background image

Roche ltée, Groupe-conseil 
INRS-Eau 

HYDROLOGICAL AND WATER QUALITY ASSESSMENT

 

Petitcodiac Watershed

 

TECHNICAL REPORT

 

  

 

        

___________________

___________________   

     

Your Environmental Trust Fund at Work! 

     

Votre Fonds en fiducie pour l’Environnement au travail! 

 

background image

TABLE OF CONTENTS 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

i

List of tables ............................................................................................................................. iii 

List of figures............................................................................................................................ iv 

Project team..............................................................................................................................v 

1.0 

Introduction ...................................................................................................................6 

1.1  Context..........................................................................................................................6 

1.2  Objectives .....................................................................................................................6 

2.0 

Drainage basin..............................................................................................................7 

2.1  Geology and soil types .................................................................................................7 

2.2  Main land uses..............................................................................................................8 

2.3  main water uses............................................................................................................8 

3.0 

Methods ........................................................................................................................9 

3.1  Meteorological analysis ................................................................................................9 

3.2  Hydrological analysis ....................................................................................................9 

3.3  Water quality ...............................................................................................................11 

3.3.1  Data collection..................................................................................................11 

3.3.2  Data analysis ....................................................................................................11 

4.0 

Results ........................................................................................................................13 

4.1  Climate........................................................................................................................13 

4.1.1  Air Temperature ...............................................................................................13 

4.1.2  Precipitation......................................................................................................13 

4.2  Flows...........................................................................................................................13 

4.2.1 Basic statistics ...................................................................................................13 

4.2.2 Flow duration analysis .......................................................................................14 

4.2.3 Flood and low flow frequency analysis .............................................................15 

4.2.4 Transposition of data to ungauged basins ........................................................16 

5.0 

Water Quality ..............................................................................................................17 

5.1  Descriptive statistics...................................................................................................17 

5.2  Comparison to Canadian Water Quality Guidelines (CWQG)...................................17 

background image

TABLE OF CONTENTS 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

ii

5.3  Spatial Variability (1997-2000) ...................................................................................18 

5.4  Temporal variability (1975-1979 and 1997-2000) ......................................................18 

6.0 

References..................................................................................................................20 

Appendices

 

Appendix I 

List of water quality stations in the Petitcodiac River watershed 

Appendix II 

Raw data  

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

iii

LIST OF TABLES 

 

Table 1.  Petitcodiac sub-catchments, with drainage basin areas. .......................................22 

Table 2. Summary of water quality data collection. ...............................................................22 

Table 3. Air temperature statistics from the Moncton Airport during the two periods of 

interest..............................................................................................................23 

Table 4. Precipitation (mm) statistics from the Moncton airport, during the periods of 

interest..............................................................................................................24 

Table 5.  Hydrological characteristics of the Petitcodiac River at Causeway and Turtle 

Creek. ...............................................................................................................25 

Table 6. Annual flow statistics, stations 01BU002 (Petitcodiac) and 01BU003 (Turtle 

Creek)...............................................................................................................26 

Table  7. Flow duration analysis (using daily discharge in m3/s, from 1962-2000) and 

mean monthly flows for Turtle Creek. ..............................................................27 

Table  8. Flow duration analysis (using daily discharge in m3/s, from 1961-2000) and 

mean monthly flows for the Petitcodiac River at the Causeway

1

. ...................27 

Table 9. Flood Frequency analysis of Turtle Creek and the Petitcodiac River (at 

Causeway) using different statistical distributions. Floods shown in m

3

/s......28 

Table 10. Low-flow  Frequency analysis of Turtle Creek and the Petitcodiac River (at 

Causeway) using different statistical distributions. Flows shown in m

3

/s.......28 

Table 11. Mean, flood and low flows (m

3

/s) for sub-basins of the Petitcodiac watershed, 

pro-rated from stations 01BU002 and 01BU003. ............................................29 

1

 Including Humphrey Brook ...................................................................................................29 

Table 12. Water quality results â€“ Descriptive statistics..........................................................30 

Table 13. Comparison of water quality data to the Canadian Water Quality Guidelines, 

by period. ..........................................................................................................34 

Table 16. Cluster analysis based on inorganic parameters.  List of waterbodies by 

cluster...............................................................................................................37 

Table 17. Cluster analysis based on organic and nutrient parameters.  List of 

waterbodies by cluster. ....................................................................................38 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

iv 

 

LIST OF FIGURES 

 

Figure 1.  Map of the Petitcodiac watershed showing locations of sampling and 

hydrometric stations.........................................................................................39 

Figure 2.  Mean annual discharge at stations 01BU002 and stations 01BU003.  Lines 

show trends with 5-year means.......................................................................40

Figure 3. Results of cluster analysis based on a) inorganic parameters and b) organic 

and nutrient parameters. Parameters used in the analysis are listed in 
tables 14 and 15. The dendrogram shows the degree of similarity 
between the different water bodies within the Petitcodiac watershed. 
Hierarchical clustering using average linkage. ................................................41

Figure 4. Temporal variations in selected water quality parameters in the Petitcodiac 

River, 1975-2000. Graphics show individual values and quantile boxes 
(10

th

, 25

th

, 50

th

, 75

th

, and 90

th

  quantiles). .........................................................42 

Figure 5. Temporal variations in selected water quality parameters in the Petitcodiac 

River, 1975-2000. Graphics show individual values and quantile boxes 
(10

th

, 25

th

, 50

th

, 75

th

, and 90

th

  quantiles). .........................................................43 

Figure 6. Monthly variations in selected water quality parameters in the Petitcodiac 

River, 1997-200 ................................................................................................44

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

 

 

PROJECT TEAM  

 

Petitcodiac Watershed Monitoring Group:

 

Éric Arseneau,  M.A.    

Coordinator 

Alyre Chiasson, Ph.D.  

Chairperson  

 

Roche Ltée, Groupe-conseil: 

Bernard Massicotte, M.Sc. 

Biologist 

 

INRS-Eau, Chair in Statistical Hydrology: 

Bernard Bobée, Ph.D.  

Director 

Taha Ouarda, Ph.D.    

Professor 

André St-Hilaire, Ph.D. 

Research Associate 

 

New Brunswick Department of the Environment and Local Governments 

Sheila Gouger, B.Sc.   

Chemist 

Reference to be cited:  

St-Hilaire, A., B. Massicotte, A., B. Bobée, T. Ouarda, E. Arseneau, A. Chiasson.  2001. 

Petitcodiac Watershed Monitoring: Water quality and hydrological analysis. Report 

produced by Roche Ltée, Groupe-conseil and INRS-Eau on behalf of the Petitcodiac 

Watershed Monitoring Group. 46 p. 2 appendices. 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

6

 

1.0 INTRODUCTION 

1.1  C

ONTEXT

 

The Petitcodiac River is located in Southeastern New Brunswick.  It has a drainage basin 

area of 1999 km

2

, which is home to approximately 120 000 people, most of whom live in the 

Greater Moncton area.  

One of the main features of this river system is the presence of a causeway.  It was built in 

1968, when it became obvious that the Gunningsville Bridge could not sustain the growing 

traffic between Moncton and Riverview.  The presence of the causeway has changed the 

hydrodynamic conditions in the river system. A debate on how to best manage these 

changes and their effects has been ongoing for a number of years.  For this reason, a lot of 

attention has been devoted to this river system by the media, various government 

departments (both federal and provincial) and the scientific community in recent years.  

In 1997, the Petitcodiac Watershed Monitoring Group (PWMG) was founded with a mandate 

to establish and support a network of volunteers who will conduct long-term water quality 

monitoring in the Petitcodiac watershed (Frenette, 2000).  Since then, water quality data has 

been gathered by the PWMG at various locations in the watershed.  The PWMG has also 

collected historical water quality data.  These past and more recent data allow for spatial and 

temporal analysis of the water quality in the Petitcodiac drainage basin.  Water sample 

collection and analyses have been carried out in partnership with ELG.  In 1999, the PWMG 

received funding from the Environmental Trust Fund (ETF) to carry out a two-year water 

classification project. 

The Petitcodiac Watershed Monitoring Group has therefore hired Roche Ltd, with the 

assistance of the Chair in statistical hydrology (INRS-EAU, Université du Québec) to produce 

a report on water quality data measured on the Petitcodiac watershed.   

1.2  O

BJECTIVES

 

The main objective of this mandate is to summarize and interpret the water quality data 

collected from the Petitcodiac River and some of its tributaries.  More specifically, the 

analyses are aimed at comparing water quality both spatially (i.e. comparisons between 

stations on the watershed, and temporally (i.e. comparisons between the two sampling 

periods).  In order to facilitate the interpretation of water quality data, an analysis of the 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

7

prevailing meteorological (i.e. rain and air temperature) and hydrological (i.e. freshwater 

flows) conditions were also included. 

This first report focuses on a brief description of the methodology and the results of the 

analyses.  A second report will be produced to summarize the technical information gathered 

here for a larger, non-technical audience. 

 

2.0 DRAINAGE BASIN 

From its headwaters to the causeway, the Petitcodiac drainage basin covers a surface of 

1360 km

2

 (Figure 1).  Downstream of this structure, the Petitcodiac estuary is modulated by a 

very important tidal range, leaving very little water at low tide and rapidly increasing to depths 

greater than 3 m at high tide.  The main sub-basins (i.e. drainage area greater than 290 km

2

include the Polett River, North River, and Little River (Table 1).  The medium-sized tributaries 

(drainage area between 100 km

2

 and 200 km

2

) include Turtle Creek, the Anagance River, 

and Halls Creek (including Humphrey Brook). Other smaller brooks and streams also 

discharge into the Petitcodiac River.  They include Jonathan Creek in Moncton, Fox Creek in 

Dieppe, as well as Mill Creek and Weldon Creek (Table 1). 

2.1  G

EOLOGY AND SOIL TYPES

 

The bedrock on the drainage basin is mostly composed of Pennsylvanian (or younger) red 

and grey sandstones, conglomerate and siltstones.  On the north shore of the Petitcodiac 

River, and in the upper reaches of the Anagance River, the North River and the other 

tributaries on the north shore, the bedrock is mostly made of Mississippian red to grey 

sandstones, and shales with some volcanic rocks.  Similar geological formations are found in 

the southern part of the basin, around the Memramcook River and on the Weldon Creek sub-

basin (New Brunswick Department of Natural Resources, map #NR-1, 1979). 

During the late quaternary era, most of the Petitcodiac drainage basin was under sea level, 

with the DeGeer Sea (extending from the current Bay of Fundy) covering the southern part of 

the basin and the Goldthwait Sea (extending from the current Northumberland Strait) 

covering the northern part of the basin. 

Most of the basin is characterised by topsoils (first 0.5 m) made of veneer (sand and silt, with 

some clay), under which there is usually ablation moraines.  Near the main river banks, 

however, the intertidal plains and salt marshes have soils composed mostly of clay and silt, 

with some fine sand (Geological survey of Canada, map 1594A, 1982). 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

8

2.2 

LAND USE

 

The City of Moncton Engineering Department has collected land use data for the Greater 

Moncton Planning district.  These data have been used in a Geographical Information 

System (GIS) to produce land use maps.  The information found in these maps is 

summarized here.  Detailed maps of land use will also be provided in the second report to be 

produced. 

The Petitcodiac watershed is mostly a forested territory, especially in its southern portion.  

Logging is an important industry in the area.  Older forests can usually be found in the upper 

reaches of the tributaries located on the south shore of the Petitcodiac.  The lower reaches 

have been subjected to logging.  The forest in the lower portion of these sub-basins is 

therefore mostly composed of plantations, young forests and regenerating areas.  

Agriculture is concentrated along the shores of the Petitcodiac and its tributaries, especially 

in the northern portion of the basin.  Lands in the vicinity of the Anagance and North Rivers 

are mostly agricultural.  There is also some agricultural activity along the Pollett and Little 

Rivers.  Turtle Creek is used as the main drinking water source for the Greater Moncton area 

(Moncton, Dieppe and Riverview).  Most of its drainage basin is forested, except for the lower 

reaches near its confluence with the Petitcodiac, which is agricultural.   

The largest urban area is the Greater Moncton area with a total population nearing 100 000.  

It surrounds the lower reaches of  Halls Creek and Jonathan Creek  in Moncton, as well as 

Fox Creek in Dieppe. The presence of an old dumpsite on the north shore of the river 

between the Gunningsville Bridge and the causeway, has recently been a cause of concern 

and was mentioned as a potential threat to water quality, should there be a major erosion of 

the river banks at the site. Two other urbanized areas are found upstream of Moncton, along 

the shore of the Petitcodiac.  The town of Petitcodiac is located near the confluence of the 

North and Anagance Rivers, and the town of Salisbury is located near the confluence of the 

Little River and the Petitcodiac River.  

2.3 

MAIN WATER USES

 

As stated before, water quality in the upper reaches of Turtle Creek is of the upper-most 

importance, because it is the main source of drinking water for the Greater Moncton area.  In 

the city of Moncton, Jonathan Creek has an important recreational mission.  The creek is a 

central feature in Centennial Park and water quality in Halls creek has been a cause for 

concern in the past.  

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

9

Upstream of the causeway, Lake Petitcodiac (the reservoir) is used by boaters for 

recreational purposes.  Angling (mostly for trout) is also popular throughout the river system, 

upstream of the causeway.   

Downstream of the causeway, on the south shore, the collected sewage of the cities of 

Moncton, Riverview and Dieppe is received in the tidal portion of the river.  There is some 

seasonal commercial fishing (gaspereau, shad and smelt) downstream of Moncton, in the 

estuary. 

 
3.0 METHODS 

3.1  M

ETEOROLOGICAL ANALYSIS

 

Statistical analyses of meteorological parameters focused on the two variables, which are 

more likely to cause variations in water quality, namely air temperature and precipitation. 

Data provided originated from the Moncton airport, and essentially covered the months of 

May to September for the years 1975-1977 and 1997-2000. Data for the months of April, 

October and November were provided for some years. Basic descriptive statistics (mean, 

minimum, and maximum) were computed with the available data for the periods of interest, 

on a monthly basis. 

Time series were tested for homogeneity (i.e. no significant change in means between two 

periods, 1975-1977 and 1997-2000) using the Wilcoxon signed rank test (Wilcoxon,  1945, 

1946; Hollander and Wolfe, 1973) for the mean. The Levene test (Levene 1960) was used to 

verify if there were shifts in the variance between two data sub sets (i.e. two periods). 

3.2  H

YDROLOGICAL ANALYSIS

 

Two gauging stations, operated by Environment Canada are located on the watershed 

(Figure 1).  Station 01BU002, on the Petitcodiac River, near Petitcodiac (lat. 45º 56’ 37’’, 

long. 65º 10’ 13’’)  has a gauged drainage area of 391 km

2

.  Station 01BU003, on Turtle 

Creek (lat. 45º 57’ 29’’, long. 64º 52’ 44’’), is on a tributary of the Petitcodiac River located on 

the South Shore, with its confluence upstream of the Causeway. The gauged area for this 

station is 129 km

2

.  

The Petitcodiac River has been gauged since September 1961, while flow measurements 

were initiated in Turtle Creek in September 1962. 

Caissie (2000) has performed a detailed hydrological analysis of daily flows from station 

01BU002.  This analysis included flow duration and frequency analysis.  Results produced by 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

10 

Caissie (2000) are summarized in the next section.  In order to be consistent, most of the 

analyses performed by Caissie (2000) on station 01BU002 were repeated for station 

01BU003 (Turtle Creek), which is the other gauged station on the basin.  Basic descriptive 

statistics (monthly mean flows, annual means, and variance) were also calculated. 

Methods used include a study of the variability of annual runoff, analysis of independence 

within the time series, flow duration analysis and high and low flow frequency analyses. 

The Wald-Wolofowitz test (Wald and Wolfowitz, 1943), used by Caissie (2000) on the 

Petitcodiac River flows, was performed on Turtle Creek data to verify the hypothesis that 

daily flow observations were independent from one another.  The Kendall test (Kendall, 

1975)  was used to verify stationarity (i.e. no trend in the time series), and 5-year moving 

averages were calculated and used as a smoothing technique to describe potential long-term 

variability.  The Wilcoxon rank test (Wilcoxon, 1945, 1946; Hollander and Wolfe, 1973) was 

used to verify homogeneity of the sample sets. Associated p-values (p) were calculated and 

used to accept or reject the null hypotheses at a level of 5% (á = 0.05) 

Monthly flow duration analysis were performed to show the distribution of discharge as a 

function of exceedance, in accordance with the method used by Caissie (2000) for station 

01BU003.  The percentage of time a specific discharge is equalled or exceeded was 

calculated for the entire time series at Turtle Creek. 

High and low flow analyses were carried out using Turtle Creek data, and the same analyses 

performed by Caissie (2000) on the Petitcodiac data were reproduced.  Annual floods (i.e. 

maximum daily discharge) were identified and used by fitting different distribution functions to 

determine the frequency of discharge events.  Caissie (2000) used four (4) distribution 

functions,  three (3) of which are used in this report: The Three Parameter Lognormal (LN3), 

The Type 1 Extremal (Gumbel), and the Log-Pearson Type III (LP3) distribution functions. 

Low flow frequency analysis at station 01BU003 with the same method used by Caissie 

(2000) on station 01BU002.  The Type III Extremal (T3E) distribution function was used and 

the return periods of low daily discharge events were calculated.   

The frequency analyses and most statistical tests were done using the HYFRAN software 

(Bobée et al. 1999) developed at INRS-EAU. 

Finally, some of the results of the statistical and frequency analyses were transferred from 

the reference stations to ungauged sub-basins using the ratio of drainage areas.  It was 

assumed, for a first attempt at extrapolating hydrological information, that basic rainfall-runoff 

conditions, which depend on the basin topography, stream network and land uses, were 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

11 

relatively homogenous throughout the basin.  Discharge can then be estimated using the 

following equation: 

g

u

g

u

A

A

Q

Q

=

 

Where:  

Q

g

 

= discharge of the gauged drainage basin (m

3

/s); 

Q

u

 

= discharge of the ungauged drainage basin (m

3

/s); 

A

i

 

= Area of drainage basin (km

2

). 

 

3.3  W

ATER QUALITY

 

3.3.1 

Data collection 

Water quality data were collected at two different periods, 1975-79 and 1997-2000. The first 

series of data were obtained by the New Brunswick Department of the Environment while the 

second series were collected by both the Petitcodiac Watershed Monitoring Group (PWMG) 

and the New Brunswick Department of Environment and Local Government (ELG, formerly 

DOE). A summary of sampling events is presented in table 2. All water samples were grab 

samples collected by hand with the exception of samples taken from the causeway in 1997, 

which were collected by a sample iron in one or two occasions.  

Field observations were recorded by the volunteers on site and the field data sheets given to 

ELG staff who recorded them in their database. In 1997-98, fall field measurements were 

carried out using LaMotte kits (water temperature, pH and dissolved oxygen). In 1999 and 

2000, dissolved oxygen measurements were made using a YSI instrument. The sampling 

events carried out by the volunteers were usually carried out on the last Sunday of each 

month. The samples were placed in coolers, packed with ice, and delivered to Fredericton 

either by bus or by courier. They arrived at the Analytical Services Laboratory of the 

Department of the Environment and Local Government the next morning where they were 

preserved and analysed according  to accepted protocol. Metals results given are for total 

extractable metals. 

3.3.2 

Data analysis 

Water quality data were extracted from the ELG water quality database. Four data sets were 

used in this study. The first comprises the data gathered during the 1975-1979 period. The 

second corresponds to the 1997-2000 period. Two additional data sets were included in the 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

12 

analysis. These data sets contained additional data from the Jonathan Creek sub-basin and 

bacterial data for the year 1997. 

Prior to statistical treatment, all values lower than detection limit were recoded to half the 

value of the detection limit for a given parameter (Newman 1989). This step was performed 

in order to allow the computation of the various descriptive statistics (percentiles, means, 

etc.). Similarly, coliform results reported as above a given value were re-coded to that value. 

The descriptive statistics were calculated for the entire database, where the two periods of 

sampling (1975-77 and 1997-2000) were combined. 

For each of the  two sampling periods, data have been compared to the Canadian Water 

Quality Guidelines (CCME 1999) for the protection of aquatic life. The data have been 

analysed in order to calculate the frequency at which these guidelines were exceeded during 

the two periods.  

The database comprises a total of over 600 sampling events carried out at 45 different 

locations in the watershed. In order to summarise the information, cluster analyses 

(Legendre and Legendre 1984) have been performed using the sampling events as objects 

and water quality parameters as descriptors. The aim of these analyses is to address the 

spatial variability of water quality within the watershed, by calculating the degree of similarity 

between the different water bodies. The end result is the formation of clusters of information 

(i.e. stations or water bodies) with similarities.  Only the 1997-2000 data have been used in 

order to control the temporal variability. The cluster analyses have been performed on the 

average values for each waterbody for the period. The calculations were done using the 

hierarchical agglomeration method with average linkage (SAS JMP, v.3). 

Temporal variability has been examined at two different time scales, multi-year and monthly. 

In both cases a subset of stations were selected in order to control spatial variability. Stations 

with the most extensive records were thus selected. For multi-year comparisons, two sets of 

stations were used: those on the Petiticodiac River and on Jonathan Creek, which were 

analysed separately. For monthly comparisons, the analysis used the data from four stations 

of the Petitcodiac: stations PWMG # 4, 10, 15 & 16. 

  

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

13 

4.0  RESULTS 

4.1  C

LIMATE

 

4.1.1  Air Temperature 

Monthly air temperature maximum, minimum and means were calculated for the two periods 

of interest (1975-1977 and 1997-2000; Table 3).  Typically, mean air temperatures increase 

from around 10 °C in May to close to 20 °C in July and August (Table 3).  By October, mean 

monthly air temperatures have typically decreased to the mid teens.  The highest monthly 

mean temperature between May and September for both periods was 20.6 Â°C (July 1975).  

The lowest monthly mean temperature occurred in May 1977 (9.0 °C). 

Daily air temperatures from the earlier (1975-1977) and later period (1997-2000) were 

compared and tested for shifts in means and variance.  Both tests (i.e. Levene for variance 

and Wilcoxon for means) showed no significant differences in the monthly means (0.06 < p < 

0.62) or variances (0.15 < p < 0.44) of air temperatures during the months of May through 

September.  This implies that the air temperature regime can likely be considered similar for 

the two periods of interest. 

4.1.2  Precipitation 

Total solid and liquid precipitation was calculated from available data at the Moncton airport 

during the two periods of interest.  1977 was the year with the wettest spring and summer 

(May-September) period with a total of 591 mm of rain, followed by 1999 with 514 mm of rain 

(Table 4).  The driest spring and summer period occurred in 1997 with only 389 mm of rain.   

Daily precipitation of the earlier (1975-1977) and latter period (1997-2000) were compared 

on a monthly basis and tested for stationarity.  Both tests (i.e. Levene for variance and 

Wilcoxon for means) showed no significant differences (p = 0.7 for mean and p= 0.11 for 

variance) in the precipitation regime during the months of May through September.  This 

means that the precipitation regime can be considered equivalent for the two periods of 

interest. 

4.2  F

LOWS

 

4.2.1 Basic statistics 

From the time series of daily flows, the mean annual discharge of the Petitcodiac River at the 

causeway was calculated by Caissie (2000) to be 27.3 m

3

/s, while it was calculated to be 3.6 

m

3

/s for Turtle Creek (Table 5).  These mean flows translate to specific discharge of 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

14 

0.02 m

3

/s/km

2

 (20 L/s/km

2

) and 0.03 m

3

/s/km

2

 (30 L/s/km

2

) respectively.  The median flow 

(flow available 50% of the time) was also calculated and was found to be 11.9 m

3

/s on the 

Petitcodiac at the causeway, and 1.7 m

3

/s for Turtle Creek.  

Daily discharge measured  in Turtle Creek ranged between a minimum of 0.14 m

3

/s and a 

maximum of 96 m

3

/s. For the Petitcodiac River at the causeway, Caissie (2000) found the 

range of discharge to be between 0.36 m

3

/s and 730 m

3

/s. When converted to specific 

discharge, the minimum flow in Turtle Creek (1.1 L/s/km

2

) is higher than the minimum flow in 

the Petitcodiac River (0.3 L/s/km

2

).  Maximum specific discharge in Turtle Creek 

(750  L/s/km

2

) is 1.4 times higher than the maximum discharge measured in the Petitcodiac 

River (540 L/s/km

2

).   

Maximum, minimum and mean annual discharges were also calculated for each year at both 

stations (Table 6). As reported by Caissie (2000), the highest mean annual flows were 

recorded for both stations during the late 1970s and early 1980s. This trend is especially 

visible when looking at five-year moving average for station 01BU002 (Petitcodiac River, 

Figure 2).  Minimum mean annual flows were reached in the late 1980s at station 01BU002 

(Figure 2).  Between 1985 and 1989, mean annual flows were consistently less than 

7.9 m

3

/s, which is the mean for the entire period of measurement.  On Turtle Creek, the 

same period was also characterised by annual means below the average 0f 3.57 m

3

/s for the 

entire period of observation (Table 6).   

4.2.2 Flow duration analysis 

Monthly flow duration analyses were performed for Turtle Creek (station 01BU003, Table 7) 

and for the entire Petitcodiac drainage basin at the causeway (from Caissie 2000, Table 8) 

using historical data.  The highest observed value (0% exceedance) reached a maximum in 

November (96.3 m

3

/s) and March (91.8 m

3

/s) at Turtle Creek (Table 7), while they were in 

April (730 m

3

/s) and January (414 m

3

/s) for the Petitcodiac River at the Causeway (Table 8).   

Monthly means show that the lowest mean monthly  discharge occurred in August and 

September at Turtle Creek (0.77 m

3

/s; and 0.79 m

3

/s respectively, Table 7).  For the entire 

basin, the monthly means for the same months are 7.68 m

3

/s and 7.10 m

3

/s respectively 

(Caissie 2000).  Table 7 shows that the monthly means at Turtle Creek are exceeded 

between 30% and 40% of the time during the spring months (March to June), while they are 

typically exceeded between 20% and 30% of the time for the other months.  For the 

Petitcodiac River at the Causeway, mean monthly flows are exceeded 30% of the time in 

April and November, and 20% of the time for the other months (Table 8). 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

15 

4.2.3 Flood and low flow frequency analysis 

Prior to performing flood frequency analyses, a Kendall test for stationarity was performed on 

the Turtle Creek data, which revealed that there is no significant trend in the flow time series 

of station 01BU003 (



K



 = 0.762, p = 0.45). When the data set from Turtle Creek was split in 

two sub-samples (1962-1983 and 1983-2000), a Wilcoxon test also confirmed that the 

means of the two sub-samples were not different (



W



 = 0.836, p = 0.40). 

Caissie (2000) had found a small decreasing trend in the annual flood data of the Petitcodiac 

River at the causeway, which is attributed to the high flood value of 1962 (730 m

3

/s).   

As described in section 3, flood data (annual maximum daily flows) were fitted with three 

different distribution functions (LN3, Gumbel, LP3) using the method of moments.  Results 

showed that the estimated 2-year flood ranged between 36.6 m

3

/s and 37.1 m

3

/s at Turtle 

Creek (Table 9).  For the same recurrence interval, floods for the Petitcodiac at the 

Causeway were calculated to be between 287 m

3

/s and 284 m

3

/s (Caissie 2000).   A 100-

year flood at Turtle Creek varied between 93.4 m

3

/s and 95.7 m

3

/s, while it was calculated to 

be between 617 m

3

/s and 673 m

3

/s for the Petitcodiac River at the causeway (Table 9). 

Prior to performing a low flow analysis on Turtle Creek, stationarity was verified using the 

Kendall test (Kendall, 1975). No significant  trends were found (



K



 = 1.31, p = 0.19). The 

Wilcoxon test revealed that the low flow series is not homogenous. When split in two series 

(1962-1983 and 1984-2000), means of the sub-samples were shown to be significantly 

different at a confidence level of 5%, but not significantly different at a confidence level of 1% 

(



K



 = 2.23, p = 0.026). Further analysis was carried out by applying the bayesian 

procedure, proposed initially by Lee and Heghinian (1977), adapted by Ouarda et al. (1999) 

for the analysis of hydrometric data, and revised by Perreault et al. (2000) for the detection of 

shifts in the mean of hydrological and meteorological time-series. This procedure provides an 

approach to characterise when and by how much a single change has occurred in a 

sequence of random variables.  

Results of this approach show that there is a strong (p=0.98) probability that a shift in the 

means of annual low flows occurred in the time series.  The mode of the distribution of 

probable years of occurrence of this shift is 1984 (standard deviation of 6.8 years).  The 

mode of the distribution of means prior to the shift is 0.37 m

3

/s, while the mode for the 

distribution of means after the shift is 0.27 m

3

/s. 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

16 

Based on the conclusions of the Bayesian analysis of low flow time series, it was decided to 

break the time series in two subsets (1962-1984 and 1984-2000), and to perform separate 

low flow frequency analysis for each subset. 

The Type 3 Extremal distribution (T3E) was fitted to annual minimum flows at Turtle Creek 

(two subsets) and for the Petitcodiac River at the Causeway (Table 10). For the first period 

(1962-1983) a two-year low flow was calculated to be 0.37 m

3

/s.  For the second period, 

(1984-2000) a two-year low flow was 0.28 m

3

/s at Turtle Creek. Low flows with recurrence 

periods of 5 years at Turtle Creek were calculated to be 0.26 m

3

/s for the first period and 

0.19 for the second (Table 10).   

For the Petitcodiac River at the Causeway, Caissie (2000) calculated the two-year low flow to 

be 1.4 m

3

/s and the 10-year low flow to be 0.68 m

3

/s (Table 10).   

This hydrological information will assist in explaining water quality fluctuations in the context 

of fluctuating flows. 

4.2.4 Transposition of data to ungauged basins 

Mean, flood and low flow information calculated for  the Petitcodiac River and Turtle Creek 

were transferred to other drainage basins using the ratio of drainage area (Table 11).  

Because of the difference in specific discharges between the two gauged basins, mean flood 

and low flow values transferred using  the Petitcodiac River as a reference station are 

different than values calculated using Turtle Creek as a reference station.  Mean annual 

discharge and flood values pro-rated from station 01BU002 (Petitcodiac) are typically 65% to 

75% smaller than those transferred using station 01BU003 (Turtle Creek) as a reference. 

Low flow values pro-rated from the Petitcodiac are also typically 50% to 65% smaller than 

those pro-rated from Turtle Creek (Table 11). 

For instance, a two-year flood for Fox Creek was calculated to be 0.66 m

3

/s using Petitcodiac 

data, while it was calculated to be 0.92 m

3

/s using Turtle Creek data (Table 11).  A two-year 

low flow for the same tributary was calculated to be 30 L/s using station 01BU002 as a 

reference, while it has a value of 100 L/s if the reference station is 01BU003 (Table 11).  This 

may be indicative that our initial assumption of a relative homogeneity in the hydrological 

characteristics of sub-basins may need to be reviewed.  Such a detailed analysis is beyond 

the scope of the present mandate, however. 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

17 

5.0 WATER QUALITY 

5.1  D

ESCRIPTIVE STATISTICS

 

Descriptive statistics calculated from all available water quality data are presented in Table 

12. Based on median values, the waters of the watershed can be generally classified as 

slightly alkaline (pH slightly above neutrality) with moderate hardness and nutrient loading. 

Among the nutrients, PO

4

 levels are relatively high with a median of 0,02 mg/L and a 75% 

percentile of 0,04 mg/L. Most metals are generally in low concentrations with the exception of 

aluminium and iron, which are often found in relatively high concentrations. High levels of 

copper, lead and zinc have also been observed in a small number of samples, with maximum 

values of 60, 50 and 906 µg/L respectively. 

5.2  C

OMPARISON TO 

C

ANADIAN 

W

ATER 

Q

UALITY 

G

UIDELINES 

(CWQG) 

A comparison to CWQG is provided in Table 13. For the 1975-79 period, only six parameters 

are available for comparison to the CWQG: cadmium, dissolved oxygen, lead, mercury, pH 

and zinc. Zinc levels were above the guideline in all of the nine samples. This may have 

been caused by the fact that the detection limit was higher than the current guideline value 

for aquatic life.  Cadmium and lead were never detected in the samples; however the 

detection limit used was greater than the value of the guideline and therefore it cannot be 

excluded that some of the values were above the guidelines. As for pH, only 5 values out of 

97 were below the recommended range of 6,5 â€“ 9. Dissolved oxygen was always within the 

acceptable range for aquatic life (5,5 â€“ 9,5 mg/L). 

Between 1997 and 2000, aluminium and iron were above the guidelines in 39% and 50% of 

the samples, respectively. It should be noted that for chromium, the criteria used for the 

comparison is applicable to hexavalent chromium (CrVI), while laboratory results are given in 

total extractable chromium, which may include both CrVI and the less toxic trivalent species 

(CrIII). The guideline for CrIII is 8,9 µg/L as compared to 1,0 µg/L for CrVI. The frequency of 

values above the guideline reported for chromium (67%) treats all chromium as CrVI as no 

attempt was made to estimate the fraction present as CrVI. This value should thus be 

considered as conservative. 

To a lesser extent, values above the CWQG are reported for other parameters, with 

frequencies lower than 10%. These parameters are arsenic, cadmium, dissolved oxygen, 

NO

2

, lead, pH and zinc. 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

18 

5.3  S

PATIAL 

V

ARIABILITY 

(1997-2000) 

Nineteen different water bodies (rivers or their tributaries) have been sampled during the 

1997-2000 period. In order to assess the spatial heterogeneity within the watershed, cluster 

analyses have been performed at the scale of the water body. These analyses were done for 

two categories of water quality parameters: inorganic (Table 14) and organic (Table 15).   

For inorganic parameters, the results indicate three distinct groups of water bodies within the 

watershed, as seen in Table 16 and Figure 3. The list of parameters used in the analysis, as 

well as the average value for each cluster, are  presented in table 14. The dendrogram 

illustrating the different clusters is presented in Figure 3(a).  Table 16 lists the rivers included 

in each cluster for inorganic parameters.  The results show that the  Memramcook River 

clearly stands out and forms one of the clusters by itself (cluster INORG2). This illustrates 

the marine influence that affects both of the stations sampled in this river, especially station 

PWMG #36, at College Bridge. Another cluster (cluster INORG3) only includes Jones Lake 

with higher mean concentrations of metals, including lead.  Cluster INORG3 comprises all 

the other sampling stations.  

The second cluster analysis, performed on organic and bacterial (E Coli) water quality 

parameters also showed three groups (Table 17, Figure 3(b)).   Rabbit Brook and the west 

Branch of Halls Creek were grouped in the same cluster (ORG2), characterised by high 

mean E coli concentrations (3292 MPN/100 mL; Table 15) and high Nitrate concentration 

(mean of 0.98 mg/L; Table 15).  Cluster ORG3 includes Fox Creek, Humphrey Brook, Jones 

Lake, the Memramcook River and Mill Creek.  They have higher Nitrogen (TKN=0.64 mg/L) 

concentrations and higher phosphate (PO

4

 = 0.06 mg/L) than the other two clusters. 

5.4  T

EMPORAL VARIABILITY 

(1975-1979 

AND 

1997-2000) 

Long-term variations in various water quality parameters are presented in Figures 4 

(Petitcodiac River) and 5 (Jonathan Creek). Several parameters were measured only during 

the second period of observation (1997-2000) and therefore the range of parameters for 

which comparisons are possible is limited to nutrients, pH, alkalinity and colour. 

In the Petitcodiac River (Figure 4), one of the most important differences between the two 

periods is an apparent rise in water pH. While pH values were generally nearly neutral (i.e. 

7.0) in the 1970's, values below 7.5 were uncommon during the second period where median 

values were consistently close to 8.0 (slightly alkaline). Temporal trends are also observed in 

organic nitrogen (TKN) and orthophosphates (PO

4

). These parameters were observed in 

very high concentrations in some occasions in the 1970's, with maxima in the range of 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

19 

several mg/L. Such extreme values were not observed in the recent period where 

concentrations were consistently lower. As for NO

x

 (nitrates  â€“ nitrites), no clear trend is 

apparent in the Petitcodiac data. 

In Jonathan Creek (Figure 5), an apparent increase in pH is also observed, albeit less 

important than in the Petitcodiac River. Median values were close to 8.0 in the second 

period, about one unit  higher than in the 1970's. Othophosphates levels were relatively high 

in the 1970's and are consistently lower and less variable in the recent period. The same 

trend is observed for NO

x

. No significant trend is observed in the other parameters, including 

TKN. 

Data from the Petitcodiac River and Jonathan Creek suggest a decrease in nutrient loading 

between the two periods. In particular, PO

4

 levels were markedly reduced, which is 

favourable for the quality of the aquatic environment where this nutrient can be a major 

cause of eutrophication. 

Short-term (monthly) variations have also been investigated. Data collected at four stations 

of the Petitcodiac (stations PWMG # 4, 10, 15 & 16) during the 1997-2000 period have been 

used to document these variations. Results are presented in Figure 6. Polynomial trends 

(second degree) are presented. It should be noted that the amount of variability explained by 

these models varies greatly from one parameter to another and a large amount of 

unexplained variability (variability caused by other factors than monthly variations) persists in 

all cases. The amount of variance explained by each model is quantified using the «RSquare 

adjusted», shown below the graphs.  A model explaining 70% of the variance would have a 

Rsquare adjusted of 0.7. The trends are presented for illustrative purposes only. 

Many parameters showed important variations over months. Aluminium concentrations were 

higher in June and October and lower in August and September. The same pattern is 

observed for 

E.  coli

, iron, NH

3

 and PO

4

. By contrast, conductivity and pH showed opposite 

trends, with maximum values in mid-summer. These trends are directly related to the 

hydrological regime in the watershed. August and September are the months where the 

lowest flows are observed in the Petitcodiac River (see Table 7). In baseflow conditions, the 

relative importance of groundwater flow is greater as dilution from rainfall is minimal. 

Groundwater typically demonstrates higher concentrations in major ions (e.g. Ca, Mg, K) 

which translates into higher electrical conductivity. Similarly, pH is generally higher in 

groundwater and greater pH values are thus expected in baseflow conditions. On the other 

hand, many pollutants, especially nutrients, are significantly related to precipitation and storm 

events and are expected to reach maximum values at high flows.   

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

20 

Although the months at which observations are available do not cover the months of highest 

discharge (April, May), the data suggest that various parameters, including aluminium, iron 

and 

E. Coli

, are sensitive to seasonal variations in discharge. It cannot be excluded that high 

concentrations of various parameters, especially aluminium and nutrients would be found in 

maximum concentrations during the spring freshet and storm events. Sampling during these 

events could provide additional information about the general state of the watershed and 

potential sources of contaminants of the Petitcodiac River. 

 

6.0 REFERENCES 

Bobée, B. M. Haché, V. Fortin, L. Perreault et H. Perron.  1999. Hyfran, version 1.1 bêta.  

Developped by the Chair in Statistical Hydrology, INRS-Eau. 

Caissie, D. 2000. Hydrology of the Petitcodiac River basin in New Brunswick.  Can. Tech. 

Rep. Fish. Aquati. Sci. 2301 : 31 p. 

CCME (Canadian Council of Ministers of  the Environment). 1999. Canadian water quality 

guidelines for the protection of aquatic life: Summary table. In: Canadian environmental 

quality guidelines 1999, Canadian Council of Ministers of the Environment, Winnipeg. 

Frenette, I. 2000. Petitcodiac Watershed Monitoring Group. Progress report: 31 p. 

Geological survey of Canada (1982). Geological map, #1594A. 

Hollander, M. and Wolfe, D. A. (1973). Non parametric statistical methods, John Wiley, Toronto, 
503pp. 

Kendall, M.G. (1975). Rank correlation methods, Charles Griffin, London. 

Lee, A.S.F. and S. M. Heghinian (1977). A Shift of the Mean Level in a Sequence of 

Independent Normal Random Variables: A Bayesian Approach.  Technometrics, 19(4), 503-

506. 

Legendre, L. and P. Legendre. 1984. Écologie numérique. 2

nd

 Edition. Masson, Paris et les 

Presses de l'Université du Québec, Québec. 

Levene, H. (1960). Robust tests for the equality of variances, in Contributions to Probability 

and Statistics, Eds. I. Olkin & Paolo Alto, Stanford University Press : 278-292. 

Newman, M.C., P.M. Dixon, B.B. Looney et J.E. Pinder. 1989. Estimating mean and variance 

for environmental samples below detection limit observations. Water Res. Bull. 25(4): 905-

916. 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

21 

New Brunswick Department of Natural Resources (1979). , Surficial Geology, map #NR-1. 

Ouarda, T.B.M.J., P.F. Rasmussen, J.-F. Cantin, B. Bobée, R. Laurence, V.-D. Hoang and 

G. Barabé (1999). Identification of a hydrometric data network for the study of climate 

change over the province of Quebec.  Revue des Sciences de l’Eau, 12/2 : 425-448 (in 

French). 

Perreault, L., J. Bernier, B. Bobée and E. Parent (2000). Bayesian change-point analysis in 
hydrometeorological time series, Part 1. The normal model revisited, J. Hydrol., 235 : 221-241. 

Wald, A. and J. Wolfowitz (1943). An exact test for randomness in the non-parametric case based 
on serial correlation. Ann. Math. Statist., 14 :378-388. 

Wilcoxon, F., (1945). Individual comparison by ranking methods. Biometrics, 1 :80-83. 

Wilcoxon, F., (1946). Individual comparisons of grouped data by ranking methods. J. Econ. 

Entomol., 39 : 269-270. 

 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

Water                                                                            Water Quality analysis
 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

22 

 

Table 1.  Petitcodiac sub-catchments, with drainage basin areas. 

Name 

Drainage area (km

2

Petitcodiac at Causeway 

1360 

Pollet River 

309 

Little River 

297 

North River 

290 

Turtle Creek 

204

1

 

Anagance River 

144 

Halls Creek ( including West Branch to Humphrey Brook) 

123 

Weldon Creek 

92.9 

Mill Creek 

51.4 

Jonathan Creek 

50.4 

Bennett Brook 

45.5 

Fox Creek 

33.0 

1

 Gauged sub-basin = 129 km

2

 

 

Table 2. Summary of water quality data collection. 

Year 

Month

Dates  

Sampling performed by 

May

16 , 21, 26, 28, 29 

DOE 

1975 

August

13, 15, 25 

DOE 

May

13 

DOE 

June

9, 10 

DOE 

July

6, 7 

DOE 

1976 

November

16 

DOE 

May

11, 12 

DOE 

June

5, 7, 8 

DOE 

July

11, 19 

DOE 

1977 

September

19 

DOE 

1979 

July

DOE 

June

3, 5, 18 

ELG 

July

15, 16 

ELG, PWMG 

August

11, 12, 17 

ELG 

September

13, 14, 15 

PWMG 

1997 

October

13 

PWMG 

June

17, 18 

ELG 

July

30 

ELG 

August

11, 12, 13 

ELG 

September

2, 13 

PWMG 

1998 

October

12 

PWMG 

June

9, 21, 22 

ELG 

July

12, 27, 28 

ELG, PWMG 

August

16, 19, 29 

PWMG 

September

1, 13, 22 

ELG, PWMG 

October

3, 7, 25, 27, 31 

PWMG 

1999 

November

PWMG 

July

PWMG 

August

14, 15 

ELG, PWMG 

September

7, 24 

PWMG 

2000 

October

29 

PWMG 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

23 

Table 3. Air temperature statistics from the Moncton Airport during the two periods of interest 

Month 

 

Statistics 

1975 

1976 

1977 

1997 

1998 

1999 

2000 

April 

Minimum 

-5.9 

-6.1 

-6.7 

 

 

 

 

 Maximum 

7.8 

11.7 

14.3 

 

 

 

 

 Mean 

1.2 

3.9 

2.6 

 

 

 

 

May 

Minimum 

2.0 

4.7 

1.4 

4.2 

6.4 

3.9 

 

 Maximum 

17.2 

18.6 

22.4 

15.6 

19.1 

21.8 

 

 Mean 

9.6 

10.8 

9.5 

9.0 

12.4 

13.4 

 

June 

Minimum 

4.8 

5.6 

9.7 

6.6 

8.5 

3.9 

 

 Maximum 

23.9 

23.1 

20.1 

23.4 

21.6 

21.8 

 

 Mean 

15.5 

16.6 

14.19 

14.1 

14.7 

13.4 

 

July 

Minimum 

13.9 

12.8 

13.0 

13.0 

14.2 

14.8 

14.5 

 Maximum 

25.0 

22.8 

24.2 

24.2 

24.6 

26.0 

21.4 

 Mean 

20.6 

18.1 

18.3 

18.3 

19.6 

19.9 

18.1 

August 

Minimum 

12.0 

11.7 

13.8 

13.3 

14.0 

13.7 

14.4 

 Maximum 

23.9 

26.1 

25.0 

23.3 

24.1 

22.2 

22.4 

 Mean 

17.7 

18.0 

17.9 

17.7 

18.7 

18.0 

18.2 

September 

Minimum 

7.9 

5.9 

6.5 

5.8 

8.0 

11.3 

4.2 

 Maximum 

23.3 

19.2 

18.5 

20.3 

18.5 

22.8 

20.5 

 Mean 

13.6 

13.0 

11.9 

13.8 

13.6 

17.2 

12.7 

October 

Minimum 

 

-2.2 

0.1 

 

1.4 

0.6 

2.8 

 Maximum 

 

16.7 

15.4 

 

13.3 

14.5 

16.8 

 Mean 

 

6.7 

5.6 

 

7.2 

6.5 

8.1 

November 

Minimum 

 

-6.7 

 

 

 

 

 

 Maximum 

 

8.6 

 

 

 

 

 

 Mean 

 

-0.1 

 

 

 

 

 

 

 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

24 

Table 4. Precipitation (mm) statistics from the Moncton airport, during the periods of interest. 

Month 

 

1975 

1976 

1977 

1997 

1998 

1999 

2000 

April 

Rain  

12.6 

56.6 

40.7 

 

 

 

 

 Snow 

58.4 

8.7 

18.4 

 

 

 

 

May 

Rain  

107.2 

89.3 

97.9 

58.8 

98.3 

29.7 

 

 Snow 

9.3 

23 

0.4 

 

June 

Rain  

79.8 

97.9 

169 

104.7 

51.5 

32 

 

 Snow 

 

July 

Rain  

81.9 

73.9 

92.3 

92.3 

49.3 

100.4 

68.6 

 Snow 

August 

Rain  

34.8 

85.6 

88.3 

43.3 

114.7 

120.5 

 Snow 

September 

Rain  

129.1 

80.4 

143.7 

89.7 

112.1 

231.8 

76.2 

 Snow 

October 

Rain  

 

134.8 

12.6 

12.6 

224.6 

88 

147 

 Snow 

 

14.1 

14.1 

2.8 

November 

Rain  

 

68.2 

 

 

 

 

 

 Snow 

 

3.3 

 

 

 

 

 

Total Rain 
May-Sept 

 

425.6 

427.1 

591.2 

388.8 

425.9 

514.4 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

25

 

Table 5.  Hydrological characteristics of the Petitcodiac River at Causeway and Turtle 
Creek. 

 

Peticodiac 

Turtle Creek 

Parameters 

Flow statistics 

(pro-rated 

at Causeway)

(m

3

/s) 

Equivalent 

specific 

discharge 

(m

3

/s/km

2

Flow statistics 

 
 

(m

3

/s) 

Equivalent 

specific 

discharge 

(m

3

/s/km

2

Drainage basin area (km

2

1360 

 

129

2

 

 

Median flow  

11.9 

0.009 

1.70 

0.013 

Mean annual flow  

27.3 

0.020 

3.58 

0.028 

Minimum daily discharge  

0.36 

0.0003 

0.14 

0.0011 

Maximum daily discharge  

730 

0.54 

96.3 

0.75 

1

 From Caissie (2000) 

2

 Gauged area 

 

 

 

 

 

 

 

 

 

 

 

 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

26

Table 6. Annual flow statistics, stations 01BU002 (Petitcodiac) and 01BU003 (Turtle 
Creek). 

 

01BU002 

01BU003 

Year 

Minimum 

Mean 

Maximum  Mean at 

causeway

1

 

Minimum 

Mean  Maximum 

1961 

0.35 

5.43 

38.50 

18.90 

 

 

 

1962 

0.83 

9.24 

210.00 

32.14 

0.58 

4.38 

30.60 

1963 

0.80 

9.80 

125.00 

34.10 

0.29 

4.97 

76.70 

1964 

0.31 

6.52 

114.00 

22.68 

0.31 

2.80 

73.90 

1965 

0.18 

4.08 

30.00 

14.19 

0.25 

1.80 

13.80 

1966 

0.10 

5.13 

56.90 

17.84 

0.30 

2.39 

19.60 

1967 

0.45 

9.49 

136.00 

33.02 

0.28 

4.28 

42.20 

1968 

0.28 

8.12 

106.00 

28.25 

0.22 

3.84 

30.60 

1969 

0.33 

5.82 

65.10 

20.25 

0.50 

3.75 

58.30 

1970 

0.43 

5.72 

75.60 

19.91 

0.43 

3.23 

59.20 

1971 

0.30 

7.89 

88.90 

27.43 

0.28 

3.83 

37.40 

1972 

0.59 

9.49 

106.00 

33.00 

0.40 

5.04 

47.90 

1973 

0.63 

9.24 

86.90 

32.15 

0.50 

3.78 

26.50 

1974 

0.36 

8.46 

91.50 

29.42 

0.32 

3.27 

41.60 

1975 

0.25 

8.17 

101.00 

28.41 

0.39 

4.20 

48.70 

1976 

0.66 

9.73 

119.00 

33.84 

0.52 

3.85 

28.30 

1977 

0.48 

10.36 

78.70 

36.03 

0.35 

4.47 

41.30 

1978 

0.23 

6.34 

75.90 

22.04 

0.23 

2.55 

22.60 

1979 

0.63 

13.62 

113.00 

47.38 

0.44 

5.11 

37.10 

1980 

0.48 

7.74 

63.70 

26.92 

0.40 

3.17 

33.10 

1981 

0.81 

11.71 

91.90 

40.73 

0.35 

5.12 

46.70 

1982 

0.62 

8.00 

80.00 

27.82 

0.51 

3.31 

45.20 

1983 

0.68 

7.19 

83.60 

25.02 

0.40 

3.54 

34.10 

1984 

0.88 

9.22 

80.40 

32.06 

0.34 

3.99 

39.30 

1985 

0.25 

4.19 

40.60 

14.57 

0.25 

2.60 

28.20 

1986 

0.50 

6.70 

73.00 

23.30 

0.32 

2.61 

20.50 

1987 

0.31 

5.73 

115.00 

19.94 

0.20 

2.94 

41.10 

1988 

0.35 

6.17 

105.00 

21.46 

0.28 

3.53 

44.30 

1989 

0.39 

4.66 

72.70 

16.20 

0.22 

1.83 

26.90 

1990 

0.40 

10.57 

101.00 

36.77 

0.35 

4.95 

37.30 

1991 

0.37 

8.46 

65.50 

29.44 

0.14 

3.62 

35.40 

1992 

0.35 

7.20 

94.00 

25.05 

0.25 

2.55 

24.50 

1993 

0.40 

8.82 

57.20 

30.66 

0.31 

4.15 

31.90 

1994 

0.26 

7.69 

88.20 

26.76 

0.28 

3.39 

37.90 

1995 

0.19 

5.76 

40.50 

20.05 

0.22 

3.17 

24.00 

1996 

0.33 

8.74 

73.20 

30.41 

0.38 

4.78 

55.10 

1997 

0.25 

6.61 

68.50 

22.98 

0.29 

2.38 

29.20 

1998 

0.18 

8.55 

118.00 

29.74 

0.34 

4.60 

96.30 

1999 

0.26 

8.83 

120.00 

30.70 

0.23 

3.46 

64.50 

2000 

0.42 

7.41 

64.10 

25.78 

0.21 

2.64 

26.20 

1961-

2000 

0.10 

7.86 

210 

27.33 

0.143 

3.57 

96.30 

1

Calculated by multiplying mean at station 01BU002 by the ratio of gauged area to drainage basin area at causeway. 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

27

Table  7. Flow duration analysis (using daily discharge in m3/s, from 1962-2000) and mean monthly flows for Turtle Creek. 

Percentage(%)

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

 

55.1 

59.2 

91.8 

49.8 

66.0 

28.2 

31.1 

12.7 

64.5 

46.5 

96.3 

9.11 

10 

 

4.84 

5.20 

10.80 

19.50 

15.70 

4.67 

2.23 

1.33 

1.18 

4.67 

8.35 

73.90 

20 

 

3.10 

3.14 

6.80 

14.20 

10.20 

3.31 

1.51 

0.95 

0.85 

2.83 

5.52 

6.17 

30 

 

2.50 

2.42 

4.73 

11.50 

7.50 

2.62 

1.14 

0.70 

0.67 

1.87 

4.08 

4.56 

40 

 

2.09 

1.89 

3.55 

9.57 

5.97 

2.13 

0.94 

0.59 

0.56 

1.26 

3.17 

3.11 

50 

 

1.79 

1.53 

2.80 

7.93 

4.98 

1.77 

0.81 

0.51 

0.48 

0.93 

2.28 

2.44 

60 

 

1.50 

1.28 

2.14 

6.87 

4.21 

1.49 

0.71 

0.45 

0.42 

0.72 

1.71 

1.95 

70 

 

1.19 

1.05 

1.58 

5.72 

3.57 

1.27 

0.63 

0.41 

0.38 

0.57 

1.30 

1.54 

80 

 

0.91 

0.85 

1.10 

4.64 

2.96 

1.10 

0.54 

0.37 

0.34 

0.40 

0.91 

1.18 

90 

 

0.69 

0.65 

0.84 

3.55 

2.20 

0.92 

0.46 

0.33 

0.29 

0.32 

0.58 

0.60 

100 

 

0.31 

0.09 

0.32 

1.25 

0.91 

0.33 

0.14 

0.18 

0.20 

0.25 

0.30 

0.23 

Mean monthly flows 

2.67 

2.59 

4.68 

10.06 

7.43 

2.47 

1.23 

0.77 

0.79 

2.07 

3.93 

4.34 

1

Percentage = percentage of time equalled or exceeded 

Table  8. Flow duration analysis (using daily discharge in m3/s, from 1961-2000) and mean monthly flows for the Petitcodiac River at 
the Causeway

1

Percentage(%)

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

  414 

286 

383 

730 

473 

228 

302 

173 

211 

320 

369 

351 

10 

 

31.5 

37.5 

91.8 

178 

106 

40.5 

23.9 

15.1 

17.4 

41.6 

66 

71.3 

20 

 

21.4 

21.2 

50.4 

129 

61 

24.5 

14.2 

9.5 

8.6 

26.4 

41.9 

40.7 

30 

 

16.4 

14.1 

33.4 

98.6 

45.3 

17.5 

9.9 

6.3 

16.9 

30.3 

28.4 

40 

 

12.9 

10.7 

23.9 

78.1 

36.2 

13.4 

7.4 

4.2 

4.3 

10.8 

23.4 

21.1 

50 

 

10.7 

8.5 

17.1 

63.9 

29.7 

10.7 

5.6 

3.2 

3.3 

7.2 

17.9 

16.7 

60 

 

7.1 

13 

53.2 

25.2 

8.8 

4.2 

2.6 

2.7 

5.2 

13.9 

13.6 

70 

 

7.5 

5.9 

9.4 

43.6 

20.2 

7.5 

3.2 

2.1 

3.6 

10.1 

10.7 

80 

 

6.1 

4.9 

6.2 

34 

16.4 

5.8 

2.6 

1.6 

1.6 

2.6 

6.4 

7.8 

90 

 

3.6 

3.3 

4.3 

27.3 

12.4 

4.3 

1.8 

1.3 

1.2 

1.7 

4.1 

100 

 

1.7 

1.5 

1.4 

6.6 

3.8 

2.1 

0.79 

0.36 

0.36 

0.71 

1.23 

0.87 

Mean monthly flows 

18.2 

17.0 

36.2 

85.2 

46.5 

18.8 

12.7 

7.68 

7.1 

18.4 

29 

30.6 

1

from Caissie (2000) 

 

 

 

 

 

 

 

 

 

 

 

2

Percentage = percentage of time equalled or exceeded 

 

 

 

 

 

 

 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

28

Table 9. Flood Frequency analysis of Turtle Creek and the Petitcodiac River (at Causeway) using different statistical distributions. 

Floods shown in m

3

/s.   

Turtle Creek 

Recurrence Interval (years) 

 

10 

20 

50 

100 

LN3 

36.7 

51.5 

61.5 

71.4 

84.5 

94.5 

Gumbel 

37.1 

52.2 

62.2 

71.7 

84.1 

93.4 

LP3 

36.6 

51.4 

61.6 

71.7 

85.2 

95.7 

Petitcodiac  

at Causeway

1

 

Recurrence Interval (years) 

 

10 

20 

50 

100 

LN3 

294 

391 

449 

503 

569 

617 

Gumbel 

290 

393 

461 

526 

610 

673 

LP3 

287 

383 

448 

512 

596 

661 

1

 

From Caissie (2000) 

 

Table 10. Low-flow  Frequency analysis of Turtle Creek and the Petitcodiac River (at Causeway) using different statistical 
distributions. Flows shown in m

3

/s.   

Turtle Creek 

1962-1983 

Recurrence Interval (years) 

 

10 

20 

50 

 

T3E 

0.374 

0.256 

0.184 

0.119 

0.041 

 

Turtle Creek 

1984-2000 

Recurrence Interval (years) 

 

10 

20 

50 

 

T3E 

0.277 

0.191 

0.135 

0.082 

0.016 

 

Petitcodiac  

at Causeway

1

 

Recurrence Interval (years) 

 

10 

20 

50 

100 

T3E 

1.43 

0.897 

0.678 

0.536 

0.414 

0.355 

1

 

From Caissie (2000)

 

 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

29

Table 11. Mean, flood and low flows (m

3

/s) for sub-basins of the Petitcodiac watershed, pro-rated from stations 01BU002 and 

01BU003.  

 

Mean 

annual discharge 

2 year Flood 

10 year flood 

100 year flood 

Reference station  01BU002 

01BU003 

01BU002 

01BU003 

01BU002 

01BU003 

01BU002 

01BU003 

Pollett 

6.20 

8.65 

65.96 

87.91 

102.86 

147.31 

147.75 

226.36 

Little 

5.96 

8.32 

63.40 

84.50 

98.86 

141.59 

142.01 

217.57 

North 

5.82 

8.12 

61.90 

82.50 

96.53 

138.26 

138.67 

212.44 

Anagance 

2.89 

4.03 

30.74 

40.97 

47.93 

68.65 

68.86 

105.49 

Halls Creek

1

 

2.47 

3.44 

26.26 

34.99 

40.94 

58.64 

58.81 

90.10 

Weldon Creek 

1.86 

2.60 

19.83 

26.43 

30.92 

44.29 

44.42 

68.05 

Mill Creek 

1.03 

1.44 

10.97 

14.62 

17.11 

24.50 

24.58 

37.65 

Jonathan Creek 

1.01 

1.41 

10.76 

14.34 

16.78 

24.03 

24.10 

36.92 

Bennett Brook 

0.91 

1.27 

9.71 

12.94 

15.15 

21.69 

21.76 

33.33 

Fox Creek 

0.66 

0.92 

7.04 

9.39 

10.98 

15.73 

15.78 

24.17 

 

 

 

2-year low flow

 

10-year low flow

 

Reference station

 

 

 01BU002  01BU003  01BU003  01BU002  01BU003  01BU003 

 

 

 

 

1962-1983  1984-2000 

 1962-1983  1984-2000 

Pollett 

 

 

0.32 

0.90 

0.66 

0.15 

0.44 

0.32 

Little 

 

 

0.31 

0.86 

0.64 

0.15 

0.42 

0.31 

North 

 

 

0.30 

0.84 

0.62 

0.14 

0.41 

0.30 

Anagance 

 

 

0.15 

0.42 

0.31 

0.07 

0.21 

0.15 

Halls Creek 

 

 

0.13 

0.36 

0.26 

0.06 

0.18 

0.13 

Weldon Creek 

 

 

0.10 

0.27 

0.20 

0.05 

0.13 

0.10 

Mill Creek 

 

 

0.05 

0.15 

0.11 

0.03 

0.07 

0.05 

Jonathan Creek 

 

 

0.05 

0.15 

0.11 

0.03 

0.07 

0.05 

Bennett Brook 

 

 

0.05 

0.13 

0.10 

0.02 

0.06 

0.05 

Fox Creek 

 

 

0.03 

0.10 

0.07 

0.02 

0.05 

0.03 

1

 

Including Humphrey Brook

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

30

 

Table 12. Water quality results â€“ Descriptive statistics 

 

 

 

 

 

Statistics 

Al   Alkalinity  

As  BOD  

Ca  

Cd  

Cl  Colour  Conductivity  

Cr  

Cu   DO  Client-fld

 

mg/L

mg/L  Âµg/L mg/L  mg/L  Âµg/L

mg/L 

TCU 

µSIE/cm 

µg/L  Âµg/L 

mg/L

Minimum 

0.0005

0.3  0.05 10.5 

2.0  0.05

1.4 

0.0 

23 

0.25  0.25 

0.5

Percentile 5% 

0.0109

8.5  0.05 10.5 

3.8  0.05

2.4 

5.0 

41 

0.25  0.25 

6.7

Percentile 25% 

0.0260

22.4  0.05 10.5 

9.1  0.05

10.5 

20.0 

109 

0.80  0.50 

8.8

Median 

0.0687

38.6  0.05 10.5  23.4  0.05

33.8 

40.0 

263 

1.60  1.00 

9.9

Mean 

0.1556

43.7  0.76 10.5  27.7  0.13

66.9 

59.6 

412 

2.10  1.74 

9.9

Percentile 75 % 

0.1510

62.7  1.21 10.5  37.9  0.05

69.5 

60.0 

441 

3.10  1.95 

11.0

Percentile 95 % 

0.5458

94.8  2.74 10.5  71.2  0.05 158.0  150.0 

871 

5.30  5.30 

13.0

Maximum 

5.1000

144.0  10.60 10.5  175.0  5.00 5707.0  5000.0 

22700 

11.4  60.0 

19.0

Count 

565

628  566

1  577  575

566 

599 

597 

566  575 

275

CWQG 

0.100

5.0

.  0.017

.  1-8,9 

5.5

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

31

 

 

Table 12 (continued). WATER QUALITY RESULTS-Descriptive statistics 

 

 

 

 

 

 

DO  Field-

ELG 

E coli  

F  

FC-MF  

Fe   Hg 

Hardness  

K  

Mg   Mn  

Na  

NH3T  

Ni   NO2   NO3  NOX  

mg/L 

MPN/100 

mL 

mg/L 

CFU/100 

mL 

mg/L  Âµg/L 

mg/L 

CaCO3 

mg/L  mg/L  mg/L 

mg/L 

mg/L 

µg/L mg/L  mg/L  mg/L 

2.6 

0  0.05 

0  0.01  0.05 

6.6 

0.0 

0.4  0.00 

1.6 

0.01 

2.50 0.03  0.01  0.00 

6.7 

5  0.05 

2  0.03  0.05 

12.6 

0.3 

0.7  0.01 

2.4 

0.01 

2.50 0.03  0.03  0.03 

8.9 

30  0.05 

17  0.11  0.05 

28.6 

0.6 

1.4  0.02 

9.2 

0.01 

2.50 0.03  0.03  0.03 

9.8 

110  0.05 

64  0.30  0.05 

71.1 

0.9 

2.9  0.05 

23.4 

0.01 

5.00 0.03  0.03  0.05 

9.7 

648  0.08 

268  0.49  0.08 

87.4 

1.1 

4.4  0.10 

45.3 

0.03 

4.02 0.03  0.15  0.20 

10.6 

410  0.11 

220  0.58  0.05 

113.8 

1.4 

4.6  0.11 

43.5 

0.02 

5.00 0.03  0.13  0.17 

12.0 

2419  0.20 

1088  1.31  0.22 

213.7 

2.4 

8.5  0.37  102.5 

0.08 

5.00 0.03  0.81  0.88 

18.9 

24190  0.50 

7250  20.40  0.30 

2409  48.4 

479  2.31 

4070 

1.58  50.00 0.12  2.10  6.35 

234 

557  566 

289  566 

566  566  577  566 

566 

566 

566 277  566  666 

.  0.300  0.1 

1.37  25.00 0.060 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

32

 

Table 12 (continued). WATER QUALITY RESULTS-Descriptive statistics

   

Statistics 

Pb  

pH 

field 

pH 

lab 

Sb   SO4  

SS  

Total 

coliforms  

TDS   TEMP  Client-

fld 

TEMP  Field-

ELG 

TKN   TOC   PO4  

  Âµg/L 

 

  Âµg/L  mg/L 

mg/L  MPN/100 mL 

mg/L 

º C 

º C  mg/L 

mg/L  mg/L 

Minimum 

0.50 

5.8 

4.4  0.50 

1.27 

0.0 

69 

12.7 

4.0 

0.5 

0.01  0.50  0.00 

Percentile 5% 

0.50 

6.3 

6.7  0.50 

2.6 

0.0 

401 

21.6 

6.0 

2.9 

0.10  1.63  0.00 

Percentile 25% 

0.50 

6.9 

7.3  0.50 

4.9 

1.3 

1083 

68.5 

10.0 

13.6 

0.22  4.30  0.01 

Median 

0.50 

7.5 

7.7  0.50  14.20 

7.5 

2419  155.7 

13.0 

17.0 

0.36  7.20  0.02 

Mean 

1.48 

7.3 

7.6  0.70  38.63 

72.0 

3430  186.6 

13.1 

16.5 

0.44  8.17  0.10 

Percentile 75 %  0.50 

7.8 

8.0  0.50 

49.7 

7.5 

2419  230.4 

16.6 

20.5 

0.50  11.20  0.04 

Percentile 95 %  2.00 

8.0 

8.3  0.50  155.8 

41.1 

15530  482.4 

21.0 

25.4 

0.90  17.2  0.26 

Maximum 

50.00 

8.5 

9.2  34.20  813.00 28000.0 

36550  1425.3 

25.0 

28.5 

19.0  31.7  12.8 

Count 

575 

110 

663  566 

566 

566 

289 

250 

256 

357 

665  566  665 

CWQG 

1.00 

6.5 

6.5 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

33

Table 12 (continued). WATER QUALITY RESULTS-Descriptive statistics

 

Statistics 

TURB  

Zn  

 

NTU 

µg/L 

Minimum 

0.0 

2.50 

Percentile 5% 

0.00 

2.50 

Percentile 25% 

0.6 

2.50 

Median 

1.5 

5.00 

Mean 

4.9 

11.9 

Percentile 75 % 

4.1 

11.0 

Percentile 95 % 

20.6 

38.3 

Maximum 

172.0 

906.0 

Count 

578 

575 

CWQG 

30 

 

 

background image

 

 

 

Petitcodiac Watershed Monitoring Group 

 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

 

21654-001 

 

 

34

Table 13. Comparison of water quality data to the Canadian Water Quality Guidelines, by period. 

1975-1979 

1997-2000 

Values above CWQG [1] 

Values above CWQG [1] 

Parameter 

Unit 

CWQ 

Guideline 

Total number 

of measure-

ments  

Count 

Frequency 

Total number 

of measure-

ments  

Count 

Frequency 

Al 

mg/L 

0,1 

554 

210 

38% 

As  

µg/L 

566 

1% 

Cd 

µg/L 

0,017 

9 [3] 

566 

1% 

Cr  

µg/L 

1 [2] 

566 

381 [2] 

67% [2] 

DO 

mg/L 

5,5 

62 

0% 

447 

11 

2% 

Fe 

mg/L 

0,3 

566 

283 

50% 

Hg 

µg/L 

0,1 

11% 

NH3T  

mg/L 

1,37 

566 

0% 

Ni  

µg/L 

25 

566 

0% 

NO2  

mg/L 

0,06 

277 

1% 

Pb  

µg/L 

9 [4] 

566 

48 

8% 

pH  

--- 

6,5 

97 

5% 

566 

11 

2% 

Zn  

µg/L 

30 

100% 

553 

23 

4% 

 

[1]

 

for DO and pH, values below acceptable range

 

[3]

 

all values below detection limit of 10 µg/L

 

[2]

 

based on the guideline for hexavalent chromium (Cr VI)

 

[4]

 

all values below detection limit of 100 µg/L

 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

35 

Table 14. Cluster analysis based on inorganic parameters. Average values of water quality 

parameters, by cluster (means and standard deviation). 

Cluster # 

INORG1 

INORG2 

INORG3 

Number of waterbodies in 
cluster 

17 

STATISTICS 

Mean 

Std Dev 

Mean 

Std Dev 

Mean 

Std Dev 

Al (mg/L) 

0,14 

0,10 

0,30 

0,73 

Alkalinity (mg/L) 

44,4 

24,6 

22,1 

53,5 

Ca (mg/L) 

25,3 

19,4 

21,1 

23,4 

Cd (µg/L) 

0,05 

0,01 

0,06 

0,08 

Cl (mg/L) 

56,4 

78,8 

538,4 

63,2 

Conductivity (µSIE/cm) 

337 

346 

1720 

343 

Cr (µg/L) 

2,08 

1,10 

1,51 

2,78 

Cu (µg/L) 

1,55 

1,31 

3,66 

4,33 

F (mg/L) 

0,08 

0,03 

0,10 

0,17 

Fe (mg/L) 

0,49 

0,37 

1,93 

1,70 

Hardness (mg/L CaCO3) 

76,4 

55,8 

227,0 

74,5 

K (mg/L) 

1,05 

0,52 

4,43 

2,08 

Mg (mg/L) 

3,31 

2,06 

42,32 

3,90 

Mn (mg/L) 

0,15 

0,17 

0,10 

0,28 

Na (mg/L) 

37,6 

54,2 

374,4 

39,9 

Pb (µg/L) 

0,65 

0,30 

0,76 

3,89 

pH 

7,7 

0,3 

7,1 

7,8 

SO4 (mg/L) 

30,1 

46,8 

76,1 

14,5 

Zn (µg/L) 

9,4 

3,9 

71,7 

19,2 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

36 

Table 15. Cluster analysis based on organic and nutrient parameters. Average values of 

water quality parameters, by cluster (means and standard deviation). 

 

Cluster # 

ORG1 

ORG2 

ORG3 

Number of waterbodies in 

cluster 

12 

STATISTICS 

Mean 

Std. Dev. 

Mean 

Std. Dev. 

Mean 

Std. Dev. 

Colour (TCU) 

30,5 

17,6 

68,6 

16,9 

106,4 

12,7 

E coli (MPN/100 mL) 

245 

185 

3292 

1531 

784 

762 

NH3T (mg/L) 

0,02 

0,02 

0,07 

0,07 

0,05 

0,02 

NO3 (mg/L) 

0,08 

0,10 

0,98 

0,30 

0,13 

0,12 

TKN (mg/L as N) 

0,26 

0,12 

0,49 

0,15 

0,64 

0,13 

TOC (mg/L) 

5,6 

3,0 

5,6 

0,6 

14,0 

2,9 

PO4 (mg/L PO4) 

0,01 

0,01 

0,04 

0,03 

0,06 

0,03 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

37 

Table 16. Cluster analysis based on inorganic parameters.  List of waterbodies by cluster. 

 

Cluster # 

Water body 

 

Anagance River 

Bennett Brook 

Fox Creek 

Halls Creek 

Humphreys Brook 

Jonathan Creek 

Little River 

Mill Creek 

North Branch Halls Creek 

North River 

Petitcodiac River 

Pollett River 

Prosser Brook 

Rabbit Brook 

Turtle Creek 

Weldon Creek 

INORG1 

West Branch Halls Creek 

INORG2 

 

Memramcook River 

INORG3 

 

Jones Lake 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

38 

 

Table 17. Cluster analysis based on organic and nutrient parameters.  List of waterbodies by 
cluster. 

 

Cluster # 

Water body 

 

Anagance River 

Bennett Brook 

Halls Creek 

Jonathan Creek 

Little River 

North Branch Halls Creek 

North River 

Petitcodiac River 

Pollett River 

Prosser Brook 

Turtle Creek 

ORG1 

Weldon Creek 

Rabbit Brook 

ORG2 

West Branch Halls Creek 

Fox Creek 

Humphreys Brook 

Jones Lake 

Memramcook River 

ORG3 

Mill Creek 

 

background image

 

 

Petitcodiac Watershed Monitoring Group 

 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique 

 

21654-001 

 

 

39 

background image

 

 PetitcodiacWatershedMonitoringGroup  

 

 Water Quality analysis  
INRS- Eau, Chaire en hydrologie statistique  21654-001 

 

 

  Petitcodiac Watersh 

 

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

Année

Débit (m3/s)

Mean 01BU003

Mean 01BU002

Figure 2. Mean annual discharge at stations 01BU002 and stations 01BU003.  Lines show trends with 5-year means.

background image

 

                                                                                                    41                                Petitcodiac Watershed Monitoring Group 
 

Water Quality analysis 

 

INRS- Eau, Chaire en hydrologie statistique  21654-001 

 

 

 

a) 

b) 

 

Figure 3. Results of cluster analysis based on a) inorganic parameters and b) organic and 
nutrient parameters. Parameters used in the analysis are listed in tables 14 and 15. The 
dendrogram shows the degree of similarity between the different water bodies within the 
Petitcodiac watershed. Hierarchical clustering using average linkage. 

background image

Petitcodiac River

Alkalinity (mg/L)

Colour (TCU) 

NOX (mg/L) By Year

ALK_G-T (mg/L)

0

20

40

60

80

100

120

140

160

1975 1976 1977 1979 1997 1998 1999 2000

Year

CLRA (TCU)

0

1000

2000

3000

4000

5000

1975 1976 1977 1979 1997 1998 1999 2000

Year

NOX (mg/L)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

1975 1976 1977 1979 1997 1998 1999 2000

Year

pH

 TKN (mg/L as N) 

PO4 (mg/L PO4)

PH Lab (pH)

6,5

7,0

7,5

8,0

8,5

9,0

1975 1976 1977 1979 1997 1998 1999 2000

Year

TKN (mg/L as N)

0

5

10

15

20

1975 1976 1977 1979 1997 1998 1999 2000

Year

PO4 (mg/L PO4)

-2

0

2

4

6

8

10

12

14

1975 1976 1977 1979 1997 1998 1999 2000

Year

Figure 4. Temporal variations in selected water quality parameters in the Petitcodiac River, 1975-2000. Graphics

show individual values and quantile boxes (10

th

, 25

th

, 50

th

, 75

th

, and 90

th

 quantiles)

background image

Jonathan Creek

Alkalinity (mg/L)

Colour (TCU)

NOX (mg/L)

ALK_G-T (mg/L)

10

20

30

40

50

60

70

80

90

100

1975 1976 1977 1979 1997 1998 1999 2000

Year

CLRA (TCU)

0

50

100

150

200

250

1975 1976 1977 1979 1997 1998 1999 2000

Year

NOX (mg/L)

0,0

0,5

1,0

1,5

2,0

1975 1976 1977 1979 1997 1998 1999 2000

Year

pH 

TKN (mg/L N)

PO4 (mg/L PO4)

PH Lab (pH)

4

5

6

7

8

9

1975 1976 1977 1979 1997 1998 1999 2000

Year

TKN (mg/L as N)

0,0

0,5

1,0

1,5

2,0

1975 1976 1977 1979 1997 1998 1999 2000

Year

PO4 (mg/L PO4)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1975 1976 1977 1979 1997 1998 1999 2000

Year

Figure 5. Temporal variations in selected water quality parameters in Jonathan Creek, 1975-2000. Graphics show

individual values and quantile boxes (10

th

, 25

th

, 50

th

, 75

th

, and 90

th

 quantiles)

background image

Petitcodiac River, 1997-2000

Stations PWMG # 4, 10, 15 & 16

Al (mg/L)

Conductivity (µSIE/cm)

E. coli (MPN/100 mL)

Al (mg/L)

0,0

0,1

0,2

0,3

0,4

0,5

6

7

8

9

10

Month

COND (µSIE/cm)

100

200

300

400

500

600

700

800

900

1000

1100

6

7

8

9

10

Month

E_coli-Average (MPN/100ml)

0

500

1000

1500

2000

2500

6

7

8

9

10

Month

Polynomial Fit degree=2
Al (mg/L) = 1,58235 – 0,40481 Month
+ 0,0261 Month^2

Rsquare Adj : 0,22
Observations : 67

Polynomial Fit degree=2
COND (µSIE/cm) = -2520,4 +
745,527 Month – 45,6908 Month^2
RSquare Adj : 0,12
Observations: 67

Polynomial Fit degree=2
E_coli-Average (MPN/100ml) =
3334,54 – 771,933 Month + 46,7573
Month^2
RSquare Adj : 0,00
Observations : 66

Figure 6. Monthly variations in selected water quality parameters in the Petitcodiac River, 1997-2000.

background image

Petitcodiac River, 1997-2000

Stations PWMG # 4, 10, 15 & 16

Fe (mg/L)

NH3T (mg/L)

NO3 (mg/L)

Fe (mg/L)

0,0

0,5

1,0

1,5

2,0

6

7

8

9

10

Month

NH3T (mg/L)

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

6

7

8

9

10

Month

NO3 (mg/L)

0,00

0,05

0,10

0,15

0,20

6

7

8

9

10

Month

Polynomial Fit degree=2
Fe (mg/L) = 1,4145 – 0,32081 Month
+ 0,02094 Month^2
RSquare Adj : 0,00
Observations : 67

Polynomial Fit degree=2
NH3T (mg/L) = 0,16072 – 0,03664
Month + 0,00222 Month^2
RSquare Adj : 0,00
Observations : 67

Polynomial Fit degree=2
NO3 (mg/L) = 0,07936 – 0,01264
Month + 0,00078 Month^2
RSquare Adj : 0,03
 Observations : 67

Figure 6. Monthly variations in selected water quality parameters in the Petitcodiac River, 1997-2000 (continued)

background image

Petitcodiac River, 1997-2000

Stations PWMG # 4, 10, 15 & 16

pH (pH)

 TKN (mg/L as N)

PO4 (mg/L PO4)

PH Lab (pH)

7,0

7,5

8,0

8,5

9,0

6

7

8

9

10

Month

TKN (mg/L as N)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

6

7

8

9

10

Month

PO4 (mg/L PO4)

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

6

7

8

9

10

Month

Polynomial Fit degree=2
pH = 1,91174 + 1,68301 Month –
0,11132 Month^2
RSquare Adj : 0,29
Observations : 67

Polynomial Fit degree=2
TKN (mg/L as N) = -0,4162 +
0,15769 Month – 0,00837 Month^2
RSquare Adj : 0,04
Observations : 67

Polynomial Fit degree=2
PO4 (mg/L PO4) = 0,07645 –
0,01725 Month + 0,00111 Month^2
RSquare Adj : 0,00
Observations : 67

Figure 6. Monthly variations in selected water quality parameters in the Petitcodiac River, 1997-2000 (continued)

background image

 

rptUT2410_06_Station

 

 

Station Listing

 

Station Name:

 

Anagance River Above Mouth PWMG 2

 

Description:

 

sampled upstream from bridge located just up from mouth . Westmorland Co, Elgin Pa. Follow road through 

 

 

town, turn onto dirt road where DNRE building is located. Drive past DNRE

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0092

 

StationID:

 

1211

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.927296

 

UTM Northing:

 

5088079

 

Station Status:

 

Active

 

Longitude:

 

65.1875

 

UTM Easting:

 

330330

 

Station Name:

 

Anagance River above North River confluence

 

Description:

 

below bridge just above the confluence with the North River. Riffle. Stn. 2; For fall 1998 benthic study: (1) 

 

 

rubble substrate (2) unshaded (3) water 1-1.5' deep (4) swamp hardwood

 

Site:

 

 

Water Body:

 

Anagance River; . aka Annagance River

 

Historical ID:

 

00BR01BU0166

 

StationID:

 

8184

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.930191

 

UTM Northing:

 

5088399

 

Station Status:

 

Active

 

Longitude:

 

65.186711

 

UTM Easting:

 

330400

 

Station Name:

 

Anagance River Above Rte 895 Bridge PWMG 1

 

Description:

 

upstream from route 895 bridge.,Kings Co, Cardwell Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0091

 

StationID:

 

1210

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.87363

 

UTM Northing:

 

5082269

 

Station Status:

 

Active

 

Longitude:

 

65.257935

 

UTM Easting:

 

324700

 

Station Name:

 

Bennett Brook below old ford site

 

Description:

 

30m downstream from old ford site located approx. 2km off Rte. 885. Riffle. Stn. 11; For fall 1998 benthic 

 

 

study: (1) rubble substrate with silt (2) fast-moving, < 1' deep (3) narrow brook, some shade from marsh, alder 

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0174

 

StationID:

 

8192

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.969255

 

UTM Northing:

 

5092799

 

Station Status:

 

Active

 

Longitude:

 

65.214709

 

UTM Easting:

 

328350

 

Station Name:

 

Bennett Brook near mouth PWMG 45

 

Description:

 

Approx 15 m  U/ S from the mouth. To access site, take sample from North River at bridge near Intervale. 

 

 

Walk downstream along North River to Bennett. Walk  u/s approx 15  - 20 m.

 

Site:

 

 

Water Body:

 

Bennett Brook

 

Historical ID:

 

StationID:

 

9848

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.959161

 

UTM Northing:

 

5091649

 

Station Status:

 

Active

 

Longitude:

 

65.201402

 

UTM Easting:

 

329350

 

2000/01/25

 

Page 1 of 11

 

background image

 

Station Listing

 

Station Name:

 

Bennett Brook PWMG 6

 

Description:

 

Upstream from fording site located approx 2km off rte 885, south side of rd,Westmorland Co, Salisbury Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0093

 

StationID:

 

1180

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.966619

 

UTM Northing:

 

5092499

 

Station Status:

 

Active

 

Longitude:

 

65.211377

 

UTM Easting:

 

328600

 

Station Name:

 

Fox Creek at route 106 PWMG 31

 

Description:

 

Upstream from culvert on route 106 south of St. Anselme,Westmorland Co. Moncton Pa. Station 1

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0036

 

StationID:

 

976

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.06305

 

UTM Northing:

 

5102249

 

Station Status:

 

Active

 

Longitude:

 

64.705499

 

UTM Easting:

 

368025

 

Station Name:

 

Halls Creek near mouth PWMG 44

 

Description:

 

D/S from confluence of NBR and WBR. Site is on creek near baseball field and across the field from new Law 

 

 

Building. The banks are muddy but the site can be accessed from some boulders on the bank. Pull off Wheeler

 

 

 Blvd and park between the baseball and soccer fields.

 

Site:

 

 

Water Body:

 

Halls Creek; Within City of Moncton. aka Hall Creek

 

Historical ID:

 

StationID:

 

9847

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.101362

 

UTM Northing:

 

5106649

 

Station Status:

 

Active

 

Longitude:

 

64.789807

 

UTM Easting:

 

361600

 

Station Name:

 

Humphreys Brook @ Mill Rd Bridge PWMG 29

 

Description:

 

located below spillway under bridge on mill rd below humphreys mills pond.,Westmorland Co, Moncton Pa; For 

 

 

fall 1998 benthic study: (1) substrate mixed large and small rocks (2) lots of debris in brook, including bike 

 

 

frame (3) water about 1' deep, brown, fast moving (4) sewage smell

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0120

 

StationID:

 

888

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.109351

 

UTM Northing:

 

5107499

 

Station Status:

 

Active

 

Longitude:

 

64.768068

 

UTM Easting:

 

363300

 

Station Name:

 

Humphreys Brook @ Stn 1

 

Description:

 

U/s from lewisville rd, behind metro stn 1997,Westmorland Co. Moncton Pa. Station 1

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0034

 

StationID:

 

887

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.101

 

UTM Northing:

 

5106578

 

Station Status:

 

Inactive

 

Longitude:

 

64.772

 

UTM Easting:

 

362975

 

2000/01/25

 

Page 2 of 11

 

background image

 

Station Listing

 

Station Name:

 

Humphreys Brook @ TCH PWMG 30

 

Description:

 

approx 100m u/s from culvert at TCH xing,Westmorland Co. Moncton Pa. Station 2. Walk past standpipe 

 

 

located beside river.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0035

 

StationID:

 

886

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.126641

 

UTM Northing:

 

5109379

 

Station Status:

 

Active

 

Longitude:

 

64.744028

 

UTM Easting:

 

365200

 

Station Name:

 

Jonathan Creek  7 - Below Horsman Road (PWMG 23)

 

Description:

 

approx 15m d/s from culvert under Horsman Road.,Westmorland Co, Moncton

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0118

 

StationID:

 

863

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.102024

 

UTM Northing:

 

5106849

 

Station Status:

 

Active

 

Longitude:

 

64.860988

 

UTM Easting:

 

356100

 

Station Name:

 

Jonathan Creek 20m above Horsman Road culvert

 

Description:

 

20m above culvert under Horsman Road. Riffle. Stn. 10; For fall 1998 benthic study: (1) substrate gravelly 

 

 

with rock outcrops (2) water murky, deep (3) partly shaded

 

Site:

 

 

Water Body:

 

Jonathan Creek

 

Historical ID:

 

00BR01BU0173

 

StationID:

 

8191

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.102003

 

UTM Northing:

 

5106849

 

Station Status:

 

Active

 

Longitude:

 

64.862281

 

UTM Easting:

 

356000

 

Station Name:

 

Jonathan Creek Below Wheeler Blvd

 

Description:

 

approx 100m downstream from culvert passing under wheeler blvd.,Westmorland Co.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0096

 

StationID:

 

860

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.092987

 

UTM Northing:

 

5105799

 

Station Status:

 

Inactive

 

Longitude:

 

64.835459

 

UTM Easting:

 

358050

 

Station Name:

 

Jones Lake PWMG 22

 

Description:

 

sample taken at culvert outlet across Main Street from Jones Lake.,Westmorland Co, Moncton Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0097

 

StationID:

 

858

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.08241

 

UTM Northing:

 

5104549

 

Station Status:

 

Active

 

Longitude:

 

64.793074

 

UTM Easting:

 

361300

 

2000/01/25

 

Page 3 of 11

 

background image

 

Station Listing

 

Station Name:

 

Little River below Mitton Brook confluence

 

Description:

 

200m downstream of confluence of Mitton Brook (below bridge over Little River). Riffle. Stn. 9; For fall 1998 

 

 

benthic study: (1) substrate ? (2) water fast moving, 1.5-2' deep, murkier and warmer than Prosser (3) shoreline

 

 

 dense alder and willow

 

Site:

 

 

Water Body:

 

Little River; Flows NW. into Petitcodiac River. aka Coverdale 

 

Historical ID:

 

00BR01BU0172

 

StationID:

 

8190

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.8662

 

UTM Northing:

 

5080899

 

Station Status:

 

Active

 

Longitude:

 

64.994814

 

UTM Easting:

 

345100

 

Station Name:

 

Little River below Prosser Brook PWMG 41

 

Description:

 

Turn left (north) on 895 after crossing bridge in Parkindale. Turn on road leading to cemetery. Park beside 

 

 

cemetery and follow dirt road to camp with trailer. Sample site is located approx. 25 m D/S from dock in front 

 

 

of camp. Cobble/boulder bottom.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0178

 

StationID:

 

9846

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.869572

 

UTM Northing:

 

5081249

 

Station Status:

 

Active

 

Longitude:

 

64.98205

 

UTM Easting:

 

346100

 

Station Name:

 

Little River near mouth PWMG 17

 

Description:

 

upstream from route 112 bridge, just west of five points.,Albert Co, Coverdale Pa; For fall 1998 benthic study:

 

 

 (1) substrate small stones (2) marsh/hay shore, unshaded

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0098

 

StationID:

 

784

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.019628

 

UTM Northing:

 

5097999

 

Station Status:

 

Active

 

Longitude:

 

65.02229

 

UTM Easting:

 

343400

 

Station Name:

 

Memramcook River @ Calhoun PWMG 35

 

Description:

 

Memramcook river @ calhoun ,Westmorland Co, Dorchester Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

NB01BU0008

 

StationID:

 

702

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.067

 

UTM Northing:

 

5102475

 

Station Status:

 

Active

 

Longitude:

 

64.572

 

UTM Easting:

 

378359

 

Station Name:

 

Memramcook River @ College Bridge PWMG 36

 

Description:

 

Memramcook river @ college bridge ,Westmorland Co, Dorchester Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0121

 

StationID:

 

701

 

UTM Zone:

 

PID:

 

Latitude:

 

UTM Northing:

 

Station Status:

 

Inactive

 

Longitude:

 

UTM Easting:

 

2000/01/25

 

Page 4 of 11

 

background image

 

Station Listing

 

Station Name:

 

Mill Creek below Pine Glen highway

 

Description:

 

30m below Pine Glen highway. Riffle. Stn. 14; For fall 1998 benthic study: (1) substrate large rocks at riffle (2)

 

 

 deep pools of water either side of culvert under road (3) water very turbid, possible rain the previous night (4) 

 

 

willow, alder, swamp shoreline

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0177

 

StationID:

 

8195

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.042469

 

UTM Northing:

 

5100099

 

Station Status:

 

Active

 

Longitude:

 

64.785964

 

UTM Easting:

 

361750

 

Station Name:

 

Mill Creek below reservoir PWMG 20

 

Description:

 

70-100m below spillway of reservoir at an old crossing (no bridge structure).,Westmorland Co, Coverdale Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0099

 

StationID:

 

694

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.060003

 

UTM Northing:

 

5101999

 

Station Status:

 

Active

 

Longitude:

 

64.758088

 

UTM Easting:

 

363950

 

Station Name:

 

North Branch Halls Creek PWMG 28

 

Description:

 

approx 50m upstream from culvert under TCH.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0100

 

StationID:

 

565

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.127839

 

UTM Northing:

 

5109619

 

Station Status:

 

Active

 

Longitude:

 

64.805939

 

UTM Easting:

 

360420

 

Station Name:

 

North River @ Pacific Junct Rd Bridge PWMG 9

 

Description:

 

Approx 75m u/s from bridge on Pacific Junct Rd, u/s from garbage thrown on river banks,Westmorland Co, 

 

 

Moncton Pa; Follow path under bridge upstream.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0103

 

StationID:

 

548

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.064722

 

UTM Northing:

 

5103149

 

Station Status:

 

Active

 

Longitude:

 

65.092141

 

UTM Easting:

 

338125

 

Station Name:

 

North River Above Rte 885 Bridge PWMG 5

 

Description:

 

30-40m u/s of rte 885 bridge, just west of Intervale; request owner's permission,Westmorland Co, Salisbury Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0101

 

StationID:

 

546

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.961909

 

UTM Northing:

 

5091949

 

Station Status:

 

Active

 

Longitude:

 

65.19893

 

UTM Easting:

 

329550

 

2000/01/25

 

Page 5 of 11

 

background image

 

Station Listing

 

Station Name:

 

North River above Rte. 880 crossing PWMG 43

 

Description:

 

200m upstream from Rte. 880 crossing. Riffle. Stn. 4; For fall 1998 benthic study: (1) rocky substrate with 

 

 

some silt and algae on rocks (2) about 1' deep (3) partial shade from alder, mixed-wood banks

 

Site:

 

 

Water Body:

 

North River

 

Historical ID:

 

00BR01BU0168

 

StationID:

 

8186

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.04889

 

UTM Northing:

 

5101449

 

Station Status:

 

Active

 

Longitude:

 

65.120949

 

UTM Easting:

 

335850

 

Station Name:

 

North River below  bridge on Morton Rd PWMG 7

 

Description:

 

Bridge over North R on Morton Road  between Fawcett & Wheaton Settlements. Sample D/S from bridge.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0013

 

StationID:

 

547

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.018922

 

UTM Northing:

 

5098249

 

Station Status:

 

Active

 

Longitude:

 

65.182846

 

UTM Easting:

 

330970

 

Station Name:

 

North River Below Rte 112 Bridge PWMG 8

 

Description:

 

Downstream from route 112 bridge approx 5 to 10 m (upstream side too muddy),Westmorland Co, Salisbury Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0102

 

StationID:

 

545

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.064701

 

UTM Northing:

 

5103148

 

Station Status:

 

Active

 

Longitude:

 

65.092786

 

UTM Easting:

 

338075

 

Station Name:

 

North River below Tingley Hill Bridge PWMG 40

 

Description:

 

50m downstream from Tingley Hill bridge. Riffle. Stn. 3; For fall 1998 benthic study: (1) mixed substrate, 

 

 

mostly rubble-sized, some much larger (2) unshaded (3) < 1' deep, water clear

 

Site:

 

 

Water Body:

 

North River

 

Historical ID:

 

00BR01BU0167

 

StationID:

 

8185

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.939911

 

UTM Northing:

 

5089499

 

Station Status:

 

Active

 

Longitude:

 

65.196124

 

UTM Easting:

 

329700

 

Station Name:

 

Petitcodiac River @ Causeway Fishway PWMG 21

 

Description:

 

>From causeway, new lane, adjacent to fishway from headpond (sample iron used),Albert Co, Coverdale

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0117

 

StationID:

 

469

 

UTM Zone:

 

PID:

 

Latitude:

 

UTM Northing:

 

Station Status:

 

Inactive

 

Longitude:

 

UTM Easting:

 

2000/01/25

 

Page 6 of 11

 

background image

 

Station Listing

 

Station Name:

 

Petitcodiac River 30m below covered bridge

 

Description:

 

30m downstream from covered bridge. Turn right on road (approx. 1km after TCH) off Hwy. 6. Run. Stn. 12; 

 

 

For fall 1998 benthic study: (1) substrate large rocks with abundant algal growth (2) slow water, samplers in 

 

 

"run", all others in "riffles"

 

Site:

 

 

Water Body:

 

Petitcodiac River; Flows S. into Shepody Bay. aka Petcoudiac 

 

Historical ID:

 

00BR01BU0175

 

StationID:

 

8193

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.000418

 

UTM Northing:

 

5095999

 

Station Status:

 

Active

 

Longitude:

 

65.089391

 

UTM Easting:

 

338150

 

Station Name:

 

Petitcodiac River 50m above Rte. 112 bridge

 

Description:

 

50m above Rte. 112 bridge. Riffle. Stn. 13; For fall 1998 benthic study: (1) substrate rocks smaller than those 

 

 

in sampler (2) water < 1' deep (3) marsh shoreline; unshaded

 

Site:

 

 

Water Body:

 

Petitcodiac River; Flows S. into Shepody Bay. aka Petcoudiac 

 

Historical ID:

 

00BR01BU0176

 

StationID:

 

8194

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.021209

 

UTM Northing:

 

5098199

 

Station Status:

 

Active

 

Longitude:

 

65.034621

 

UTM Easting:

 

342450

 

Station Name:

 

Petitcodiac River Above French Brook PWMG 15

 

Description:

 

U/s from mouth of french brook on rte 106 (by mail box # 3447, river on east side),Westmorland Co, Salisbury

 

 

 Pa; Approx 1km

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0106

 

StationID:

 

461

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.011592

 

UTM Northing:

 

5097199

 

Station Status:

 

Active

 

Longitude:

 

65.068886

 

UTM Easting:

 

339770

 

Station Name:

 

Petitcodiac River Above Rte 905 Bridge PWMG 3

 

Description:

 

Sampled approx 50 m upstream from bridge on rte 905 in town of Petitcodiac,Westmorland Co.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0104

 

StationID:

 

460

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.933077

 

UTM Northing:

 

5088699

 

Station Status:

 

Active

 

Longitude:

 

65.177022

 

UTM Easting:

 

331160

 

Station Name:

 

Petitcodiac River at TCH Bridge PWMG 4

 

Description:

 

east of Petitcodiac at TCH bridge.1997 - sample adjacent to wsc gauge stn upstream from 

 

 

tributary,Westmorland Co, Sals Pa, Petitcodiac

 

Site:

 

 

Water Body:

 

Historical ID:

 

NB01BU0003

 

StationID:

 

470

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.946761

 

UTM Northing:

 

5090199

 

Station Status:

 

Active

 

Longitude:

 

65.167365

 

UTM Easting:

 

331950

 

2000/01/25

 

Page 7 of 11

 

background image

 

Station Listing

 

Station Name:

 

Petitcodiac River Below Rte 112 Bridge PWMG 16

 

Description:

 

100m downstream from bridge on route 112 ,Westmorland Co, Salisbury Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0107

 

StationID:

 

459

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.022581

 

UTM Northing:

 

5098349

 

Station Status:

 

Active

 

Longitude:

 

65.03338

 

UTM Easting:

 

342550

 

Station Name:

 

Petitcodiac River near mouth of Pollett R PWMG 10

 

Description:

 

U/s from mouth of Pollett. Cross covered bridge on Powers Pit rd. Sample u/s from bridge,Westmorland Co., 

 

 

Sals Pa; Stn 3,

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0010

 

StationID:

 

465

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.996875

 

UTM Northing:

 

5095609

 

Station Status:

 

Active

 

Longitude:

 

65.091195

 

UTM Easting:

 

338000

 

Station Name:

 

Pollett River @ Church's Corner PWMG 14

 

Description:

 

At bridge west of Church's Corner(cc) 1997 - approx 30m u/s of bridge,Albert Co., Elgin Pa. Station 4. / For 

 

 

benthic study: 30m upstream from bridge at Church's Corner. Riffle. Stn. 5; (1) substrate mixed with several 

 

 

large rocks above water surface (2) marsh and mixed forest on banks (3) < 1' deep, very clear

 

Site:

 

 

Water Body:

 

Pollett River; . aka Pollet River

 

Historical ID:

 

00BR01BU0018

 

StationID:

 

442

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.756879

 

UTM Northing:

 

5068919

 

Station Status:

 

Active

 

Longitude:

 

65.078347

 

UTM Easting:

 

338300

 

Station Name:

 

Pollett River @ Mapleton Bridge PWMG 13

 

Description:

 

approx 30m u/s from bridge on Mapleton Road., Elgin Pa. Station 3.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0017

 

StationID:

 

443

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.812

 

UTM Northing:

 

5075099

 

Station Status:

 

Active

 

Longitude:

 

65.105882

 

UTM Easting:

 

336320

 

Station Name:

 

Pollett River 1km Above Mouth PWMG 11

 

Description:

 

approx 1km u/s from mouth. Adjacent to stn BU0010 on Petitcodiac,Westmorland Co, Salisbury Pa. Continue 

 

 

down Powers Pitt Road after covered bridge, approx 100metres. Follow clearing to river; For fall 1998 benthic 

 

 

study: (1) substrate small rocks similar size and colour to sampler rocks (2) shallow, very clear (3) mixed-wood 

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0109

 

StationID:

 

441

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.995904

 

UTM Northing:

 

5095499

 

Station Status:

 

Active

 

Longitude:

 

65.090189

 

UTM Easting:

 

338075

 

2000/01/25

 

Page 8 of 11

 

background image

 

Station Listing

 

Station Name:

 

Pollett River 30m above Church's Corner bridge

 

Description:

 

30m upstream from bridge at Church's Corner. Riffle. Stn. 5; For fall 1998 benthic study: (1) substrate mixed 

 

 

with several large rocks above water surface (2) marsh and mixed forest on banks (3) < 1' deep, very clear

 

Site:

 

 

Water Body:

 

Pollett River; . aka Pollet River

 

Historical ID:

 

00BR01BU0169

 

StationID:

 

8187

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.756699

 

UTM Northing:

 

5068899

 

Station Status:

 

Active

 

Longitude:

 

65.07834

 

UTM Easting:

 

338300

 

Station Name:

 

Pollett River east of Pollett R Settlement PWMG 12

 

Description:

 

Bridge xing on pollett river located just east of pollett river settlement,Westmorland Co, Sals Pa; Sample 

 

 

approx 30 m u/s from bridge.

 

Site:

 

 

Water Body:

 

Historical ID:

 

NB01BU0041

 

StationID:

 

446

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.888092

 

UTM Northing:

 

5083529

 

Station Status:

 

Active

 

Longitude:

 

65.094194

 

UTM Easting:

 

337450

 

Station Name:

 

Pollett River near Elgin above Gordon Falls

 

Description:

 

Pollett River near Elgin above Gordon Falls

 

Site:

 

 

Water Body:

 

Pollett River; . aka Pollet River

 

Historical ID:

 

00BR01BU0165

 

StationID:

 

8998

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.784301

 

UTM Northing:

 

5071999

 

Station Status:

 

Active

 

Longitude:

 

65.094804

 

UTM Easting:

 

337100

 

Station Name:

 

Prosser Brook above Little River confluence

 

Description:

 

30m above the confluence with Little River through woods at bend in ATV trail. Riffle. Stn. 8; For fall 1998 

 

 

benthic study: (1) substrate rocks about same size as sampler rocks (2) water cold and fast moving (3) 

 

 

samplers in "holes" > 1.5' deep (4) brook mostly shaded with overhanging willow and alder

 

Site:

 

 

Water Body:

 

Prosser Brook

 

Historical ID:

 

00BR01BU0171

 

StationID:

 

8189

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.86548

 

UTM Northing:

 

5080799

 

Station Status:

 

Active

 

Longitude:

 

64.984481

 

UTM Easting:

 

345900

 

Station Name:

 

Prosser Brook near mouth PWMG 18

 

Description:

 

at bridge, on small road leading to house just before mouth, off road from Parkindale to Prosser Brook.

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0111

 

StationID:

 

438

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.863107

 

UTM Northing:

 

5080529

 

Station Status:

 

Active

 

Longitude:

 

64.981176

 

UTM Easting:

 

346150

 

2000/01/25

 

Page 9 of 11

 

background image

 

Station Listing

 

Station Name:

 

Rabbit Brook @ Mapleton Rd PWMG 25

 

Description:

 

few metres upstream from culvert under Mapleton road.,Westmorland Co, Moncton Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0116

 

StationID:

 

434

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.112853

 

UTM Northing:

 

5107989

 

Station Status:

 

Active

 

Longitude:

 

64.825766

 

UTM Easting:

 

358850

 

Station Name:

 

Rabbit Brook near Mouth PWMG 24

 

Description:

 

Near the mouth , approx 10m upstream from culvert under Wheeler blvd.,Westmorland Co, Moncton Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0105

 

StationID:

 

433

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.111406

 

UTM Northing:

 

5107799

 

Station Status:

 

Active

 

Longitude:

 

64.809219

 

UTM Easting:

 

360125

 

Station Name:

 

Turtle Creek @ Bypass Channel

 

Description:

 

Below pumphouse where bypass channel enters creek,Albert Co, Coverdale Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0112

 

StationID:

 

104

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.005542

 

UTM Northing:

 

5096199

 

Station Status:

 

Inactive

 

Longitude:

 

64.899078

 

UTM Easting:

 

352900

 

Station Name:

 

Turtle Creek @ Bypass channel by pumphouse PWMG 19

 

Description:

 

Station created in 1998. Previous Turtle Creek station could not be accessed for safety reasons. Site manager,

 

 

 Paul Richard must be contacted to unlock the gates. Call 387-8448. Drive down dirt road to pumphouse. Go 

 

 

through gates. Sample channel behind pumphouse.

 

Site:

 

 

Water Body:

 

Turtle Creek

 

Historical ID:

 

StationID:

 

8323

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.004069

 

UTM Northing:

 

5096024

 

Station Status:

 

Inactive

 

Longitude:

 

64.892957

 

UTM Easting:

 

353370

 

Station Name:

 

Turtle Creek above Rte. 910 bridge PWMG 42

 

Description:

 

30m upstream from Rte. 910 bridge crossing. Riffle. Stn. 7; For fall 1998 benthic study: (1) substrate large 

 

 

rocks (2) water knee-deep in places, brown, f ast moving

 

Site:

 

 

Water Body:

 

Turtle Creek

 

Historical ID:

 

00BR01BU0170

 

StationID:

 

8188

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.959085

 

UTM Northing:

 

5090999

 

Station Status:

 

Active

 

Longitude:

 

64.878132

 

UTM Easting:

 

354400

 

2000/01/25

 

Page 10 of 11

 

background image

 

Station Listing

 

Station Name:

 

Weldon Creek D/S from Salem PWMG 32

 

Description:

 

sampled u/s from covered bridge near Salem settlement.,Albert Co, Hillsborough Pa; For fall 1998 benthic 

 

 

study: (1) substrate rocks larger than in sampler at riffle (2) water clear and fast moving (3) steep banks, 

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0113

 

StationID:

 

61

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

45.916868

 

UTM Northing:

 

5085999

 

Station Status:

 

Active

 

Longitude:

 

64.700367

 

UTM Easting:

 

368075

 

Station Name:

 

West Branch Halls Creek @ Briardale St PWMG 27

 

Description:

 

between Briardale and TCH .Access from Briardale st, Park on east end of street and follow (nature ?) path 

 

 

located adjacent to houses to river. Westmorland Co, Moncton

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0119

 

StationID:

 

60

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.127553

 

UTM Northing:

 

5109669

 

Station Status:

 

Active

 

Longitude:

 

64.851881

 

UTM Easting:

 

356870

 

Station Name:

 

West Branch Halls Creek @ Meadowvale Rd

 

Description:

 

Near meadowvale road, past new housing area,Westmorland Co, Moncton Pa

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0115

 

StationID:

 

59

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.124848

 

UTM Northing:

 

5109349

 

Station Status:

 

Inactive

 

Longitude:

 

64.841048

 

UTM Easting:

 

357699

 

Station Name:

 

West Branch Halls Creek @ Wheeler Blvd PWMG 26

 

Description:

 

d/s from mouth of rabbit brook on east side of wheeler blvd.,Westmorland Co, Moncton

 

Site:

 

 

Water Body:

 

Historical ID:

 

00BR01BU0114

 

StationID:

 

58

 

UTM Zone:

 

20

 

PID:

 

Latitude:

 

46.111013

 

UTM Northing:

 

5107749

 

Station Status:

 

Active

 

Longitude:

 

64.805648

 

UTM Easting:

 

360400

 

 

This is the end of the report

 

2000/01/25

 

Page 11 of 11