made with Mathematica technology MathWorld

Gaussian Integral
DOWNLOAD Mathematica Notebook

The Gaussian integral, also called the probability integral and closely related to the erf function, is the integral of the one-dimensional Gaussian function over (-infty,infty). It can be computed using the trick of combining two one-dimensional Gaussians

int_(-infty)^inftye^(-x^2)dx=sqrt((int_(-infty)^inftye^(-x^2)dx)(int_(-infty)^inftye^(-x^2)dx))
(1)
=sqrt((int_(-infty)^inftye^(-y^2)dy)(int_(-infty)^inftye^(-x^2)dx))
(2)
=sqrt(int_(-infty)^inftyint_(-infty)^inftye^(-(x^2+y^2))dydx).
(3)

Here, use has been made of the fact that the variable in the integral is a dummy variable that is integrates out in the end and hence can be renamed from x to y. Switching to polar coordinates then gives

int_(-infty)^inftye^(-x^2)dx=sqrt(int_0^(2pi)int_0^inftye^(-r^2)rdrdtheta)
(4)
=sqrt(2pi[-1/2e^(-r^2)]_0^infty)
(5)
=sqrt(pi).
(6)

There also exists a simple proof of this identity that does not require transformation to polar coordinates (Nicholas and Yates 1950).

The integral from 0 to a finite upper limit a can be given by the continued fraction

int_0^ae^(-t^2)dt=1/2sqrt(pi)erf(a)
(7)
=1/2sqrt(pi)-(e^(-a^2))/(2a+)1/(a+)2/(2a+)3/(a+)4/(2a+...),
(8)

where erfx is erf (the error function), as first stated by Laplace, proved by Jacobi, and rediscovered by Ramanujan (Watson 1928; Hardy 1999, pp. 8-9).

The general class of integrals of the form

 I_n(a)=int_0^inftye^(-ax^2)x^ndx
(9)

can be solved analytically by setting

x=a^(-1/2)y
(10)
dx=a^(-1/2)dy
(11)
y^2=ax^2.
(12)

Then

I_n(a)=a^(-1/2)int_0^inftye^(-y^2)(a^(-1/2)y)^ndy
(13)
=a^(-(n+1)/2)int_0^inftye^(-y^2)y^ndy.
(14)

For n=0, this is just the usual Gaussian integral, so

 I_0(a)=(sqrt(pi))/2a^(-1/2)=1/2sqrt(pi/a).
(15)

For n=1, the integrand is integrable by quadrature,

 I_1(a)=a^(-1)int_0^inftye^(-y^2)ydy=a^(-1)[-1/2e^(-y^2)]_0^infty=1/2a^(-1).
(16)

To compute I_n(a) for n>1, use the identity

-partial/(partiala)I_(n-2)(a)=-partial/(partiala)int_0^inftye^(-ax^2)x^(n-2)dx
(17)
=-int_0^infty-x^2e^(-ax^2)x^(n-2)dx
(18)
=int_0^inftye^(-ax^2)x^ndx
(19)
=I_n(a).
(20)

For n=2s even,

I_n(a)=(-partial/(partiala))I_(n-2)(a)
(21)
=(-partial/(partiala))^2I_(n-4)
(22)
=...=(-partial/(partiala))^(n/2)I_0(a)
(23)
=(partial^(n/2))/(partiala^(n/2))I_0(a)
(24)
=(sqrt(pi))/2(partial^(n/2))/(partiala^(n/2))a^(-1/2),
(25)

so

int_0^inftyx^(2s)e^(-ax^2)dx=((s-1/2)!)/(2a^(s+1/2))
(26)
=((2s-1)!!)/(2^(s+1)a^s)sqrt(pi/a),
(27)

where n!! is a double factorial. If n=2s+1 is odd, then

I_n(a)=(-partial/(partiala))I_(n-2)(a)
(28)
=(-partial/(partiala))^2I_(n-4)(a)
(29)
=...=(-partial/(partiala))^((n-1)/2)I_1(a)
(30)
=(partial^((n-1)/2))/(partiala^((n-1)/2))I_1(a)
(31)
=1/2(partial^((n-1)/2))/(partiala^((n-1)/2))a^(-1),
(32)

so

 int_0^inftyx^(2s+1)e^(-ax^2)dx=(s!)/(2a^(s+1)).
(33)

The solution is therefore

 int_0^inftye^(-ax^2)x^ndx={((n-1)!!)/(2^(n/2+1)a^(n/2))sqrt(pi/a)   for n even; ([1/2(n-1)]!)/(2a^((n+1)/2))   for n odd.
(34)

The first few values are therefore

I_0(a)=1/2sqrt(pi/a)
(35)
I_1(a)=1/(2a)
(36)
I_2(a)=1/(4a)sqrt(pi/a)
(37)
I_3(a)=1/(2a^2)
(38)
I_4(a)=3/(8a^2)sqrt(pi/a)
(39)
I_5(a)=1/(a^3)
(40)
I_6(a)=(15)/(16a^3)sqrt(pi/a).
(41)

A related, often useful integral is

 H_n(a)=1/(sqrt(pi))int_(-infty)^inftye^(-ax^2)x^ndx,
(42)

which is simply given by

 H_n(a)={(2I_n(a))/(sqrt(pi))   for n even; 0   for n odd.
(43)

The more general integral of x^ne^(-ax^2+bx) has the following closed forms,

int_(-infty)^inftyx^ne^(-ax^2+bx)dx=i^(-n)a^(-(n+1)/2)sqrt(pi)e^(b^2/(4a))U(-1/2n;1/2;-b^2/4a)
(44)
=sqrt(pi/a)e^(b^2/(4a))sum_(k=0)^(|_n/2_|)(n!)/(k!(n-2k)!)((2b)^(n-2k))/((4a)^(n-k))
(45)
=sqrt(pi/a)e^(b^2/(4a))sum_(k=0)^(|_n/2_|)(n; 2k)(2k-1)!!(2a)^(k-n)b^(n-2k)
(46)

for integer n>0 (F. Pilolli, pers. comm.). For (45) and (46), a,b in C-{0} (the punctured plane), R[a]>0, and (-1)!!=1. Here, U(a;b;x) is a confluent hypergeometric function of the second kind and (n; k) is a binomial coefficient.

SEE ALSO: Differentiating Under the Integral Sign, Erf, Gaussian Function, Normal Distribution

REFERENCES:

Guitton, E. "Démonstration de la formule." Nouv. Ann. Math. 65, 237-239, 1906.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Nicholas, C. B. and Yates, R. C. "The Probability Integral." Amer. Math. Monthly 57, 412-413, 1950.

Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 147-148, 1984.

Watson, G. N. "Theorems Stated by Ramanujan (IV): Theorems on Approximate Integration and Summation of Series." J. London Math. Soc. 3, 282-289, 1928.




CITE THIS AS:

Weisstein, Eric W. "Gaussian Integral." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GaussianIntegral.html

The Wolfram Demonstrations Project Browse Topics View Latest
Wolfram Mathematica 7