background image

16.61 Aerospace Dynamics 

Spring 2003 

 
 
 
 
 
 
 
 
 
 
 

Lecture #10 

 
 
 
 

Friction in Lagrange’s Formulation 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

1

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

Generalized Forces Revisited 

 

• 

Derived Lagrange’s Equation from D’Alembert’s equation: 

(

)

(

)

1

1

i

i

i

p

p

i

i

i

i

i

i

i

x

i

y

i

z

i

i

i

m x x

y y

z z

F x

F

y

F z

δ

δ

δ

δ

δ

δ

=

=

+

+

=

+

+

&&

&&

&&

 

• 

Define virtual displacements  

1

N

i

i

j

j

j

x

x

q

q

=

=

δ

δ

 

• 

Substitute in and noting the independence of the 

j

q

δ

, for each 

DOF we get one Lagrange equation: 

1

1

i

i

i

p

p

i

i

i

i

i

i

i

i

i

r

x

y

z

i

i

r

r

r

r

r

r

x

y

z

x

y

z

m x

y

z

q

F

F

F

q

q

q

q

q

q

q

=

=

+

+

=

+

+

&&

&&

&&

r

δ

δ

 

• 

Applying lots of calculus on LHS and noting independence of 
the 

i

q

δ

, for each DOF we get a Lagrange equation: 

1

i

i

i

p

i

i

x

y

z

i

r

r

r

r

x

i

r

y

z

d

T

T

F

F

F

dt

q

q

q

q

q

=

=

+

+

&

 

 

• 

Further, we “moved” the conservative forces (those derivable 
from a potential function to the LHS: 

1

i

i

i

p

i

i

x

y

z

i

r

r

r

r

x

i

r

y

z

d

L

L

F

F

F

dt

q

q

q

q

q

=

=

+

+

&

 

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

2

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

• 

Define Generalized Force: 

1

r

i

i

i

p

i

i

q

x

y

z

i

r

r

x

i

r

y

z

Q

F

F

F

q

q

=

q

=

+

+

 

 

• 

Recall that the RHS was derived from the virtual work: 

r

q

r

W

Q

q

=

δ

δ

 

• 

Note, we can also find the effect of conservative forces using 
virtual work techniques as well. 

Example 

• 

Mass suspended from linear spring and velocity proportional 
damper slides on a plane with friction.   

 

• 

Find the equation of motion of the mass. 

 

g

c

k

m

q(t)

µ

θ

g

c

k

m

q(t)

µ

θ

• 

DOF = 3 – 2 = 1.   

 

• 

Constraint equations:  

y = z 

= 0. 

 

• 

Generalized coordinate:  

 

• 

Kinetic Energy:  

2

1
2

=

&

T

mq

 

 

• 

Potential Energy:  

2

1

sin

2

q

mgq

=

V

k

θ

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

3

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

• 

Lagrangian:  

2

2

1

1

sin

2

2

L T V

mq

kq

mgq

= − =

+

&

θ

 

 

• 

Derivatives: 

,

,

L

d

L

L

mq

mq

kq mg

q

dt

q

q

=

=

= − +

&

&&

&

&

sin

θ

 

 

• 

Lagrange’s Equation: 

sin

r

q

d

L

L

mq kq mg

Q

dt

q

q

=

+

=

&&

&

θ

 

 
 
 

• 

To handle friction force in the generalized force term, need to 
know the normal force 

Æ

 Lagrange approach does not 

indicate the value of this force. 

 

mg

F

s

F

d

F

f

N

mq

&&

Look at the free body diagram.  

 

Since body in motion at the time 
of the virtual displacement, use 
the d’Alembert principle and 
include the inertia forces as well 
as the real external forces 

 

Sum forces perpendicular to the motion:  

cos

N mg

θ

=

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

4

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

 

• 

Recall 

W

δ

δ

= ⋅

F

s

q

.   Two nonconservative components, look 

at each component in turn: 
 

Damper:  

W

cq

δ

δ

= −

&

 

 

Friction Force: 

 

sgn( )
sgn( )

cos

W

q N q
q mg

q

= −
= −

δ

µ δ
µ

θδ

 

• 

Total Virtual Work: 

(

)

sgn( )

cos

W

cq

q mg

q

= − −

&

δ

µ

θ δ

 

 

• 

The generalized force is thus:  

(

)

sgn( )

cos

r

q

r

W

Q

cq

q mg

q

=

= − −

&

δ

µ

θ

δ

 

 

• 

And the EOM is: 

 

(

)

sin

sgn( )

cos

sin

sgn( ) cos

mq kq mg

cq

q mg

mq cq kq mg

q

+

= − −

+

+

=

&&

&

&&

&

θ

µ

θ

θ

µ

θ

 

 
 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

5

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

• 

Note:

  Could have found the generalized forces using the 

coordinate system mapping: 

1

r

i

i

i

p

i

i

q

x

y

z

i

r

r

x

i

r

y

z

Q

F

F

F

q

q

=

q

=

+

+

 

 

 

For example, the gravity force: 

,

sin ,

sin

i

r

i

y

i

q

y

F

mg

y

q

q

Q

mg

sin

= −

=

=

=

θ

θ

θ

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

6

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

Rayleigh's Dissipation Function 

 

• 

For systems with conservative and non-conservative forces, 
we developed the general form of Lagrange's equation 

N

qr

r

r

d

L

L

Q

dt

q

q

=

&

 

with L=T-V and 

 

r

N

q

x

y

z

r

r

x

r

y

z

Q

F

F

F

q

q

q

=

+

+

 

 

• 

For non-conservative forces that are a function of  , there is 
an alternative approach. Consider generalized forces  

q

&

 

 

1

( , )

n

N

i

ij

j

Q

c q

=

= −

&

j

t q

where the  are the damping coefficients, which are dissipative 
in nature 

Î

 result in a loss of energy 

ij

c

 

• 

Now define the Rayleigh dissipation function 

1

1

1

2

n

n

ij i

j

i

j

F

c

=

=

=

∑∑

& &

q q

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

7

 

background image

16.61 Aerospace Dynamics 

Spring 2003 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 

8

 

• 

Then we can show that  

1

r

r

n

N

q j

j

q

j

r

F

c q

Q

q

=

=

= −

&

&

 

 

• 

So that we can rewrite Lagrange's equations in the slightly 
cleaner form 

0

r

r

r

d

L

L

F

dt

q

q

q

+

=

&

&

 

 

 

• 

In the example of the block moving on the wedge,  

2

1

2

F

cq

=

&

 

sin

r

q

d

L

L

F

mq kq mg

cq Q

dt

q

q

q

+

=

+

+

=

&&

&

&

&

θ

 

 
where 

r

q

Q

now only accounts for the friction force. 

 

 


Document Outline