) 

 

 

Framework, docking adapter added 

 
 
Launch of Discovery carrying the first small piece of truss structure and the station’s 
gyroscopes is scheduled for late September 2000.  The Z1 truss (a piece of the girder-
like truss), four Control Moment Gyros, and an additional conical docking adapter will 
make up the cargo for this second major shuttle assembly mission.  The framework 
houses critical electronics and communications equipment, and the gyroscope systems 
that eventually will replace thrusters to maintain the station's stability.  The shuttle's 
robot arm will be used to attach the framework and docking adapter.  Next, astronauts 
will perform several spacewalks to make final connections.   
 

First Crew

 

The Expedition One crew heads to the ISS in late October or early November to begin 
the permanent human presence on the station.  Astronaut William Shepherd, and 
cosmonauts Yuri Gidzenko and Sergei Krikalev will travel to the station aboard a 
Russian Soyuz spacecraft from the Baikonur Cosmodrome, Kazakhstan.  Shepherd 
serves as the Expedition Commander, Gidzenko is the Soyuz Commander and Krikalev 
the Flight Engineer.  They will dock with the station two days after launch and begin a 
stay of about four months.  Their mission will be to activate life support systems and 
experiments, while continuing stowage and checkout of the new station.  They also will 
assist with the continuing assembly and conduct the first station-based spacewalks from 
Zvezda’s forward airlock.  The first crew will return to Earth on a shuttle, leaving the 
Soyuz that launched them docked at the station as an emergency "lifeboat" for the next 
crew. 
 

background image

Zvezda

 

 

 

38 

Solar Power

 

(Shuttle Mission STS-97) 

 

 

First solar arrays attached to ISS 

 
 
 
The focus of Endeavour’s mission is to add the first pair of giant solar arrays and 
batteries to the station.  Scheduled for launch in November 2000, the shuttle will deliver 
this first of four pairs of solar energy grabbing arrays to dramatically increase the 
electricity available for use by future components and modules.  This pair of solar arrays 
sets the stage for a major expansion of the station: arrival of the U.S. Destiny 
laboratory.  The shuttle crew will conduct a pair of spacewalks to complete connections 
of the solar arrays. 
 

background image

Zvezda

 

 

 

39 

U.S. Destiny Laboratory

 

(Shuttle Mission STS-98) 

 

 

U.S. Laboratory attached 

 
 
Atlantis’ flight to the ISS is set for January 2001, to deliver the first scientific research 
laboratory.  The U.S. Destiny laboratory is the centerpiece of future research activity on 
the International Space Station.  Astronauts will use the shuttle’s robot arm to maneuver 
the new laboratory into position on the station.  The installation will be completed during 
three spacewalks to finish the installation. 
 

Lab Outfitting/Crew Exchange Flight

 

(Shuttle Mission STS-102) 
Discovery’s launch in February 2001 will see the orbiter dock with the station carrying 
interior supplies and equipment racks housed in a reusable Italian-built logistics module 
named Leonardo.  The mission will highlight the first exchange of crews on the ISS with 
the Expedition One crew being replaced by the Expedition Two crew of Yuriy Usachev, 
Susan Helms and Jim Voss. 
 

background image

Zvezda

 

 

 

40 

Canadian Robot Arm

 

(Shuttle Mission STS-100) 
Endeavour heads to the ISS again in April 2001 carrying Canada’s Space Station 
Remote Manipulator System (SSRMS) and the second of three reusable multi-purpose 
logistics modules supplied by Italy named Rafaello.  The new station arm will be 
attached during the mission while the Multipurpose Logistics Module (MPLM) is 
attached to the station, unloaded and then returned to Earth.  Rafaello will hold 
equipment to finish the interior construction of the Destiny laboratory.  The Canadian 
robotic arm will assist with most future assembly activities. 
 

Spacewalking Airlock

 

(Shuttle mission STS-104) 

 

Station airlock attached 

 
 
Atlantis will launch in May 2001 to deliver the joint airlock to the International Space 
Station, which will enable station-based extravehicular activity (EVA) using both U.S. 
and Russian spacesuits.  The addition of the airlock signals the completion of the early 
phase of station assembly in orbit, meaning the orbiting station has taken on a degree 
of self-sufficiency and capabilities for full-fledged research in the attached laboratory 
module.  The final phase of assembly will continue into 2005 when the crew size will 
expand to seven.  Other elements that will be added to complete assembly are the 
Japanese Laboratory, Kibo (meaning Hope); the European Attached Pressurized 
Module; a Centrifuge; and a crew habitation module. 

background image

Zvezda

 

 

 

41 

 

ISS Assembly complete 2005 

Wingspan - 365 feet, 108 meters 

Length - 262 feet, 80 meters 

Mass - one million pounds, 454,000 kilograms 

Crew size - up to seven 

Laboratories - six 

 
 

background image

Zvezda

 

 

 

42 

International Space Station Video Products 

Video Resource Reels: Loosely edited comprehensive materials created for use 
by News Media as B-roll: 
 
International Space Station Animation Resource Reel â€“ June 2000 
Reference Master # 618324 JSC # 1834 
Cut sheet available

 

This video resource reel contains the latest animation of the International Space Station, 
including the just released animation of the Zvezda service module.  The tape begins 
with a sequence illustrating a space shuttle docking with the complete station, then 
continues with station fly-around views, scenes showing the construction of the station â€“ 
from early supply missions to assembly missions, in which the giant pieces of the 
station are maneuvered into place by the shuttle robot arm.  There is animation of the 
first station crew’s Soyuz arriving, the space station robot arm, solar arrays tracking the 
sun and close-up views of modules representing the different participating countries.  
The video concludes with a step-by-step animation depicting the latest approved 
assembly plan of the station. 
 

International Space Station General Resource Reel â€“ July 2000 
Reference Master # 618326 JSC # 1833 
Cut sheet available

 

This comprehensive reel includes all major recent station video, including new 
animation of the complete station, actual footage of the Zarya (first element) launch, 
STS-88 Highlights of the first station assembly mission to join the Zarya and Unity 
modules in space, STS-96 and STS-101 mission highlights, Zvezda service module, 
STS-92 Animation of Z-1 and PMA installation, Z-1 truss video, STS-97 animation of P6 
Solar array installation and deploy, Solar panel at KSC, Long Spacer at KSC, new 
Expedition One crew training with Orlan and American suits training underwater at JSC, 
the Expedition One crew training in Russia, U.S. Lab footage at KSC and Marshall, 
Multi Purpose Logistics Module at KSC, new footage of the Canadian robot arm, the 
U.S. Airlock , ISS Solar array, Japanese Experiment module, Animation of the 
Columbus Attached Pressurized Module, new TransHab animation and real video of 
testing at JSC, U.S. Hab video from Marshall, X-38 free flight test from March 5, 1999, 
and finally, animation of the REV E assembly sequence.   
 

ISS Zvezda Service Module Resource Reel â€“ June 2000 
Ref. Master# 618325 JSC # 1832

 

The Zvezda Service Module Resource Reel includes animation of the Zvezda in orbit; 
and animation of the ISS (Zarya/Unity) rendezvousing and docking with Zvezda.  It also 
includes Zvezda under construction at the Khrunichev State Research and Production 
Space Center in Moscow, Russia, Oct. 1997, then earlier in 1996 and 1995.  Also 
includes future space station crews touring the Service Module. 

background image

Zvezda

 

 

 

43 

Narrated productions: 

 
 

International Space Station Video Progress Report â€“ July 1999: A Home in Space 
Ref. Master # 617401 JSC # 1799

 

This complete video gives the viewer a glance at all the important achievements 
accomplished so far with the International Space Station.  The program begins with an 
illustration of the "Brick Moon," a man-made structure that appeared in a magazine 
article at the turn of the century.  Dreams become reality as a real home in space orbits 
the earth…The International Space Station.  The video includes highlights from the first 
assembly mission to unite the modules Zarya and Unity, highlights from STS-96 (2A.1) 
and their supply transfer and EVA on the station, updates on future station crews, 
focusing on Bill Shepherd and Expedition One, updates on hardware, including: the 
Service Module Zvezda, Z-1 truss, the Lab, the Canadian robot arm, Solar arrays, 
Leonardo, the U.S. Airlock, the S-0 Truss, the Japanese Kibo module and the 
Columbus Attached Pressurized Module.  Also featured is the MEIT…where station 
components are hooked together by cable to verify how well they work together at the 
Space Station Processing Facility at KSC.  The video closes with views of the complete 
station in orbit, reminding the viewer that an age-old dream of a home in space has 
come true. 
 

Go for Assembly: Building the International Space Station â€“ September 1997 
Reference Master # 614249 JSC # 1674

 

This video presentation explores the assembly of the International Space Station and 
what NASA has done to prepare for this new era of space walks, or EVA.  The video 
looks back at past EVA Flight Development Tests to trace the evolution of space suits 
and EVA tools and hardware.  The viewer gets a behind the scenes look at the 
underwater training taking place for the space walks in the Neutral Buoyancy Lab.  Also, 
the program takes a look at robots and the role they will play in station assembly.  
Animation illustrates the future Station robot arm, and the AERCAM robot.  Finally, the 
video looks ahead to the benefits that can be derived from learning how to build a 
station, as humankind prepares to once again leave Earth orbit and explore other 
planets. 

background image

Zvezda

 

 

 

44 

Media Assistance Information 

 

NASA Television Transmission

 

NASA Television is available through the GE2 satellite system, which is located on 
Transponder 9C, at 85 degrees west longitude, frequency 3880.0 MHz, audio 6.8 MHz. 
 

Status Reports

 

NASA’s Johnson Space Center will issue status reports on countdown, launch and on-
orbit activities. 
 

Briefings

 

Press briefings will be held prior to launch and during the free-flight portion of Zvezda’s 
mission.  These briefings will be announced as far in advance as possible. 
 

Internet Information

 

Information is available through several sources on the Internet.  The primary source for 
mission information is the NASA Human Spaceflight Home Page.  This site contains 
information on virtually all aspects of the International Space Station and Space Shuttle 
Programs.  The site is updated regularly with status reports, photos and video clips 
throughout the flight.  The address is: 

http://spaceflight.nasa.gov 

 
 
If that address is busy or unavailable, information is available through the Office of 
Space Flight Home Page: 

http://www.hq.nasa.gov/osf/ 

 
 
General information on NASA and its programs is available through the NASA Home 
Page and the NASA Public Affairs Home Page: 

http://www.nasa.gov 

 

or 

 

http://www.nasa.gov/newsinfo/index.html 

 

background image

Zvezda

 

 

 

45 

 
Information on other NASA activities is available through the Today at NASA page: 

http://www.nasa.gov/today.html 

 
 
The daily NASA Television schedule is available at: 

http://www.nasa.gov/ntv 

 
 
During Space Shuttle missions, the NTV schedule is available at: 

http://spaceflight.nasa.gov/realdata/nasatv 

 
 
Status reports, TV schedules and other information also are available from the NASA 
Headquarters FTP (File Transfer Protocol) server, ftp.hq.nasa.gov.  Log in as 
anonymous and go to the directory /pub/pao.  Users should log on with the user name 
"anonymous" (no quotes), then enter their E-mail address as the password.  Within the 
/pub/pao directory there will be a "readme.txt" file explaining the directory structure: 
 
NASA Spacelink, a resource for educators, also provides mission information via the 
Internet.  Spacelink may be accessed at the following address: 

http://spacelink.nasa.gov 

 
 

Access by Compuserve

 

Users with Compuserve accounts can access NASA press releases by typing "GO 
NASA" (no quotes) and making a selection from the categories offered. 

background image

Zvezda

 

 

 

46 

International Space Station Media Contacts 

 

National Aeronautics and Space Administration

 

 

NASA Headquarters, Washington D.C 
 
Debra Rahn 
Phone: (202) 358-1638 
Fax: (202) 358-2983 
E-mail: debra.rahn@hq.nasa.gov 
 
Dwayne Brown 
Phone: (202) 358-1726 
Fax: (202) 358-2983 
E-mail: dwayne.brown@hq.nasa.gov 

 

NASA Human Space Flight Programs, Russia 
 
Carlos Fontanot 
Phone: (256) 961-6225 (office at MCC-M) 
Phone: (256) 961-6233 (fax at MCC-M) 
E-mail: carlos.fontanot1@jsc.nasa.gov 

 

Johnson Space Center, Houston TX: 
 
Kyle Herring 
Phone: (281) 483-5111 
Fax: (281) 483-2000 
E-mail: kyle.j.herring1@jsc.nasa.gov 

 

Kennedy Space Center, FL: 
 
George Diller 
Phone: (407) 867-2468 
Fax: (407) 867-2692 
E-mail: george.diller-1@ksc.nasa.gov 

 

background image

Zvezda

 

 

 

47 

Marshall Space Flight Center, Huntsville AL: 
 
Steve Roy 
Phone: (256) 544-6535 
Fax: (256) 544-5852 
E-mail: Steve.Roy@msfc.nasa.gov 

 

Glenn Research Center, Cleveland OH: 
 
Sally Harrington 
Phone: (216) 433-2037 
Fax: (216) 433-8143 
E-mail: s.harrington@grc.nasa.gov 

 

International Partners

 

 

Russian Aviation and Space Agency, Moscow, Russia: 
Press Office 
Phone: 011-7-095-975-4458 
Fax: 011-7-095-975-4781 

 

Canadian Space Agency, St. Hubert, Quebec, Canada: 
Anna Kapiniari 
Phone: (450) 926-4350 
Fax: (450) 926-4352 
E-mail: anna.kapiniari@space.gc.ca 

 

European Space Agency, Washington D.C.: 
Jane Mellors 
Phone: (202) 488-4158 
Fax: (202) 488-4930 
E-mail: jmellors@ewo.esa.int 

 

European Space Agency, Paris, France: 
Clare Mattok 
Phone: 011-33-1-5369-7412 
Fax: 011-33-1-5369-7690 
E-mail: cmattok@hq.esa.fr 

 

background image

Zvezda

 

 

 

48 

National Space Development Agency of Japan, Tokyo, Japan: 
Keiichi Yamada 
Phone: 011-81-3-3438 6104 
Fax: 011-81-3-5402 6513 
E-mail: yamada.keiichi@nasda.go.jp 

 

The Boeing Company

 

 
Kari Kelley Allen 
Phone: (281) 336-4844 
Fax: (281) 336-5254 
E-mail: kari.k.allen@boeing.com

 

 

 

 

 

 

Updated: 07/7/2000

  

 


Document Outline