background image

DOES THE INERTIA OF A BODY DEPEND

UPON ITS ENERGY-CONTENT?

By

A. EINSTEIN

September 27, 1905

The results of the previous investigation lead to a very interesting conclusion,

which is here to be deduced.

I based that investigation on the Maxwell-Hertz equations for empty space,

together with the Maxwellian expression for the electromagnetic energy of space,
and in addition the principle that:—

The laws by which the states of physical systems alter are independent of

the alternative, to which of two systems of coordinates, in uniform motion of
parallel translation relatively to each other, these alterations of state are referred
(principle of relativity).

With these principles

as my basis I deduced

inter alia

the following result

(

§

8):—

Let a system of plane waves of light, referred to the system of co-ordinates

(

x, y, z

), possess the energy

l

; let the direction of the ray (the wave-normal)

make an angle

φ

with the axis of

x

of the system. If we introduce a new system

of co-ordinates (

ξ, η, ζ

) moving in uniform parallel translation with respect to

the system (

x, y, z

), and having its origin of co-ordinates in motion along the

axis of

x

with the velocity

v

, then this quantity of light—measured in the system

(

ξ, η, ζ

)—possesses the energy

l

=

l

1

v

c

cosφ

p

1

v

2

/c

2

where

c

denotes the velocity of light. We shall make use of this result in what

follows.

Let there be a stationary body in the system (

x, y, z

), and let its energy—

referred to the system (

x, y, z

) be E

0

. Let the energy of the body relative to the

system (

ξ, η, ζ

) moving as above with the velocity

v

, be H

0

.

Let this body send out, in a direction making an angle

φ

with the axis

of

x

, plane waves of light, of energy

1
2

L measured relatively to (

x, y, z

), and

simultaneously an equal quantity of light in the opposite direction. Meanwhile
the body remains at rest with respect to the system (

x, y, z

). The principle of

The principle of the constancy of the velocity of light is of course contained in Maxwell’s

equations.

1

background image

energy must apply to this process, and in fact (by the principle of relativity)
with respect to both systems of co-ordinates. If we call the energy of the body
after the emission of light E

1

or H

1

respectively, measured relatively to the

system (

x, y, z

) or (

ξ, η, ζ

) respectively, then by employing the relation given

above we obtain

E

0

=

E

1

+

1

2

L +

1

2

L

,

H

0

=

H

1

+

1

2

L

1

v

c

cosφ

p

1

v

2

/c

2

+

1

2

L

1 +

v

c

cosφ

p

1

v

2

/c

2

=

H

1

+

L

p

1

v

2

/c

2

.

By subtraction we obtain from these equations

H

0

E

0

(H

1

E

1

) = L

(

1

p

1

v

2

/c

2

1

)

.

The two differences of the form H

E occurring in this expression have simple

physical significations. H and E are energy values of the same body referred
to two systems of co-ordinates which are in motion relatively to each other,
the body being at rest in one of the two systems (system (

x, y, z

)). Thus it is

clear that the difference H

E can differ from the kinetic energy K of the body,

with respect to the other system (

ξ, η, ζ

), only by an additive constant C, which

depends on the choice of the arbitrary additive constants of the energies H and
E. Thus we may place

H

0

E

0

=

K

0

+ C

,

H

1

E

1

=

K

1

+ C

,

since C does not change during the emission of light. So we have

K

0

K

1

= L

(

1

p

1

v

2

/c

2

1

)

.

The kinetic energy of the body with respect to (

ξ, η, ζ

) diminishes as a result

of the emission of light, and the amount of diminution is independent of the
properties of the body. Moreover, the difference K

0

K

1

, like the kinetic energy

of the electron (

§

10), depends on the velocity.

Neglecting magnitudes of fourth and higher orders we may place

K

0

K

1

=

1

2

L

c

2

v

2

.

From this equation it directly follows that:—

2

background image

If a body gives off the energy L in the form of radiation, its mass diminishes

by

L

/c

2

.

The fact that the energy withdrawn from the body becomes energy of

radiation evidently makes no difference, so that we are led to the more general
conclusion that

The mass of a body is a measure of its energy-content; if the energy changes

by L, the mass changes in the same sense by L

/

9

×

10

20

, the energy being

measured in ergs, and the mass in grammes.

It is not impossible that with bodies whose energy-content is variable to a

high degree (e.g. with radium salts) the theory may be successfully put to the
test.

If the theory corresponds to the facts, radiation conveys inertia between the

emitting and absorbing bodies.

About this Document

This edition of Einstein’s

Does the Inertia of a Body Depend upon its

Energy-Content

is based on the English translation of his original 1905 German-

language paper (published as

Ist die Tr¨

agheit eines K¨

orpers von seinem En-

ergiegehalt abh¨

angig?

, in

Annalen der Physik

.

18

:639, 1905) which appeared

in the book

The Principle of Relativity

, published in 1923 by Methuen and

Company, Ltd. of London. Most of the papers in that collection are English
translations by W. Perrett and G.B. Jeffery from the German

Das Relativat-

sprinzip

, 4th ed., published by in 1922 by Tuebner. All of these sources are

now in the public domain; this document, derived from them, remains in the
public domain and may be reproduced in any manner or medium without
permission, restriction, attribution, or compensation.

The footnote is as it appeared in the 1923 edition. The 1923 English

translation modified the notation used in Einstein’s 1905 paper to conform
to that in use by the 1920’s; for example,

c

denotes the speed of light, as

opposed the V used by Einstein in 1905. In this paper Einstein uses L to
denote energy; the italicised sentence in the conclusion may be written as
the equation “

m

= L

/c

2

” which, using the more modern E instead of L to

denote energy, may be trivially rewritten as “

E =

mc

2

”.

This edition was prepared by John Walker. The current version of this

document is available in a variety of formats from the editor’s Web site:

http://www.fourmilab.ch/

3