background image

The International System

of Units (SI)

NIST Special Publication 330    2008 Edition

Barry N. Taylor and Ambler Thompson, Editors

m

A

K

cd

mol

kg

s

SI

background image

NIST SPECIAL PUBLICATION 330 
2008 EDITION 

 
 
 
 
 

 

THE INTERNATIONAL SYSTEM OF UNITS (SI)  

 
 
 

 

Editors: 
Barry N. Taylor 

 

Physics Laboratory 
 
Ambler Thompson 
Technology Services 
 
National Institute of Standards and Technology 
Gaithersburg, MD  20899 

 
 
 

United States version of the English text of the eighth edition (2006) 
of the International Bureau of Weights and Measures publication  

Le Système International d’ UnitĂŠs (SI) 

 

 

 
 
(Supersedes NIST Special Publication 330, 2001 Edition) 

 

 

 

Issued March 2008 

 

U.S. DEPARTMENT OF COMMERCE, 

Carlos M. Gutierrez, Secretary 

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 

James Turner, Acting 

Director

 

 

 

background image

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

National Institute of Standards and Technology Special Publication 330, 2008 Edition 

Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008) 

CODEN:  NSPUE2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

WASHINGTON 2008 

background image

 

iii

Foreword

 

 
The International System of Units, universally abbreviated SI (from the 

French Le Système 

International d’Unités

), is the modern metric system of measurement. Long the dominant system used 

in science, the SI is rapidly becoming the dominant measurement system used in international 
commerce. In recognition of this fact and the increasing global nature of the marketplace, the 
Omnibus Trade and Competitiveness Act of 1988, which changed the name of the National Bureau of 
Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the 
added task of helping U.S. industry increase its competitiveness, designates “the metric system of 
measurement as the preferred system of weights and measures for United States trade and commerce.” 
 
The definitive international reference on the SI is a booklet published by the International Bureau of 
Weights and Measures (BIPM, 

Bureau International des Poids et Mesures

) and often referred to as 

the BIPM SI Brochure. Entitled 

Le Système International d' UnitĂŠs (SI)

, the booklet is in French 

followed by a text in English. This 2008 edition of NIST Special Publication (SP) 330 is the United 
States version of the English text of the eighth edition of the Brochure (the most current) published in 
2006. The 2008 edition of NIST SP 330 replaces its immediate predecessor, the 2001 edition, which 
was based on the seventh edition of the BIPM SI Brochure published in 1998, but including 

Supplement 2000: addenda and corrigenda to the 7th edition (1998)

, published by the BIPM in June 

2000. 
 
Like its 2001 predecessor, the 2008 edition of NIST SP 330 conforms with the English text in the 
BIPM SI Brochure but contains a few minor differences to reflect the most recent interpretation of the 
SI for the United States by the Secretary of Commerce, as published in the 

Federal Register

 of July 

28, 1998, 63 FR 40334-40340. (The Metric Conversion Act of 1975 gives the Secretary of Commerce 
the responsibility of interpreting or modifying the SI for use in the United States. A slightly updated 
version of the 1998 interpretation is expected to be published in the 

Federal Register

 in 2008.) These 

differences include the following: (i) The spelling of English words is in accordance with the 

United 

States Government Printing Office Style Manual

, which follows 

Webster's Third New International 

Dictionary

 rather than the 

Oxford Dictionary

. Thus the spellings “meter,” “liter,” and “deka” are used 

rather than â€œmetre,” “litre,” and “deca” as in the original BIPM English text; (ii) the name of the unit 
with symbol t and defined according to 1 t = 10

3

 kg is called “metric ton” rather than "tonne"; (iii) the 

four units curie, roentgen, rad, and rem are given in Table 10, p. 38; (iv) a number of "Editors’ notes" 
are added in order to indicate such differences where significant (except spelling differences) and to 
clarify the text; and (v) a few very minor editorial changes are made in order to â€œAmericanize” some 
phrases. 
 
Because of the importance of the SI to science, technology, and commerce, and because (i) NIST 
coordinates the Federal Government policy on the conversion to the SI by Federal agencies and on the 
use of the SI by U.S. industry, (ii) NIST provides official U.S. representation in the various 
international bodies established by the Meter Convention (see p. 1), and (iii) the Secretary of 
Commerce has delegated his authority to interpret or modify the SI for use in the United States to the 

background image

 

iv

NIST Director, NIST provides a number of other sources of information on the SI in addition to NIST 
SP 330. These include NIST Special Publication 811, 

Guide for the Use of the International System of 

Units (SI)

, by Ambler Thompson and Barry N. Taylor; and NIST Special Publication 814, 

Interpretation of the SI for the United States and Metric Conversion Policy for Federal Agencies

Barry N. Taylor, Editor. Further, NIST SP 330, NIST SP 811, the aforementioned 

Federal Register

 

notice, the "essentials" of the SI together with useful background information, and links to other 
organizations involved with the SI, for example, the NIST Laws and Metric Group and the BIPM 
itself, are all available on the NIST Physics Laboratory Web site entitled "NIST Reference on 
Constants, Units, and Uncertainty" at http://physics.nist.gov/cuu. Users of this NIST publication are 
encouraged to take advantage of these other sources of information. 
 
 
March 2008 

 

Barry N. Taylor  

 

Ambler Thompson 
 

Note from the BIPM

†

 on copyright and the use of the English text 

 

“All BIPM’s works are internationally protected by copyright. This document has 
been drafted further to a permission obtained by the BIPM. The only official text 
is the French text of the original document created by the BIPM.” 

 

To make its work more widely accessible, the International Committee for 
Weights and Measures has decided to publish an English version of its reports. 
Readers should note that the official record is always that of the French text. This 
must be used when an authoritative reference is required or when there is doubt 
about the interpretation of the text. 
 
Translations complete or partial, of this brochure (or of its earlier editions) have 
been published in various languages, notably in Bulgarian, Chinese, Czech, 
English, German, Japanese, Korean, Portuguese, Romanian, and Spanish. The 
ISO and numerous countries have also published standards and guides to the use 
of SI Units. 

                                                 

†

 Editors’note:  Acronyms used in this publication are listed with their meaning on p. 87. 

background image

 

 

1

 

 

 

 

The BIPM 
and the Meter Convention 

The International Bureau of Weights and Measures (BIPM) was set up by the Meter 
Convention (

Convention du Mètre

) signed in Paris on 20 May 1875 by seventeen 

States during the final session of the diplomatic Conference of the Meter. This 
Convention was amended in 1921. 

The BIPM has its headquarters near Paris, in the grounds (43 520 m

2

) of the 

Pavillon de Breteuil (Parc de Saint-Cloud) placed at its disposal by the French 
Government; its upkeep is financed jointly by the Member States of the Meter 
Convention. 

The task of the BIPM is to ensure worldwide unification of measurements; its 
function is thus to: 

•

 

establish fundamental standards and scales for the measurement of the principal 
physical quantities and maintain the international prototypes; 

•

 

carry out comparisons of national and international standards; 

•

 

ensure the coordination of corresponding measurement techniques; 

•

 

carry out and coordinate measurements of the fundamental physical constants 
relevant to these activities. 

 

The BIPM operates under the exclusive supervision of the International Committee 
for Weights and Measures (CIPM) which itself comes under the authority of the 
General Conference on Weights and Measures (CGPM) and reports to it on the work 
accomplished by the BIPM. 

Delegates from all Member States of the Meter Convention attend the General 
Conference which, at present, meets every four years. The function of these 
meetings is to: 

•

 

discuss and initiate the arrangements required to ensure the propagation and 
improvement of the International System of Units (SI), which is the modern 
form of the metric system; 

•

 

confirm the results of new fundamental metrological determinations and various 
scientific resolutions of international scope; 

•

 

take all major decisions concerning the finance, organization and development 
of the BIPM. 

 

The CIPM has eighteen members each from a different State: at present, it meets 
every year. The officers of this committee present an annual report on the 
administrative and financial position of the BIPM to the Governments of the 
Member States of the Meter Convention. The principal task of the CIPM is to ensure 

As of 31 December 2005, 
fifty-one States were 
members of this 
Convention: Argentina, 
Australia, Austria, Belgium, 
Brazil, Bulgaria, Cameroon, 
Canada, Chile, China, 
Czech Republic, Denmark, 
Dominican Republic, 
Egypt, Finland, France, 
Germany, Greece, Hungary, 
India, Indonesia, Iran 
(Islamic Rep. of), Ireland, 
Israel, Italy, Japan, Korea 
(Dem. People's Rep. of), 
Korea (Rep. of), Malaysia, 
Mexico, The Netherlands, 
New Zealand, Norway, 
Pakistan, Poland, Portugal, 
Romania, Russian 
Federation, Serbia and 
Montenegro, Singapore, 
Slovakia, South Africa, 
Spain, Sweden, 
Switzerland, Thailand, 
Turkey, United Kingdom, 
United States, Uruguay, and 
Venezuela. 
 
Twenty States and 
Economies were Associates 
of the General Conference: 
Belarus, CARICOM, 
Chinese Taipei, Costa Rica, 
Croatia, Cuba, Ecuador, 
Estonia, Hong Kong 
(China), Jamaica, 
Kazakhstan, Kenya, Latvia, 
Lithuania, Malta, Panama, 
Philippines, Slovenia, 
Ukraine, and Viet Nam. 

background image

 

worldwide uniformity in units of measurement. It does this by direct action or by 
submitting proposals to the CGPM. 

The activities of the BIPM, which in the beginning were limited to measurements of 
length and mass, and to metrological studies in relation to these quantities, have 
been extended to standards of measurement of electricity (1927), photometry and 
radiometry (1937), ionizing radiation (1960), time scales (1988) and to chemistry 
(2000). To this end the original laboratories, built from 1876

 

to 1878, were enlarged 

in 1929; new buildings were constructed in 1963 to 1964 for the ionizing radiation 
laboratories, in 1984 for the laser work and in 1988 for a library and offices. In 2001 
a new building for the workshop, offices and meeting rooms was opened. 

Some forty-five physicists and technicians work in the BIPM laboratories. They 
mainly conduct metrological research, international comparisons of realizations of 
units and calibrations of standards. An annual report, the 

Director’s Report on the 

Activity and Management of the International Bureau of Weights and Measures

gives details of the work in progress. 

Following the extension of the work entrusted to the BIPM in 1927, the CIPM has 
set up bodies, known as Consultative Committees, whose function is to provide it 
with information on matters that it refers to them for study and advice. These 
Consultative Committees, which may form temporary or permanent working groups 
to study special topics, are responsible for coordinating the international work 
carried out in their respective fields and for proposing recommendations to the 
CIPM concerning units. 

The Consultative Committees have common regulations (

BIPM Proc.-Verb. Com. 

Int. Poids et Mesures

, 1963, 

31

, 97). They meet at irregular intervals. The president 

of each Consultative Committee is designated by the CIPM and is normally a 
member of the CIPM. The members of the Consultative Committees are metrology 
laboratories and specialized institutes, agreed by the CIPM, which send delegates of 
their choice. In addition, there are individual members appointed by the CIPM, and 
a representative of the BIPM (Criteria for membership of Consultative Committees, 

BIPM Proc.-Verb. Com. Int. Poids et Mesures

, 1996, 

64

, 124). At present, there are 

ten such committees: 

1.  The Consultative Committee for Electricity and Magnetism (CCEM), new 

name given in 1997 to the Consultative Committee for Electricity (CCE) set up 
in 1927; 

2.  The Consultative Committee for Photometry and Radiometry (CCPR), new 

name given in 1971 to the Consultative Committee for Photometry (CCP) set 
up in 1933 (between 1930 and 1933 the CCE dealt with matters concerning 
photometry); 

3.  The Consultative Committee for Thermometry (CCT), set up in 1937; 

4.  The Consultative Committee for Length (CCL), new name given in 1997 to the 

Consultative Committee for the Definition of the Meter (CCDM), set up in 
1952; 

background image

 

 

3

 

 

 

 

5.  The Consultative Committee for Time and Frequency (CCTF), new name given 

in 1997 to the Consultative Committee for the Definition of the Second (CCDS) 
set up in 1956; 

6.  The Consultative Committee for Ionizing Radiation (CCRI), new name given in 

1997 to the Consultative Committee for Standards of Ionizing Radiation 
(CCEMRI) set up in 1958 (in 1969 this committee established four sections: 
Section I (x and 

Îł

 rays, electrons), Section II (Measurement of radionuclides), 

Section III (Neutron measurements), Section IV (

Îą

-energy standards); in 1975 

this last section was dissolved and Section II was made responsible for its field 
of activity; 

 7.  The Consultative Committee for Units (CCU), set up in 1964 (this committee 

replaced the Commission for the System of Units set up by the CIPM in 1954); 

 8.  The Consultative Committee for Mass and Related Quantities (CCM), set up in 

1980; 

 9.  The Consultative Committee for Amount of Substance: Metrology in chemistry 

(CCQM), set up in 1993; 

10. The Consultative Committee for Acoustics, Ultrasound and Vibration 

(CCAUV), set up un 1999. 

The proceedings of the General Conference and the CIPM are published by the 
BIPM in the following series: 

•

 

Report of the meeting of the General Conference on Weights and Measures

•

 

Report of the meeting of the International Committee for Weights and Measures

 

The CIPM decided in 2003 that the reports of meetings of the Consultative 
Committees should no longer be printed, but would be placed on the BIPM website, 
in their original language. 

The BIPM also publishes monographs on special metrological subjects and, under 
the title The International System of Units (SI), a brochure, periodically updated, in 
which are collected all the decisions and recommendations concerning units. 

The collection of the 

Travaux et MĂŠmoires du Bureau International des Poids et 

Mesures

 (22 volumes published between 1881 and 1966) and the 

Recueil de 

Travaux du Bureau International des Poids et Mesures

 (11 volumes published 

between 1966 and 1988) ceased by a decision of the CIPM. 

The scientific work of the BIPM is published in the open scientific literature and an 
annual list of publications appears in the 

Director’s Report on the Activity and 

Management of the International Bureau of Weights and Measures

Since 1965 

Metrologia

, an international journal published under the auspices of the 

CIPM, has printed articles dealing with scientific metrology, improvements in 
methods of measurement, work on standards and units, as well as reports concerning 
the activities, decisions and recommendations of the various bodies created under 
the Meter Convention. 

background image

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

background image

 

 

5

 

 

 

 

The International System of Units 

 

Contents 

Foreword  

 

 

iii 

The BIPM and the Meter Convention 

 

Preface to the 8th edition  

 

 

 

1  Introduction    

 

 

1.1  Quantities and units   

 

9

 

1.2  The International System of Units (SI) and the corresponding  

system of quantities   

 

10 

1.3  Dimensions of quantities 

 

11 

1.4  Coherent units, derived units with special names, and the SI prefixes 

12 

1.5  SI units in the framework of general relativity 

 

13 

1.6  Units for quantities that describe biological effects 

 

13 

1.7  Legislation on units   

 

14 

1.8 Historical 

note 

 

 

14 

 

2  SI units  

 

 

 

17 

2.1  SI base units 

 

 

17 

2.1.1 Definitions 

 

 

17 

2.1.1.1  Unit of length (meter) 

 

18 

2.1.1.2  Unit of mass (kilogram) 

 

18 

2.1.1.3  Unit of time (second) 

 

19 

2.1.1.4  Unit of electric current (ampere) 

 

19 

2.1.1.5  Unit of thermodynamic temperature (kelvin) 

20 

2.1.1.6  Unit of amount of substance (mole) 

 

21 

2.1.1.7  Unit of luminous intensity (candela) 

 

22 

2.1.2  Symbols for the seven base units 

 

22 

2.2  SI derived units 

 

 

23 

2.2.1  Derived units expressed in terms of base units 

 

23

 

2.2.2  Units with special names and symbols; units that incorporate 

 

special names and symbols  

 

24 

2.2.3  Units for dimensionless quantities, also called 

 

quantities of dimension one 

 

27 

 

background image

 

3  Decimal multiples and submultiples of SI units 

 

29 

3.1 SI 

prefixes 

 

 

29 

3.2 The 

kilogram 

 

 

30 

 

4  Units outside the SI 

 

 

31 

4.1  Non-SI units accepted for use with the SI, and units based 

on fundamental constants 

  

31 

4.2  Other non-SI units not recommended for use 

 37 

4.3  The curie, roentgen, rad, and rem 

 37 

 

5  Writing unit symbols and names, and expressing the values  

of quantities 

 

 

39 

5.1 Unit 

symbols 

 

 

39

 

5.2 Unit 

names 

 

 

40 

5.3  Rules and style conventions for expressing values of quantities 

40 

5.3.1  Value and numerical value of a quantity, and the use of 

quantity calculus 

 

40 

5.3.2  Quantity symbols and unit symbols 

 

42 

5.3.3  Formatting the value of a quantity 

 

42 

5.3.4  Formatting numbers, and the decimal marker 

 

42

 

5.3.5  Expressing the measurement uncertainty in the value of a quantity 

43 

5.3.6  Multiplying or dividing quantity symbols, the values of quantities, 

or numbers 

 

 

43 

5.3.7  Stating values of dimensionless quantities, or quantities of  
 dimension 

one 

 

 

43 

 

Appendix 1. —  Decisions of the CGPM and the CIPM 

 

45 

Appendix 2. —  Practical realization of the definitions of some important 

  

units 

 

 

83 

Appendix 3. —  Units for photochemical and photobiological quantities 

85 

List of acronyms 

 

 

87 

Index  

 

 

 

89 

 

background image

 

7

 

 

Preface 
to the 8th edition 

We have pleasure in introducing the 8th edition of this publication, commonly called 
the SI Brochure, which defines and presents the 

Système International d’Unités

, the 

SI (known in English as the International System of Units). This Brochure is 
published as a hard copy, and is also available in electronic form at 
http://www.bipm.org/en/si/si_brochure/. 
Since 1970, the 

Bureau International des Poids et Mesures

, the BIPM (known in 

English as the International Bureau of Weights and Measures), has published seven 
previous editions of this document. Its main purpose is to define and promote the SI, 
which has been used around the world as the preferred language of science and 
technology since its adoption in 1948 through a Resolution of the 9th 

ConfĂŠrence 

GĂŠnĂŠrale des Poids et Mesures

, the CGPM (known in English as the General 

Conference on Weights and Measures).

†

 

The SI is, of course, a living system which evolves, and which reflects current best 
measurement practice. This 8th edition therefore contains a number of changes since 
the previous edition. As before, it lists the definitions of all the base units, and all the 
Resolutions and Recommendations of the CGPM and the 

ComitĂŠ International des 

Poids et Mesures

, the CIPM (known in English as the International Committee for 

Weights and Measures), relating to the International System of Units. Formal 
reference to CGPM and CIPM decisions are to be found in the successive volumes 
of the 

Comptes Rendus 

of the CGPM (CR) and the 

Procès-Verbaux

 of the CIPM 

(PV); many of these are also listed in 

Metrologia

. To simplify practical use of the 

system, the text provides explanations of these decisions, and the first chapter 
provides a general introduction to establishing a system of units and to the SI in 
particular. The definitions and the practical realizations of all the units are also 
considered in the context of general relativity. A brief discussion of units associated 
with biological quantities has been introduced for the first time. 
Appendix 1 reproduces, in chronological order, all the decisions (Resolutions, 
Recommendations, Declarations) promulgated since 1889 by the CGPM and the 
CIPM on units of measurement and the International System of Units.  
Appendix 

2 exists only in the electronic version, which is available at 

http://www.bipm.org/en/si/si_brochure/appendix2/. It outlines the practical 
realization of some important units, consistent with the definitions given in the 
principal text, which metrological laboratories can make to realize physical units and 
to calibrate material standards and measuring instruments of the highest quality. This 

                                                        

†

 Editors’ note: The 9th CGPM in 1948 initiated the study that led to the formal establishment of 

the SI by the 11th CGPM in 1960. 

 

background image

8  

•

 

 

Preface

 

 

appendix will be updated regularly to reflect improvements in the experimental 
techniques for realizing the units. 
Appendix 3 presents units used to measure actinic effects in biological materials. 
The 

ComitĂŠ Consultatif des UnitĂŠs

 of the CIPM, the CCU (known in English as the 

Consultative Committee for Units), was responsible for drafting this document, and 
both the CCU and the CIPM approved the final text. This 8th edition is a revision of 
the 7th edition (1998); it takes into consideration decisions made by the CGPM and 
the CIPM since the 7th edition was published. 
For more than thirty-five years this document has been used as a work of reference 
in many countries, organizations, and scientific unions. To make its contents 
accessible to a greater number of readers, the CIPM decided, in 1985, to include an 
English version of the text in the 5th edition; this double presentation is continued in 
all later editions. For the first English version the BIPM endeavoured to produce a 
faithful translation of the French original by close collaboration with the National 
Physical Laboratory (Teddington, United Kingdom) and the National Institute of 
Standards and Technology (Gaithersburg, United States), at that time the National 
Bureau of Standards. For the present edition the French and English versions were 
prepared by the CCU in close collaboration with the BIPM.  
The 22nd CGPM decided, in 2003, following a decision of the CIPM in 1997, that 
“the symbol for the decimal marker shall be either the point on the line or the comma 
on the line”. Following this decision, and following custom in the two languages, in 
this edition the point on the line is used as a decimal marker in the English text, and 
a comma on the line is used in the French text. This has no implication for the 
translation of the decimal marker into other languages. A point to note is that small 
spelling variations occur in the language of the English speaking countries (for 
instance, “metre” and “meter”, “litre” and “liter”)

†

. In this respect, the English text 

presented here follows the International Standard ISO 31, 

Quantities and Units

Readers should note that the official record is always that of the French text. This 
must be used when an authoritative reference is required or when there is doubt 
about the interpretation of the text. 
  

 

 

March 

2006 

 

 

 

E. GĂśbel 

 

I. M. Mills 

A. J. Wallard 

President, CIPM 

 President, CCU 

Director, 

BIPM

 

 

                                                        

†

 Editors’ note: See the Foreword regarding the spelling of English words in this United States 

version of the BIPM SI Brochure. 

background image

9

 

The terms 

quantity

 and 

unit

 are defined in the 

International Vocabulary of 
Basic and General Terms in 
Metrology

, the VIM.  

 
 
 
 
 
 
 
 
 
 
The quantity speed, 

v

,

 may 

be expressed in terms of the 
quantities distance, 

x

, and 

time, 

t

, by the equation 

 

v

 = d

x

/d

t

.

 

In most systems of 
quantities and units, 
distance 

x

 and time 

t

 are 

regarded as base quantities, 
for which the meter, m, and 
the second, s, may be 
chosen as base units. Speed 

v

 is then taken as a derived 

quantity, with the derived 
unit meter per second, m/s. 
 
 

 

For example, in 
electrochemistry, the 
electric mobility of an ion, 

u

, is defined as the ratio of 

its velocity 

v

 to the electric 

field strength, 

E

:  

u

 = 

v

 /

E

The derived unit of electric 
mobility is then given as 
(m/s)/(V/m) = m

2

 V

−

1

 s

−

1

,  

in units which may be easily 
related to the chosen base 
units (V is the symbol for 
the SI derived unit volt).  

1 Introduction 

1.1 

Quantities and units 

The value of a quantity is generally expressed as the product of a number and a unit. 
The unit is simply a particular example of the quantity concerned which is used as a 
reference, and the number is the ratio of the value of the quantity to the unit. For a 
particular quantity, many different units may be used. For example, the speed 

v

 of a 

particle may be expressed in the form 

v

 

= 25 m/s = 90 km/h,  where  meter  per 

second and kilometer per hour are alternative units for expressing the same value of 
the quantity speed. However, because of the importance of a set of well defined and 
easily accessible units universally agreed for the multitude of measurements that 
support today’s complex society, units should be chosen so that they are readily 
available to all, are constant throughout time and space, and are easy to realize with 
high accuracy. 
In order to establish a system of units, such as the International System of Units, the 
SI, it is necessary first to establish a system of quantities, including a set of 
equations defining the relations between those quantities. This is necessary because 
the equations between the quantities determine the equations relating the units, as 
described below. It is also convenient to choose definitions for a small number of 
units that we call 

base units

, and then to define units for all other quantities as 

products of powers of the base units that we call 

derived units

. In a similar way the 

corresponding quantities are described as 

base quantities

 and 

derived quantities

, and 

the equations giving the derived quantities in terms of the base quantities are used to 
determine the expression for the derived units in terms of the base units, as 
discussed further in Section 1.4 below. Thus in a logical development of this subject, 
the choice of quantities and the equations relating the quantities comes first, and the 
choice of units comes second. 
From a scientific point of view, the division of quantities into base quantities and 
derived quantities is a matter of convention, and is not essential to the physics of the 
subject. However for the corresponding units, it is important that the definition of 
each base unit is made with particular care, to satisfy the requirements outlined in 
the first paragraph above, since they provide the foundation for the entire system of 
units. The definitions of the derived units in terms of the base units then follow from 
the equations defining the derived quantities in terms of the base quantities. Thus 
the establishment of a system of units, which is the subject of this brochure, is 
intimately connected with the algebraic equations relating the corresponding 
quantities. 
The number of derived quantities of interest in science and technology can, of 
course, be extended without limit. As new fields of science develop, new quantities 

background image

10  

•

  

Introduction

 

are devised by researchers to represent the interests of the field, and with these new 
quantities come new equations relating them to those quantities that were previously 
familiar, and hence ultimately to the base quantities. In this way the derived units to 
be used with the new quantities may always be defined as products of powers of the 
previously chosen base units.  
 

1.2 

The International System of Units (SI) and the corresponding 
system of quantities 

This Brochure is concerned with presenting the information necessary to define and 
use the International System of Units, universally known as the SI (from the French 

Système International d’Unités

). The SI was established by and is defined by the 

General Conference on Weights and Measures, the CGPM, as described in the 
Historical note in Section 1.8 below*. 
The system of quantities, including the equations relating the quantities, to be used 
with the SI, is in fact just the quantities and equations of physics that are familiar to 
all scientists, technologists, and engineers. They are listed in many textbooks and in 
many references, but any such list can only be a selection of the possible quantities 
and equations, which is without limit. Many of the quantities, their recommended 
names and symbols, and the equations relating them, are listed in the International 
Standards ISO 31 and IEC 60027 produced by Technical Committee 12 of the 
International Organization for Standardization, ISO/TC 12, and by Technical 
Committee 25 of the International Electrotechnical Commission, IEC/TC 25. The 
ISO 31 and IEC 60027 Standards are at present being revised by the two 
standardization organizations in collaboration. The revised harmonized standard will 
be known as ISO/IEC 80000, 

Quantities and Units

, in which it is proposed that the 

quantities and equations used with the SI will be known as the International System 
of Quantities. 
The base quantities used in the SI are length, mass, time, electric current, 
thermodynamic temperature, amount of substance, and luminous intensity. The base 
quantities are by convention assumed to be independent. The corresponding base 
units of the SI were chosen by the CGPM to be the meter, the kilogram, the second, 
the ampere, the kelvin, the mole, and the candela. The definitions of these base units 
are presented in Section 2.1.1 in the following chapter. The derived units of the SI 
are then formed as products of powers of the base units, according to the algebraic 
relations that define the corresponding derived quantities in terms of the base 
quantities, see Section 1.4 below. 
On rare occasions a choice may arise between different forms of the relations 
between the quantities. An important example occurs in defining the 
electromagnetic quantities. In this case the rationalized four-quantity 
electromagnetic equations used with the SI are based on length, mass, time, and 
electric current. In these equations, the electric constant 

Îľ

0

 (the permittivity of 

vacuum) and the magnetic constant 

Îź

0

 (the permeability of vacuum) have 

                                                        

* Acronyms used in this Brochure are listed with their meaning on p. 87. 

The name 

Système 

International d’Unités

,  

and the abbreviation SI, 
were established by the  
11th CGPM in 1960. 
 
 
 
Examples of the equations 
relating quantities used in 
the SI are the Newtonian 
inertial equation relating 
force, 

F

, to mass, 

m

, and 

acceleration, 

a

,  

for a particle: 

F

 = 

ma

, and 

the equation giving the 
kinetic energy, 

T

, of a 

particle moving with 
velocity, 

:  

T

 = 

m

v

2

/2. 

background image

Introduction  

•

  

11

 

 

 

dimensions and values such that 

Îľ

0

Îź

0

 = 1/

c

0

2

, where 

c

0

 is the speed of light in 

vacuum. The Coulomb law of electrostatic force between two particles with charges 

q

1

 and 

q

2

 separated by a distance 

r

 is written

**

 

1 2

3

0

4

π

q q

r

Îľ

=

r

F

 

and the corresponding equation for the magnetic force between two thin wire 
elements carrying electric currents, 

1

1

2

2

d  and  d

i

i

I

I

, is written 

 

2

0

1

1

2

2

3

d

( d

)

d

4

π

i

i

r

Îź

×

×

=

I

I

r

F

 

 

where d

2

F

 is the double differential of the force 

F

. These equations, on which the SI 

is based, are different from those used in the CGS-ESU (electrostatic), CGS-EMU 
(electromagnetic), and CGS-Gaussian systems, where 

Îľ

0

 and 

Îź

0

 are dimensionless 

quantities, chosen to be equal to one, and where the rationalizing factors of 4

π

 are 

omitted. 
 

1.3 

Dimensions of quantities 

By convention physical quantities are organized in a system of dimensions. Each of 
the seven base quantities used in the SI is regarded as having its own dimension, 
which is symbolically represented by a single sans serif roman capital letter. The 
symbols used for the base quantities, and the symbols used to denote their 
dimension, are given as follows. 

 
Base quantities and dimensions used in the SI

 

 

 

 

Base quantity 

 

Symbol for quantity 

Symbol for dimension 

 

 

length  

 

l

,

 x

,

 r

, etc.

 

L

 

mass  

 

m  

M

 

time, duration 

 

t  

T

 

electric current 

 

I

,

 i 

 

I

 

thermodynamic temperature 

T  

Θ

 

amount of substance 

n  

N

 

luminous intensity   

I

v

 

 

J

 

 

 

All other quantities are derived quantities, which may be written in terms of the base 
quantities by the equations of physics. The dimensions of the derived quantities are 
written as products of powers of the dimensions of the base quantities using the 
equations that relate the derived quantities to the base quantities. In general the 
dimension of any quantity 

Q

 is written in the form of a dimensional product, 

dim 

Q

  =  

L

Îą

 

M

β

 

T

Îł

 

I

δ

 

Θ

Îľ

 

N

Îś

 

J

Ρ

 

where the exponents 

Îą

β

Îł

δ

Îľ

Îś

, and 

Ρ

, which are generally small integers which 

can be positive, negative or zero, are called the dimensional exponents. The 
dimension of a derived quantity provides the same information about the relation of 

                                                        

** Symbols in bold print are used to denote vectors.

 

 

Quantity symbols are 
always written in an italic 
font, and symbols for 
dimensions in sans-serif 
roman capitals.  
For some quantities a 
variety of alternative 
symbols may be used, as 
indicated for length and 
electric current. 
Note that symbols for 
quantities are only 

recommendations

, in 

contrast to symbols for 
units that appear elsewhere 
in this brochure whose style 
and form is 

mandatory

 (see 

Chapter 5). 
Dimensional symbols and 
exponents are manipulated 
using the ordinary rules of 
algebra. For example, the 
dimension of area is written 
as 

L

2

; the dimension of 

velocity as 

LT

−

1

; the 

dimension of force as 

LMT

−

2

; and the dimension 

of energy is written as 

L

2

MT

−

2

Editors’ Note

 : A non-SI 

system of units is the CGS 
(centimeter-gram-second) 
System. There are several 
versions of CGS units used 
for electricity and 
magnetism: electrostatic 
units (ESU), 
electromagnetic units 
(EMU), and Gaussian 
units. See discussion 
associated with Table 9.

background image

12  

•

  

Introduction

 

that quantity to the base quantities as is provided by the SI unit of the derived 
quantity as a product of powers of the SI base units. 
There are some derived quantities 

Q

 for which the defining equation is such that all 

of the dimensional exponents in the expression for the dimension of 

Q

 are zero. This 

is true, in particular, for any quantity that is defined as the ratio of two quantities of 
the same kind. Such quantities are described as being 

dimensionless

, or alternatively 

as being 

of dimension one

. The coherent derived unit for such dimensionless 

quantities is always the number one, 1, since it is the ratio of two identical units for 
two quantities of the same kind. 
There are also some quantities that cannot be described in terms of the seven base 
quantities of the SI at all, but have the nature of a count. Examples are number of 
molecules, degeneracy in quantum mechanics (the number of independent states of 
the same energy), and the partition function in statistical thermodynamics (the 
number of thermally accessible states). Such counting quantities are also usually 
regarded as dimensionless quantities, or quantities of dimension one, with the unit 
one, 1. 
 

1.4 

Coherent units, derived units with special names,  
and the SI prefixes 

Derived units are defined as products of powers of the base units. When the product 
of powers includes no numerical factor other than one, the derived units are called 

coherent derived 

units. The base and coherent derived units of the SI form a 

coherent set, designated the set of 

coherent SI units

. The word coherent is used here 

in the following sense: when coherent units are used, equations between the 
numerical values of quantities take exactly the same form as the equations between 
the quantities themselves. Thus if only units from a coherent set are used, 
conversion factors between units are never required. 
The expression for the coherent unit of a derived quantity may be obtained from the 
dimensional product of that quantity by replacing the symbol for each dimension by 
the symbol of the corresponding base unit. 
Some of the coherent derived units in the SI are given special names, to simplify 
their expression (see 2.2.2, p. 25). It is important to emphasize that each physical 
quantity has only one coherent SI unit, even if this unit can be expressed in different 
forms by using some of the special names and symbols. The inverse, however, is not 
true: in some cases the same SI unit can be used to express the values of several 
different quantities (see p. 26). 
The CGPM has, in addition, adopted a series of prefixes for use in forming the 
decimal multiples and submultiples of the coherent SI units (see 3.1, p. 29, where 
the prefix names and symbols are listed). These are convenient for expressing the 
values of quantities that are much larger than or much smaller than the coherent unit. 
Following the CIPM Recommendation 1 (1969) (see p. 64) these are given the name 

SI prefixes

. (These prefixes are also sometimes used with other non-SI units, as 

described in Chapter 4 below.)  However when prefixes are used with coherent SI 
units, the resulting units are no longer coherent, because a prefix on a coherent unit, 

As an example of a special 
name, the particular 
combination of base units 
m

2

 kg s

−

2

 for energy is given 

the special name joule, 
symbol J, where by 
definition J = m

2

 kg s

−

2

For example, refractive 
index is defined as the ratio 
of the speed of light in 
vacuum to that in the 
medium, and is thus a ratio 
of two quantities of the 
same kind. It is therefore a 
dimensionless quantity.  
Other examples of 
dimensionless quantities are 
plane angle, mass fraction, 
relative permittivity, 
relative  permeability, and 
finesse of a Fabry-Perot 
cavity. 

The length of a chemical 
bond is more conveniently 
given in nanometers, nm, 
than in meters, m; and the 
distance from London to 
Paris is more conveniently 
given in kilometers, km, 
than in meters, m. 

background image

Introduction  

•

  

13

 

 

 

either base or derived, effectively introduces a numerical factor in the expression for 
the unit in terms of the base units.

†

 

As an exception, the name of the kilogram, which is the base unit of mass, includes 
the prefix kilo, for historical reasons. It is nonetheless taken to be a base unit of the 
SI. The multiples and submultiples of the kilogram are formed by attaching prefix 
names to the unit name “gram”, and prefix symbols to the unit symbol â€œg” (see 3.2, 
p. 30). Thus 10

−

6

 kg is written as a milligram, mg, not as a microkilogram, 

Îź

kg. 

The complete set of SI units, including both the coherent set and the multiples and 
submultiples of these units formed by combining them with the SI prefixes, are 
designated as the 

complete set of

 

SI units

, or simply the 

SI units

, or the 

units of the 

SI

. Note, however, that the decimal multiples and submultiples of the SI units do not 

form a coherent set. 

1.5 

SI units in the framework of general relativity 

The definitions of the base units of the SI were adopted in a context that takes no 
account of relativistic effects. When such account is taken, it is clear that the 
definitions apply only in a small spatial domain sharing the motion of the standards 
that realize them. These units are known as 

proper units

; they are realized from local 

experiments in which the relativistic effects that need to be taken into account are 
those of special relativity. The constants of physics are local quantities with their 
values expressed in proper units. 
Physical realizations of the definition of a unit are usually compared locally. For 
frequency standards, however, it is possible to make such comparisons at a distance 
by means of electromagnetic signals. To interpret the results the theory of general 
relativity is required since it predicts, among other things, a relative frequency shift 
between standards of about 1 part in 10

16

 per meter of altitude difference at the 

surface of the Earth. Effects of this magnitude cannot be neglected when comparing 
the best frequency standards. 
 

1.6 

Units for quantities that describe biological effects  

Units for quantities that describe biological effects are often difficult to relate to 
units of the SI because they typically involve weighting factors that may not be 
precisely known or defined, and which may be both energy and frequency 
dependent. These units, which are not SI units, are described briefly in this section. 
Optical radiation may cause chemical changes in living or non-living materials: this 
property is called 

actinism

 and radiation capable of causing such changes is referred 

to as 

actinic radiation

. In some cases, the results of measurements of photochemical 

and photobiological quantities of this kind can be expressed in terms of SI units. 
This is discussed briefly in Appendix 3. 
Sound causes small pressure fluctuations in the air, superimposed on the normal 
atmospheric pressure, that are sensed by the human ear. The sensitivity of the ear 
depends on the frequency of the sound, but is not a simple function of either the 
                                                        

†

 Editors’ note: This last sentence has been slightly modified for clarity. 

The question of proper units 
is addressed in Resolution 
A4 adopted by the  
XXIst General Assembly  
of the International 
Astronomical Union (IAU) 
in 1991 and by the report of 
the CCDS Working Group 
on the Application of 
General Relativity to 
Metrology (

Metrologia

1997, 

34

, 261-290). 

The meter per second, 
symbol m/s, is the coherent 
SI unit of speed. The 
kilometer per second, km/s, 
the centimeter per second, 
cm/s, and the millimeter per 
second, mm/s, are also SI 
units, but they are not 
coherent SI units. 

background image

14  

•

  

Introduction

 

pressure changes or the frequency. Therefore frequency-weighted quantities are 
used in acoustics to approximate the way in which sound is perceived. Such 
frequency-weighted quantities are employed, for example, in work to protect against 
hearing damage. The effects of ultrasonic acoustic waves pose similar concerns in 
medical diagnosis and therapy. 
Ionizing radiation deposits energy in irradiated matter. The ratio of deposited energy 
to mass is termed 

absorbed dose

. High doses of ionizing radiation kill cells, and this 

is used in radiation therapy. Appropriate biological weighting functions are used to 
compare therapeutic effects of different radiation treatments. Low sub-lethal doses 
can cause damage to living organisms, for instance by inducing cancer. Appropriate 
risk-weighted functions are used at low doses as the basis of radiation protection 
regulations. 
There is a class of units for quantifying the biological activity of certain substances 
used in medical diagnosis and therapy that cannot yet be defined in terms of the 
units of the SI. This is because the mechanism of the specific biological effect that 
gives these substances their medical use is not yet sufficiently well understood for it 
to be quantifiable in terms of physico-chemical parameters. In view of their 
importance for human health and safety, the World Health Organization (WHO) has 
taken responsibility for defining WHO International Units (IU) for the biological 
activity of such substances. 
 

1.7 

Legislation on units 

By legislation, individual countries have established rules concerning the use of 
units on a national basis, either for general use or for specific areas such as 
commerce, health, public safety, and education. In almost all countries this 
legislation is based on the International System of Units. 
The 

Organisation Internationale de MĂŠtrologie LĂŠgale

 (OIML), founded in 1955, is 

charged with the international harmonization of this legislation. 
 

1.8 Historical 

note 

The previous paragraphs of this chapter give a brief overview of the way in which a 
system of units, and the International System of Units in particular, is established. 
This note gives a brief account of the historical development of the International 
System. 
The 9th CGPM (1948, Resolution 6; CR, 64) instructed the CIPM: 

•

 

to study the establishment of a complete set of rules for units of measurement; 

•

 

to find out for this purpose, by official enquiry, the opinion prevailing in 
scientific, technical and educational circles in all countries; 

•

 

to make recommendations on the establishment of a 

practical system of units of 

measurement

 suitable for adoption by all signatories to the Meter Convention. 

background image

Introduction  

•

  

15

 

 

 

The same CGPM also laid down, in Resolution 7 (CR, 70), general principles for the 
writing of unit symbols, and listed some coherent derived units which were assigned 
special names. 
The 10th CGPM (1954, Resolution 6; CR, 80) and the 14th CGPM (1971, 
Resolution 3, CR, 78, and 

Metrologia

, 1972, 

8

, 36) adopted as base units of this 

practical system of units the units of the following seven quantities: length, mass, 
time, electric current, thermodynamic temperature, amount of substance, and 
luminous intensity. 
The 11th CGPM (1960, Resolution 12; CR, 87) adopted the name 

Système 

International d’Unités

, with the international abbreviation SI, for this practical 

system of units and laid down rules for prefixes, derived units, and the former 
supplementary units, and other matters; it thus established a comprehensive 
specification for units of measurement. Subsequent meetings of the CGPM and 
CIPM have added to, and modified as necessary, the original structure of the SI to 
take account of advances in science and of the needs of users.  
The historical sequence that led to these important CGPM decisions may be 
summarized as follows. 

•

 

The creation of the decimal metric system at the time of the French Revolution 
and the subsequent deposition of two platinum standards representing the meter 
and the kilogram, on 22 June 1799, in the 

Archives de la RĂŠpublique

 in Paris 

can be seen as the first step in the development of the present International 
System of Units. 

•

 

In 1832, Gauss strongly promoted the application of this metric system, together 
with the second defined in astronomy, as a coherent system of units for the 
physical sciences. Gauss was the first to make 

absolute

 measurements of the 

Earth’s magnetic field in terms of a decimal system based on the 

three 

mechanical units

 millimeter, gram, and second for, respectively, the quantities 

length, mass, and time. In later years, Gauss and Weber extended these 
measurements to include other electrical phenomena. 

•

 

These applications in the field of electricity and magnetism were further 
developed in the 1860s under the active leadership of Maxwell and Thomson 
through the British Association for the Advancement of Science (BAAS). They 
formulated the requirement for a 

coherent system of units

 with 

base

 units and 

derived 

units. In 1874 the BAAS introduced the 

CGS system

, a three-

dimensional coherent unit system based on the three mechanical units 
centimeter, gram, and second, using prefixes ranging from micro to mega to 
express decimal submultiples and multiples. The subsequent development of 
physics as an experimental science was largely based on this system. 

•

 

The sizes of the coherent CGS units in the fields of electricity and magnetism 
proved to be inconvenient so, in the 1880s, the BAAS and the International 
Electrical Congress, predecessor of the International Electrotechnical 
Commission (IEC), approved a mutually coherent set of 

practical units

. Among 

them were the ohm for electrical resistance, the volt for electromotive force, and 
the ampere for electric current. 

background image

16  

•

  

Introduction

 

•

 

After the signing of the Meter Convention on 20 May 1875, which created the 
BIPM and established the CGPM and the CIPM, work began on the 
construction of new international prototypes of the meter and kilogram. In 1889 
the first CGPM sanctioned the international prototypes for the meter and the 
kilogram. Together with the astronomical second as the unit of time, these units 
constituted a three-dimensional mechanical unit system similar to the CGS 
system, but with the base units meter, kilogram, and second, the MKS system.  

•

 

In 1901 Giorgi showed that it is possible to combine the mechanical units of this 
meter-kilogram-second system with the practical electrical units to form a single 
coherent four-dimensional system by adding to the three base units a fourth unit, 
of an electrical nature such as the ampere or the ohm, and rewriting the 
equations occurring in electromagnetism in the so-called rationalized form. 
Giorgi’s proposal opened the path to a number of new developments. 

•

 

After the revision of the Meter Convention by the 6th CGPM in 1921, which 
extended the scope and responsibilities of the BIPM to other fields in physics, 
and the subsequent creation of the Consultative Committee for Electricity (CCE) 
by the 7th CGPM in 1927, the Giorgi proposal was thoroughly discussed by the 
IEC, the International Union of Pure and Applied Physics (IUPAP), and other 
international organizations. This led the CCE to propose, in 1939, the adoption 
of a four-dimensional system based on the meter, kilogram, second, and ampere, 
the MKSA system, a proposal approved by the CIPM in 1946. 

•

 

Following an international enquiry by the BIPM, which began in 1948, the 
10th CGPM, in 1954, approved the introduction of the 

ampere

, the 

kelvin

, and 

the 

candela

 as base units, respectively, for electric current, thermodynamic 

temperature, and luminous intensity. The name 

Système International d’Unités

with the abbreviation SI, was given to the system by the 11th CGPM in 1960. 
At the 14th CGPM in 1971, after lengthy discussions between physicists and 
chemists, the current version of the SI was completed by adding the 

mole

 as the 

base unit for amount of substance, bringing the total number of base units to 
seven. 

 

background image

17 

 

 

2 SI 

units

 

2.1 

SI base units 

Formal definitions of all SI base units are adopted by the CGPM. The first two 
definitions were adopted in 1889, and the most recent in 1983. These definitions are 
modified from time to time as science advances.  
 

2.1.1 Definitions 

Current definitions of the base units, as taken from the 

Comptes Rendus

 (CR) of the 

corresponding CGPM, are shown below indented and in a heavy sans-serif font. 
Related decisions which clarify these definitions but are not formally part of them, 
as taken from the 

Comptes Rendus 

of the corresponding CGPM or the 

Procès-

Verbaux

 (PV) of the CIPM, are also shown indented but in a sans-serif font of 

normal weight. The linking text provides historical notes and explanations, but is 
not part of the definitions themselves. 
It is important to distinguish between the definition of a unit and its realization. The 
definition of each base unit of the SI is carefully drawn up so that it is unique and 
provides a sound theoretical basis upon which the most accurate and reproducible 
measurements can be made. The realization of the definition of a unit is the 
procedure by which the definition may be used to establish the value and associated 
uncertainty of a quantity of the same kind as the unit. A description of how the 
definitions of some important units are realized in practice is given on the BIPM 
website, 

http://www.bipm.org/en/si/si_brochure/appendix2

/

A coherent SI derived unit is defined uniquely only in terms of SI base units. For 
example, the coherent SI derived unit of resistance, the ohm, symbol 

Ω

, is uniquely 

defined by the relation 

Ω

 = m

2

 kg s

–3

 A

–2

,

 

which follows from the definition of the 

quantity electrical resistance. However any method consistent with the laws of 
physics could be used to realize any SI unit. For example, the unit ohm can be 
realized

 

with high accuracy using the quantum Hall effect and the value of the von 

Klitzing constant recommended by the CIPM (see pp. 73 and 76, respectively, 
Appendix 1). 
Finally, it should be recognized that although the seven base quantities – length, 
mass, time, electric current, thermodynamic temperature, amount of substance, and 
luminous intensity â€“ are by convention regarded as independent, their respective 
base units â€“ the meter, kilogram, second, ampere, kelvin, mole, and candela – are in 
a number of instances interdependent. Thus the definition of the meter incorporates 
the second; the definition of the ampere incorporates the meter, kilogram, and 

background image

18  

•

  

SI Units

 

 

 

second; the definition of the mole incorporates the kilogram; and the definition of 
the candela incorporates the meter, kilogram, and second. 

 

2.1.1.1  Unit of length (meter) 

The 1889 definition of the meter, based on the international prototype of platinum-
iridium, was replaced by the 11th CGPM (1960) using a definition based on the 
wavelength of krypton 86 radiation. This change was adopted in order to improve 
the accuracy with which the definition of the meter could be realized, the realization 
being achieved using an interferometer with a travelling microscope to measure the 
optical path difference as the fringes were counted. In turn, this was replaced in 
1983 by the 17th CGPM (1983, Resolution 1, CR, 97, and 

Metrologia

, 1984, 

20

, 25) 

that specified the current definition, as follows: 

The meter is the length of the path travelled by light in vacuum during a 
time interval of 1/299 792 458 of a second. 

It follows that the speed of light in vacuum is exactly 299 792 458 meters per 
second, 

c

0

 = 299 792 458 m/s. 

The original international prototype of the meter, which was sanctioned by the 
1st CGPM in 1889 (CR, 34-38), is still kept at the BIPM under conditions specified 
in 1889. 
 

2.1.1.2  Unit of mass (kilogram) 

The international prototype of the kilogram, an artifact made of platinum-iridium, is 
kept at the BIPM under the conditions specified by the 1st CGPM in 1889 (CR, 34-
38) when it sanctioned the prototype and declared: 

This prototype shall henceforth be considered to be the unit of mass. 

The 3rd CGPM (1901, CR, 70), in a declaration intended to end the ambiguity in 
popular usage concerning the use of the word “weight,” confirmed that: 

The kilogram is the unit of mass; it is equal to the mass of the 
international prototype of the kilogram. 

The complete declaration appears on p. 52. 
It follows that the mass of the international prototype of the kilogram is always 
1 kilogram  exactly, 

m

 

(

K

 

) = 1 kg. However, due to the inevitable accumulation of 

contaminants on surfaces, the international prototype is subject to reversible surface 
contamination that approaches 1 

Îź

g per year in mass. For this reason, the CIPM 

declared that, pending further research, the reference mass of the international 
prototype is that immediately after cleaning and washing by a specified method (PV, 
1989, 

57

, 104-105 and PV, 1990, 

58

, 95-97). The reference mass thus defined is 

used to calibrate national standards of platinum-iridium alloy (

Metrologia

, 1994, 

31

317-336).

The symbol 

c

0

 (or 

sometimes simply 

c

) is the 

conventional symbol for the 
speed of light in vacuum

The symbol 

m

 

(

K

 

) is used to 

denote the mass of the 
international prototype of 
the kilogram, 

K

.. 

background image

SI Units

  •  19 

 

 

 

2.1.1.3  Unit of time (second) 

The unit of time, the second, was at one time considered to be the fraction 1/86 400 
of the mean solar day. The exact definition of “mean solar day” was left to the 
astronomers. However measurements showed that irregularities in the rotation of the 
Earth made this an unsatisfactory definition. In order to define the unit of time more 
precisely, the 11th CGPM (1960, Resolution 9; CR, 86) adopted a definition given 
by the International Astronomical Union based on the tropical year 1900. 
Experimental work, however, had already shown that an atomic standard of time, 
based on a transition between two energy levels of an atom or a molecule, could be 
realized and reproduced much more accurately. Considering that a very precise 
definition of the unit of time is indispensable for science and technology, the 13th 
CGPM (1967/68, Resolution 1; CR, 103 and 

Metrologia

, 1968, 

4

, 43) replaced the 

definition of the second by the following: 

The second is the duration of 9 192 631 770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the 
ground state of the cesium 133 atom. 

It follows that the hyperfine splitting in the ground state of the cesium 133 atom is 
exactly 9 192 631 770 hertz, 

ν

(

133

Cs)

hfs

 = 9 192 631 770 Hz. 

At its 1997 meeting the CIPM affirmed that: 

This definition refers to a cesium atom at rest at a temperature of 0 K. 

This note was intended to make it clear that the definition of the SI second is based 
on a cesium atom unperturbed by black body radiation, that is, in an environment 
whose thermodynamic temperature is 0 K. The frequencies of all primary frequency 
standards should therefore be corrected for the shift due to ambient radiation, as 
stated at the meeting of the Consultative Committee for Time and Frequency in 
1999. 
 

2.1.1.4  Unit of electric current (ampere) 

Electric units, called “international units,” for current and resistance, were 
introduced by the International Electrical Congress held in Chicago in 1893, and 
definitions of the “international ampere” and “international ohm” were confirmed by 
the International Conference in London in 1908. 
Although it was already obvious on the occasion of the 8th CGPM (1933) that there 
was a unanimous desire to replace those “international units” by so-called “absolute 
units,” the official decision to abolish them was only taken by the 9th CGPM 
(1948), which adopted the ampere for the unit of electric current, following a 
definition proposed by the CIPM (1946, Resolution 2; PV, 

20

, 129-137): 

The ampere is that constant current which, if maintained in two straight 
parallel conductors of infinite length, of negligible circular cross-
section, and placed 1 meter apart in vacuum, would produce between 
these conductors a force equal to 2 × 10

−

 newton per meter of length. 

The symbol 

ν

(

133

Cs)

hfs

 is 

used to denote the 
frequency of the hyperfine 
transition in the ground 
state of the cesium atom. 

background image

20  

•

  

SI Units

 

 

 

It follows that the magnetic constant 

Îź

0

, also known as the permeability of vacuum, 

is exactly 4

π

 

×

 10

−

7

 henries per meter, 

Îź

0

 = 4

π

 

×

 10

−

7

 H/m. 

The expression â€œMKS unit of force” which occurs in the original text of 1946 has 
been replaced here by â€œnewton,” a name adopted for this unit by the 9th CGPM 
(1948, Resolution 7; CR, 70).  
 

2.1.1.5  Unit of thermodynamic temperature (kelvin) 

The definition of the unit of thermodynamic temperature was given in substance by 
the 10th CGPM (1954, Resolution 3; CR, 79) which selected the triple point of 
water as the fundamental fixed point and assigned to it the temperature 273.16 K, so 
defining the unit. The 13th CGPM (1967/68, Resolution 3; CR, 104 and 

Metrologia

1968, 

4

, 43) adopted the name kelvin, symbol K, instead of â€œdegree Kelvin,” symbol 

o

K, and defined the unit of thermodynamic temperature as follows (1967/68, 

Resolution 4; CR, 104 and 

Metrologia

, 1968, 

4

, 43): 

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 
of the thermodynamic temperature of the triple point of water. 

It follows that the thermodynamic temperature of the triple point of water is exactly 
273.16 kelvins, 

T

TPW

 = 273.16 K. 

At its 2005 meeting the CIPM affirmed that:  

This definition refers to water having the isotopic composition defined exactly 
by the following amount of substance ratios: 0.000

 

155

 

76 mole of 

2

H per mole 

of 

1

H, 0.000

 

379

 

9 mole of 

17

O per mole of 

16

O, and 0.002 005 2 mole of 

18

per mole of 

16

O. 

Because of the manner in which temperature scales used to be defined, it remains 
common practice to express a thermodynamic temperature, symbol 

T

, in terms of its 

difference from the reference temperature 

T

0

 = 273.15 K,  the  ice  point.  This 

difference is called the Celsius temperature, symbol 

t

, which is defined by the 

quantity equation: 

T

 = 

T

 

−

 

T

0

The unit of Celsius temperature is the degree Celsius, symbol 

o

C, which is by 

definition equal in magnitude to the kelvin. A difference or interval of temperature 
may be expressed in kelvins or in degrees Celsius (13th CGPM, 1967/68, Reso-
lution 3, mentioned above), the numerical value of the temperature difference being 
the same. However, the numerical value of a Celsius temperature expressed in 
degrees Celsius is related to the numerical value of the thermodynamic temperature 
expressed in kelvins by the relation 

t

/

o

C = 

T

/K 

−

 273.15. 

The kelvin and the degree Celsius are also units of the International Temperature 
Scale of 1990 (ITS-90) adopted by the CIPM in 1989 in its Recommendation 5 (CI-
1989; PV, 

57

, 115 and 

Metrologia

, 1990, 

27

, 13). 

 

The symbol 

T

TPW

 is used to 

denote the thermodynamic 
temperature of the triple 
point of water. 

background image

SI Units

  •  21 

 

 

2.1.1.6  Unit of amount of substance (mole) 

Following the discovery of the fundamental laws of chemistry, units called, for 
example, “gram-atom” and “gram-molecule,” were used to specify amounts of 
chemical elements or compounds. These units had a direct connection with â€œatomic 
weights” and “molecular weights,” which are in fact relative masses. “Atomic 
weights” were originally referred to the atomic weight of oxygen, by general 
agreement taken as 16. But whereas physicists separated the isotopes in a mass 
spectrometer and attributed the value 16 to one of the isotopes of oxygen, chemists 
attributed the same value to the (slightly variable) mixture of isotopes 16, 17 and 18, 
which was for them the naturally occurring element oxygen. Finally an agreement 
between the International Union of Pure and Applied Physics (IUPAP) and the 
International Union of Pure and Applied Chemistry (IUPAC) brought this duality to 
an end in 1959/60. Physicists and chemists have ever since agreed to assign the 
value 12, exactly, to the so-called atomic weight of the isotope of carbon with mass 
number 12 (carbon 12, 

12

C), correctly called the relative atomic mass 

A

r

(

12

C). The 

unified scale thus obtained gives the relative atomic and molecular masses, also 
known as the atomic and molecular weights, respectively. 
The quantity used by chemists to specify the amount of chemical elements or 
compounds is now called “amount of substance.” Amount of substance is defined to 
be proportional to the number of specified elementary entities in a sample, the 
proportionality constant being a universal constant which is the same for all 
samples. The unit of amount of substance is called the 

mole

, symbol mol, and the 

mole is defined by specifying the mass of carbon 12 that constitutes one mole of 
carbon 12 atoms. By international agreement this was fixed at 0.012 kg, i.e. 12 g. 
Following proposals by the IUPAP, the IUPAC, and the ISO, the CIPM gave a 
definition of the mole in 1967 and confirmed it in 1969. This was adopted by the 
14th CGPM (1971, Resolution 3; CR, 78 and 

Metrologia

, 1972, 

8

, 36): 

1.   The mole is the amount of substance of a system which contains as many 

elementary entities as there are atoms in 0.012 kilogram of carbon 12; its 
symbol is “mol.” 

2.   When the mole is used, the elementary entities must be specified and may 

be atoms, molecules, ions, electrons, other particles, or specified groups of 
such particles. 

It follows that the molar mass of carbon 12 is exactly 12 grams per mole, 

M

(

12

C) = 12 g/mol.  

In 1980 the CIPM approved the report of the CCU (1980) which specified that  

In this definition, it is understood that unbound atoms of carbon 12, at rest and 
in their ground state, are referred to. 

The definition of the mole also determines the value of the universal constant that 
relates the number of entities to amount of substance for any sample. This constant 
is called the Avogadro constant, symbol 

N

A

 or 

L

. If 

N

(

X

) denotes the number of 

entities 

X

 in a specified sample, and if 

n

(

X

)  denotes the amount of substance of 

entities 

X

 in the same sample, the relation is  

n

(

X

) = 

N

(

X

)/

N

A

The recommended symbol 
for relative atomic mass 
(atomic weight) is 

A

r

(

X

), 

where the atomic entity 

X

 

should be specified, and for 
relative molecular mass of a 
molecule (molecular 
weight) it is 

M

r

(

X

), where 

the molecular entity 

X

 

should be specified. 

The molar mass of an atom 
or molecule 

X

 is denoted 

M

(

X

) or 

M

X

, and is the mass 

per mole of 

X

 
 
When the definition of the 
mole is quoted, it is 
conventional also to include 
this remark. 

background image

22  

•

  

SI Units

 

 

 

  Note that since 

N

(

X

) is dimensionless, and 

n

(

X

) has the SI unit mole, the Avogadro 

constant has the coherent SI unit reciprocal mole.  
In the name “amount of substance,” the words “of substance” could for simplicity be 
replaced by words to specify the substance concerned in any particular application, 
so that one may, for example, talk of “amount of hydrogen chloride, HCl,” or 
“amount of benzene, C

6

H

6

.” It is important to always give a precise specification of 

the entity involved (as emphasized in the second sentence of the definition of the 
mole); this should preferably be done by giving the empirical chemical formula of 
the material involved. Although the word “amount” has a more general dictionary 
definition, this abbreviation of the full name â€œamount of substance” may be used for 
brevity. This also applies to derived quantities such as “amount of substance 
concentration,” which may simply be called “amount concentration.” However, in 
the field of clinical chemistry the name â€œamount of substance concentration” is 
generally abbreviated to “substance concentration.” 
 

2.1.1.7  Unit of luminous intensity (candela) 

The units of luminous intensity based on flame or incandescent filament standards in 
use in various countries before 1948 were replaced initially by the “new candle” 
based on the luminance of a Planck radiator (a black body) at the temperature of 
freezing platinum. This modification had been prepared by the International 
Commission on Illumination (CIE) and by the CIPM before 1937, and the decision 
was promulgated by the CIPM in 1946. It was then ratified in 1948 by the 9th 
CGPM which adopted a new international name for this unit, the 

candela

, symbol 

cd; in 1967 the 13th CGPM (Resolution 5, CR, 104 and 

Metrologia

, 1968, 

4

, 43-44) 

gave an amended version of this definition. 
In 1979, because of the difficulties in realizing a Planck radiator at high 
temperatures, and the new possibilities offered by radiometry, i.e. the measurement 
of optical radiation power, the 16th CGPM (1979, Resolution 3; CR, 100 and 

Metrologia

, 1980, 

16

, 56) adopted a new definition of the candela: 

The candela is the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 Ă— 10

12

 hertz  and 

that has a radiant intensity in that direction of 1/683 watt per steradian. 

It follows that the spectral luminous efficacy for monochromatic radiation of 
frequency of 540 

×

 10

12

 hertz is exactly 683 lumens per watt, 

K

(

Îť

555

) = 683 lm/W 

= 683 cd sr/W (the wavelength 

Îť

 of radiation of this frequency is about 555 nm). 

 

2.1.2 

Symbols for the seven base units  

The base units of the International System are listed in Table 1, which relates the 
base quantity to the unit name and unit symbol for each of the seven base units 
(10th CGPM (1954, Resolution 6; CR, 80); 11th CGPM (1960, Resolution 12; CR, 
87); 13th CGPM (1967/68, Resolution 3; CR, 104 and 

Metrologia

, 1968, 

4

, 43); 

14th CGPM (1971, Resolution 3; CR, 78 and 

Metrologia

, 1972, 

8

, 36)). 

 

background image

SI Units

  •  23 

 

 

Table 1. SI base units 

 

 

Base quantity 

 

 

 

SI base unit 

________________________________ ____________________________ 

 

Name  

Symbol    Name 

 

Symbol 

 

 

length  

l, x, r

,

 

etc.  

meter 

  m 

mass  

m

  

 

kilogram  

kg 

time, duration 

t

  

 

second  

electric current 

I, i 

  

ampere 

 A 

thermodynamic temperature 

T

  

 

kelvin   

amount of substance 

n

  

 

mole   

mol 

luminous intensity 

I

v

  

 

candela  

cd 

 

 

 

2.2 

SI derived units 

Derived units are products of powers of base units. Coherent derived units are 
products of powers of base units that include no numerical factor other than 1. The 
base and coherent derived units of the SI form a coherent set, designated the set of 

coherent SI units

 (see 1.4, p. 12). 

2.2.1 

Derived units expressed in terms of base units 

The number of quantities in science is without limit, and it is not possible to provide 
a complete list of derived quantities and derived units. However, Table 2 lists some 
examples of derived quantities, and the corresponding coherent derived units 
expressed directly in terms of base units. 

The symbols for quantities 
are generally single letters 
of the Latin or Greek 
alphabets, printed in an 
italic font, and are 

recommendations

The symbols for units are 

mandatory

, see chapter 5. 

background image

24  

•

  

SI Units

 

 

 

 

Table 2. Examples of coherent derived units in the SI expressed in terms of base 
units 

 

 

Derived quantity 

 

 

SI coherent derived unit 

__________________________________              ______________________________________ 

 

Name  

Symbol   

Name  

 

Symbol 

 

 

area  

A

  

square 

meter 

 

m

2

 

volume  

V

  

cubic 

meter 

 

 

m

3

 

speed, velocity 

v

 

 

meter per second 

 m/s 

acceleration 

a

 

 

meter per second squared 

 m/s

wavenumber 

σ

ν

~    reciprocal 

meter 

 

m

−

1

 

density, mass density 

ρ

 

 

kilogram per cubic meter 

 kg/m

3

 

surface density 

ρ

A

 

 

kilogram per square meter 

 kg/m

2

 

specific volume 

v

 

 

cubic meter per kilogram 

 m

3

/kg 

current density 

j

 

 

ampere per square meter 

 A/m

2

 

magnetic field strength 

H

 

 

ampere per meter 

 A/m 

amount concentration 

(

a

)

c

 

 

mole per cubic meter 

 mol/m

   concentration 
mass concentration 

ρ

Îł

 

 

kilogram per cubic meter 

 kg/m

luminance 

L

v

 

 

candela per square meter 

 cd/m

2

 

refractive index 

(

b

)

 

n

  

one 

 

 

1

 

relative permeability 

(

b

)

 

Îź

r

  

one 

 

 

 

(

a

)  In the field of clinical chemistry this quantity is also called “substance concentration.” 

(

b

)  These are dimensionless quantities, or quantities of dimension one, and the symbol “1” for the 

unit (the number “one”) is generally omitted in specifying the values of dimensionless 
quantities. 

 

 

2.2.2 

Units with special names and symbols; units that incorporate special 
names and symbols 

For convenience, certain coherent derived units have been given special names and 
symbols. There are 22 such units, as listed in Table 3. These special names and 
symbols may themselves be used in combination with the names and symbols for 
base units and for other derived units to express the units of other derived quantities. 
Some examples are given in Table 4. The special names and symbols are simply a 
compact form for the expression of combinations of base units that are used 
frequently, but in many cases they also serve to remind the reader of the quantity 
involved. The SI prefixes may be used with any of the special names and symbols, 
but when this is done the resulting unit will no longer be coherent. 
Among these names and symbols the last four entries in Table 3 are of particular 
note since they were adopted by the 15th CGPM (1975, Resolutions 8 and 9; CR, 
105 and 

Metrologia

, 1975, 

11

, 180), the 16th CGPM (1979, Resolution 5; CR, 100 

and 

Metrologia

, 1980, 

16

, 56) and the 21st CGPM (1999, Resolution 12; CR, 334-

335 and 

Metrologia

, 2000, 

37

, 95) specifically with a view to safeguarding human 

health.  

background image

SI Units

  •  25 

 

 

In both Tables 3 and 4 the final column shows how the SI units concerned may be 
expressed in terms of SI base units. In this column factors such as m

0

, kg

0

, etc., 

which are all equal to 1, are not shown explicitly. 
 

Table 3.  Coherent derived units in the SI with special names and symbols 

 

 

 

 

SI coherent derived unit

 (

a

  

—————————————————————————— 

 

 

  

 Expressed 

Expressed 

 

 

 

 

 

 

in terms of 

in terms of 

Derived quantity 

Name 

 

Symbol 

other SI units  SI base units  

 

 

plane angle 

radian

 (

b

 rad 

(

b

)

 m/m 

solid angle 

steradian

 (

b

 sr

 (

c

)

 1 

(

b

)

 

m

2

/m

2

 

frequency hertz 

(

d

 Hz 

 

s

−

1

 

force   

newton 

 

 

m kg s

−

2

 

pressure, stress 

pascal 

 

Pa 

N/m

2

 

m

−

1

 kg s

−

2

 

energy, work,  

joule 

 

N m 

m

2

 kg s

−

2

 

 

amount of heat 

power, radiant flux 

watt 

 

J/s 

m

2

 kg s

−

electric charge,  

coulomb 

 

 

s A 

 

amount of electricity 

electric potential difference

(

e

)

, volt 

  V 

W/A 

m

2

 kg s

−

3

 A

−

1

 

 electromotive 

force 

capacitance farad 

 

C/V 

m

−

2

 kg

−

1

 s

4

 A

2

 

electric resistance 

ohm 

 

Ω

 V/A m

2

 kg s

−

3

 A

−

2

 

electric conductance 

siemens 

 

A/V 

m

−

2

 kg

−

1

 s

3

 A

2

 

magnetic flux 

weber 

 

Wb 

V s 

m

2

 kg s

−

2

 A

−

1

 

magnetic flux density 

tesla 

 

Wb/m

2

 kg 

s

−

2

 A

−

1

 

inductance henry 

 

Wb/A 

m

2

 kg s

−

2

 A

−

2

 

Celsius temperature 

degree Celsius 

(

f

)

 

o

C  

luminous flux 

lumen 

 

lm 

cd sr

 (

c

)

 cd 

illuminance lux 

 

lx 

lm/m

2

 

m

−

2

 cd 

activity referred to 

becquerel 

(

d

)

  

Bq 

 

s

−

1

 

 a 

radionuclide 

(

g

absorbed dose, 

gray 

 

Gy 

J/kg 

m

2

 s

−

2

 

 

specific energy (imparted), 

 kerma 
dose equivalent, 

sievert 

(

h

)

   Sv 

J/kg 

m

2

 s

−

2

 

 

ambient dose equivalent, 

 

directional dose equivalent, 

 

personal dose equivalent 

catalytic activity 

katal 

 

kat 

 

s

−

1

 mol 

 

(

a

)  The SI prefixes may be used with any of the special names and symbols, but when this is 

done the resulting unit will no longer be coherent. 

(

b

)  The radian and steradian are special names for the number one that may be used to convey 

information about the quantity concerned. In practice the symbols rad and sr are used where 
appropriate, but the symbol for the derived unit one is generally omitted in specifying the 
values of dimensionless quantities. 

(

c

)  In photometry the name steradian and the symbol sr are usually retained in expressions for 

units. 

(

d

)  The hertz is used only for periodic phenomena, and the becquerel is used only for stochastic 

processes in activity referred to a radionuclide. 

background image

26  

•

  

SI Units

 

 

 

(

e

Editors’ note:

 Electric potential difference is also called “voltage” in the United States and in 

many other countries, as well as “electric tension” or simply â€œtension” in some countries. 

(

f

)  The degree Celsius is the special name for the kelvin used to express Celsius temperatures. 

The degree Celsius and the kelvin are equal in size, so that the numerical value of a 
temperature difference or temperature interval is the same when expressed in either degrees 
Celsius or in kelvins. 

(

g

)

 

Activity referred to a radionuclide is sometimes incorrectly called radioactivity.  

(h)

  See CIPM Recommendation 2 (CI-2002), p. 78, on the use of the sievert (PV, 2002, 70, 205).

 

 

 
Table 4. Examples of SI coherent derived units whose names and symbols include 
SI coherent derived units with special names and symbols 

 

 

 

 

  SI coherent derived unit 

 

   

  ———————————————————————————— 

 

 

 

 

 

 

 

Expressed in terms of 

Derived quantity 

  Name 

Symbol 

SI base units 

 

 

dynamic viscosity 

  pascal second 

Pa s 

m

−

1

 kg s

−

1

 

moment of force  

  newton meter 

N m 

m

2

 kg s

−

2

 

surface tension  

  newton per meter 

N/m 

kg s

−

2

 

angular velocity  

  radian per second 

rad/s 

m m

−

1

 s

−

1

 = s

−

1

 

angular acceleration  

  radian per second squared 

rad/s

m m

−

1

 s

−

 = s

−

2

 

heat flux density, 

  watt per square meter  

W/m

kg s

−

3

 

 irradiance 
heat capacity, entropy  

  joule per kelvin 

J/K 

m

2

 kg s

−

2

 K

−

1

 

specific heat capacity, 

  joule per kilogram kelvin 

J/(kg K) 

m

2

 s

−

2

 K

−

1

 

 specific 

entropy 

specific energy  

  joule per kilogram 

J/kg 

m

2

 s

−

2

 

thermal conductivity 

  watt per meter kelvin 

W/(m K)  m kg s

−

3

 K

−

1

 

energy density 

  joule per cubic meter 

J/m

m

−1

 kg s

−

2

 

electric field strength  

  volt per meter 

V/m 

m kg s

−

3

 A

−

1

 

electric charge density  

  coulomb per cubic meter 

C/m

m

−

3

 s A 

surface charge density 

  coulomb per square meter 

C/m

m

−

2

 s A 

electric flux density, 

  coulomb per square meter 

C/m

m

−

2

 s A 

 electric 

displacement 

permittivity 

  farad per meter 

F/m 

m

−

3

 kg

−

1

 s

4

 A

2

 

permeability 

  henry per meter 

H/m 

m kg s

−

2

 A

−

2

 

molar energy  

  joule per mole 

J/mol 

m

2

 kg s

−

2

 mol

−

1

 

molar entropy, 

  joule per mole kelvin  

J/(mol K)  m

2

 kg s

−

K

−

1

 mol

−

1

 

 

molar heat capacity 

exposure (x and 

Îł

 rays)  

  coulomb per kilogram  

C/kg 

kg

−

1

 s A 

absorbed dose rate 

  gray per second 

Gy/s 

m

2

 s

−

3

 

radiant intensity  

  watt per steradian 

W/sr 

m

4

 m

−

2

 kg s

−

3

 = m

2

 kg s

−

3

 

radiance  

  watt per square meter steradian  W/(m

2

 sr)  m

2

 m

−

2

 kg s

−

3

 = kg s

−

3

 

catalytic activity  

  katal per cubic meter 

kat/m

m

−

3

 s

−

1

 mol 

 concentration 

 

 
The values of several different quantities may be expressed using the same name 
and symbol for the SI unit. Thus for the quantity heat capacity as well as the 
quantity entropy, the SI unit is the joule per kelvin. Similarly for the base quantity 
electric current as well as the derived quantity magnetomotive force, the SI unit is 
the ampere. It is therefore important not to use the unit alone to specify the quantity. 

background image

SI Units

  •  27 

 

 

This applies not only to scientific and technical texts, but also, for example, to 
measuring instruments (i.e. an instrument read-out should indicate both the unit and 
the quantity measured). 
A derived unit can often be expressed in different ways by combining base units 
with derived units having special names. Joule, for example, may formally be 
written newton meter, or kilogram meter squared per second squared. This, 
however, is an algebraic freedom to be governed by common sense physical 
considerations; in a given situation some forms may be more helpful than others. 
In practice, with certain quantities, preference is given to the use of certain special 
unit names, or combinations of unit names, to facilitate the distinction between 
different quantities having the same dimension. When using this freedom, one may 
recall the process by which the quantity is defined. For example, the quantity torque 
may be thought of as the cross product of force and distance, suggesting the unit 
newton meter, or it may be thought of as energy per angle, suggesting the unit joule 
per radian. The SI unit of frequency is given as the hertz, implying the unit cycles 
per second; the SI unit of angular velocity is given as the radian per second; and the 
SI unit of activity is designated the becquerel, implying the unit counts per second. 
Although it would be formally correct to write all three of these units as the 
reciprocal second, the use of the different names emphasises the different nature of 
the quantities concerned. Using the unit radian per second for angular velocity, and 
hertz for frequency, also emphasizes that the numerical value of the angular velocity 
in radian per second is 2

π

 times the numerical value of the corresponding frequency 

in hertz. 
In the field of ionizing radiation, the SI unit of activity is designated the becquerel 
rather than the reciprocal second, and the SI units of absorbed dose and dose 
equivalent are designated the gray and the sievert, respectively, rather than the joule 
per kilogram. The special names becquerel, gray, and sievert were specifically 
introduced because of the dangers to human health that might arise from mistakes 
involving the units reciprocal second and joule per kilogram, in case the latter units 
were incorrectly taken to identify the different quantities involved. 
 

2.2.3 

Units for dimensionless quantities, also called quantities of dimension 
one 

Certain quantities are defined as the ratio of two quantities of the same kind, and are 
thus dimensionless, or have a dimension that may be expressed by the number one. 
The coherent SI unit of all such dimensionless quantities, or quantities of dimension 
one, is the number one, since the unit must be the ratio of two identical SI units. The 
values of all such quantities are simply expressed as numbers, and the unit one is not 
explicitly shown. Examples of such quantities are refractive index, relative 
permeability, and friction factor. There are also some quantities that are defined as a 
more complex product of simpler quantities in such a way that the product is 
dimensionless. Examples include the “characteristic numbers” like the Reynolds 
number 

Re

 = 

ρ

v

l

/

Ρ

, where 

ρ

 is mass density, 

Ρ

 is dynamic viscosity, 

v

 is speed, and 

l

 

The CIPM, recognizing the 
particular importance of the 
health-related units, adopted 
a detailed text on the sievert 
for the 5th edition of this 
Brochure: Recommendation 
1 (CI-1984), adopted by the 
CIPM (PV, 1984, 

52

, 31 

and 

Metrologia

, 1985, 

21

90), and Recommenda-
tion 2 (CI-2002), adopted 
by the CIPM (PV, 

70

, 205), 

see pp. 71 and 78, 
respectively. 

background image

28  

•

  

SI Units

 

 

 

is length. For all these cases the unit may be considered as the number one, which is 
a dimensionless derived unit. 
Another class of dimensionless quantities are numbers that represent a count, such 
as a number of molecules, degeneracy (number of energy levels), and partition 
function in statistical thermodynamics (number of thermally accessible states). All 
of these counting quantities are also described as being dimensionless, or of 
dimension one, and are taken to have the SI unit one, although the unit of counting 
quantities cannot be described as a derived unit expressed in terms of the base units 
of the SI. For such quantities, the unit one may instead be regarded as a further base 
unit. 
In a few cases, however, a special name is given to the unit one, in order to facilitate 
the identification of the quantity involved. This is the case for the radian and the 
steradian. The radian and steradian have been identified by the CGPM as special 
names for the coherent derived unit one, to be used to express values of plane angle 
and solid angle, respectively, and are therefore included in Table 3. 
 
 
 
 
 
 

background image

29

 

 

Decimal multiples and submultiples of SI units 

3.1 SI 

prefixes 

The 11th CGPM (1960, Resolution 12; CR, 87) adopted a series of prefix names and 
prefix symbols to form the names and symbols of the decimal multiples and 
submultiples of SI units, ranging from 10

12

 to 10

−

12

. Prefixes for 10

−

15

 and 10

−

18

 

were added by the 12th CGPM (1964, Resolution 8; CR, 94), for 10

15

 and 10

18

 by 

the 15th CGPM (1975, Resolution 10; CR, 106 and 

Metrologia

, 1975, 

11

, 180-181), 

and for 10

21

, 10

24

, 10

−

21

 and 10

−

24

 by the 19th CGPM (1991, Resolution 4; CR, 185 

and 

Metrologia

, 1992, 

29

, 3). Table 5 lists all approved prefix names and symbols.  

 

Table 5. SI prefixes 

 

 

Factor Name  Symbol 

Factor Name  Symbol 

 

 
10

deka da 

10

−

1

 deci d 

10

hecto h 

10

−

2

 centi c 

10

kilo k 

10

−

3

 milli m 

10

mega M 

10

−

6

 micro 

Îź

 

10

giga G 

10

−

9

 nano n 

10

12

 tera  T 

10

−

12

 pico  p 

10

15

 peta P 

10

−

15

 femto f 

10

18

 exa  E 

10

−

18

 atto  a 

10

21

 zetta Z 

10

−

21

 zepto z 

10

24

 yotta Y 

10

−

24

 yocto y 

 

 

Prefix symbols are printed in roman (upright) type, as are unit symbols, regardless 
of the type used in the surrounding text, and are attached to unit symbols without a 
space between the prefix symbol and the unit symbol. With the exception of da 
(deka), h (hecto), and k (kilo), all multiple prefix symbols are capital (upper case) 
letters, and all submultiple prefix symbols are lower case letters. All prefix names 
are printed in lower case letters, except at the beginning of a sentence. 
The grouping formed by a prefix symbol attached to a unit symbol constitutes a new 
inseparable unit symbol (forming a multiple or submultiple of the unit concerned) 
that can be raised to a positive or negative power and that can be combined with 
other unit symbols to form compound unit symbols. 

These SI prefixes refer 
strictly to powers of 10. 
They should not be used to 
indicate powers of 2 (for 
example, one kilobit 
represents 1000 bits and not 
1024 bits). The IEC has 
adopted prefixes for binary 
powers in the international 
standard IEC 60027-2: 
2005, third edition, 

Letter symbols to be 
used in electrical 
technology – Part 

2:

 

Telecommunications and 
electronics. 

The names and 

symbols for the prefixes 
corresponding to 2

10

, 2

20

2

30

, 2

40

, 2

50

, and 2

60

 are, 

respectively: kibi, Ki; mebi, 
Mi; gibi, Gi; tebi, Ti; pebi, 
Pi; and exbi, Ei. Thus, for 
example, one kibibyte 
would be written: 
1 KiB = 2

10

 B = 1024 B, 

where B denotes a byte. 
Although these prefixes are 
not part of the SI, they 
should be used in the field 
of information technology 
to avoid the incorrect usage 
of the SI prefixes. 

Examples of the use of 
prefixes: 
pm  (picometer) 
mmol  (millimole) 
G

Ω

  (gigaohm) 

THz  (terahertz) 

background image

30  

•

  

Decimal multiples and submultiples

 

 

Examples

: 2.3 

cm

3

 = 2.3 (cm)

3

 = 2.3 (10

–2

 m)

3

 = 2.3 × 10

–6

 m

 

 1 

cm

–1

 = 1 (cm)

–1

 = 1 (10

–2

 m)

–1

 = 10

2

 m

–1

 = 100 m

−

 

 

1 V/cm = (1 V)/(10

–2

 m) = 10

2

 V/m = 100 V/m 

  

5000 

Îź

s

−

1

 = 5000 (

Îź

s)

−

1

 = 5000 (10

−

6

 s)

−

1

 = 5 × 10

9

 s

−

1

 

Similarly prefix names are also inseparable from the unit names to which they are 
attached. Thus, for example, millimeter, micropascal, and meganewton are single 
words. 
Compound prefix symbols, that is, prefix symbols formed by the juxtaposition of 
two or more prefix symbols, are not permitted. This rule also applies to compound 
prefix names. 
Prefix symbols can neither stand alone nor be attached to the number 1, the symbol 
for the unit one. Similarly, prefix names cannot be attached to the name of the unit 
one, that is, to the word “one.” 
Prefix names and symbols are used with a number of non-SI units (see Chapter 5), 
but they are never used with the units of time: minute, min; hour, h; day, d. However 
astronomers use milliarcsecond, which they denote by the symbol mas, and 
microarcsecond, which they denote by the symbol 

Îź

as, and they use both as units for 

measuring very small angles.

†

 

 

3.2 The 

kilogram 

Among the base units of the International System, the kilogram is the only one 
whose name and symbol, for historical reasons, include a prefix. Names and 
symbols for decimal multiples and submultiples of the unit of mass are formed by 
attaching prefix names to the unit name “gram,” and prefix symbols to the unit 
symbol “g” (CIPM 1967, Recommendation 2; PV, 

35

, 29 and 

Metrologia

,

 

1968, 

4

45). 
 

                                                        

†

 Editors’ note: This last sentence has been slightly modified for clarity. 

nm (nanometer), 

but not

 

m

Îź

(millimicrometer) 
 
The number of lead atoms 
in the sample is  

N

(Pb) = 5 × 10

6

but not

 

N

(Pb) = 5 M,  

where M is intended  
to be the prefix mega 
standing on its own. 

10

−

6

 kg = 1 mg, 

but not

 

Îź

kg 

(microkilogram) 

background image

31

 

Units outside the SI 

The International System of Units, the SI, is a system of units, adopted by the 
CGPM, which provides the internationally agreed reference in terms of which all 
other units are now defined. It is recommended for use throughout science, 
technology, engineering, and commerce. The SI base units, and the SI coherent 
derived units, including those with special names, have the important advantage of 
forming a coherent set, with the effect that unit conversions are not required when 
inserting particular values for quantities into quantity equations. Because the SI is 
the only system of units that is globally recognized, it also has a clear advantage for 
establishing a worldwide dialogue. Finally, it simplifies the teaching of science and 
technology to the next generation if everyone uses this system. 
Nonetheless it is recognized that some non-SI units still appear in the scientific, 
technical, and commercial literature, and will continue to be used for many years. 
Some non-SI units are of historical importance in the established literature. Other 
non-SI units, such as the units of time and angle, are so deeply embedded in the 
history and culture of the human race that they will continue to be used for the 
foreseeable future. Individual scientists should also have the freedom to sometimes 
use non-SI units for which they see a particular scientific advantage in their work. 
An example of this is the use of CGS-Gaussian units in electromagnetic theory 
applied to quantum electrodynamics and relativity. For these reasons it is helpful to 
list some of the more important non-SI units, as is done below. However, if these 
units are used it should be understood that the advantages of the SI are lost. 
The inclusion of non-SI units in this text does not imply that the use of non-SI units 
is to be encouraged. For the reasons already stated SI units are generally to be 
preferred. It is also desirable to avoid combining non-SI units with units of the SI; in 
particular, the combination of non-SI units with the SI to form compound units 
should be restricted to special cases in order not to compromise the advantages of 
the SI. Finally, when any of the non-SI units in Tables 7, 8, and 9 are used, it is good 
practice to define the non-SI unit in terms of the corresponding SI unit.  
 

4.1 

Non-SI units accepted for use with the SI, and units based on 
fundamental constants 

The CIPM (2004) has revised the classification of non-SI units from that in the 
previous (7th) edition of this Brochure. Table 6 gives non-SI units that are accepted 
for use with the International System by the CIPM, because they are widely used 
with the SI in matters of everyday life. Their use is expected to continue 
indefinitely, and each has an exact definition in terms of an SI unit. Tables 7, 8 and 
9 contain units that are used only in special circumstances. The units in Table 7 are 

background image

32  

•

  

Units outside the SI

 

related to fundamental constants, and their values have to be determined 
experimentally. Tables 8 and 9 contain units that have exactly defined values in 
terms of SI units, and are used in particular circumstances to satisfy the needs of 
commercial, legal, or specialized scientific interests. It is likely that these units will 
continue to be used for many years. Many of these units are also important for the 
interpretation of older scientific texts. Each of the Tables 6, 7, 8 and 9 is discussed 
in turn below. 
Table 6

 

includes the traditional units of time and angle. It also contains the hectare, 

the liter, and the metric ton (or tonne), which are all in common everyday use 
throughout the world, and which differ from the corresponding coherent SI unit by 
an integer power of ten. The SI prefixes are used with several of these units, but not 
with the units of time. 
 

Table 6. Non-SI units accepted for use with the International System of Units 
 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units 

 

 

time 

 

minute 

min 

1 min = 60 s 

  

hour 

(

a

)

 

1 h = 60 min = 3600 s 

 

 

day 

1 d = 24 h = 86 400 s 

plane angle 

degree 

(

b

c

)

 

o

 

1

o

 = (

π

/180) rad 

  

minute 

′

 

1

′

 = (1/60)

o

 = (

π

/ 10 800) rad 

  

second 

(

d

)

 

″

 

1

″

 = (1/60)

′

 = (

π

/ 648 000) rad 

area  

hectare 

(

e

)

 

ha 

1 ha = 1 hm

2

 = 10

4

 m

volume  

liter 

(

f

)

 

1 L = 1 dm

3

 = 10

3

 cm

3

 = 10

−

3

 m

3

 

mass  

metric 

ton 

(

g

)

 

1 t = 10

3

 kg 

 
(

a

)  The symbol for this unit is included in Resolution 7 of the 9th CGPM (1948; CR, 70). 

(

b

)  ISO 31 recommends that the degree be divided decimally rather than using the minute and the 

second. For navigation and surveying, however, the minute has the advantage that one minute 
of latitude on the surface of the Earth corresponds (approximately) to one nautical mile.  

(

c

)  The gon (or grad, where grad is an alternative name for the gon) is an alternative unit of plane 

angle to the degree, defined as (

π

/200) rad. Thus there are 100 gon in a right angle. The 

potential value of the gon in navigation is that because the distance from the pole to the 
equator of the Earth is approximately 10 000 km, 1 km on the surface of the Earth subtends 
an angle of one centigon at the center of the Earth. However the gon is rarely used. 

(

d

)  For applications in astronomy, small angles are measured in arcseconds (i.e. seconds of plane 

angle), denoted by the symbol as or by the symbol 

″

, milliarcseconds, microarcseconds, and 

picoarcseconds, denoted by the symbols mas, 

Îź

as, and pas, respectively, where arcsecond is 

an alternative name for second of plane angle. 

(

e

)  The unit hectare, and its symbol ha, were adopted by the CIPM in 1879 (PV, 1879, 41). The 

hectare is used to express land area. 

(

f

)  The liter, and the symbol lower-case l, were adopted by the CIPM in 1879 (PV, 1879, 41). 

The alternative symbol, capital L, was adopted by the 16th CGPM (1979, Resolution 6; CR, 
101 and 

Metrologia,

 1980, 

16

, 56-57) in order to avoid the risk of confusion between the 

letter l (el) and the numeral 1 (one). 

Editors’ note:

 Since the preferred unit symbol for the 

liter in the United States is L, only L is given in the table; see the 

Federal Register

 notice of 

July 28, 1998, “Metric System of Measurement: Interpretation of the International System of 
Units for the United States” (FR 40334-4030). 

(

g

Editors’ note:

 Metric ton is the name to be used for this unit in the United States; see the 

aforementioned 

Federal Register

 notice. The original English text in the BIPM SI Brochure 

uses the CGPM adopted name “tonne” and footnote (

g

) reads as follows:  The tonne, and its 

symbol t, were adopted by the CIPM in 1879 (PV, 1879, 41). In English speaking countries 
this unit is usually called “metric ton.” 

background image

Units outside the SI

  

•

  

33

 

 
Table 7 contains units whose values in SI units have to be determined 
experimentally, and thus have an associated uncertainty. Except for the astronomical 
unit, all other units in Table 7 are related to fundamental physical constants. The 
first four units, the non-SI units electronvolt, symbol eV, dalton or unified atomic 
mass unit, symbol Da or u, respectively, and the astronomical unit, symbol ua, have 
been accepted for use with the SI by the CIPM. The units in Table 7 play important 
roles in a number of specialized fields in which the results of measurements or 
calculations are most conveniently and usefully expressed in these units. For the 
electronvolt and the dalton the values depend on the elementary charge 

e

 and the 

Avogadro constant 

N

A

, respectively.  

There are many other units of this kind, because there are many fields in which it is 
most convenient to express the results of experimental observations or of theoretical 
calculations in terms of fundamental constants of nature. The two most important of 
such unit systems based on fundamental constants are the natural unit (n.u.) system 
used in high energy or particle physics, and the atomic unit (a.u.) system used in 
atomic physics and quantum chemistry. In the n.u. system, the base quantities for 
mechanics are speed, action, and mass, for which the base units are the speed of 
light in vacuum 

c

0

, the Planck constant 

h

 divided by 2

π

, called the reduced Planck 

constant with symbol 

ħ

, and the mass of the electron 

m

e

, respectively. In general 

these units are not given any special names or symbols but are simply called the n.u. 
of speed, symbol 

c

0

, the n.u. of action, symbol 

ħ

, and the n.u. of mass, symbol 

m

e

. In 

this system, time is a derived quantity and the n.u. of time is a derived unit equal to 
the combination of base units 

ħ

/m

e

c

0

2

. Similarly, in the a.u. system, any four of the 

five quantities charge, mass, action, length, and energy are taken as base quantities. 
The corresponding base units are the elementary charge 

e

, electron mass 

m

e

, action 

ħ

, Bohr radius (or bohr) 

a

0

, and Hartree energy (or hartree) 

E

h

, respectively. In this 

system, time is again a derived quantity and the a.u. of time a derived unit, equal to 
the combination of units 

ħ

/

E

h

. Note that 

a

0

 = 

Îą

/(4

π

R

∞

), where 

Îą

 is the fine-structure 

constant and 

R

∞

 is the Rydberg constant; and 

E

h

 = 

e

2

/(4

π

Îľ

0

a

0

) = 2

R

∞

hc

0

 = 

Îą

2

m

e

c

0

2

where 

Îľ

0

 is the electric constant and has an exact value in the SI. 

For information, these ten natural and atomic units and their values in SI units are 
also listed in Table 7. Because the quantity systems on which these units are based 
differ so fundamentally from that on which the SI is based, they are not generally 
used with the SI, and the CIPM has not formally accepted them for use with the 
International System. To ensure understanding, the final result of a measurement or 
calculation expressed in natural or atomic units should also always be expressed in 
the corresponding SI unit. Natural units (n.u.) and atomic units (a.u.) are used only 
in their own special fields of particle physics, and atomic physics and quantum 
chemistry, respectively. Standard uncertainties in the least significant digits are 
shown in parenthesis after each numerical value. 

background image

34  

•

  

Units outside the SI

 

Table 7. Non-SI units whose values in SI units must be obtained experimentally

†

 

 

 

Quantity  Name of unit 

Symbol for unit  

Value in SI units 

(

a

)

 

 

 

Units accepted for use with the SI 

energy electronvolt 

(

b

)

 

eV 

1 eV = 1.602 176 53(14) 

×

 10

−

19

 J 

mass dalton, 

(

c

)

 

Da 

1 Da = 1.660 538 86(28) 

×

 10

−

27

 kg 

 

unified atomic mass unit 

1 u = 1 Da 

length astronomical 

unit 

(

d

)

 

ua 

1 ua = 1.495 978 706 91(6) 

×

 10

11

 m 

Natural units (n.u.) 

speed 

n.u. of speed 

c

0

 

299 792 458 m/s (exact) 

 

(speed of light in vacuum) 

action 

n.u. of action 

ħ

 

1.054 571 68(18) 

×

 10

−

34

 J s 

 

(reduced Planck constant) 

mass 

n.u. of mass 

m

e

 9.109 

3826(16) 

×

 10

−

31

 kg 

 (electron 

mass) 

time 

n.u. of time 

ħ

/

(

m

e

c

0

2

)

 

1.288 088 6677(86) 

×

 10

−

21

 s 

Atomic units (a.u.) 

charge 

a.u. of charge  

e

 

1.602 176 53(14) 

×

 10

−

19

 C 

 (elementary 

charge) 

mass 

a.u. of mass 

m

e

 9.109 

3826(16) 

×

 10

−

31

 kg 

 (electron 

mass) 

action 

a.u. of action 

ħ

 

1.054 571 68(18) 

×

 10

−

34

 J s 

 

(reduced Planck constant) 

length 

a.u. of length, bohr 

a

0

 

0.529 177 2108(18) 

×

 10

−

10

 m 

 (Bohr 

radius) 

energy 

a.u. of energy, hartree 

E

h

 

4.359 744 17(75) 

×

 10

−

18

 J 

 (Hartree 

energy) 

time 

a.u. of time 

ħ

/E

h

 

2.418 884 326 505(16) 

×

 10

−

17

 s 

 

(

a

)  The values in SI units of all units in this table, except the astronomical unit, are taken from 

the 2002 CODATA set of recommended values of the fundamental physical constants, P.J. 
Mohr and B.N. Taylor, 

Rev

Mod. Phys

., 2005, 

77

, 1-107. The standard uncertainty in the last 

two digits is given in parenthesis (see 5.3.5, p. 43). 

(

b

)  The electronvolt is the kinetic energy acquired by an electron in passing through a potential 

difference of one volt in vacuum. The electronvolt is often combined with the SI prefixes. 

(

c

)  The dalton (Da) and the unified atomic mass unit (u) are alternative names (and symbols) for 

the same unit, equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground 
state. The dalton is often combined with SI prefixes, for example to express the masses of 
large molecules in kilodaltons, kDa, or megadaltons, MDa, or to express the values of small 
mass differences of atoms or molecules in nanodaltons, nDa, or even picodaltons, pDa. 

(

d

)  The astronomical unit is approximately equal to the mean Earth-Sun distance. It is the radius 

of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal 
mass, moving with a mean motion of 0.017 202 098 95 radians  per  day  (known  as  the 
Gaussian constant). The value given for the astronomical unit is quoted from the IERS 
Conventions 2003 (D.D. McCarthy and G. Petit eds., 

IERS Technical Note

 32, Frankfurt am 

Main: Verlag des Bundesamts fĂźr Kartographie und Geodäsie, 2004, 12). The value of the 
astronomical unit in meters comes from the JPL ephemerides DE403 (Standish E.M., Report 
of the IAU WGAS Sub-Group on Numerical Standards, 

Highlights of Astronomy

Appenzeller ed., Dordrecht: Kluwer Academic Publishers, 1995, 180-184).  

                                                        

†

 Editors’ note: Only the units in Table 6, the first four units in Table 7, and the neper, bel, and 

decibel in Table 8 have been formally accepted for use with the SI by the CIPM. 

background image

Units outside the SI

  

•

  

35

 

 

Tables 8 and 9 contain non-SI units that are used by special interest groups for a 
variety of different reasons. Although the use of SI units is to be preferred for 
reasons already emphasized, authors who see a particular advantage in using these 
non-SI units should have the freedom to use the units that they consider to be best 
suited to their purpose. Since, however, SI units are the international meeting 
ground in terms of which all other units are defined, those who use units from 
Tables 8 and 9 should always give the definition of the units they use in terms of SI 
units. 
Table 8 also gives the units of logarithmic ratio quantities, the neper, bel, and 
decibel. These are dimensionless units that are somewhat different in their nature 
from other dimensionless units, and some scientists consider that they should not 
even be called units. They are used to convey information on the nature of the 
logarithmic ratio quantity concerned. The neper, Np, is used to express the values of 
quantities whose numerical values are based on the use of the Napierian (or natural) 
logarithm, ln = log

e

. The bel and the decibel, B and dB, where 1 dB = (1/10) B, are 

used to express the values of logarithmic ratio quantities whose numerical values are 
based on the decadic logarithm, lg = log

10

. The way in which these units are 

interpreted is described in footnotes (

g

) and (

h

) of Table 8. The numerical values of 

these units are rarely required. The units neper, bel, and decibel have been accepted 
by the CIPM for use with the International System, but are not considered as SI 
units. 
The SI prefixes are used with two of the units in Table 8, namely, with the bar (e.g. 
millibar, mbar), and with the bel, specifically for the decibel, dB. The decibel is 
listed explicitly in the table because the bel is rarely used without the prefix. 
 

Table 8. Other non-SI units 
 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units 

 

 

pressure bar 

(

a

)

 

 

bar 

 

1 bar = 0.1 MPa = 100 kPa = 10

5

 Pa 

 

millimeter of mercury 

(

b

)

 mmHg 

 

mmHg 

≈

 133.322 Pa 

length ĂĽngstrĂśm 

(

c

)

 

 

Å 

 

1 Å = 0.1 nm = 100 pm = 10

−

10

 m 

distance nautical 

mile 

(

d

)

 

 

 

1 M = 1852 m 

area barn 

(

e

)

 

 

 

1 b = 100 fm

2

 = (10

−

12

 cm)

2

 = 10

−

28

 m

2

 

speed knot 

(

f

)

 

 

kn 

 

1 kn = (1852/3600) m/s 

logarithmic neper 

(

g

i

)

 

 

Np 

 

[see footnote (

j

) regarding the  

  ratio quantities 

bel 

(

h

i

)

 

 

 

numerical value of the neper, the  

 decibel 

(

h

i

)

 

 

dB 

 

bel, and the decibel] 

 
(

a

)  The bar and its symbol are included in Resolution 7 of the 9th CGPM (1948; CR, 70). Since 

1982 one bar has been used as the standard pressure for tabulating all thermodynamic data. 
Prior to 1982 the standard pressure used to be the standard atmosphere, equal to 1.013

 

25

 

bar, 

or 101

 

325

 

Pa. 

(

b

)  The millimeter of mercury is a legal unit for the measurement of blood pressure in some 

countries. 

(

c

)  The ĂĽngstrĂśm is widely used by x-ray crystallographers and structural chemists because all 

chemical bonds lie in the range 1 to 3 ĂĽngstrĂśms. However, it has no official sanction from 
the CIPM or the CGPM. 

background image

36  

•

  

Units outside the SI

 

(

d

)  The nautical mile is a special unit employed for marine and aerial navigation to express 

distance. The conventional value given here was adopted by the First International Extra-
ordinary Hydrographic Conference, Monaco 1929, under the name “International nautical 
mile.” As yet there is no internationally agreed symbol, but the symbols M, NM, Nm, and 
nmi are all used; in the table the symbol M is used. The unit was originally chosen, and 
continues to be used, because one nautical mile on the surface of the Earth subtends 
approximately one minute of angle at the center of the Earth, which is convenient when 
latitude and longitude are measured in degrees and minutes of angle. 

(

e

)  The barn is a unit of area employed to express cross sections in nuclear physics. 

(

f

)  The knot is defined as one nautical mile per hour. There is no internationally agreed symbol, 

but the symbol kn is commonly used. 

(

g) 

The statement 

L

A

 

=

 

n

 

Np (where 

n

 is a number) is interpreted to mean that ln(

A

2

/

A

1

) = 

n

. Thus 

when 

L

A

 

= 1 Np, 

A

2

/

A

1

 = e. The symbol 

A

 is used here to denote the amplitude of a sinusoidal 

signal, and 

L

A

 is then called the Napierian logarithmic amplitude ratio, or the Napierian 

amplitude level difference. 

(

h

) The statement 

L

X

 

=

 

m

 dB

 

=

 

(

m

/10)

 

B (where 

m

 is a number) is interpreted to mean that 

lg(

X

/

X

0

)

 

m

/10. Thus when 

L

X

 

=

 

1 B, 

X

/

X

0

 

=

 

10, and when 

L

X

 = 1 dB, 

X

/

X

0

 = 10

1/10

. If 

denotes a mean square signal or power-like quantity, 

L

X

 

 is called a power level referred to 

X

0

(

i

)  In using these units it is important that the nature of the quantity be specified, and that any 

reference value used be specified. These units are not SI units, but they have been accepted 
by the CIPM for use with the SI. 

(

j

)  The numerical values of the neper, bel, and decibel (and hence the relation of the bel and the 

decibel to the neper) are rarely required. They depend on the way in which the logarithmic 
quantities are defined.  

 

 
Table 9 differs from Table 8 only in that the units in Table 9 are related to the older 
CGS (centimeter-gram-second) system of units, including the CGS electrical units. 
In the field of mechanics, the CGS system of units was built upon three quantities 
and their corresponding base units: the centimeter, the gram, and the second. The 
CGS electrical units were still derived from only these same three base units, using 
defining equations different from those used for the SI. Because this can be done in 
different ways, it led to the establishment of several different systems, namely the 
CGS-ESU (electrostatic), the CGS-EMU (electromagnetic), and the CGS-Gaussian 
unit systems. It has always been recognized that the CGS-Gaussian system, in 
particular, has advantages in certain areas of physics, particularly in classical and 
relativistic electrodynamics (9th CGPM, 1948, Resolution 6). Table 9 gives the 
relations between these CGS units and the SI, and lists those CGS units that were 
assigned special names. As for the units in Table 8, the SI prefixes are used with 
several of these units (e.g.

millidyne, mdyn; milligauss, mG, etc.).  

 

background image

Units outside the SI

  

•

  

37

 

Table 9. Non-SI units associated with the CGS and the CGS-Gaussian system of 
units 

 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units   

 

 

energy erg 

(

a

)

 

erg 

1 erg = 10

−

7

 J 

force dyne 

(

a

)

 

dyn 

1 dyn = 10

−

5

 N 

dynamic viscosity 

poise 

(

a

)

 

1 P = 1 dyn s cm

−

2

 = 0.1 Pa s 

kinematic viscosity 

stokes 

St 

1 St = 1 cm

2

 s

−

1

 = 10

−

4

 m

2

 s

−

1

 

luminance stilb 

(

a

)

 

sb 

1 sb = 1 cd cm

−

2

 = 10

4

 cd m

−

2

 

illuminance 

phot 

ph 

1 ph = 1 cd sr cm

−

2

 = 10

4

 lx 

acceleration gal 

(

b

)

 

Gal 

1 Gal = 1 cm s

−

2

 = 10

−

2

 m s

−

2

 

magnetic flux 

maxwell

 (

c

)

 

Mx 

1 Mx = 1 G cm

2

 = 10

−

8

 Wb 

magnetic flux density 

gauss 

(

c

)

 

1 G = 1 Mx cm

−

2

 = 10

−

4

 T 

magnetic field 

œrsted 

(

c

)

 Oe 

Oe 

ˆ

=

 (10

3

/4

π

) A m

−

1

 

 
(

a

)  This unit and its symbol were included in Resolution 7 of the 9th CGPM (1948; CR, 70). 

(

b

)  The gal is a special unit of acceleration employed in geodesy and geophysics to express 

acceleration due to gravity.  

(

c

)  These units are part of the so-called “electromagnetic” three-dimensional CGS system based 

on unrationalized quantity equations, and must be compared with care to the corresponding 
unit of the International System which is based on rationalized equations involving four 
dimensions and four quantities for electromagnetic theory. The magnetic flux, 

ÎŚ

, and the 

magnetic flux density, 

B

, are defined by similar equations in the CGS system and the SI, so 

that the corresponding units can be related as in the table. However, the unrationalized 
magnetic field, 

H

 

(unrationalized) = 4

π

 

×

 

H

 

(rationalized). The equivalence symbol 

ˆ

=

 is used 

to indicate that when 

H

 

(unrationalized) = 1 Oe, 

H

 

(rationalized) = (10

3

/4

π

) A m

−

1

 

 

4.2 

Other non-SI units not recommended for use 

There are many more non-SI units, which are too numerous to list here, which are 
either of historical interest, or are still used but only in specialized fields (for 
example, the barrel of oil) or in particular countries (the inch, foot, and yard). The 
CIPM can see no case for continuing to use these units in modern scientific and 
technical work. However, it is clearly a matter of importance to be able to recall the 
relation of these units to the corresponding SI units, and this will continue to be true 
for many years. The CIPM has therefore decided to compile a list of the conversion 
factors to the SI for such units and to make this available on the BIPM website at 
 http://www.bipm.org/en/si/si_brochure/chapter4/conversion_factors.html

.

 

4.3 

The curie, roentgen, rad, and rem 

This section and Table 10 below have been added to the United States version of the 
BIPM SI Brochure because, although the curie, roentgen rad, and rem are not 
accepted by the CIPM for use with the SI, they are widely used in the United States, 
especially in regulatory documents dealing with health and safety. The interpretation 
of the SI for the United States given in the 

Federal Register

 notice referenced in 

footnote (

f

) of Table 6, p. 32, does in fact accept their use with the SI. Nevertheless, 

that notice strongly discourages the continued use of the curie, roentgen, rad and 

background image

38  

•

  

Units outside the SI

 

rem and recommends that the corresponding SI units should be used whenever 
possible, with values of relevant quantities given in terms of these outdated units in 
parentheses only if necessary. 
 

Table 10. The non-SI units curie, roentgen, rad, and rem 

 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units   

 

 
activity 

curie 

Ci 

1 Ci = 3.7 

×

 10

10

 Bq 

exposure 

roentgen 

1 R = 2.58 

×

 10

−

4

 C/kg (air) 

absorbed dose 

rad 

rad 

(

a

)

 

1 rad = 1 cGy = 10

−

2

 Gy 

dose equivalent 

rem 

rem 

1 rem = 1 cSv = 10

−

2

 Sv 

 
(

a

)  The unit symbol rd may be used in place of rad if there is risk of confusion of this symbol 

with the unit symbol for the radian. 

 

 

background image

39 

 

Writing unit symbols and names, and expressing the 
values of quantities 

General principles for the writing of unit symbols and numbers were first given by 
the 9th CGPM (1948, Resolution 7). These were subsequently elaborated by ISO, 
IEC, and other international bodies. As a consequence, there now exists a general 
consensus on how unit symbols and names, including prefix symbols and names, as 
well as quantity symbols should be written and used, and how the values of 
quantities should be expressed. Compliance with these rules and style conventions, 
the most important of which are presented in this chapter, supports the readability of 
scientific and technical papers.  
 

5.1 Unit 

symbols 

Unit symbols are printed in roman (upright) type regardless of the type used in the 
surrounding text. They are printed in lower-case letters unless they are derived from 
a proper name, in which case the first letter is a capital letter. 
An exception, adopted by the 16th CGPM (1979, Resolution 6), is that either capital 
L or lower-case l is allowed for the liter, in order to avoid possible confusion 
between the numeral 1 (one) and the lower-case letter l (el). [

Editors’ note:

 the 

symbol L is preferred in the United states; see footnote (

f

) of Table 6, p. 32.] 

A multiple or sub-multiple prefix, if used, is part of the unit and precedes the unit 
symbol without a separator. A prefix is never used in isolation, and compound 
prefixes are never used.  
Unit symbols are mathematical entities and not abbreviations. Therefore, they are 
not followed by a period except at the end of a sentence, and one must neither use 
the plural nor mix unit symbols and unit names within one expression, since names 
are not mathematical entities. 
In forming products and quotients of unit symbols the normal rules of algebraic 
multiplication or division apply. Multiplication must be indicated by a space or a 
half-high (centered) dot (

⋅

), since otherwise some prefixes could be misinterpreted as 

a unit symbol. Division is indicated by a horizontal line, by a solidus (oblique 
stroke, /) or by negative exponents. When several unit symbols are combined, care 
should be taken to avoid ambiguities, for example by using brackets or negative 
exponents. A solidus must not be used more than once in a given expression without 
brackets to remove ambiguities. 
It is not permissible to use abbreviations for unit symbols or unit names, such as sec 
(for either s or second), sq. mm (for either mm

2

 or square millimeter), cc (for either 

cm

3

 or cubic centimeter), or mps (for either m/s or meter per second). The use of the 

m, meter 
s, second 
Pa, pascal 

Ω

, ohm 

 
 
L, liter 
 
 
 
 
nm, 

 not 

 m

Îź

 
It is 75 cm long, 

not 

 75 cm. long 

 

l

 = 75 cm,

 

not

 

 

75 cms 

 
coulomb per kilogram, 

not

  coulomb per kg 

N m  or N 

¡ 

for a newton meter 

m/s  or 

m

s

 or  m s

–1

for meter per second 
 
ms, millisecond 
m s, meter times second 
 
m kg/(s

3

 A), 

or  m kg s

–3

 A

–1

but not

  m kg/s

3

/A, 

nor       

 m kg/s

3

 A 

background image

40  

•

  

Writing unit symbols and names

 

 

correct symbols for SI units, and for units in general, as listed in earlier chapters of 
this Brochure, is mandatory. In this way ambiguities and misunderstandings in the 
values of quantities are avoided. 

5.2 Unit 

names 

Unit names are normally printed in roman (upright) type, and they are treated like 
ordinary nouns. In English, the names of units start with a lower-case letter (even 
when the symbol for the unit begins with a capital letter), except at the beginning of 
a sentence or in capitalized material such as a title. In keeping with this rule, the 
correct spelling of the name of the unit with the symbol °C is “degree Celsius” (the 
unit degree begins with a lower-case d and the modifier Celsius begins with an 
upper-case C because it is a proper name). 
Although the values of quantities are normally expressed using symbols for numbers 
and symbols for units, if for some reason the unit name is more appropriate than the 
unit symbol, the unit name should be spelled out in full.  
When the name of a unit is combined with the name of a multiple or sub-multiple 
prefix, no space or hyphen is used between the prefix name and the unit name. The 
combination of prefix name plus unit name is a single word. See also Chapter 3, 
Section 3.1. 
In both English and in French, however, when the name of a derived unit is formed 
from the names of individual units by multiplication, then either a space or a hyphen 
is used to separate the names of the individual units. 
In both English and in French modifiers such as “squared” or “cubed” are used in 
the names of units raised to powers, and they are placed after the unit name. 
However, in the case of area or volume, as an alternative the modifiers “square” or 
“cubic” may be used, and these modifiers are placed before the unit name, but this 
applies only in English. 
 

5.3 

Rules and style conventions for expressing values of 
quantities 

5.3.1 

Value and numerical value of a quantity, and the use of quantity 
calculus  

The value of a quantity is expressed as the product of a number and a unit, and the 
number multiplying the unit is the numerical value of the quantity expressed in that 
unit. The numerical value of a quantity depends on the choice of unit. Thus the 
value of a particular quantity is independent of the choice of unit, although the 
numerical value will be different for different units. 
Symbols for quantities are generally single letters set in an italic font, although they 
may be qualified by further information in subscripts or superscripts or in brackets. 
Thus 

C

 is the recommended symbol for heat capacity, 

C

m

 for molar heat capacity, 

C

m,

 

p

 for molar heat capacity at constant pressure, and 

C

m,

V

 for molar heat capacity 

at constant volume. 

milligram, 

but not

  milli-gram 

 
kilopascal, 

but not

  kilo-pascal 

 
 
 
pascal second, or 
pascal-second 

meter per second squared, 
square centimeter, 
cubic millimeter, 
ampere per square meter, 
kilogram per cubic meter. 

unit name    symbol 

 

joule 

       J 

hertz 

       Hz 

meter         m 
second         s  
ampere         A 
watt               W 

2.6 m/s, 
or 2.6 meters per second 

The same value of a speed  

v

 = d

x

/d

t

 of a particle 

might be given by either  
of the expressions  

v

 = 25 m/s = 90 km/h,  

where 25 is the numerical 
value of the speed in the 
unit meters per second, and 
90 is the numerical value of 
the speed in the unit 
kilometers per hour. 

background image

Writing unit symbols and names 

 

•

  

41 

 

Recommended names and symbols for quantities are listed in many standard 
references, such as the ISO Standard 31 

Quantities and Units

, the IUPAP 

SUNAMCO Red Book 

Symbols, Units and Nomenclature in Physics

, and the 

IUPAC Green Book 

Quantities, Units and Symbols in Physical Chemistry

However, symbols for quantities are recommendations (in contrast to symbols for 
units, for which the use of the correct form is mandatory). In particular 
circumstances authors may wish to use a symbol of their own choice for a quantity, 
for example in order to avoid a conflict arising from the use of the same symbol for 
two different quantities. In such cases, the meaning of the symbol must be clearly 
stated. However, neither the name of a quantity, nor the symbol used to denote it, 
should imply any particular choice of unit. 
Symbols for units are treated as mathematical entities. In expressing the value of a 
quantity as the product of a numerical value and a unit, both the numerical value and 
the unit may be treated by the ordinary rules of algebra. This procedure is described 
as the use of quantity calculus, or the algebra of quantities. For example, the 
equation 

T

 = 293 K may equally be written 

T

/K = 293. It is often convenient to write 

the quotient of a quantity and a unit in this way for the heading of a column in a 
table, so that the entries in the table are all simply numbers. For example, a table of 
vapour pressure against temperature, and the natural logarithm of vapour pressure 
against reciprocal temperature, may be formatted as shown below. 
 

 

T

/K  

10

3

 K/

T

 

p

/MPa ln(

p

/MPa) 

 
216.55  

4.6179 

0.5180 

−

0.6578 

273.15  

3.6610 

3.4853 

1.2486 

304.19  

3.2874 

7.3815 

1.9990 

 
 
The axes of a graph may also be labelled in this way, so that the tick marks are 
labelled only with numbers, as in the graph below. 

-0.8

0.0

0.8

1.6

2.4

3.2

3.6

4.0

4.4

4.8

1000 K/

T

ln

(

p

/M

Pa

)

 

background image

42  

•

  

Writing unit symbols and names

 

 

Algebraically equivalent forms may be used in place of 1000 K/

T

, such as 10

3

 K/

T

kK/

T

, or 10

3

 (

T

/K)

−

1

 

5.3.2 Quantity 

symbols and unit symbols 

Just as the quantity symbol should not imply any particular choice of unit, the unit 
symbol should not be used to provide specific information about the quantity, and 
should never be the sole source of information on the quantity. Units are never 
qualified by further information about the nature of the quantity; any extra 
information on the nature of the quantity should be attached to the quantity symbol 
and not to the unit symbol. 
 

5.3.3 

Formatting the value of a quantity 

The numerical value always precedes the unit, and a space is always used to separate 
the unit from the number. Thus the value of the quantity is the product of the 
number and the unit, the space being regarded as a multiplication sign (just as a 
space between units implies multiplication). The only exceptions to this rule are for 
the unit symbols for degree, minute, and second for plane angle, °, 

′

, and 

″

respectively, for which no space is left between the numerical value and the unit 
symbol. 
This rule means that the symbol °C for the degree Celsius is preceded by a space 
when one expresses values of Celsius temperature 

t

Even when the value of a quantity is used as an adjective, a space is left between the 
numerical value and the unit symbol. Only when the name of the unit is spelled out 
would the ordinary rules of grammar apply, so that in English a hyphen would be 
used to separate the number from the unit. 
In any one expression, only one unit is used. An exception to this rule is in 
expressing the values of time and of plane angles using non-SI units. However, for 
plane angles it is generally preferable to divide the degree decimally. Thus one 
would write 22.20° rather than 22° 12

′

, except in fields such as navigation, 

cartography, astronomy, and in the measurement of very small angles. 
 

5.3.4 

Formatting numbers, and the decimal marker 

The symbol used to separate the integral part of a number from its decimal part is 
called the decimal marker. Following the 22nd CGPM (2003, Resolution 10), the 
decimal marker â€œshall be either the point on the line or the comma on the line.”  The 
decimal marker chosen should be that which is customary in the context concerned. 
If the number is between +1 and 

−

1, then the decimal marker is always preceded by 

a zero. 
Following the 9th CGPM (1948, Resolution 7) and the 22nd CGPM (2003, 
Resolution 10), for numbers with many digits the digits may be divided into groups 
of three by a thin space, in order to facilitate reading. Neither dots nor commas are 
inserted in the spaces between groups of three. However, when there are only four 
digits before or after the decimal marker, it is customary not to use a space to isolate 

l

 = 10.234 m, 

but not 

l

 = 10 m  23.4 cm 

−

0.234, 

but not

  

−

.234 

t

 = 30.2 

o

C, 

but not

  

= 30.2

o

C, 

nor

        

= 30.2

o

 C 

 
a 10 k

Ω

 resistor 

 
a 35-millimeter film 

m

 = 12.3 g, where 

is used 

as a symbol for the quantity 
mass, but  

φ

 = 30° 22

′

 8

″

where 

φ

 is used as a symbol 

for the quantity plane angle. 

43 279.168 29, 

but not  

43,279.168,29 

 
 

either

   3279.1683 

or

 

         3 279.168 3 

For example: 
The maximum electric 
potential difference is  

U

max

 = 1000 V 

but not

 

U

 = 1000 V

max

.

 

The mass fraction of copper 
in the sample of silicon is 

w

(Cu) = 1.3 × 10

−

6

 

but not

 

1.3 × 10

−

6

 w/w. 

background image

Writing unit symbols and names 

 

•

  

43 

 

a single digit. The practice of grouping digits in this way is a matter of choice; it is 
not always followed in certain specialized applications such as engineering 
drawings, financial statements, and scripts to be read by a computer. 
For numbers in a table, the format used should not vary within one column. 
 

5.3.5 

Expressing the measurement uncertainty in the value of a quantity 

The uncertainty that is associated with the estimated value of a quantity should be 
evaluated and expressed in accordance with the 

Guide to the Expression of Uncer-

tainty in Measurement

 [ISO, 1995]. The standard uncertainty (i.e. estimated 

standard deviation, coverage factor 

k

 = 1) associated with a quantity 

x

 is denoted by 

u

(

x

). A convenient way to represent the uncertainty is given in the following 

example: 

m

n

 = 

1.674 927 28(29)

 Ă—

 10

–27

 kg. 

where 

m

n

 is the symbol for the quantity (in this case the mass of a neutron), and the 

number in parenthesis is the numerical value of the combined standard uncertainty 
of the estimated value of 

m

n

 referred to the last two digits of the quoted value; in this 

case  

u

(

m

n

) = 0.000 000 29 × 10

−

27

 kg. If any coverage factor, 

k

, different from one, 

is used, this factor must be stated. 
 

5.3.6 

Multiplying or dividing quantity symbols, the values of quantities, or 
numbers 

When multiplying or dividing quantity symbols any of the following methods may 

be used:  

ab

a b

a

⋅

 

b

a

 Ă— 

b

a

/

b

a
b

a b

−

1

When multiplying the value of quantities either a multiplication sign, 

×

, or brackets 

should be used, not a half-high (centered) dot. When multiplying numbers only the 
multiplication sign, 

×

, should be used. 

When dividing the values of quantities using a solidus, brackets are used to remove 
ambiguities. 
 

5.3.7 

Stating values of dimensionless quantities, or quantities of dimension 
one 

As discussed in Section 2.2.3, the coherent SI unit for dimensionless quantities, also 
termed quantities of dimension one, is the number one, symbol 1. Values of such 
quantities are expressed simply as numbers. The unit symbol 1 or unit name â€œone” 
are not explicitly shown, nor are special symbols or names given to the unit one, 
apart from a few exceptions as follows. For the quantity plane angle, the unit one is 
given the special name radian, symbol rad, and for the quantity solid angle, the unit 
one is given the special name steradian, symbol sr. For the logarithmic ratio 
quantities, the special names neper, symbol Np, bel, symbol B, and decibel, symbol 
dB, are used (see 4.1 and Table 8, p. 35). 
Because SI prefix symbols can neither be attached to the symbol 1 nor to the name 
“one,” powers of 10 are used to express the values of particularly large or small 
dimensionless quantities. 

Examples: 
 

F

 = 

ma

 for force equals 

mass times acceleration 
 
(53 m/s) 

×

 10.2 s 

or (53 m/s)(10.2 s) 
 
25 

×

 60.5 

but not

  25 

¡

 60.5 

 
(20 m)/(5 s) = 4 m/s 
 
(

a/b

)

/c

,  

not

  

a/b/c

 

n

 = 1.51, 

but not

  

n

 = 1.51 × 1, 

where 

n

 is the quantity 

symbol for refractive index. 

background image

44  

•

  

Writing unit symbols and names

 

 

In mathematical expressions, the internationally recognized symbol % (percent) may 
be used with the SI to represent the number 0.01. Thus, it can be used to express the 
values of dimensionless quantities. When it is used, a space separates the number 
and the symbol %. In expressing the values of dimensionless quantities in this way, 
the symbol % should be used rather than the name “percent.” 
In written text, however, the symbol % generally takes the meaning of â€œparts per 
hundred.” 
Phrases such as “percentage by mass,” “percentage by volume,” or â€œpercentage by 
amount of substance” should not be used; the extra information on the quantity 
should instead be conveyed in the name and symbol for the quantity. 
In expressing the values of dimensionless fractions (e.g. mass fraction, volume 
fraction, relative uncertainties), the use of a ratio of two units of the same kind is 
sometimes useful. 
The term â€œppm,” meaning 10

−

6

 relative value, or 1 in 10

6

, or parts per million, is 

also used. This is analogous to the meaning of percent as parts per hundred. The 
terms â€œparts per billion,” and “parts per trillion,” and their respective abbreviations 
“ppb,” and â€œppt,” are also used, but their meanings are language dependent. For this 
reason the terms ppb and ppt are best avoided. (In English-speaking countries, a 
billion is now generally taken to be 10

9

 and a trillion to be 10

12

; however, a billion 

may still sometimes be interpreted as 10

12

 and a trillion as 10

18

. The abbreviation 

ppt is also sometimes read as parts per thousand, adding further confusion.) 
When any of the terms %, ppm, etc., are used it is important to state the 
dimensionless quantity whose value is being specified.

†

 

                                                        

†

 Editors

'

 note: The NIST policy on the proper way to employ the International System of Units to 

express the values of quantities does not allow the use of parts per million, parts per billion or 
parts per trillion and the like, nor the abbreviations ppm, ppb or ppt and the like. Further, it only 
allows the use of the word “percent” and the symbol % to mean the number 0.01 in the expression 
of the value of a quantity. See NIST SP 811, available as noted in the Foreword. 

 

x

B

 = 0.0025 = 0.25 %, 

where 

x

B

 is the quantity 

symbol for amount fraction 
(mole fraction) of entity B. 
 
The mirror reflects 95 % of 
the incident photons. 
 

φ

 = 3.6 %, 

but not

  

φ

 = 3.6 % (

V

/

V

), 

where 

φ

 denotes volume 

fraction. 
 
 

x

B

 = 2.5 × 10

−

3

 

     = 2.5 mmol/mol 
 

u

r

(

U

) = 0.3 ÂľV/V, 

where 

u

r

(

U

) is the relative 

uncertainty of the measured 
voltage 

U

background image

45

 

Appendix 1.  Decisions of the CGPM and the CIPM 

This appendix lists those decisions of the CGPM and the CIPM that bear directly 
upon definitions of the units of the SI, prefixes defined for use as part of the SI, and 
conventions for the writing of unit symbols and numbers. It is not a complete list of 
CGPM and CIPM decisions. For a complete list, reference must be made to 
successive volumes of the 

Comptes Rendus des SĂŠances de la ConfĂŠrence GĂŠnĂŠrale 

des Poids et Mesures

 (CR) and 

Procès-Verbaux

 

des SĂŠances du ComitĂŠ 

International des Poids et Mesures

 (PV) or, for recent decisions, to 

Metrologia

Since the SI is not a static convention, but evolves following developments in the 
science of measurement, some decisions have been abrogated or modified; others 
have been clarified by additions. Decisions that have been subject to such changes 
are identified by an asterisk (*) and are linked by a note to the modifying decision. 
The original text of each decision (or its translation) is shown in a different font 
(sans serif) of normal weight to distinguish it from the main text. The asterisks and 
notes were added by the BIPM to make the text more understandable. They do not 
form part of the original text. 
The decisions of the CGPM and CIPM are listed in this appendix in strict 
chronological order, from 1889 to 2005, in order to preserve the continuity with 
which they were taken. However in order to make it easy to locate decisions related 
to particular topics a table of contents is included below, ordered by subject, with 
page references to the particular meetings at which decisions relating to each subject 
were taken. 

 

background image

46

  

•

  Appendix 1

 

 

 

This page intentionally left blank. 

background image

Appendix 1  

•

  

47

 

 

 

Table of Contents of Appendix 1 

Decisions relating to the establishment of the SI 

 

 

page 

9th

 

CGPM, 1948: 

decision to establish the SI 

 

54 

10th CGPM, 1954: 

decision on the first six base units 

56

 

CIPM 1956: 

 

decision to adopt the name 

Système International d’Unités

 

57

 

11th CGPM, 1960: 

confirms the name and the abbreviation “SI,” 

58

 

 

 

 

names prefixes from tera to pico, 

58

 

 

 

 

establishes the supplementary units rad and sr, 

59

 

 

 

 

lists some derived units 

 

59

 

CIPM, 1969: 

 

declarations concerning base, supplementary, 

 

 

 

Derived, and coherent units, and the use of prefixes 

64

 

CIPM, 2001: 

 

“SI units” and “units of the SI” 

76 

 

Decisions relating to the base units of the SI 

Length 

1st CGPM, 1889: 

sanction of the prototype meter 

51

 

7th CGPM, 1927: 

definition and use of the prototype meter 

52

 

11th CGPM, 1960: 

redefinition of the meter in terms of krypton 86 radiation 

57

 

15th CGPM, 1975: 

recommends value for the speed of light 

66 

17th CGPM, 1983: 

redefinition of the meter using the speed of light, 

70 

 

 

 

r

ealization of the definition of the meter

 71

 

CIPM, 2002: 

 

specifies the rules for the practical realization of the  

 

 

 

definition of the meter 

 

76

 

CIPM, 2003: 

 

revision of the list of recommended radiations 

79 

CIPM, 2005: 

 

revision of the list of recommended radiations 

81 

 

Mass 

1st CGPM, 1889: 

sanction of the prototype kilogram 

51

 

3rd CGPM, 1901: 

declaration on distinguishing mass and weight, 

 

 

 

and on the conventional value of 

g

n

 

52

 

CIPM, 1967: 

 

declaration on applying prefixes to the gram 

62

 

21st CGPM, 1999: 

future redefinition of the kilogram 

75 

 

background image

48

  

•

  Appendix 1

 

Time 

 

 

  

  

 

 

 

page 

CIPM, 1956: 

 

definition of the second as a fraction of the  

 

 

 

tropical year 1900 

 

56

 

11th CGPM, 1960: 

ratifies the CIPM 1956 definition of the second 

58

 

 

 

 

 

 

 

 

CIPM, 1964: 

 

declares the cesium 133 hyperfine transition 

 

 

 

to be the recommended standard 

60

 

12th CGPM, 1964: 

empowers CIPM to investigate atomic 

 

 

 

and molecular frequency standards 

60

 

13th CGPM, 1967/68:  defines the second in terms of the cesium transition 

62

 

CCDS, 1970:   

defines International Atomic Time, TAI 

65

 

1

4th CGPM, 1971: 

requests the CIPM to define and establish 

 

 

 

International Atomic Time, TAI 

65

 

15th CGPM, 1975: 

endorses the use of Coordinated Universal Time, UTC 

67

 

 

Electrical units 

CIPM, 1946: 

 

definitions of mechanical and electrical units in the SI 

53

 

14th CGPM, 1971: 

adopts the name “siemens,” symbol S, for electrical  

  

 conductance 

 

65

 

18th CGPM, 1987: 

forthcoming adjustment to the representations of 

 

 

 

the volt and of the ohm 

 

71

 

CIPM, 1988: 

 

Josephson effect 

 

72

 

CIPM, 1988: 

 

quantum Hall effect 

 

73

 

CIPM, 2000:    

realization of the ohm using the value of the 

 

 

 

von Klitzing constant 

 

76

 

 

Thermodynamic temperature 

9th CGPM, 1948: 

adopts the triple point of water as the thermodynamic 

 

 

 

reference point,  

 

53

 

 

 

 

adopts the zero of Celsius temperature to be 

 

 

 

0.01 degree below the triple point 

54

 

CIPM, 1948: 

 

adopts the name degree Celsius for the Celsius  

  

 temperature 

scale 

 

54

 

10th CGPM, 1954: 

defines thermodynamic temperature such that the  

 

 

 

triple point of water is 273.16 degrees Kelvin exactly, 

55

 

 

 

 

defines standard atmosphere    

56

 

13th CGPM, 1967/68:  decides formal definition of the kelvin, symbol K 

62

 

CIPM, 1989: 

 

the International Temperature Scale of 1990, ITS-90 

73

 

CIPM, 2005: 

 

note added to the definition of the kelvin concerning the 

 

 

 

isotopic composition of water  

 

80 

 

background image

Appendix 1  

•

  

49

 

 

 

Amount of substance  

 

 

 

 

page 

14th CGPM, 1971: 

definition of the mole, symbol mol, as a seventh 

 

 

 

base unit, and rules for its use  

66

 

21st CGPM, 1999: 

adopts the special name katal, kat 

75 

 

Luminous 

intensity 

  

  

 

 

 

CIPM, 1946: 

 

definition of photometric units, new candle and new lumen 

52

 

13th CGPM, 1967/68:  defines the candela, symbol cd, in terms of a black body 

63

 

16th CGPM, 1979: 

redefines the candela in terms of monochromatic radiation 

68

 

 

Decisions relating to SI derived and supplementary units  

SI derived units 

12th CGPM, 1964: 

accepts the continued use of the curie as a non-SI unit 

61

 

13th CGPM, 1967/68:  lists some examples of derived units 

64

 

15th CGPM, 1975: 

adopts the special names becquerel, Bq, and gray, Gy 

67

 

16th CGPM, 1979: 

adopts the special name sievert, Sv 

68 

CIPM, 1984: 

 

decides to clarify the relationship between absorbed dose 

 

 

 

(SI unit gray) and dose equivalent (SI unit sievert) 

71

 

CIPM, 2002: 

 

modifies the relationship between absorbed dose  

 

 

 

and dose equivalent 

 

78

 

 

Supplementary units 

CIPM, 1980: 

 

decides to interpret supplementary units 

 

 

 

as dimensionless derived units 

69

 

20th CGPM, 1995: 

decides to abrogate the class of supplementary units, 

 

 

 

and confirms the CIPM interpretation that they are  

 

 

 

dimensionless derived units   

74

 

 

Decisions concerning terminology and the acceptance of units for use with the SI 

SI prefixes 

12th CGPM, 1964: 

decides to add femto and atto to the list of prefixes 

61

 

15th CGPM, 1975: 

decides to add peta and exa to the list of prefixes 

67

 

19th CGPM, 1991: 

decides to add zetta, zepto, yotta, and yocto to the  

 

 

 

list of prefixes 

 

74

 

 

Unit symbols and numbers 

9th CGPM, 1948: 

decides rules for printing unit symbols 

55

 

 

background image

50

  

•

  Appendix 1

 

Unit 

names 

 

  

  

 

 

 

page 

13th CGPM, 1967/68:  abrogates the use of the micron and new candle 

64

 

 

 

 

as units accepted for use with the SI 

 

The decimal marker 

22nd CGPM, 2003: 

decides to allow the use of the point or the comma 

 

 

 

on the line as the decimal marker 

79

 

 

Units accepted for use with the SI:  an example, the liter 

 

 

3rd CGPM, 1901: 

defines the liter as the volume of 1 kg of water 

51

 

11th CGPM, 1960: 

requests the CIPM to report on the difference  

 

 

 

between the liter and the cubic decimeter 

60

 

CIPM, 1961: 

 

recommends that volume be expressed in SI units 

 

 

 

and not in liters 

 

60

 

12th CGPM, 1964: 

abrogates the former definition of the liter, 

 

 

 

recommends that liter may be used as a special  

 

 

 

name for the cubic decimeter   

61

 

16th CGPM, 1979: 

decides, as an exception, to allow both l and L as 

 

 

 

symbols for the liter 

 

69

 

 

background image

Appendix 1  

•

  

51

 

 

 

1st CGPM, 1889 

■

  Sanction of the international prototypes of the meter and the kilogram 

(CR, 34-38)* 

The ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering 

•

  the “Compte rendu of the President of the ComitĂŠ International des Poids et Mesures 

(CIPM)” and the “Report of the CIPM,” which show that, by the collaboration of the 
French section of the International Meter Commission and of the CIPM, the 
fundamental measurements of the international and national prototypes of the meter 
and of the kilogram have been made with all the accuracy and reliability which the 
present state of science permits; 

•

  that the international and national prototypes of the meter and the kilogram are made 

of an alloy of platinum with 10 per cent iridium, to within 0.0001; 

•

  the equality in length of the international Meter and the equality in mass of the 

international Kilogram with the length of the Meter and the mass of the Kilogram kept 
in the Archives of France;  

•

  that the differences between the national Meters and the international Meter lie within 

0.01 millimeter and that these differences are based on a hydrogen thermometer scale 
which can always be reproduced thanks to the stability of hydrogen, provided identical 
conditions are secured; 

•

  that the differences between the national Kilograms and the international Kilogram lie 

within 1 milligram; 

•

  that the international Meter and Kilogram and the national Meters and Kilograms fulfil 

the requirements of the Meter Convention, 

sanctions 

A.  As regards international prototypes: 

1.  The Prototype of the meter chosen by the CIPM. This prototype, at the temperature of 

melting ice, shall henceforth represent the metric unit of length. 

2.  The Prototype of the kilogram adopted by the CIPM. This prototype shall henceforth 

be considered as the unit of mass. 

3.  The hydrogen thermometer centigrade scale in terms of which the equations of the 

prototype Meters have been established. 

B.  As regards national prototypes:   ..... 

… 

 

3rd CGPM, 1901 

■

  Declaration concerning the definition of the liter 

(CR, 38-39)

*

 

… 

T

he Conference declares 

1.  The unit of volume, for high accuracy determinations, is the volume occupied by a 

mass of 1 kilogram of pure water, at its maximum density and at standard atmospheric 
pressure: this volume is called “liter.” 

2. … 

* The definition of the 
meter was abrogated in 
1960 by the 11th CGPM 
(Resolution 6,  
see p. 57). 

* This definition was 
abrogated in 1964 by the 
12th CGPM (Resolution 6,
see p. 61). 

background image

52

  

•

  Appendix 1

 

■

  Declaration on the unit of mass and on the definition of weight; 

conventional value of

 g

(CR, 70) 

Taking into account

 the decision of the ComitĂŠ International des Poids et Mesures of 

15 October 1887, according to which the kilogram has been defined as unit of mass; 

Taking into account

 the decision contained in the sanction of the prototypes of the 

Metric System, unanimously accepted by the ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures 
on 26 September 1889; 

Considering

 the necessity to put an end to the ambiguity which in current practice still 

exists on the meaning of the word 

weight

, used sometimes for 

mass

, sometimes for 

mechanical force

The Conference declares 

1.  The kilogram is the unit of mass; it is equal to the mass of the international prototype 

of the kilogram; 

2.  The word “weight” denotes a quantity of the same nature as a “force”: the weight of a 

body is the product of its mass and the acceleration due to gravity; in particular, the 
standard weight of a body is the product of its mass and the standard acceleration due 
to gravity; 

3.  The value adopted in the International Service of Weights and Measures for the 

standard acceleration due to gravity is 980.665 cm/s

2

, value already stated in the laws 

of some countries. 

 

7th CGPM, 1927 

■

  Definition of the meter by the international Prototype 

(CR, 49)* 

The unit of length is the meter, defined by the distance, at 0°, between the axes of the two 
central lines marked on the bar of platinum-iridium kept at the Bureau International des 
Poids et Mesures and declared Prototype of the meter by the 1st ConfĂŠrence  GĂŠnĂŠrale 
des Poids et Mesures, this bar being subject to standard atmospheric pressure and 
supported on two cylinders of at least one centimeter diameter, symmetrically placed in 
the same horizontal plane at a distance of 571 mm from each other. 

 

CIPM, 1946 

■

  Definitions of photometric units 

(PV, 

20

, 119-122)* 

Resolution 

… 

4. The photometric units may be defined as follows: 

New candle

 (unit of luminous intensity). â€” The value of the new candle is such that the 

brightness of the full radiator at the temperature of solidification of platinum is 60 new 
candles per square centimeter. 

New lumen

 (unit of luminous flux). â€” The new lumen is the luminous flux emitted in unit 

solid angle (steradian) by a uniform point source having a luminous intensity of 1 new 
candle. 

5. … 

 

Editors’ note:

 In the 

United States the term 
“weight” is used to mean 
both force and mass. In 
science and technology 
this declaration is usually 
followed, with the newton 
(N) the SI unit of force and 
thus weight. In commercial 
and everyday use, and 
especially in common 
parlance, weight is often 
(but incorrectly) used as a 
synonym for mass, the SI 
unit of which is the 
kilogram (kg). 
 
 
 
 
 
 
 
This value of 

g

was the 

conventional reference for 
calculating the now 
obsolete unit kilogram 
force. 

* This definition was 
abrogated in 1960 by the 
11th CGPM (Resolution 6, 
see p. 57). 

* The two definitions 
contained in this 
Resolution were 
ratified in 1948 by the 
9th CGPM, which also 
approved the name 
candela given to the 
“new candle” (CR, 
54). For the lumen the 
qualifier “new” was 
later abandoned. 
This definition was 
modified in 1967 by 
the 13th CGPM 
(Resolution 5, see 
p. 63). 

background image

Appendix 1  

•

  

53

 

 

 

■

  Definitions of electric units 

(PV, 

20

, 132-133) 

Resolution 2 

... 

4.  (A) Definitions of the mechanical units which enter the definitions of electric units: 

Unit of force

. â€” The unit of force [in the MKS (meter, kilogram, second) system] is the 

force which gives to a mass of 1 kilogram an acceleration of 1 meter per second, per 
second. 

Joule

 

(unit of energy or work). â€” The joule is the work done when the point of application 

of 1 MKS unit of force [newton] moves a distance of 1 meter in the direction of the 
force. 

Watt

 (unit of power). â€” The watt is the power which in one second gives rise to energy of 

1 joule. 

 

(B) Definitions of electric units. The ComitĂŠ International des Poids et Mesures (CIPM) 
accepts the following propositions which define the theoretical value of the electric 
units: 

Ampere

 (unit of electric current). â€” The ampere is that constant current which, if 

maintained in two straight parallel conductors of infinite length, of negligible circular 
cross-section, and placed 1 meter apart in vacuum, would produce between these 
conductors a force equal to 2 

×

 10

−

7

 MKS unit of force [newton] per meter of length. 

Volt

 

(unit of potential difference and of electromotive force). â€” The volt is the potential 

difference between two points of a conducting wire carrying a constant current of 
1 ampere, when the power dissipated between these points is equal to 1 watt. 

Ohm

 (unit of electric resistance). â€” The ohm is the electric resistance between two points 

of a conductor when a constant potential difference of 1 volt, applied to these points, 
produces in the conductor a current of 1 ampere, the conductor not being the seat of 
any electromotive force. 

Coulomb

 (unit of quantity of electricity). â€” The coulomb is the quantity of electricity 

carried in 1 second by a current of 1 ampere. 

Farad 

(unit of capacitance). â€” The farad is the capacitance of a capacitor between the 

plates of which there appears a potential difference of 1 volt when it is charged by a 
quantity of electricity of 1 coulomb. 

Henry

 

(unit of electric inductance). â€” The henry is the inductance of a closed circuit in 

which an electromotive force of 1 volt is produced when the electric current in the 
circuit varies uniformly at the rate of 1 ampere per second. 

Weber

 (unit of magnetic flux). â€” The weber is the magnetic flux which, linking a circuit of 

one turn, would produce in it an electromotive force of 1 volt if it were reduced to zero 
at a uniform rate in 1 second. 

 

9th CGPM, 1948 

■

  Triple point of water; thermodynamic scale with a single fixed point; 

unit of quantity of heat (joule) 

(CR, 55 and 63) 

Resolution 3 

1.  With present-day techniques, the triple point of water is capable of providing a 

thermometric reference point with an accuracy higher than can be obtained from the 
melting point of ice. 

The definitions contained 
in this Resolution were 
ratified in 1948 by the 
9th CGPM (CR, 49), 
which also adopted the 
name newton

 

(Resolution 7) for the 
MKS unit of force. 

background image

54

  

•

  Appendix 1

 

 

In consequence the ComitĂŠ Consultatif de ThermomĂŠtrie et CalorimĂŠtrie (CCTC) 
considers that the zero of the centesimal thermodynamic scale must be defined as the 
temperature 0.0100 degree below that of the triple point of water. 

2.  The CCTC accepts the principle of an absolute thermodynamic scale with a single 

fundamental fixed point, at present provided by the triple point of pure water, the 
absolute temperature of which will be fixed at a later date. 

 

The introduction of this new scale does not affect in any way the use of the 
International Scale, which remains the recommended practical scale. 

3.  The unit of quantity of heat is the joule. 

Note:

 

 It is requested that the results of calorimetric experiments be as far as possible 

expressed in joules. If the experiments are made by comparison with the rise of 
temperature of water (and that, for some reason, it is not possible to avoid using the 
calorie), the information necessary for conversion to joules must be provided. The CIPM, 
advised by the CCTC, should prepare a table giving, in joules per degree, the most 
accurate values that can be obtained from experiments on the specific heat of water.  

A table, prepared in response to this request, was approved and published by the 
CIPM in 1950 (PV, 

22

, 92). 

 

■

  Adoption of “degree Celsius” 

[

CIPM, 1948 

(PV, 

21

, 88)

 and 9th CGPM, 

1948 

(CR, 64)] 

From three names (“degree centigrade,” “centesimal degree,” â€œdegree Celsius”) 
proposed to denote the degree of temperature, the CIPM has chosen “degree 
Celsius” (PV, 

21

, 88). 

This name is also adopted by the 9th CGPM (CR, 64). 

 

■

  Proposal for establishing a practical system of units of measurement 

(CR, 64) 

Resolution 6 

The ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the ComitĂŠ International des Poids et Mesures (CIPM) has been requested by the 

International Union of Physics to adopt for international use a practical Système 
International d’UnitĂŠs; that the International Union of Physics recommends the MKS 
system and one electric unit of the absolute practical system, but does not 
recommend that the CGS system be abandoned by physicists; 

•

  that the CGPM has itself received from the French Government a similar request, 

accompanied by a draft to be used as basis of discussion for the establishment of a 
complete specification of units of measurement; 

instructs

 the CIPM: 

•

  to seek by an energetic, active, official enquiry the opinion of scientific, technical and 

educational circles of all countries (offering them, in fact, the French document as 
basis); 

•

  to gather and study the answers; 

•

  to make recommendations for a single practical system of units of measurement, 

suitable for adoption by all countries adhering to the Meter Convention. 

background image

Appendix 1  

•

  

55

 

 

 

■

  Writing and printing of unit symbols and of numbers 

(CR, 70)* 

Resolution 7 

Principles 

Roman (upright) type, in general lower-case, is used for symbols of units; if, however, the 
symbols are derived from proper names, capital roman type is used. These symbols are 
not followed by a full stop. 

In numbers, the comma (French practice) or the dot (British practice) is used only to 
separate the integral part of numbers from the decimal part. Numbers may be divided in 
groups of three in order to facilitate reading; neither dots nor commas are ever inserted in 
the spaces between groups. 

 

Unit  

Symbol 

Unit 

Symbol 

•

 meter 

ampere 

•

 square meter 

m

2

 volt 

•

 cubic meter 

m

3

 watt 

•

 micron 

Îź

 ohm 

Ί

 

•

 liter    

coulomb 

•

 gram  

farad 

•

 metric ton 

henry 

second s 

hertz 

Hz 

erg  

 

erg 

poise 

dyne  

dyn 

newton 

degree Celsius 

°C 

•

 candela (new candle) 

cd 

•

 degree absolute 

°K 

lux 

lx 

calorie  

cal 

lumen 

lm 

bar  

 

bar 

stilb 

sb 

hour  

 

Notes 

1.  The symbols whose unit names are preceded by dots are those which had already 

been adopted by a decision of the CIPM. 

2.  The symbol for the stere, the unit of volume for firewood, shall be “st” and not â€œs,” 

which had been previously assigned to it by the CIPM. 

3.  To indicate a temperature interval or difference, rather than a temperature, the word 

“degree” in full, or the abbreviation “deg,” must be used. 

 

10th CGPM, 1954 

■

  Definition of the thermodynamic temperature scale 

(CR, 79)* 

Resolution 3 

The 10th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures decides to define the 
thermodynamic temperature scale by choosing the triple point of water as the 

* The CGPM abrogated 
certain decisions on units 
and terminology, in 
particular: micron, degree 
absolute, and the terms 
“degree,” and “deg,”  
13th CGPM, 1967/68 
(Resolutions 7 and 3,  
see pp. 64 and 62, 
respectively), and the liter; 
16th CGPM, 1979 
(Resolution 6, see p. 69). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Editors’ note

: The name 

“tonne” appears in the 
original text, not “metric 
ton”; see footnote (

g

) of 

Table 6, p. 32. 
 

* The 13th CGPM in 1967 
explicitly defined the 
kelvin (Resolution 4, see 
p. 63). 

background image

56

  

•

  Appendix 1

 

fundamental fixed point, and assigning to it the temperature 273.16 degrees Kelvin, 
exactly. 

 

■

  Definition of the standard atmosphere 

(CR, 79) 

Resolution 4 

The 10th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), having noted that the 
definition of the standard atmosphere given by the 9th CGPM when defining the 
International Temperature Scale led some physicists to believe that this definition of the 
standard atmosphere was valid only for accurate work in thermometry, 

declares

 

that it adopts, for general use, the definition: 

 

1 standard atmosphere = 1 013 250 dynes per square centimeter, 

 

i.e., 101 325 newtons per square meter. 

 

■

  Practical system of units 

(CR, 80)* 

Resolution 6 

In accordance with the wish expressed by the 9th ConfĂŠrence GĂŠnĂŠrale des Poids et 
Mesures (CGPM) in its Resolution 6 concerning the establishment of a practical system of 
units of measurement for international use, the 10th CGPM 

decides 

to adopt as base units of the system, the following units: 

length   

 

 

 

meter 

mass    

 

 

 

kilogram 

time    

 

 

 

second 

electric current    

 

 

ampere 

thermodynamic temperature  

 

degree Kelvin 

luminous intensity  

 

 

candela 

 

CIPM, 1956 

■

  Definition of the unit of time (second) 

(PV, 

25

, 77)* 

Resolution 1 

In virtue of the powers invested in it by Resolution 5 of the 10th ConfĂŠrence GĂŠnĂŠrale des 
Poids et Mesures, the ComitĂŠ International des Poids et Mesures, 

considering 

1. that the 9th General Assembly of the International Astronomical Union (Dublin, 1955) 

declared itself in favour of linking the second to the tropical year, 

2.  that, according to the decisions of the 8th General Assembly of the International 

Astronomical Union (Rome, 1952), the second of ephemeris time (ET) is the fraction 

 

496

986

408

813

276

960

12

 

×

 10

−

9

 of the tropical year for 1900 January 0 at 12 h ET, 

decides  

* The unit name â€œdegree 
kelvin” was changed to 
“kelvin” in 1967 by the 
13th CGPM (Resolution 3, 
see p. 62). 
 
 

* This definition was 
abrogated in 1967 by the 
13th CGPM (Resolution 1, 
see p. 62). 

background image

Appendix 1  

•

  

57

 

 

 

“The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 
12 hours ephemeris time.” 
 

■

  Système International d’UnitĂŠs 

(PV, 

25

, 83) 

Resolution 3 

The ComitĂŠ International des Poids et Mesures, 

considering 

•

  the task entrusted to it by Resolution 6 of the 9th ConfĂŠrence GĂŠnĂŠrale des Poids et 

Mesures (CGPM) concerning the establishment of a practical system of units of 
measurement suitable for adoption by all countries adhering to the Meter Convention, 

•

  the documents received from twenty-one countries in reply to the enquiry requested by 

the 9th CGPM, 

•

  Resolution 6 of the 10th CGPM, fixing the base units of the system to be established, 

recommends 

1.  that the name “Système International d’UnitĂŠs” be given to the system founded on the 

base units adopted by the 10th CGPM, viz.: 

[This is followed by the list of the six base units with their symbols, reproduced 
in Resolution 12 of the 11th CGPM (1960)]. 

2.  that the units listed in the table below be used, without excluding others which might 

be added later: 

[This is followed by the table of units reproduced in paragraph 4 of Resolution 
12 of the 11th CGPM (1960)]. 
 

11th CGPM, 1960 

■

  Definition of the meter 

(CR, 85)* 

Resolution 6 

The 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the international Prototype does not define the meter with an accuracy adequate 

for the present needs of metrology, 

•

  that it is moreover desirable to adopt a natural and indestructible standard, 

decides 

1.  The meter is the length equal to 1 650 763.73 wavelengths in vacuum of the radiation 

corresponding to the transition between the levels 2p

10

 and 5d

5

 of the krypton 86 

atom. 

2.  The definition of the meter in force since 1889, based on the international Prototype of 

platinum-iridium, is abrogated. 

3.  The international Prototype of the meter sanctioned by the 1st CGPM in 1889 shall be 

kept at the BIPM under the conditions specified in 1889. 

 

* This definition was 
abrogated in 1983 by the 
17th CGPM (Resolution 1, 
see p. 70). 

background image

58

  

•

  Appendix 1

 

■

  Definition of the unit of time (second) 

(CR, 86)* 

Resolution 9 

The 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering  

•

  the powers given to the ComitĂŠ International des Poids et Mesures (CIPM) by the 

10th CGPM to define the fundamental unit of time,  

•

  the decision taken by the CIPM in 1956,  

ratifies

 

the following definition: 

“The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 
12 hours ephemeris time.” 

 

■

  Système International d’UnitĂŠs 

(CR, 87)* 

Resolution 12 

The 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering  

•

  Resolution 6 of the 10th CGPM, by which it adopted six base units on which to 

establish a practical system of measurement for international use: 

 length 

   

 meter 

 mass 

   

 kilogram 

kg 

 time 

   

 second 

 electric 

current   

 ampere 

 thermodynamic 

temperature  degree 

Kelvin Â°K 

 luminous 

intensity 

 

 candela 

cd 

•

  Resolution 3 adopted by the ComitĂŠ International des Poids et Mesures (CIPM) in 

1956, 

•

  the recommendations adopted by the CIPM in 1958 concerning an abbreviation for the 

name of the system, and prefixes to form multiples and submultiples of the units, 

decides 

1.  the system founded on the six base units above is called the “Système International 

d’UnitĂŠs”; 

2.  the international abbreviation of the name of the system is: SI; 

3.  names of multiples and submultiples of the units are formed by means of the following 

prefixes: 

 

           Multiplying factor 

  Prefix    Symbol 

Multiplying factor          Prefix  

Symbol 

   1 000 000 000 000 = 10

12 

tera 

 

0.1 = 10

−

1

   deci 

 

1 000 000 000 = 10

 

giga 

0.01 = 10

−

2

   centi 

 

1 000 000 = 10

 

mega 

0.001 = 10

−

3

   milli 

 

1 000 = 10

3  

kilo 

0.000 001 = 10

−

6

   micro 

Îź

 

 

100 = 10

 

hecto 

0.000 000 001 = 10

−

9

   nano 

 

10 = 10

 

deka 

da 

0.000 000 000 001 = 10

−

12

 pico 

* This definition was 
abrogated in 1967 by the 
13th CGPM (Resolution 1, 
see p. 62).

 

* The CGPM later 
abrogated certain of its 
decisions and extended the 
list of prefixes, see notes 
below. 

A seventh base unit, the 
mole, was adopted by the 
14th CGPM in 1971 
(Resolution 3, see p. 66)

.

 

The name and symbol for 
the unit of thermodynamic 
temperature was modified 
by the 13th CGPM in 1967 
(Resolution 3, see p. 62). 

Further

 

prefixes were 

adopted by the 12th CGPM 
in 1964 (Resolution 8,  
see p. 61),  
the 15th CGPM in 1975 
(Resolution 10, see p. 67) 
and the 19th CGPM in 
1991 (Resolution 4,  
see p. 74). 

background image

Appendix 1  

•

  

59

 

 

 

 

4.  the units listed below are used in the system, without excluding others which might be 

added later. 

 

Supplementary units

 

plane angle  

 

radian 

rad 

solid angle  

 

 

steradian 

sr 

 

Derived units 

area  

 

square 

meter 

m

2

 

volume  

cubic 

meter 

m

3

 

frequency  

hertz 

Hz 

1/s 

mass density (density)  

kilogram per cubic meter 

kg/m

3

 

speed, velocity 

 

meter per second 

m/s 

angular velocity 

 

radian per second 

rad/s 

acceleration 

 

meter per second squared 

m/s

2

 

angular acceleration 

 

radian per second squared 

rad/s

2

 

force   

 

newton 

kg ¡ m/s

2

 

pressure (mechanical stress)   newton per square meter 

N/m

2

 

kinematic viscosity 

 

square meter per second 

m

2

/s 

dynamic viscosity 

 

newton-second per square  

 

 

 

 

   meter 

N ¡ s/m

2

 

work, energy, quantity of heat  joule 

N ¡ m 

power  

 

watt 

J/s 

quantity of electricity (side bar)  coulomb 

A ¡ s 

tension (voltage), 
   potential difference, 
   electromotive force   

volt 

W/A 

electric field strength   

volt per meter 

V/m 

electric resistance 

 

ohm 

Ί

 V/A 

capacitance 

 

farad 

A ¡ s/V 

magnetic flux  

 

weber 

Wb 

V ¡ s 

inductance 

 

henry 

V ¡ s/A 

magnetic flux density   

tesla 

Wb/m

2

 

magnetic field strength  

ampere per meter 

A/m 

magnetomotive force   

ampere 

luminous flux  

 

lumen 

lm 

cd ¡ sr 

luminance 

 

candela per square meter 

cd/m

2

 

illuminance  

lux 

lx lm/m

2

 

 

The 20th CGPM in 1995 
abrogated the class of 
supplementary units in the 
SI (Resolution 8, see 
p. 74). These are now 
considered as derived 
units. 

The 13th CGPM in 1967 
(Resolution 6, see p. 64) 
specified other units which 
should be added to the list. 
In principle, this list of 
derived units is without 
limit. 

Modern practice is to use 
the phrase “amount of 
heat” rather than “quantity 
of heat,” because the word 
quantity has a different 
meaning in metrology. 

Modern practice is to use 
the phrase “amount of 
electricity” rather than 
“quantity of electricity” 
(see note above). 

background image

60

  

•

  Appendix 1

 

■

  Cubic decimeter and liter 

(CR, 88) 

Resolution 13 

The 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the cubic decimeter and the liter are unequal and differ by about 28 parts in 10

6

,  

•

  that determinations of physical quantities which involve measurements of volume are 

being made more and more accurately, thus increasing the risk of confusion between 
the cubic decimeter and the liter, 

requests

 

the ComitĂŠ International des Poids et Mesures to study the problem and submit 

its conclusions to the 12th CGPM. 

 

CIPM, 1961 

■

  Cubic decimeter and liter 

(PV,

 

29

, 34) 

Recommendation 

The ComitĂŠ International des Poids et Mesures recommends that the results of accurate 
measurements of volume be expressed in units of the International System and not in 
liters. 

 

CIPM, 1964 

■

  Atomic and molecular frequency standards 

(PV, 

32

, 26 and CR, 93) 

Declaration 

The ComitĂŠ International des Poids et Mesures, 

empowered

 

by Resolution 5 of the 12th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures to 

name atomic or molecular frequency standards for temporary use for time measurements 
in physics, 

declares

 

that the standard to be employed is the transition between the hyperfine levels 

= 4

, M = 

0 and 

F = 

3, 

= 0 of the ground state 

2

S

1/2

 of the cesium 133 atom, 

unperturbed by external fields, and that the frequency of this transition is assigned the 
value 9 192 631 770 hertz. 

 

12th CGPM, 1964 

■

  Atomic standard of frequency 

(CR, 93) 

Resolution 5 

The 12th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the 11th CGPM noted in its Resolution 10 the urgency, in the interests of accurate 

metrology, of adopting an atomic or molecular standard of time interval,  

•

  that, in spite of the results already obtained with cesium atomic frequency standards, 

the time has not yet come for the CGPM to adopt a new definition of the second, base 

background image

Appendix 1  

•

  

61

 

 

 

unit of the Système International d’UnitĂŠs, because of the new and considerable 
improvements likely to be obtained from work now in progress, 

considering also

 

that it is not desirable to wait any longer before time measurements in 

physics are based on atomic or molecular frequency standards, 

empowers

 

the ComitĂŠ International des Poids et Mesures to name the atomic or 

molecular frequency standards to be employed for the time being, 

requests

 

the organizations and laboratories knowledgeable in this field to pursue work 

connected with a new definition of the second. 

 

■

  Liter 

(CR, 93) 

Resolution 6 

The 12th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM)

considering

 

Resolution 13 adopted by the 11th CGPM in 1960 and the Recommendation 

adopted by the ComitĂŠ International des Poids et Mesures in 1961, 

1. 

abrogates

 

the definition of the liter given in 1901 by the 3rd CGPM, 

2. 

declares

 

that the word “liter” may be employed as a special name for the cubic 

decimeter, 

3. 

recommends

 

that the name liter should not be employed to give the results of high-

accuracy volume measurements. 

 

■

  Curie 

(CR, 94)* 

Resolution 7 

The 12th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering

 

that the curie has been used for a long time in many countries as unit of 

activity for radionuclides, 

recognizing

 

that in the Système International d’UnitĂŠs (SI), the unit of this activity is the 

second to the power of minus one (s

−

1

), 

accepts

 

that the curie be still retained, outside SI, as unit of activity, with the value 

3.7 

×

 10

10

 s

−

1

. The symbol for this unit is Ci. 

 

■

  SI prefixes femto and atto 

(CR, 94)* 

Resolution 8 

The 12th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM) 

decides

 

to add to the list of prefixes for the formation of names of multiples and sub-

multiples of units, adopted by the 11th CGPM, Resolution 12, paragraph 3, the following 
two new prefixes: 

Multiplying factor   

Prefix 

Symbol 

10

−

15

  

 

femto 

10

−

18

  

atto  a 

 

* The name â€œbecquerel” 
(Bq) was adopted by the 
15th CGPM in 1975 
(Resolution 8, see p. 67) 
for the SI unit of activity: 
1 Ci = 3.7 

×

 10

10

 Bq. 

* New prefixes were added 
by the 15th CGPM in 1975 
(Resolution 10, see p. 67). 

background image

62

  

•

  Appendix 1

 

CIPM, 1967 

■

  Decimal multiples and submultiples of the unit of mass 

(PV, 

35

, 29 and 

Metrologia

, 1968, 

4

, 45) 

Recommendation 2 

The ComitĂŠ International des Poids et Mesures, 

considering

 

that the rule for forming names of decimal multiples and submultiples of the 

units of paragraph 3 of Resolution 12 of the 11th ConfĂŠrence GĂŠnĂŠrale des Poids et 
Mesures (CGPM) (1960) might be interpreted in different ways when applied to the unit of 
mass, 

declares

 

that the rules of Resolution 12 of the 11th CGPM apply to the kilogram in the 

following manner: the names of decimal multiples and submultiples of the unit of mass are 
formed by attaching prefixes to the word “gram.” 

 

13th CGPM, 1967/68 

■

  SI unit of time (second) 

(CR, 103 and 

Metrologia

, 1968, 

4

, 43) 

Resolution 1 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the definition of the second adopted by the ComitĂŠ International des Poids et 

Mesures (CIPM) in 1956 (Resolution 1) and ratified by Resolution 9 of the 11th CGPM 
(1960), later upheld by Resolution 5 of the 12th CGPM (1964), is inadequate for the 
present needs of metrology, 

•

  that at its meeting of 1964 the CIPM, empowered by Resolution 5 of the 12th CGPM 

(1964), recommended, in order to fulfil these requirements, a cesium atomic frequency 
standard for temporary use, 

•

  that this frequency standard has now been sufficiently tested and found sufficiently 

accurate to provide a definition of the second fulfilling present requirements, 

•

  that the time has now come to replace the definition now in force of the unit of time of 

the Système International d’UnitĂŠs by an atomic definition based on that standard, 

decides 

1.  The SI unit of time is the second defined as follows: 

 

“The second is the duration of 9 192 631 770 periods of the radiation corresponding to 
the transition between the two hyperfine levels of the ground state of the cesium 133 
atom”; 

2.  Resolution 1 adopted by the CIPM at its meeting of 1956 and Resolution 9 of the 

11th CGPM are now abrogated. 

 

■

  SI unit of thermodynamic temperature (kelvin) 

(CR, 104 and 

Metrolog

ia

1968, 

4

, 43)* 

Resolution 3 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

At its 1997 meeting, the 
CIPM affirmed that this 
definition refers to a 
cesium atom at rest at a 
thermodynamic 
temperature of 0 K. 

* At its 1980 meeting, the 
CIPM approved the report 
of the 7th meeting of the 
CCU, which requested that 
the use of the symbols 
“°K” and “deg” no longer 
be permitted. 

background image

Appendix 1  

•

  

63

 

 

 

•

  the names “degree Kelvin” and “degree,” the symbols “°K” and “deg” and the rules for 

their use given in Resolution 7 of the 9th CGPM (1948), in Resolution 12 of the 
11th CGPM (1960), and the decision taken by the ComitĂŠ International des Poids et 
Mesures in 1962 (PV, 

30

, 27), 

•

  that the unit of thermodynamic temperature and the unit of temperature interval are 

one and the same unit, which ought to be denoted by a single name and a single 
symbol, 

decides 

1.  the unit of thermodynamic temperature is denoted by the name “kelvin” and its symbol 

is “K”;** 

2.  the same name and the same symbol are used to express a temperature interval; 

3.  a temperature interval may also be expressed in degrees Celsius; 

4.  the decisions mentioned in the opening paragraph concerning the name of the unit of 

thermodynamic temperature, its symbol and the designation of the unit to express an 
interval or a difference of temperatures are abrogated, but the usages which derive 
from these decisions remain permissible for the time being. 

■

  Definition of the SI unit of thermodynamic temperature (kelvin) 

(CR, 104 

and 

Metrologia

, 1968, 

4

, 43)* 

Resolution 4 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering

 

that it is useful to formulate more explicitly the definition of the unit of 

thermodynamic temperature contained in Resolution 3 of the 10th CGPM (1954), 

decides

 

to express this definition as follows: 

“The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the 
thermodynamic temperature of the triple point of water.” 

 

■

  SI unit of luminous intensity (candela) 

(CR, 104 and 

Metrologia

, 1968, 

4

43-44)* 

Resolution 5 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  the definition of the unit of luminous intensity ratified by the 9th CGPM (1948) and 

contained in the “Resolution concerning the change of photometric units” adopted by 
the ComitĂŠ International des Poids et Mesures in 1946 (PV, 

20

, 119) in virtue of the 

powers conferred by the 8th CGPM (1933), 

•

  that this definition fixes satisfactorily the unit of luminous intensity, but that its wording 

may be open to criticism, 

decides

 

to express the definition of the candela as follows: 

“The candela is the luminous intensity, in the perpendicular direction, of a surface of 
1/600 000 square meter of a black body at the temperature of freezing platinum under a 
pressure of 101 325 newtons per square meter.” 

 

* See Recommendation 5 
(CI-1989) of the CIPM on 
the International 
Temperature Scale of 
1990, p. 73. 

* This definition was 
abrogated by the 
16th CGPM in 1979 
(Resolution 3, see p. 68). 

** See Recommendation 2 
(CI-2005) of the CIPM on 
the isotopic composition of 
water entering in the 
definition of the kelvin, 
p. 80. 

background image

64

  

•

  Appendix 1

 

■

  SI derived units 

(CR, 105 and 

Metrologia

, 1968, 

4

, 44)* 

Resolution 6 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering

 

that it is useful to add some derived units to the list of paragraph 4 of 

Resolution 12 of the 11th CGPM (1960), 

decides

 

to add: 

wave number  

 

 

 

1 per meter 

 

m

−

1

 

entropy  

 

 

 

joule per kelvin 

 

J/K 

specific heat capacity    

 

joule per kilogram kelvin 

J/(kg ¡ K) 

thermal conductivity    

 

watt per meter kelvin  

W/(m ¡ K) 

radiant intensity    

 

 

watt per steradian 

 

W/sr 

activity (of a radioactive source)  

1 per second 

 

s

−

 

■

  Abrogation of earlier decisions (micron and new candle) 

(CR, 105 and 

Metrologia

, 1968, 

4

, 44) 

Resolution 7 

The 13th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering

 

that subsequent decisions of the General Conference concerning the 

Système International d’UnitĂŠs are incompatible with parts of Resolution 7 of the 
9th CGPM (1948), 

decides

 

accordingly to remove from Resolution 7 of the 9th Conference: 

1.  the unit name “micron,” and the symbol â€œ

Îź

” which had been given to that unit but which 

has now become a prefix; 

2.  the unit name “new candle.” 

 

CIPM, 1969 

■

  Système International d’UnitĂŠs, Rules for application of Resolution 12 of 

the 11th CGPM (1960) 

(PV, 

37

30 and 

Metrologia

, 1970, 

6

, 66)* 

Recommendation 1 

The ComitĂŠ International des Poids et Mesures, 

considering

 

that Resolution 12 of the 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures 

(CGPM) (1960), concerning the Système International d’UnitĂŠs, has provoked discussions 
on certain of its aspects, 

declares 

1.  the base units, the supplementary units and the derived units of the Système 

International d’UnitĂŠs, which form a coherent set, are denoted by the name “SI 
units”;** 

2.  the prefixes adopted by the CGPM for the formation of decimal multiples and 

submultiples of SI units are called “SI prefixes”; 

and 

recommends

 

3.  the use of SI units and of their decimal multiples and submultiples whose names are 

formed by means of SI prefixes. 

* The unit of activity was 
given a special name and 
symbol by the

 

15th CGPM

in 1975 (Resolution 8, see 
p. 67). 

* The 20th CGPM in 1995 
decided to abrogate the 
class of supplementary 
units in the SI 
(Resolution 8, see p. 74). 

** The CIPM approved in 
2001 a proposal of the 
CCU to clarify the 
definition of “SI units” and 
“units of the SI,” 
see p. 76. 

background image

Appendix 1  

•

  

65

 

 

 

Note:

 

The name “supplementary units,” appearing in Resolution 12 of the 11th CGPM 

(and in the present Recommendation) is given to SI units for which the General 
Conference declines to state whether they are base units or derived units. 

 

CCDS, 1970 (

In

 CIPM, 1970) 

■

  Definition of TAI 

(PV, 

38

, 110-111 and 

Metrologia

, 1971, 

7

, 43) 

Recommendation S 2 

International Atomic Time (TAI) is the time reference coordinate established by the 
Bureau International de l'Heure on the basis of the readings of atomic clocks operating in 
various establishments in accordance with the definition of the second, the unit of time of 
the International System of Units. 

In 1980, the definition of TAI was completed as follows (declaration of the CCDS, 

BIPM Com. Cons. DĂŠf. Seconde

, 1980, 

9

, S 15 and 

Metrologia

, 1981, 

17

, 70): 

TAI is a coordinate time scale defined in a geocentric reference frame with the SI second 
as realized on the rotating geoid as the scale unit. 

14th CGPM, 1971 

■

  Pascal and siemens 

(CR, 78) 

The 14th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures adopted the special names “pascal” 
(symbol Pa), for the SI unit newton per square meter, and “siemens” (symbol S), for the SI 
unit of electric conductance [reciprocal ohm]. 

 

■

  International Atomic Time, function of CIPM 

(CR, 77-78 and 

Metrologia

1972, 

8

, 35) 

Resolution 1 

The 14th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the second, unit of time of the Système International d’UnitĂŠs, has since 1967 

been defined in terms of a natural atomic frequency, and no longer in terms of the time 
scales provided by astronomical motions, 

•

  that the need for an International Atomic Time (TAI) scale is a consequence of the 

atomic definition of the second, 

•

  that several international organizations have ensured and are still successfully 

ensuring the establishment of the time scales based on astronomical motions, 
particularly thanks to the permanent services of the Bureau International de l'Heure 
(BIH),  

•

  that the BIH has started to establish an atomic time scale of recognized quality and 

proven usefulness, 

•

  that the atomic frequency standards for realizing the second have been considered 

and must continue to be considered by the ComitĂŠ International des Poids et Mesures 
(CIPM) helped by a Consultative Committee, and that the unit interval of the 
International Atomic Time scale must be the second realized according to its atomic 
definition, 

This definition was further 
amplified by the 
International Astronomical 
Union in 1991,  
Resolution A4:  
“TAI is a realized time 
scale whose ideal form, 
neglecting a constant offset 
of 32.184 s, is Terrestrial 
Time (TT), itself related to 
the time coordinate of the 
geocentric reference frame, 
Geocentric Coordinate 
Time (TCG), by a constant 
rate.” 
(See Proc. 21st General 
Assembly of the IAU, 

IAU 

Trans.

, 1991, vol. 

XXIB,

 

Kluwer.) 

background image

66

  

•

  Appendix 1

 

•

  that all the competent international scientific organizations and the national 

laboratories active in this field have expressed the wish that the CIPM and the CGPM 
should give a definition of International Atomic Time, and should contribute to the 
establishment of the International Atomic Time scale, 

•

  that the usefulness of International Atomic Time entails close coordination with the 

time scales based on astronomical motions,  

requests

 

the CIPM 

1.  to give a definition of International Atomic Time, 

2. to take the necessary steps, in agreement with the international organizations 

concerned, to ensure that available scientific competence and existing facilities are 
used in the best possible way to realize the International Atomic Time scale and to 
satisfy the requirements of users of International Atomic Time. 

 

■

  SI unit of amount of substance (mole) 

(CR, 78 and 

Metrologia

, 1972, 

8

36)* 

Resolution 3 

The 14th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering

 

the advice of the International Union of Pure and Applied Physics, of the 

International Union of Pure and Applied Chemistry, and of the International Organization 
for Standardization, concerning the need to define a unit of amount of substance, 

decides 

1.  The mole is the amount of substance of a system which contains as many elementary 

entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is “mol.” 

2.  When the mole is used, the elementary entities must be specified and may be atoms, 

molecules, ions, electrons, other particles, or specified groups of such particles. 

3.  The mole is a base unit of the Système International d’UnitĂŠs. 

 

15th CGPM, 1975 

■

  Recommended value for the speed of light 

(CR, 103 and 

Metrologia

, 1975, 

11

, 179-180) 

Resolution 2 

The 15th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering

 

the excellent agreement among the results of wavelength measurements on 

the radiations of lasers locked on a molecular absorption line in the visible or infrared 
region, with an uncertainty estimated at Âą 4 

×

 10

−

9

 which corresponds to the uncertainty of 

the realization of the meter, 

considering

 

also the concordant measurements of the frequencies of several of these 

radiations, 

recommends

 

the use of the resulting value for the speed of propagation of 

electromagnetic waves in vacuum 

c

 = 299 792 458 meters per second. 

 

* At its 1980 meeting, the 
CIPM approved the report 
of the 7th meeting of the 
CCU (1980) specifying 
that, in this definition, it is 
understood that unbound 
atoms of carbon 12, at rest 
and in their ground state, 
are referred to. 

The relative uncertainty 
given here corresponds to 
three standard deviations 
in the data considered. 

The definition of TAI was 
given by the CCDS in 
1970 (now the CCTF), see 
p. 65     . 

background image

Appendix 1  

•

  

67

 

 

 

■

  Coordinated  Universal  Time  (UTC) 

(CR, 104 and 

Metrologia

, 1975, 

11

180) 

Resolution 5 

The 15th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering

 

that the system called â€œCoordinated Universal Time” (UTC) is widely used, 

that it is broadcast in most radio transmissions of time signals, that this wide diffusion 
makes available to the users not only frequency standards but also International Atomic 
Time and an approximation to Universal Time (or, if one prefers, mean solar time), 

notes

 

that this Coordinated Universal Time provides the basis of civil time, the use of 

which is legal in most countries, 

judges 

that this usage can be strongly endorsed.

 

 

■

  SI units for ionizing radiation (becquerel and gray) 

(CR, 105 and 

Metrologia

, 1975, 

11

, 180)* 

Resolutions 8 and 9 

The 15th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

by reason of the pressing requirement, expressed by the International Commission on 
Radiation Units and Measurements (ICRU), to extend the use of the Système 
International d’UnitĂŠs to radiological research and applications, 

by reason of the need to make as easy as possible the use of the units for nonspecialists, 

taking into consideration also the grave risks of errors in therapeutic work, 

adopts

 

the following special name for the SI unit of activity: 

becquerel

symbol Bq, equal to one reciprocal second  (Resolution 8), 

adopts

 

the following special name for the SI unit of ionizing radiation: 

gray

symbol Gy, equal to one joule per kilogram (Resolution 9).

 

Note:

 

 The gray is the SI unit of absorbed dose. In the field of ionizing radiation, the gray 

may be used with other physical quantities also expressed in joules per kilogram: the 
ComitĂŠ Consultatif des UnitĂŠs has responsibility for studying this matter in collaboration 
with the competent international organizations. 

 

■

  SI prefixes peta and exa 

(CR, 106 and 

Metrologia

, 1975, 

11

, 180-181)* 

Resolution 10 

The 15th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM) 

decides

 

to add to the list of SI prefixes to be used for multiples, which was adopted by the 

11th CGPM, Resolution 12, paragraph 3, the two following prefixes: 

 

Multiplying factor   

Prefix 

 

Symbol 

10

15  

 peta 

 

10

18

  

 

exa 

  E 

 

* At its 1976 meeting, the 
CIPM approved the report 
of the 5th meeting of the 
CCU (1976), specifying 
that, following the advice 
of the ICRU, the gray may 
also be used to express 
specific energy imparted, 
kerma and absorbed dose 
index. 

* New prefixes were added 
by the 19th CGPM in 1991 
(Resolution 4, see p. 74). 

background image

68

  

•

  Appendix 1

 

16th CGPM, 1979 

■

  SI unit of luminous intensity (candela) 

(CR, 100 and 

Metrologia

, 1980, 

16

56) 

Resolution 3 

The 16th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that despite the notable efforts of some laboratories there remain excessive 

divergences between the results of realizations of the candela based upon the present 
black body primary standard, 

•

  that radiometric techniques are developing rapidly, allowing precisions that are already 

equivalent to those of photometry and that these techniques are already in use in 
national laboratories to realize the candela without having to construct a black body, 

•

  that the relation between luminous quantities of photometry and radiometric quantities, 

namely the value of 683 lumens per watt for the spectral luminous efficacy of 
monochromatic radiation of frequency 540 

×

 10

12

 hertz, has been adopted by the 

ComitĂŠ International des Poids et Mesures (CIPM) in 1977, 

•

  that this value has been accepted as being sufficiently accurate for the system of 

luminous photopic quantities, that it implies a change of only about 3 % for the system 
of luminous scotopic quantities, and that it therefore ensures satisfactory continuity, 

•

  that the time has come to give the candela a definition that will allow an improvement 

in both the ease of realization and the precision of photometric standards, and that 
applies to both photopic and scotopic photometric quantities and to quantities yet to be 
defined in the mesopic field, 

decides 

1.  The candela is the luminous intensity, in a given direction, of a source that emits 

monochromatic radiation of frequency 540 

×

 10

12

 hertz and that has a radiant intensity 

in that direction of 1/683 watt per steradian. 

2.  The definition of the candela (at the time called new candle) adopted by the CIPM in 

1946 by reason of the powers conferred by the 8th CGPM in 1933, ratified by the 
9th CGPM in 1948, then amended by the 13th CGPM in 1967, is abrogated. 

 

¢

■

  Special name for the SI unit of dose equivalent (sievert) 

(CR, 100 and 

Metrologia

, 1980, 

16

, 56)* 

Resolution 5 

The 16th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering 

•

  the effort made to introduce SI units into the field of ionizing radiations, 

•

  the risk to human beings of an underestimated radiation dose, a risk that could result 

from a confusion between absorbed dose and dose equivalent, 

•

  that the proliferation of special names represents a danger for the Système 

International d’UnitĂŠs and must be avoided in every possible way, but that this rule can 
be broken when it is a matter of safeguarding human health, 

adopts

 

the special name 

sievert

symbol Sv, for the SI unit of dose equivalent in the field 

of radioprotection. The sievert is equal to the joule per kilogram. 

* The CIPM, in 1984, 
decided to accompany 
this Resolution with an 
explanation 
(Recommendation 1, 
see p. 71). 
 
 
 

Photopic vision is detected 
by the cones on the retina 
of the eye, which are 
sensitive to a high level of 
luminance  
(

L

 > ca. 10 cd/m

2

) and are 

used in daytime vision. 
Scotopic vision is detected 
by the rods of the retina, 
which are sensitive to low 
level luminance 
(

L

 < ca. 10

−

3

 cd/m

2

),  

used in night vision. 
In the domain between 
these levels of luminance 
both cones and rods are 
used, and this is described 
as mesopic vision. 

background image

Appendix 1  

•

  

69

 

 

 

 

■

  Symbols for the liter 

(CR, 101 and 

Metrologia

, 1980, 

16

, 56-57) 

Resolution 6 

The 16th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

recognizing

 

the general principles adopted for writing the unit symbols in Resolution 7 of 

the 9th CGPM (1948), 

considering

 

that the symbol l for the unit liter was adopted by the ComitĂŠ International 

des Poids et Mesures (CIPM) in 1879 and confirmed in the same Resolution of 1948, 

considering

 

also that, in order to avoid the risk of confusion between the letter l and the 

number 1, several countries have adopted the symbol L instead of l for the unit liter, 

considering

 

that the name liter, although not included in the Système International 

d’UnitĂŠs, must be admitted for general use with the System, 

decides

as an exception, to adopt the two symbols l and L as symbols to be used for the 

unit liter,  

considering

 

further that in the future only one of these two symbols should be retained, 

invites

 

the CIPM to follow the development of the use of these two symbols and to give 

the 18th CGPM its opinion as to the possibility of suppressing one of them. 

 

CIPM, 1980 

■

  SI supplementary units (radian and steradian) 

(PV, 

48

, 24 and 

Metrologia

1981, 

17

, 72)* 

Recommendation 1 

The ComitĂŠ International des Poids et Mesures (CIPM),  

taking into consideration

 Resolution 3 adopted by ISO/TC 12 in 1978 and Recommen-

dation U 1 (1980) adopted by the ComitĂŠ Consultatif des UnitĂŠs at its 7th meeting, 

considering 

•

  that the units radian and steradian are usually introduced into expressions for units 

when there is need for clarification, especially in photometry where the steradian plays 
an important role in distinguishing between units corresponding to different quantities, 

•

  that in the equations used one generally expresses plane angle as the ratio of two 

lengths and solid angle as the ratio between an area and the square of a length, and 
consequently that these quantities are treated as dimensionless quantities, 

•

  that the study of the formalisms in use in the scientific field shows that none exists 

which is at the same time coherent and convenient and in which the quantities plane 
angle and solid angle might be considered as base quantities, 

considering also 

•

  that the interpretation given by the CIPM in 1969 for the class of supplementary units 

introduced in Resolution 12 of the 11th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures 
(CGPM) in 1960 allows the freedom of treating the radian and the steradian as SI 
base units, 

•

  that such a possibility compromises the internal coherence of the SI based on only 

seven base units, 

The CIPM, in 1990, 
considered that it was still 
too early to choose a single 
symbol for the liter. 

* The class of SI 
supplementary units was 
abrogated by decision of 
the 20th CGPM in 1995 
(Resolution 8, see p. 74). 

Editors’ note:

 The 

preferred symbol for 
the liter in the United 
states is L; see 
footnote (

f

) of Table 

6, p. 32. 

 

background image

70

  

•

  Appendix 1

 

decides

 to interpret the class of supplementary units in the International System as a 

class of dimensionless derived units for which the CGPM allows the freedom of using or 
not using them in expressions for SI derived units. 

 

17th CGPM, 1983 

■

  Definition of the meter 

(CR, 97 and 

Metrologia

, 1984, 

20

, 25) 

Resolution 1 

The 17th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM), 

considering 

•

  that the present definition does not allow a sufficiently precise realization of the meter 

for all requirements, 

•

  that progress made in the stabilization of lasers allows radiations to be obtained that 

are more reproducible and easier to use than the standard radiation emitted by a 
krypton 86 lamp, 

•

  that progress made in the measurement of the frequency and wavelength of these 

radiations has resulted in concordant determinations of the speed of light whose 
accuracy is limited principally by the realization of the present definition of the meter, 

•

  that wavelengths determined from frequency measurements and a given value for the 

speed of light have a reproducibility superior to that which can be obtained by 
comparison with the wavelength of the standard radiation of krypton 86, 

•

  that there is an advantage, notably for astronomy and geodesy, in maintaining 

unchanged the value of the speed of light recommended in 1975 by the 15th CGPM in 
its Resolution 2 (

c

 = 299 792 458 m/s), 

•

  that a new definition of the meter has been envisaged in various forms all of which 

have the effect of giving the speed of light an exact value, equal to the recommended 
value, and that this introduces no appreciable discontinuity into the unit of length, 
taking into account the relative uncertainty of Âą 4 

×

 10

−

9

 of the best realizations of the 

present definition of the meter, 

•

  that these various forms, making reference either to the path travelled by light in a 

specified time interval or to the wavelength of a radiation of measured or specified 
frequency, have been the object of consultations and deep discussions, have been 
recognized as being equivalent and that a consensus has emerged in favour of the 
first form, 

•

  that the ComitĂŠ Consultatif pour la DĂŠfinition du Mètre (CCDM) is now in a position to 

give instructions for the practical realization of such a definition, instructions which 
could include the use of the orange radiation of krypton 86 used as standard up to 
now, and which may in due course be extended or revised, 

decides 

1.  The meter is the length of the path travelled by light in vacuum during a time interval of 

1/299 792 458 of a second, 

2.  The definition of the meter in force since 1960, based upon the transition between the 

levels 2p

10

 and 5d

5

 of the atom of krypton 86, is abrogated. 

 

The relative uncertainty 
given here corresponds to 
three standard deviations 
in the data considered. 

background image

Appendix 1  

•

  

71

 

 

 

■

  On the realization of the definition of the meter 

(CR, 98 and 

Metrologia

1984, 

20

, 25-26) 

Resolution 2 

The 17th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

invites

 

the ComitĂŠ International des Poids et Mesures 

•

  to draw up instructions for the practical realization of the new definition of the meter, 

•

  to choose radiations which can be recommended as standards of wavelength for the 

interferometric measurement of length and to draw up instructions for their use, 

•

  to pursue studies undertaken to improve these standards. 

 

CIPM, 1984 

■

  Concerning the sievert 

(PV,

 

52

,

 

31 and 

Metrologia

, 1985, 

21

, 90)* 

Recommendation 1 

The ComitĂŠ International des Poids et Mesures, 

considering

 

the confusion which continues to exist on the subject of Resolution 5, 

approved by the 16th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (1979), 

decides

 

to introduce the following explanation in the brochure “Le Système International 

d'UnitĂŠs (SI)”: 

The quantity dose equivalent 

H

 is the product of the absorbed dose 

of ionizing radiation 

and the dimensionless factors 

Q

 (quality factor) and 

N

 (product of any other multiplying 

factors) stipulated by the International Commission on Radiological Protection: 

H = Q ¡ N ¡ D . 

Thus, for a given radiation, the numerical value of 

in joules per kilogram may differ from 

that of 

in joules per kilogram depending upon the values of 

and 

N. 

In order to avoid 

any risk of confusion between the absorbed dose 

and the dose equivalent 

H

, the 

special names for the respective units should be used, that is, the name gray should be 
used instead of joules per kilogram for the unit of absorbed dose 

and the name sievert 

instead of joules per kilogram for the unit of dose equivalent 

H. 

 

18th CGPM, 1987 

■

  Forthcoming adjustment to the representations of the volt and of the 

ohm 

(CR, 100 and 

Metrologia

, 1988, 

25

, 115) 

Resolution 6 

The 18th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering 

•

  that worldwide uniformity and long-term stability of national representations of the 

electrical units are of major importance for science, commerce and industry from both 
the technical and economic points of view,  

•

  that many national laboratories use the Josephson effect and are beginning to use the 

quantum Hall effect to maintain, respectively, representations of the volt and of the 
ohm, as these offer the best guarantees of long-term stability, 

See Recommendation 1 
(CI-2002) of the CIPM on 
the revision of the practical 
realization of the definition
of the meter, p. 76. 

* The CIPM, in 2002, 
decided to change the 
explanation of the 
quantity dose equivalent 
in the SI Brochure 
(Recommendation 2, 
see p. 78). 

background image

72

  

•

  Appendix 1

 

•

  that because of the importance of coherence among the units of measurement of the 

various physical quantities the values adopted for these representations must be as 
closely as possible in agreement with the SI, 

•

  that the results of recent and current experiment will permit the establishment of an 

acceptable value, sufficiently compatible with the SI, for the coefficient which relates 
each of these effects to the corresponding electrical unit, 

invites

 

the laboratories whose work can contribute to the establishment of the quotient 

voltage/frequency in the case of the Josephson effect and of the quotient voltage/current 
for the quantum Hall effect to vigorously pursue these efforts and to communicate their 
results without delay to the ComitĂŠ International des Poids et Mesures, and 

instructs 

the ComitĂŠ International des Poids et Mesures to recommend, as soon as it 

considers it possible, a value for each of these quotients together with a date for them to 
be put into practice simultaneously in all countries; these values should be announced at 
least one year in advance and would be adopted on 1 January 1990. 

 

CIPM, 1988 

■

  Representation of the volt by means of the Josephson effect 

(PV, 

56

, 44 

and 

Metrologia

, 1989, 

26

, 69) 

Recommendation 1 

The ComitĂŠ International des Poids et Mesures, 

acting

 

in accordance with instructions given in Resolution 6 of the 18th ConfĂŠrence 

GĂŠnĂŠrale des Poids et Mesures concerning the forthcoming adjustment of the 
representations of the volt and the ohm, 

considering 

•

  that a detailed study of the results of the most recent determinations leads to a value 

of 483 597.9 GHz/V for the Josephson constant, 

K

J

,

 

that is to say, for the quotient of 

frequency divided by the potential difference corresponding to the 

n = 

1 step in the 

Josephson effect, 

•

  that the Josephson effect, together with this value of 

K

J

,

 

can be used to establish a 

reference standard of electromotive force having a one-standard-deviation uncertainty 
with respect to the volt estimated to be 4 parts in 10

7

, and a reproducibility which is 

significantly better, 

recommends 

•

  that 483 597.9 GHz/V exactly be adopted as a conventional value, denoted by 

K

J-90

 for 

the Josephson constant, 

K

J

,  

•

  that this new value be used from 1 January 1990, and not before, to replace the 

values currently in use, 

•

  that this new value be used from this same date by all laboratories which base their 

measurements of electromotive force on the Josephson effect, and 

•

  that from this same date all other laboratories adjust the value of their laboratory 

reference standards to agree with the new adopted value, 

is of the opinion

 

that no change in this recommended value of the Josephson constant 

will be necessary in the foreseeable future, and 

draws the attention

 

of laboratories to the fact that the new value is greater by 

3.9 GHz/V, or about 8 parts in 10

6

, than the value given in 1972 by the ComitĂŠ Consultatif 

d'ÉlectricitĂŠ in its Declaration E-72. 

background image

Appendix 1  

•

  

73

 

 

 

■

  Representation of the ohm by means of the quantum Hall effect 

(PV, 

56

45 and 

Metrologia

, 1989, 

26

, 70) 

Recommendation 2 

The ComitĂŠ International des Poids et Mesures, 

acting

 

in accordance with instructions given in Resolution 6 of the 18th ConfĂŠrence 

GĂŠnĂŠrale des Poids et Mesures concerning the forthcoming adjustment of the 
representations of the volt and the ohm, 

considering 

•

  that most existing laboratory reference standards of resistance change significantly 

with time, 

•

  that a laboratory reference standard of resistance based on the quantum Hall effect 

would be stable and reproducible, 

•

  that a detailed study of the results of the most recent determinations leads to a value 

of 25 812.807 

Ί

 for the von Klitzing constant, 

R

K

,

 

that is to say, for the quotient of the 

Hall potential difference divided by current corresponding to the plateau 

I

 = 1  in  the 

quantum Hall effect, 

•

  that the quantum Hall effect, together with this value of 

R

K

, can be used to establish a 

reference standard of resistance having a one-standard-deviation uncertainty with 
respect to the ohm estimated to be 2 parts in 10

7

, and a reproducibility which is 

significantly better, 

recommends 

•

 that 

25 

812.807 

Ί

 exactly be adopted as a conventional value, denoted by 

R

K-90

, for 

the von Klitzing constant, 

R

K

•

  that this value be used from 1 January 1990, and not before, by all laboratories which 

base their measurements of resistance on the quantum Hall effect, 

•

  that from this same date all other laboratories adjust the value of their laboratory 

reference standards to agree with 

R

K-90

•

  that in the use of the quantum Hall effect to establish a laboratory reference standard 

of resistance, laboratories follow the most recent edition of the technical guidelines for 
reliable measurements of the quantized Hall resistance drawn up by the ComitĂŠ 
Consultatif d'ÉlectricitĂŠ and published by the Bureau International des Poids et 
Mesures, and 

is of the opinion

 

that no change in this recommended value of the von Klitzing constant 

will be necessary in the foreseeable future. 

 

CIPM, 1989 

■

  The International Temperature Scale of 1990 

(PV, 

57

, 115 and 

Metrologia

1990, 

27

, 13) 

Recommendation 5 

The ComitĂŠ International des Poids et Mesures (CIPM) acting in accordance with 
Resolution 7 of the 18th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (1987) has adopted 
the International Temperature Scale of 1990 (ITS-90) to supersede the International 
Practical Temperature Scale of 1968 (IPTS-68). 

The CIPM 

notes 

that, by comparison with the IPTS-68, the ITS-90 

At its 89th meeting in 
2000, the CIPM approved 
the declaration of the 
22nd meeting of the 
CCEM on the use of the 
value of the von Klitzing 
constant, see p. 76. 

background image

74

  

•

  Appendix 1

 

•

  extends to lower temperatures, down to 0.65 K, and hence also supersedes the 

EPT-76, 

•

  is in substantially better agreement with corresponding thermodynamic temperatures, 

•

  has much improved continuity, precision and reproducibility throughout its range and 

•

  has subranges and alternative definitions in certain ranges which greatly facilitate its 

use. 

The CIPM also 

notes

 

that, to accompany the text of the ITS-90 there will be two further 

documents, the 

Supplementary Information for the ITS-90

 and 

Techniques for 

Approximating the ITS-90

. These documents will be published by the BIPM and 

periodically updated. 

The CIPM 

recommends

 

•

  that on 1 January 1990 the ITS-90 come into force and  

•

  that from this same date the IPTS-68 and the EPT-76 be abrogated. 

 

19th CGPM, 1991 

■

  SI prefixes zetta, zepto, yotta and yocto 

(CR, 185 and 

Metrologia

, 1992, 

29

, 3) 

Resolution 4 

The 19th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM) 

decides

 

to add to the list of SI prefixes to be used for multiples and submultiples of units, 

adopted by the 11th CGPM, Resolution 12, paragraph 3, the 12th CGPM, Resolution 8 
and the 15th CGPM, Resolution 10, the following prefixes: 

 

Multiplying factor   

 

Prefix 

Symbol 

10

21

  

 

 

zetta 

10

−

21

  

 

 

zepto 

10

24

  

 

 

yotta 

10

−

24

  

 

 

yocto 

20th CGPM, 1995 

■

  Elimination of the class of supplementary units in the SI 

(CR, 223 and 

Metrologia

, 1996, 

33

, 83) 

Resolution 8 

The 20th ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures (CGPM),  

considering 

•

  that the 11th ConfĂŠrence GĂŠnĂŠrale in 1960 in its Resolution 12, establishing the 

Système International d’UnitĂŠs, SI, distinguished between three classes of SI units: 
the base units, the derived units, and the supplementary units, the last of these 
comprising the radian and the steradian, 

•

  that the status of the supplementary units in relation to the base units and the derived 

units gave rise to debate, 

•

  that the ComitĂŠ International des Poids et Mesures, in 1980, having observed that the 

ambiguous status of the supplementary units compromises the internal coherence of 

The names zepto and zetta 
are derived from septo 
suggesting the number 
seven (the seventh power 
of 10

3

) and the letter “z” is 

substituted for the letter 
“s” to avoid the duplicate 
use of the letter “s” as a 
symbol. The names yocto 
and yotta are derived from 
octo, suggesting the 
number eight (the eighth 
power of 10

3

); the letter 

“y” is added to avoid the 
use of the letter “o” as a 
symbol because it may be 
confused with the number 
zero. 

background image

Appendix 1  

•

  

75

 

 

 

the SI, has in its Recommendation 1 (CI-1980) interpreted the supplementary units, in 
the SI, as dimensionless derived units, 

approving 

the interpretation given by the ComitĂŠ International in 1980, 

decides 

•

  to interpret the supplementary units in the SI, namely the radian and the steradian, as 

dimensionless derived units, the names and symbols of which may, but need not, be 
used in expressions for other SI derived units, as is convenient, 

•

  and, consequently, to eliminate the class of supplementary units as a separate class 

in the SI.

 

 

21st CGPM, 1999 

■

  The definition of the kilogram 

(CR, 331 and 

Metrologia

, 2000, 

37

, 94) 

Resolution 7 

The 21st ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures, 

considering 

•

  the need to assure the long-term stability of the International System of Units (SI), 

•

  the intrinsic uncertainty in the long-term stability of the artifact defining the unit of 

mass, one of the base units of the SI, 

•

  the consequent uncertainty in the long-term stability of the other three base units of 

the SI that depend on the kilogram, namely, the ampere, the mole and the candela, 

•

  the progress already made in a number of different experiments designed to link the 

unit of mass to fundamental or atomic constants, 

•

  the desirability of having more than one method of making such a link, 

recommends 

that national laboratories continue their efforts to refine experiments that 

link the unit of mass to fundamental or atomic constants with a view to a future redefinition 
of the kilogram. 

 

■

  Special name for the SI derived unit mole per second, the katal, for the 

expression of catalytic activity 

(CR, 334-335 and 

Metrologia

, 2000, 

37

, 95) 

Resolution 12 

The 21st ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures,  

considering 

•

  the importance for human health and safety of facilitating the use of SI units in the 

fields of medicine and biochemistry, 

•

  that a non-SI unit called “unit,” symbol U, equal to 1 

Îź

mol

 

¡

 

min

–1

, which is not coherent 

with the International System of Units (SI), has been in widespread use in medicine 
and biochemistry since 1964 for expressing catalytic activity, 

•

  that the absence of a special name for the SI coherent derived unit mole per second 

has led to results of clinical measurements being given in various local units, 

•

  that the use of SI units in medicine and clinical chemistry is strongly recommended by 

the international unions in these fields, 

background image

76

  

•

  Appendix 1

 

•

  that the International Federation of Clinical Chemistry and Laboratory Medicine has 

asked the Consultative Committee for Units to recommend the special name katal, 
symbol kat, for the SI unit mole per second, 

•

  that while the proliferation of special names represents a danger for the SI, exceptions 

are made in matters related to human health and safety (15th General Conference, 
1975, Resolutions 8 and 9, 16th General Conference, 1979, Resolution 5), 

noting 

that the name katal, symbol kat, has been used for the SI unit mole per second for 

over thirty years to express catalytic activity, 

decides 

to adopt the special name katal, symbol kat, for the SI unit mole per second to 

express catalytic activity, especially in the fields of medicine and biochemistry, 

and

 recommends 

that when the katal is used, the measurand be specified by reference 

to the measurement procedure; the measurement procedure must identify the indicator 
reaction. 

 

CIPM, 2000 

■

  â€œuse of the von Klitzing constant to express the value of a reference 

standard of resistance as a function of quantum Hall effect” 

(PV,

 

68

,

 

101) 

At its 89th meeting in 2000, the CIPM approved the following declaration of the 
22nd meeting of the CCEM (CCEM, 

22

, 90): 

“The CCEM, having reviewed the 1998 CODATA least squares adjustment of the 
fundamental constants, is now of the opinion that the quantum Hall effect, together with 
the value of 

R

K-90

, can be used to establish a reference standard of resistance having a 

relative one standard deviation uncertainty with respect to the ohm, estimated to be 

×

 10

−

7

, and a reproducibility which is significantly better. This represents a reduction in 

the uncertainty of a factor of two compared with the 1988 recommendation.” 

 

CIPM, 2001 

■

  “SI units” and “units of the SI” 

(PV,

 

69

,

 

120) 

The CIPM approved in 2001 the following proposal of the CCU regarding â€œSI 
units” and “units of the SI”: 

“We suggest that “SI units” and “units of the SI” should be regarded as names that include 
both the base units and the coherent derived units, and also all units obtained by 
combining these with the recommended multiple and sub-multiple prefixes. 

We suggest that the name “coherent SI units” should be used when it is desired to restrict 
the meaning to only the base units and the coherent derived units.” 

 

CIPM, 2002 

■

  Revision of the practical realization of the definition of the meter 

(PV,

 

70

,

 

194-204 and 

Metrologia

40

, 103-133) 

Recommendation 1 

The International Committee for Weights and Measures, 

recalling 

background image

Appendix 1  

•

  

77

 

 

 

•

  that in 1983 the 17th General Conference (CGPM) adopted a new definition of the 

meter; 

•

  that in the same year the CGPM invited the International Committee (CIPM) 

•

  to draw up instructions for the practical realization of the meter, 

•

  to choose radiations which can be recommended as standards of wavelength for 

the interferometric measurement of length and draw up instructions for their use, 

•

  to pursue studies undertaken to improve these standards and in due course to 

extend or revise these instructions; 

•

  that in response to this invitation the CIPM adopted Recommendation 1  (CI-1983) 

(

mise en pratique 

of the definition of the meter) to the effect 

•

  that the meter should be realized by one of the following methods: 

(a) by means of the length 

l

 of the path travelled in vacuum by a plane 

electromagnetic wave in a time 

t

; this length is obtained from the measured time 

t

using the relation 

l = c

0

 

¡ 

t

 and the value of the speed of light in vacuum 

c

0

 = 

299 792 458 m/s, 

(b) by means of the wavelength in vacuum 

Îť

 of a plane electromagnetic wave of 

frequency 

f

; this wavelength is obtained from the measured frequency 

f

 using the 

relation 

Îť

 = c

/

 

and the value of the speed of light in vacuum 

c

0

 = 

299 792 458 m/s, 

(c) by means of one of the radiations from the list below, whose stated wavelength in 

vacuum or whose stated frequency can be used with the uncertainty shown, 
provided that the given specifications and accepted good practice are followed; 

•

  that in all cases any necessary corrections be applied to take account of actual 

conditions such as diffraction, gravitation or imperfection in the vacuum; 

•

  that in the context of general relativity, the meter is considered a unit of proper 

length. Its definition, therefore, applies only within a spatial extent sufficiently small 
that the effects of the non-uniformity of the gravitational field can be ignored (note 
that, at the surface of the Earth, this effect in the vertical direction is about 1 part in 
10

16

 per meter). In this case, the effects to be taken into account are those of 

special relativity only. The local methods for the realization of the meter 
recommended in (b) and (c) provide the proper meter but not necessarily that 
given in (a). Method (a) should therefore be restricted to lengths 

l

 which are 

sufficiently short for the effects predicted by general relativity to be negligible with 
respect to the uncertainties of realization. For advice on the interpretation of 
measurements in which this is not the case, see the report of the Consultative 
Committee for Time and Frequency (CCTF) Working Group on the Application of 
General Relativity to Metrology (Application of general relativity to metrology, 

Metrologia

, 1997, 

34

, 261-290); 

•

  that the CIPM had already recommended a list of radiations for this purpose;

 

recalling

 

also that in 1992 and in 1997 the CIPM revised the practical realization of the 

definition of the meter; 

considering 

•

  that science and technology continue to demand improved accuracy in the realization 

of the meter; 

•

  that since 1997 work in national laboratories, in the BIPM and elsewhere has identified 

new radiations and methods for their realization which lead to lower uncertainties; 

•

  that there is an increasing move towards optical frequencies for time-related activities, 

and that there continues to be a general widening of the scope of application of the 
recommended radiations of the 

mise en pratique

 to cover not only dimensional 

background image

78

  

•

  Appendix 1

 

metrology and the realization of the meter, but also high-resolution spectroscopy, 
atomic and molecular physics, fundamental constants and telecommunication; 

•

  that a number of new frequency values with reduced uncertainties for radiations of 

high-stability cold atom and ion standards already listed in the recommended 
radiations list are now available, that the frequencies of radiations of several new cold 
atom and ion species have also recently been measured, and that new improved 
values with substantially reduced uncertainties for a number of optical frequency 
standards based on gas cells have been determined, including the wavelength region 
of interest to optical telecommunications; 

•

  that new femtosecond comb techniques have clear significance for relating the 

frequency of high-stability optical frequency standards to that of the frequency 
standard realizing the SI second, that these techniques represent a convenient 
measurement technique for providing traceability to the International System of Units 
(SI) and that comb technology also can provide frequency sources as well as a 
measurement technique; 

recognizes

 

comb techniques as timely and appropriate, and recommends further 

research to fully investigate the capability of the techniques; 

welcomes

 

validations now being made of comb techniques by comparison with other 

frequency chain techniques; 

urges

 

national metrology institutes and other laboratories to pursue the comb technique 

to the highest level of accuracy achievable and also to seek simplicity so as to encourage 
widespread application; 

recommends  

•

  that the list of recommended radiations given by the CIPM in 1997 (Recom-

mendation 1 (CI-1997)) be replaced by the list of radiations given below*, including 

•

  updated frequency values for cold Ca atom, H atom and the trapped Sr

+

 ion, 

•

  frequency values for new cold ion species including trapped Hg

ion, trapped In

+

 

ion and trapped Yb

+

 ion, 

•

  updated frequency values for Rb-stabilized lasers, I

2

-stabilized Nd:YAG and He-Ne 

lasers, CH

4

-stabilized He-Ne lasers and OsO

4

-stabilized CO

2

 lasers at 10 

Îź

m, 

•

  frequency values for standards relevant to the optical communications bands, 

including Rb- and C

2

H

2

-stabilized lasers. 

. . . 

 

■

  Dose equivalent 

(PV,

 

70

,

 

205) 

Recommendation 2 

The International Committee for Weights and Measures, 

considering

 that 

•

  the current definition of the SI unit of dose equivalent (sievert) includes a factor â€œ

N

 

” 

(product of any other multiplying factors) stipulated by the International Commission 
on Radiological Protection (ICRP), and 

•

  both the ICRP and the International Commission on Radiation Units and 

Measurements (ICRU) have decided to delete this factor 

as it is no longer deemed 

to be necessary, and 

•

  the current SI definition of 

H

 including the factor 

N

 is causing some confusion, 

decides

 to change the explanation in the brochure “Le Système International d'UnitĂŠs 

(SI)” to the following: 

* The list of recommended 
radiations, 
Recommendation 1 
(CI-2002), is given in PV, 

70

, 197-204 and 

Metrologia

, 2003, 

40

104-115. 
Updates are available on 
the BIPM website at 
http://www.bipm.org/en/ 
publications/mep.html. 

See also 

J. Radiol. Prot.

2005,

 25

, 97-100. 

background image

Appendix 1  

•

  

79

 

 

 

The quantity dose equivalent 

H

 is the product of the absorbed dose 

D

 of ionizing radiation 

and the dimensionless factor 

Q

 (quality factor) defined as a function of linear energy 

transfer by the ICRU: 

H = Q ¡ D 

.

 

Thus, for a given radiation, the numerical value of 

H

 in joules per kilogram may differ from 

that of 

in joules per kilogram depending on the value of 

Q.

  

The Committee further 

decides

 to maintain the final sentence in the explanation as 

follows: 

In order to avoid any risk of confusion between the absorbed dose 

and the dose 

equivalent 

H

, the special names for the respective units should be used, that is, the name 

gray should be used instead of joules per kilogram for the unit of absorbed dose 

and 

the name sievert instead of joules per kilogram for the unit of dose equivalent 

H. 

 

CIPM, 2003 

■

  Revision of the 

Mise en Pratique

 list of recommended radiations 

(PV,

 

71

,

 

146 and 

Metrologia

, 2004, 

41

, 99-100) 

Recommendation 1 

The International Committee for Weights and Measures, 

considering

 that 

•

  improved frequency values for radiations of some high-stability cold ion standards 

already documented in the recommended radiations list have recently become 
available; 

•

  improved frequency values for the infra-red gas-cell-based optical frequency standard 

in the optical telecommunications region, already documented in the recommended 
radiations list, have been determined; 

•

  femtosecond comb-based frequency measurements for certain iodine gas-cell 

standards on the subsidiary recommended source list have recently been made for 
the first time, leading to significantly reduced uncertainty; 

proposes

 that the 

recommended radiation

 list be revised to include the following: 

•

  updated frequency values for the single trapped 

88

Sr

+

 ion quadrupole transition and 

the single trapped 

171

Yb

+

 octupole transition; 

•

  an updated frequency value for the C

2

H

2

-stabilized standard at 1.54 

Îź

m; 

•

  updated frequency values for the I

2

-stabilized standards at 543 nm and 515 nm. 

 

22nd CGPM, 2003 

■

  Symbol for the decimal marker 

(CR, 381 and 

Metrologia

, 2004, 

41

, 104) 

Resolution 10 

The 22nd General Conference, 

considering 

that

 

•

  a principal purpose of the International System of Units (SI) is to enable values of 

quantities to be expressed in a manner that can be readily understood throughout the 
world, 

•

  the value of a quantity is normally expressed as a number times a unit, 

Further updates are 
available on the BIPM 
website at 
http://www.bipm.org/en/ 
publications/mep.html. 

background image

80

  

•

  Appendix 1

 

•

  often the number in the expression of the value of a quantity contains multiple digits 

with an integral part and a decimal part, 

•

  in Resolution 7 of the 9th General Conference, 1948, it is stated that “In numbers, the 

comma (French practice) or the dot (British practice) is used only to separate the 
integral part of numbers from the decimal part,” 

•

  following a decision of the International Committee made at its 86th meeting (1997), 

the International Bureau of Weights and Measures now uses the dot (point on the line) 
as the decimal marker in all the English language versions of its publications, including 
the English text of the SI Brochure (the definitive international reference on the SI), 
with the comma (on the line) remaining the decimal marker in all of its French 
language publications, 

•

  however, some international bodies use the comma on the line as the decimal marker 

in their English language documents, 

•

  furthermore, some international bodies, including some international standards 

organizations, specify the decimal marker to be the comma on the line in all 
languages, 

•

  the prescription of the comma on the line as the decimal marker is in many languages 

in conflict with the customary usage of the point on the line as the decimal marker in 
those languages, 

•

  in some languages that are native to more than one country, either the point on the 

line or the comma on the line is used as the decimal marker depending on the country, 
while in some countries with more than one native language, either the point on the 
line or comma on the line is used depending on the language, 

declares 

that the symbol for the decimal marker shall be either the point on the line or the 

comma on the line, 

reaffirms

 that “Numbers may be divided in groups of three in order to facilitate reading; 

neither dots nor commas are ever inserted in the spaces between groups,” as stated in 
Resolution 7 of the 9th CGPM, 1948. 

 

CIPM, 2005 

■

  

Clarification of the definition of the kelvin, unit of thermodynamic 

temperature

 (PV, 

94

, in press and 

Metrologia

, 2006, 

43

, 177-178) 

Recommendation 2 

The International Committee for Weights and Measures (CIPM), 

considering 

•

  that the kelvin, unit of thermodynamic temperature, is defined as the fraction 1/273.16 

of the thermodynamic temperature of the triple point of water, 

•

  that the temperature of the triple point depends on the relative amount of isotopes of 

hydrogen and oxygen present in the sample of water used, 

•

  that this effect is now one of the major sources of the observed variability between 

different realizations of the water triple point,  

decides 

•

  that the definition of the kelvin refer to water of a specified isotopic composition, 

•

  that this composition be: 

background image

Appendix 1  

•

  

81

 

 

 

0.000 155 76 mole of 

2

H per mole of 

1

H,  

0.000 379 9 mole of 

17

O per mole of 

16

O, and 

0.002 005 2 mole of 

18

O per mole of 

16

O, 

which is the composition of the International Atomic Energy Agency reference material 
Vienna Standard Mean Ocean Water (VSMOW), as recommended by IUPAC in “Atomic 
Weights of the Elements: Review 2000.” 

•

  that this composition be stated in a note attached to the definition of the kelvin in the 

SI brochure as follows: 

“This definition refers to water having the isotopic composition defined exactly by the 
following amount of substance ratios:  0.000 155 76 mole  of 

2

H per mole of 

1

H, 

0.000 379 9 mole  of 

17

O per mole of 

16

O  and  0.002 005 2 mole  of 

18

O per mole of 

16

O.” 

 

■

  Revision of the 

Mise en pratique

 list of recommended radiations 

(PV,

 

94,

 

in press and 

Metrologia

, 2006, 

43

, 178) 

Recommendation 3 

The International Committee for Weights and Measures (CIPM), 

considering

 

that: 

•

  improved frequency values for radiations of some high-stability cold ion and cold atom 

standards already documented in the recommended radiations list have recently 
become available; 

•

  improved frequency values for the infra-red gas-cell-based optical frequency standard 

in the optical telecommunications region, already documented in the recommended 
radiations list, have been determined; 

•

  improved frequency values for certain iodine gas-cell standard, already documented in 

the subsidiary recommended source list, have been determined; 

•

  frequencies of new cold atoms, of atoms in the near-infrared region and of molecules 

in the optical telecommunications region have been determined by femtosecond 
comb-based frequency measurements for the first time; 

decides

 

that the list of 

recommended radiations

 be revised to include the following:

 

•

  updated frequency values for the single trapped 

88

Sr

+

 ion quadrupole transition, the 

single trapped 

199

Hg

+

 quadrupole transition and the single trapped 

171

Yb

+

 quadrupole 

transition; 

•

  an updated frequency value for the Ca atom transition; 

•

  an updated frequency value for the C

2

H

2

-stabilized standard at 1.54 

Îź

m; 

•

  an updated frequency value for the I

2

-stabilized standard at 515 nm; 

•

  the addition of the 

87

Sr atom transition at 698 nm; 

•

  the addition of the 

87

Rb atom two-photon transitions at 760 nm; 

•

  the addition of the 

12

C

2

H

2

  (

ν

1 + 

ν

3) band and the 

13

C

2

H

2

  (

ν

1 + 

ν

3) and 

(

ν

1 + 

ν

3 + 

ν

4 + 

ν

5) bands at 1.54 Âľm. 

 

 

 

 

 

background image

82

  

•

  Appendix 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank

background image

 83 

 

Appendix 2.  Practical realization of the definitions of some 
 important 

units 

Appendix 2 is published in electronic form only, and is available on the BIPM website at 
http://www.bipm.org/en/si/si_brochure/appendix2/. 

background image

84  â€˘  

Appendix 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

background image

 

85 

Appendix  3.  Units  for  photochemical and photobiological 
 quantities 

Optical radiation is able to cause chemical changes in certain living or non-living 
materials: this property is called actinism, and radiation capable of causing such 
changes is referred to as actinic radiation. Actinic radiation has the fundamental 
characteristic that, at the molecular level, one photon interacts with one molecule to 
alter or break the molecule into new molecular species. It is therefore possible to 
define specific photochemical or photobiological quantities in terms of the result of 
optical radiation on the associated chemical or biological receptors. 
In the field of metrology, the only photobiological quantity which has been formally 
defined for measurement in the SI is for the interaction of light with the human eye 
in vision. An SI base unit, the candela, has been defined for this important 
photobiological quantity. Several other photometric quantities with units derived 
from the candela have also been defined (such as the lumen and the lux, see Table 3 
in Chapter 2, p. 25). 
 

Actinic action spectrum 

Optical radiation can be characterized by its spectral power distribution. The 
mechanisms by which optical radiation is absorbed by chemical or biological 
systems are usually complicated, and are always wavelength (or frequency) 
dependent. For metrological purposes, however, the complexities of the absorption 
mechanisms can be ignored, and the actinic effect is characterized simply by an 
actinic action spectrum linking the photochemical or the photobiological response to 
the incident radiation. This actinic action spectrum describes the relative 
effectiveness of monochromatic optical radiation at wavelength 

Îť

 to elicit a given 

actinic response. It is given in relative values, normalized to 1 for the maximum of 
efficacy. Usually actinic action spectra are defined and recommended by 
international scientific or standardizing organizations. 
For vision, two action spectra have been defined by the CIE and endorsed by the 
CIPM: 

V

(

Îť

) for photopic vision and 

V

 

′

(

Îť

) for scotopic vision. These are used in the 

measurement of photometric quantities and are an implicit part of the definition of 
the SI unit for photometry, the candela. Photopic vision is detected by the cones on 
the retina of the eye, which are sensitive to a high level of luminance 
(

> ca. 10 cd m

−

2

) and are used in daytime vision. Scotopic vision is detected by the 

rods of the retina, which are sensitive to low level luminance (

< ca. 10

−

3

 cd m

−

2

), 

used in night vision. In the domain between these levels of luminance both cones 
and rods are used, and this is described as mesopic vision. 

The definition of 
photometric quantities and 
units can be found in the

 

International Lighting 
Vocabulary

, CIE 

publication 17.4 (1987) or 
in the 

International 

Electrotechnical 
Vocabulary

, IEC 

publication 50, 
chapter 845: lighting. 

Principles governing 
photometry, 

Monographie 

BIPM, 

1983, 32 pp.

 

background image

86

  

•

  Appendix 3

 

Other action spectra for other actinic effects have also been defined by the CIE, such 
as the erythemal (skin reddening) action spectrum for ultraviolet radiation, but these 
have not been given any special status within the SI. 
 

Measurement of photochemical or photobiological quantities 
and their corresponding units 

The photometric quantities and photometric units which are used at present for 
vision are well established and have been widely used for a long time. They are not 
affected by the following rules. For all other photochemical and photobiological 
quantities the following rules shall be applied for defining the units to be used. 
A photochemical or photobiological quantity is defined in purely physical terms as 
the quantity derived from the corresponding radiant quantity by evaluating the 
radiation according to its action upon a selective receptor, the spectral sensitivity of 
which is defined by the actinic action spectrum of the photochemical or 
photobiological effect considered. The quantity is given by the integral over 
wavelength of the spectral distribution of the radiant quantity weighted by the 
appropriate actinic action spectrum. The use of integrals implicitly assumes a law of 
arithmetic additivity for actinic quantities, although such a law is not perfectly 
obeyed by actual actinic effects. The action spectrum is a relative quantity; it is 
dimensionless, with the SI unit one. The radiant quantity has the radiometric unit 
corresponding to that quantity. Thus, following the rule for obtaining the SI unit for 
a derived quantity, the unit of the photochemical or photobiological quantity is the 
radiometric unit of the corresponding radiant quantity. When giving a quantitative 
value, it is essential to specify whether a radiometric or actinic quantity is intended 
as the unit is the same. If an actinic effect exists in several action spectra, the action 
spectrum used for measurement has to be clearly specified. 
This method of defining the units to be used for photochemical or photobiological 
quantities has been recommended by the Consultative Committee for Photometry 
and Radiometry at its 9th meeting in 1977. 
As an example, the erythemal effective irradiance 

E

er

 from a source of ultraviolet 

radiation is obtained by weighting the spectral irradiance of the radiation at 
wavelength 

Îť

 by the effectiveness of radiation at this wavelength to cause an 

erythema, and summing over all wavelengths present in the source spectrum. This 
can be expressed mathematically as 

er

er

( )d

E

E s

Îť

Îť Îť

=

∍

where 

E

Îť

 is the spectral irradiance at wavelength 

Îť

 (usually reported in the SI unit 

W m

−

2

 nm

−

1

), and 

s

er

(

Îť

) is the actinic spectrum normalized to 1 at its maximum 

spectral value. The erythemal irradiance 

E

er

 determined in this way is usually quoted 

in the SI unit W m

−

2

background image

87 

List of acronyms 
used in the present volume 

Acronyms for laboratories, committees and conferences* 

BAAS 

British Association for the Advancement of Science 

BIH 

Bureau International de l’Heure

 

BIPM 

International Bureau of Weights and Measures/

Bureau International 

des Poids et Mesures 

CARICOM Carribean 

Community 

CCAUV 

Consultative Committee for Acoustics, Ultrasound and 
Vibration/

ComitĂŠ Consultatif de l’Acoustique, des Ultrasons et des 

Vibrations 

CCDS* 

Consultative Committee for the Definition of the Second/

ComitĂŠ 

Consultatif pour la DĂŠfinition de la Seconde

, see CCTF 

CCE* 

Consultative Committee for Electricity/

ComitĂŠ Consultatif 

d'Électricité

, see CCEM 

CCEM 

(formerly the CCE) Consultative Committee for Electricity and 
Magnetism/

ComitĂŠ Consultatif d'ÉlectricitĂŠ et MagnĂŠtisme 

CCL 

Consultative Committee for Length/

ComitĂŠ Consultatif des Longueurs 

CCM 

Consultative Committee for Mass and Related Quantities/

ComitĂŠ 

Consultatif pour la Masse et les Grandeurs ApparentĂŠes

 

CCPR 

Consultative Committee for Photometry and Radiometry/

ComitĂŠ 

Consultatif de PhotomĂŠtrie et RadiomĂŠtrie

 

CCQM 

Consultative Committee for Amount of Substance: Metrology in 
Chemistry/

ComitĂŠ Consultatif pour la QuantitĂŠ de Matière

MĂŠtrologie 

en Chimie

 

CCRI 

Consultative Committee for Ionizing Radiation/

ComitĂŠ Consultatif des 

Rayonnements Ionisants 

CCT 

Consultative Committee for Thermometry/

ComitĂŠ Consultatif de 

ThermomĂŠtrie 

CCTF 

(formerly the CCDS) Consultative Committee for Time and 
Frequency/

ComitĂŠ Consultatif du Temps et des FrĂŠquences

 

CCU 

Consultative Committee for Units/

ComitĂŠ Consultatif des UnitĂŠs

 

CGPM 

General Conference on Weights and Measures/

ConfĂŠrence GĂŠnĂŠrale 

des Poids et Mesures 

CIE 

International Commission on Illumination/

Commission Internationale 

de l’Éclairage

 

CIPM 

International Committee for Weights and Measures/

ComitĂŠ 

International des Poids et Mesures

 

                                                           

* Organizations marked with an asterisk either no longer exist or operate under a different 
acronym. 

background image

88 

 

•

  

List of acronyms

 

CODATA 

Committee on Data for Science and Technology 

CR 

Comptes Rendus

 of the 

ConfĂŠrence GĂŠnĂŠrale des Poids et Mesures

CGPM 

IAU 

International Astronomical Union 

ICRP 

International Commission on Radiological Protection 

ICRU 

International Commission on Radiation Units and Measurements 

IEC International 

Electrotechnical Commission/

Commission 

Électrotechnique Internationale

 

IERS 

International Earth Rotation and Reference Systems Service 

ISO 

International Organization for Standardization 

IUPAC 

International Union of Pure and Applied Chemistry 

IUPAP 

International Union of Pure and Applied Physics 

OIML 

Organisation Internationale de MĂŠtrologie LĂŠgale

 

PV 

Procès-Verbaux

 of the 

ComitĂŠ International des Poids et Mesures

CIPM 

SUNAMCO 

Commission for Symbols, Units, Nomenclature, Atomic Masses, and 
Fundamental Constants, IUPAP 

WHO 

World Health Organization 

 

Acronyms for scientific terms 

CGS 

Three-dimensional coherent system of units based on the three 
mechanical units centimeter, gram, and second 

EPT-76 

Provisional Low Temperature Scale of 1976/

Échelle provisoire de 

tempĂŠrature de 1976

 

IPTS-68 

International Practical Temperature Scale of 1968 

ITS-90 

International Temperature Scale of 1990 

MKS 

System of units based on the three mechanical units meter, kilogram, 
and second 

MKSA 

Four-dimensional system of units based on the meter, kilogram, 
second, and the ampere 

SI 

International System of Units/

Système International d’UnitĂŠs

 

TAI 

International Atomic Time/

Temps Atomique International

 

TCG 

Geocentric Coordinated Time/

Temps-coordonnĂŠe GĂŠocentrique

 

TT Terrestrial 

Time 

UTC 

Coordinated Universal Time 

VSMOW 

Vienna Standard Mean Ocean Water 

background image

 

89 

 

 

Index 

Numbers in boldface indicate the pages where the definitions of the units, or terms, 
are to be found. 

 

acceleration due to gravity, standard 

value of (

g

n)

,

 52 

absolute units, 19 
absorbed dose, 14, 25-27, 38, 49, 67-

68, 71, 79 

actinic radiation, 13, 85-86 
actinism, 13, 85 
activity referred to a radionuclide, 25-

26, 61 

amount of substance, 10-13, 15, 17, 20-

23, 44, 

66

, 81,  

ampere (A), 10, 15-17, 

19

, 23-24, 53, 

55, 56, 58, 59, 75 

arcsecond, 32 
astronomical unit, 33-34 
atomic physics, 33 
atomic units, 33-34 
atomic weight, 21 
Avogadro constant, 21-22, 33 
 

bar, 35, 55 
barn, 35-36 
base quantity, 9-10, 

11

-13, 26 

base unit(s), 

9

-12, 17-23, 56, 57, 58, 

64-66, 69-70, 74-76  

becquerel (Bq), 25, 27, 61, 

67

 

bel (B), 34-35, 43 
biological quantities, 7, 13 
Bohr radius, bohr, 33-34 
British Association for the 

Advancement of Science (BAAS), 
15 

 

calorie, 54 
candela (cd), 10, 16-18, 

22-23

, 52, 55, 

56, 58, 59, 63, 68, new candle, 

52

 

Celsius temperature, 20, 25, 42, 48 
CGS, 11, 15-16, 36-37, 54, 88

 

CGS-EMU, 11, 36 
CGS-ESU, 11, 36 
CGS-Gaussian, 11, 31, 36-37 
clinical chemistry, 22, 24, 75-76 
CODATA, 34, 76, 88 
coherent derived units, 12, 15, 31, 23-

26, 76 

Convention du Mètre, 1, 15-16 
Coordinated Universal Time (UTC), 

48, 67, 88 

coulomb (C), 25-26, 

53

, 55, 59 

Coulomb law, 11 
counting quantities, 12, 28 
curie (Ci), 37-38, 61 
 

dalton (Da), 33-34 
day (d), 19, 30, 32 
decibel (dB), 34-36, 43 
decimal marker, 8, 42, 79-80 
decimal metric system, 15 
definitions of base units, 

17-22

 

degree Celsius (°C), 20, 25-26, 40, 42, 

54, 55 

derived quantity, 

9

, 12, 24-26, 33, 86 

derived unit(s), 

9

, 10, 12, 15, 23-28, 59, 

64

 

digits in threes, grouping digits, 42-43, 

80,  

dimensional symbols, 11 

background image

90 

 

•

  Index

 

 

 

dimensionless quantities, 11-12, 24-25, 

27

-28, 35, 43-44, 69 

 
dose equivalent, see sievert 
dynamic viscosity (poise), 37, 55, 59 
dyne (dyn), 37, 55 
 

electric current, 10-11, 16, 19, 23, 53, 

56, 58, 

electrical units, 

53

 

electromagnetic quantities, 10, 36-37 
electron mass, 33-34 
electronvolt (eV), 33-34 
elementary charge, 33-34 
erg, 37, 55 
establishment of the SI, 54, 56, 57, 58 
 

farad (F), 25, 

53

, 55, 59 

foot, 37 
formatting the value of a quantity, 42 
four-quantity electromagnetic 

equations, 10 

 

gal (Gal), 37 
Gauss, 15 
gauss (G), 37 
general relativity, 13, 77 
Giorgi, 16 
gon, 32 
grad, 32 
gram, 13, 15, 30, 36, 55, 62 
gram-atom, gram-molecule, 21 
gray (Gy), 25, 26, 27, 

67

, 71, 79 

 

Hall effect (incl. quantum Hall effect), 

17, 71-

73

, 76 

Hartree energy, hartree, 33, 34 
heat capacity, 26, 40, 64 
hectare (ha), 32 
henry (H), 25, 

53

, 55, 59 

hertz (Hz), 25-26, 55, 59 
historical note, 14-16 

hour (h), 30, 32, 55 
hyperfine splitting of the cesium atom, 

19, 60 

 

IEC Standard 60027, 10, 29 
inch, 37 
International Atomic Time (TAI), 65, 

66,  

international prototype of the kilogram, 

16, 

18

, 51, 52, 57 

international prototype of the meter, 15, 

18, 51, 52,  

International System of Quantities 

(ISQ), 

10

,  

International System of Units (SI), 10, 

14-15, 31-32, 65, 75 

International Temperature Scale of, 20, 

56, 73 (ITS-90), 73-74 

International Units (IU) WHO, 14 
ionizing radiation, 14, 27, 67-68, 71, 79 
ISO Standard 31, 8, 10, 32, 41 
ISO/IEC Standard 80000, 10 
ISO/TC 12, 10, 69 
IUPAC, 21, 81; Green Book, 41 
IUPAP SUNAMCO, 16, 21-22; Red 

Book, 41 

 

Josephson effect, 71-

72

 

Josephson constant (

K

J

K

J

−

90

), 72 

joule (J), 12, 25-27, 27, 40,

 53

-54, 59 

 

katal (kat), 25, 

75

-76 

kelvin (K), 10, 16, 

20

, 23, 26, 55-56, 

62-63, 80-81 

kibibyte (kilobyte), 29 
kilogram, 10, 13, 15-16, 

18

, 23, 30, 51, 

52, 56, 58, 62, 75 

kinematic viscosity (stokes), 37 
 

legislation on units, 14 
length, 10-11, 15, 

18

, 23, 34-35, 51, 52, 

56, 57 

background image

 

Index  â€˘  

91 

 

 

liter (L), 

32

, 39, 

51

, 55, 60, 61, 69 

logarithmic ratio quantities, 35, 43 
logarithmic ratio units, 35-36, 43 
lumen (lm), 25, 52, 59; new lumen, 

52

 

luminous intensity, 10-11, 

22-

23, 52, 

56, 58, 63, 68 

lux (lx), 25, 55, 59 
 

magnetic constant, permeability of 

vacuum, 10, 20 

mandatory symbols for units, 11, 23, 

40-41 

mass, 10-11, 15, 

18,

 23, 30, 51, 52, 56, 

58, 62,75 

mass and weight, 52 
Maxwell, 15 
maxwell (Mx), 37 
mesopic, 68, 85 
meter (m), 10, 15, 16, 

18

, 23, 39, 51, 

52, 55, 56, 57, 58, 70-71, 76-78 

metric ton, 32, 55 
microarcsecond (

Îź

as), 30, 32 

milliarcsecond (mas), 30, 32 
 
millimeter of mercury, 35 
minute (min), 30, 32, 42 
MKS system, 16, 53, 54 
MKSA system, 16 
mole (mol), 10, 16, 20-

21

, 66 

molecular weight, 21 
multiples (and submultiples) of the 

kilogram, 12-13, 30, 62 

multiples, prefixes for, 12-13, 29-30, 

58, 61, 67, 74 

 

natural units, 33-34 
nautical mile, 32, 35, 36 
neper (Np), 34-36, 43 
newton (N), 19-20, 25, 26, 53, 55, 59 
non-SI units, 31-38 
numerical value of a quantity, 40 

O

 

œrsted (Oe), 37 
ohm (

Ω

), 16, 17, 19, 25, 39, 

53

, 55, 59, 

65, 71-72, 73, 76 

OIML, 14 
 

pascal (Pa), 25, 39, 65 
percent, 44 
phot (ph), 37 
photobiological quantities, 13, 85-86 
photochemical quantities, 13, 85-86 
photometric units, 

52

, 63, 68, 85-86 

photopic vision, 68, 85 
poise (P), 37, 55 
ppb, 44 
ppm, 44 
ppt, 44 
practical units, 15, 16, 54, 56, 57, 58  
prefixes, 12, 24, 

29

, 32, 35, 39, 58, 61, 

64, 67, 74 

 

quantities of dimension one, 12, 24, 27-

28, 43-44 

quantity, 9 
quantity calculus, 40-41 
quantity symbols, 11, 39, 42-43 
quantity, base, 

9

, 10, 11, 22 

quantity, derived, 

9

, 12, 24-26 

 

radian (rad), 25, 26, 27, 28, 43, 59, 69-

70, 74-75 

radiation therapy, 14 
rationalizing factors, 11 
realization of a unit, 7, 

17

, 83 

recommended symbols for quantities, 

11, 39 

reduced Planck constant, 33, 34 

background image

92 

 

•

  Index

 

 

 

scotopic, 68, 85 
second (s), 10, 15-16, 17-

19

, 23, 40, 55, 

56-57, 58, 62 

SI prefixes, 12, 24, 

29

, 32, 34-35, 36, 

45, 61, 64, 67, 74 

SI, see 

Système International d’UnitĂŠs

 

siemens (S), 25, 65 
sievert (Sv), 25, 27, 68, 71, 78-79 
sound, units for, 13 
special names and symbols for units, 

12, 24-27 

speed of light in vacuum, 18, 33, 77 
standard atmosphere, 35, 

56

 

steradian (sr), 25, 26, 27-28, 43, 59, 69-

70, 74-75 

stilb (sb), 37, 55 
stokes (St), 37 
submultiples, prefixes for, 12, 29-30, 

58, 61, 64, 67, 74 

supplementary units, 58-59, 64-65, 69-

70, 74-75 

Système International d'UnitĂŠs

 (SI), see 

International System of Units 

 

TAI, see International Atomic Time 
tesla (T), 25, 59 
thermodynamic temperature, 10-11, 

19-

20

, 55, 56, 58, 62, 63, 80 

thermodynamic temperature scale, 

55-56 

Thomson, 15 
time (duration), 10-11, 

19

, 23, 56, 62 

tonne, see metric ton 
triple point of water, 

20

, 53-54, 55-56, 

63, 80 

uncertainty, 43 
unit (SI), 17-28 
unit names, 

40

, 55 

unit symbols, 22, 39, 55 
unit, base, 

9

, 17, 23, 56, 58, 66 

unit, derived, 

9

, 23-28, 59, 64 

units for biological quantities, 13 
UTC, see Coordinated Universal Time 
 

value of a quantity, 40-42 
volt (V),

 

25, 

53

, 55, 59, 71, 72 

von Klitzing constant (

R

K

R

K

−

90

), 17, 

73, 76 

 

water, isotopic composition, 20, 80 
watt (W), 25,

 53

, 55, 59 

Weber, 15 
weber (Wb),

 

25, 

53

, 59 

WHO, 14 
 

yard, 37 
 
 
 
 
 
 


Document Outline