background image

CODATA Recommended Values of the Fundamental Physical Constants:
2006

∗

Peter J. Mohr

†

, Barry N. Taylor

‡

, and David B. Newell

§

,

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA

(Dated: December 28, 2007)

This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors
of physics and chemistry recommended by the Committee on Data for Science and Technology
(CODATA) for international use. Further, it describes in detail the adjustment of the values of the
constants, including the selection of the final set of input data based on the results of least-squares
analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment
as well as the data that became available between 31 December 2002, the closing date of that
adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have
led to a significant reduction in the uncertainties of many recommended values. The 2006 set
replaces the previously recommended 2002 CODATA set and may also be found on the World
Wide Web at physics.nist.gov/constants.

Contents

Glossary

2

I. Introduction

4

A. Background

4

B. Time variation of the constants

5

C. Outline of paper

5

II. Special quantities and units

6

III. Relative atomic masses

6

A. Relative atomic masses of atoms

6

B. Relative atomic masses of ions and nuclei

7

∗

This report was prepared by the authors under the auspices of the

CODATA Task Group on Fundamental Constants. The members
of the task group are:
F. Cabiati, Istituto Nazionale di Ricerca Metrologica, Italy
K. Fujii, National Metrology Institute of Japan, Japan
S. G. Karshenboim, D. I. Mendeleyev All-Russian Research Insti-
tute for Metrology, Russian Federation
I. Lindgren, Chalmers University of Technology and G¨

oteborg Uni-

versity, Sweden
B. A. Mamyrin (deceased), A. F. Ioffe Physical-Technical Institute,
Russian Federation
W. Martienssen, Johann Wolfgang Goethe-Universit¨

at, Germany

P. J. Mohr, National Institute of Standards and Technology, United
States of America
D. B. Newell, National Institute of Standards and Technology,
United States of America
F. Nez, Laboratoire Kastler-Brossel, France
B. W. Petley, National Physical Laboratory, United Kingdom
T. J. Quinn, Bureau international des poids et mesures
B. N. Taylor, National Institute of Standards and Technology,
United States of America
W. W¨

oger, Physikalisch-Technische Bundesanstalt, Germany

B. M. Wood, National Research Council, Canada
Z. Zhang, National Institute of Metrology, China (People’s Repub-
lic of)

†

Electronic address: mohr@nist.gov

‡

Electronic address: barry.taylor@nist.gov

§

Electronic address: dnewell@nist.gov

C. Cyclotron resonance measurement of the electron

relative atomic mass

A

r

(e)

8

IV. Atomic transition frequencies

8

A. Hydrogen and deuterium transition frequencies, the

Rydberg constant

R

∞

, and the proton and deuteron

charge radii

R

p

, R

d

8

1. Theory relevant to the Rydberg constant

9

2. Experiments on hydrogen and deuterium

16

3. Nuclear radii

16

B. Antiprotonic helium transition frequencies and

A

r

(e)

17

1. Theory relevant to antiprotonic helium

17

2. Experiments on antiprotonic helium

18

3. Values of

A

r

(e) inferred from antiprotonic helium 20

C. Hyperfine structure and fine structure

20

1. Hyperfine structure

20

2. Fine structure

20

V. Magnetic moment anomalies and

g

-factors

21

A. Electron magnetic moment anomaly

a

e

and the

fine-structure constant

α

22

1. Theory of

a

e

22

2. Measurements of

a

e

23

3. Values of

α

inferred from

a

e

24

B. Muon magnetic moment anomaly

a

µ

24

1. Theory of

a

µ

24

2. Measurement of

a

µ

: Brookhaven.

26

C. Bound electron

g

-factor in

12

C

5+

and in

16

O

7+

and

A

r

(e)

27

1. Theory of the bound electron

g

-factor

28

2. Measurements of

g

e

(

12

C

5+

) and

g

e

(

16

O

7+

).

31

VI. Magnetic moment ratios and the muon-electron

mass ratio

32

A. Magnetic moment ratios

32

1. Theoretical ratios of atomic bound-particle to

free-particle

g

-factors

33

2. Ratio measurements

33

B. Muonium transition frequencies, the muon-proton

magnetic moment ratio

µ

µ

/µ

p

, and muon-electron

mass ratio

m

µ

/m

e

36

1. Theory of the muonium ground-state hyperfine

splitting

36

2. Measurements of muonium transition frequencies

and values of

µ

µ

/µ

p

and

m

µ

/m

e

38

background image

2

VII. Electrical measurements

39

A. Shielded gyromagnetic ratios

γ

′

, the fine-structure

constant

α

, and the Planck constant

h

39

1. Low-field measurements

40

2. High-field measurements

40

B. von Klitzing constant

R

K

and

α

41

1. NIST: Calculable capacitor

41

2. NMI: Calculable capacitor

41

3. NPL: Calculable capacitor

42

4. NIM: Calculable capacitor

42

5. LNE: Calculable capacitor

42

C. Josephson constant

K

J

and

h

42

1. NMI: Hg electrometer

43

2. PTB: Capacitor voltage balance

43

D. Product

K

2

J

R

K

and

h

43

1. NPL: Watt balance

43

2. NIST: Watt balance

43

3. Other values

45

4. Inferred value of

K

J

45

E. Faraday constant

F

and

h

46

1. NIST: Ag coulometer

46

VIII. Measurements involving silicon crystals

46

A.

{

220

}

lattice spacing of silicon

d

220

46

1. X-ray/optical interferometer measurements of

d

220

(

X

)

47

2.

d

220

difference measurements

49

B. Molar volume of silicon

V

m

(Si)

and the Avogadro

constant

N

A

50

C. Gamma-ray determination of the neutron relative

atomic mass

A

r

(n)

51

D. Quotient of Planck constant and particle mass

h/m

(

X

)

and

α

52

1. Quotient

h/m

n

52

2. Quotient

h/m

(

133

Cs)

53

3. Quotient

h/m

(

87

Rb)

54

IX. Thermal physical quantities

55

A. Molar gas constant

R

55

1. NIST: speed of sound in argon

55

2. NPL: speed of sound in argon

55

3. Other values

55

B. Boltzmann constant

k

55

C. Stefan-Boltzmann constant

σ

56

X. Newtonian constant of gravitation

G

56

A. Updated values

57

1. Huazhong University of Science and Technology

57

2. University of Zurich

58

B. Determination of 2006 recommended value of

G

58

C. Prospective values

59

XI. X-ray and electroweak quantities

59

A. X-ray units

59

B. Particle Data Group input

60

XII. Analysis of Data

60

A. Comparison of data

64

B. Multivariate analysis of data

69

1. Summary of adjustments

70

2. Test of the Josephson and quantum Hall effect

relations

71

XIII. The 2006 CODATA recommended values

83

A. Calculational details

83

B. Tables of values

83

XIV. Summary and Conclusion

84

A. Comparison of 2006 and 2002 CODATA

recommended values

84

B. Some implications of the 2006 CODATA

recommended values and adjustment for physics and
metrology

85

C. Outlook and suggestions for future work

86

XV. Acknowledgments

87

References

87

Glossary

AMDC

Atomic Mass Data Center, Centre de Spec-
trom´etrie Nucl´eaire et de Spectrom´etrie de Masse
(CSNSM), Orsay, France

AME2003

2003 atomic mass evaluation of the AMDC

A

r

(

X

)

Relative atomic mass of

X

:

A

r

(

X

) =

m

(

X

)

/m

u

A

90

Conventional unit of electric current:

A

90

=

V

90

/

Ω

90

Ëš

A

∗

Ëš

Angstr¨

om-star:

λ

(WK

α

1

) = 0

.

209 010 0 Ëš

A

∗

a

e

Electron magnetic moment anomaly:

a

e

= (

|

g

e

| âˆ’

2)/2

a

µ

Muon magnetic moment anomaly:

a

µ

= (

|

g

µ

| âˆ’

2)/2

BIPM

International Bureau of Weights and Measures,
S`evres, France

BNL

Brookhaven National Laboratory, Upton, New
York, USA

CERN

European Organization for Nuclear Research,
Geneva, Switzerland

CIPM

International

Committee

for

Weights

and

Measures

CODATA

Committee on Data for Science and Technology
of the International Council for Science

CP T

Combined charge conjugation, parity inversion,
and time reversal

c

Speed of light in vacuum

cw

Continuous wave

d

Deuteron (nucleus of deuterium D, or

2

H)

d

220

{

220

}

lattice spacing of an ideal crystal of natu-

rally occurring silicon

d

220

(

X

)

{

220

}

lattice spacing of crystal

X

of naturally oc-

curring silicon

E

b

Binding energy

e

Symbol for either member of the electron-positron
pair; when necessary, e

−

or e

+

is used to indicate

the electron or positron

e

Elementary charge: absolute value of the charge
of the electron

F

Faraday constant:

F

=

N

A

e

FCDC

Fundamental Constants Data Center, NIST, USA

FSU

Friedrich-Schiller University, Jena, Germany

F

90

F

90

= (

F/A

90

) A

G

Newtonian constant of gravitation

g

Local acceleration of free fall

g

d

Deuteron

g

-factor:

g

d

=

µ

d

/µ

N

g

e

Electron

g

-factor:

g

e

= 2

µ

e

/µ

B

g

p

Proton

g

-factor:

g

p

= 2

µ

p

/µ

N

g

′

p

Shielded proton

g

-factor:

g

′

p

= 2

µ

′

p

/µ

N

g

t

Triton

g

-factor:

g

t

= 2

µ

t

/µ

N

g

X

(

Y

)

g

-factor of particle

X

in the ground (1S) state of

hydrogenic atom

Y

g

µ

Muon

g

-factor:

g

µ

= 2

µ

µ

/

(

e

¯

h/

2

m

µ

)

background image

3

GSI

Gesellschaft f¨

ur Schwerionenforschung, Darm-

stadt, Germany

HD

HD molecule (bound state of hydrogen and deu-
terium atoms)

HT

HT molecule (bound state of hydrogen and tri-
tium atoms)

h

Helion (nucleus of

3

He)

h

Planck constant; Â¯

h

=

h/

2

Ï€

Harvard;

Harvard University, Cambridge, Massachusetts,

HarvU

USA

ILL

Institut Max von Laue-Paul Langevin, Grenoble,
France

IMGC

Istituto di Metrologia â€œT. Colonetti,†Torino,
Italy

INRIM

Istituto Nazionale di Ricerca Metrologica, Torino,
Italy

IRMM

Institute for Reference Materials and Measure-
ments, Geel, Belgium

JINR

Joint Institute for Nuclear Research, Dubna, Rus-
sian Federation

KRISS

Korea Research Institute of Standards and Sci-
ence, Taedok Science Town, Republic of Korea

KR/VN

KRISS-VNIIM collaboration

K

J

Josephson constant:

K

J

= 2

e/h

K

J

−

90

Conventional value of the Josephson constant

K

J

:

K

J

−

90

= 483 597

.

9 GHz V

−

1

k

Boltzmann constant:

k

=

R/N

A

LAMPF

Clinton P. Anderson Meson Physics Facility at Los
Alamos National Laboratory, Los Alamos, New
Mexico, USA

LKB

Laboratoire Kastler-Brossel, Paris, France

LK/SY

LKB and SYRTE collaboration

LNE

Laboratoire national de m´etrologie et d’essais,
Trappes, France

MIT

Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA

MPQ

Max-Planck-Institut f¨

ur Quantenoptik, Garching,

Germany

MSL

Measurement Standards Laboratory, Lower Hutt,
New Zealand

M

(

X

)

Molar mass of

X

:

M

(

X

) =

A

r

(

X

)

M

u

Mu

Muonium (

µ

+

e

−

atom)

M

u

Molar mass constant:

M

u

= 10

−

3

kg mol

−

1

m

u

Uniï¬ed atomic mass constant:

m

u

=

m

(

12

C)/12

m

X

,

m

(

X

) Mass of

X

(for the electron e, proton p, and other

elementary particles, the ï¬rst symbol is used,

i.e.,

m

e

,

m

p

,

etc.

)

N

A

Avogadro constant

N/P/I

NMIJ-PTB-IRMM combined result

NIM

National Institute of Metrology, Beijing, China
(People’s Republic of)

NIST

National Institute of Standards and Technology,
Gaithersburg, Maryland and Boulder, Colorado,
USA

NMI

National Metrology Institute, Lindï¬eld, Australia

NMIJ

National Metrology Institute of Japan, Tsukuba,
Japan

NMR

Nuclear magnetic resonance

NPL

National Physical Laboratory, Teddington, UK

NRLM

National Research Laboratory of Metrology,
Tsukuba, Japan

n

Neutron

PRC

People’s Republic of China

PTB

Physikalisch-Technische Bundesanstalt, Braun-
schweig and Berlin, Germany

p

Proton

p

A

He

+

Antiprotonic helium (

A

He

+

+ p atom,

A

=

3 or 4)

QED

Quantum electrodynamics

Q

(

χ

2

|

ν

)

Probability that an observed value of chi-square
for

ν

degrees of freedom would exceed

χ

2

R

Molar gas constant

R

Ratio of muon anomaly difference frequency to
free proton NMR frequency

R

B

Birge ratio:

R

B

= (

χ

2

/ν

)

1
2

R

d

; Rd

Bound-state rms charge radius of the deuteron

R

K

von Klitzing constant:

R

K

=

h/e

2

R

K

−

90

Conventional value of the von Klitzing constant

R

K

:

R

K

−

90

= 25 812

.

807 â„¦

R

p

; Rp

Bound-state rms charge radius of the proton

R

∞

Rydberg constant:

R

∞

=

m

e

cα

2

/

2

h

r

(

x

i

, x

j

)

Correlation coefficient of estimated values

x

i

and

x

j

:

r

(

x

i

, x

j

) =

u

(

x

i

, x

j

)

/

[

u

(

x

i

)

u

(

x

j

)]

r

i

Normalized residual of

x

i

:

r

i

= (

x

i

−

ˆ

x

i

)

/u

(

x

i

),

ˆ

x

i

is the adjusted value of

x

i

rms

Root mean square

S

c

Self-sensitivity coefficient

SI

Syst`eme international d’unit´es (International Sys-
tem of Units)

Stanford;

Stanford University, Stanford, California, USA

StanfU

StPtrsb

St. Petersburg, Russian Federation

SYRTE

Syst`emes de r´ef´erence Temps Espace, Paris,
France

T

Thermodynamic temperature

t

Triton (nucleus of tritium T, or

3

H)

th

Theory

Type A

Uncertainty evaluation by the statistical analysis
of series of observations

Type B

Uncertainty evaluation by means other than the
statistical analysis of series of observations

t

90

Celsius temperature on the International Temper-
ature Scale of 1990 (ITS-90)

U. Sussex;

University of Sussex, Sussex, UK

USus

UK

United Kingdom

USA

United States of America

UWash

University of Washington, Seattle, Washington,
USA

u

Uniï¬ed atomic mass unit (also called the dalton,
Da): 1 u =

m

u

=

m

(

12

C)/12

u

(

x

i

)

Standard uncertainty (

i.e.,

estimated standard

deviation) of an estimated value

x

i

of a quantity

X

i

(also simply

u

)

u

(

x

i

, x

j

)

Covariance of estimated values

x

i

and

x

j

u

diff

Standard uncertainty of the difference

x

i

−

x

j

:

u

2

diff

=

u

2

(

x

i

) +

u

2

(

x

j

)

−

2

u

(

x

i

, x

j

)

u

r

(

x

i

)

Relative standard uncertainty of an estimated
value

x

i

of a quantity

X

i

:

u

r

(

x

i

) =

u

(

x

i

)

/

|

x

i

|

, x

i

6

= 0 (also simply

u

r

)

u

r

(

x

i

, x

j

)

Relative covariance of estimated values

x

i

and

x

j

:

u

r

(

x

i

, x

j

) =

u

(

x

i

, x

j

)

/

(

x

i

x

j

)

V

m

(Si)

Molar volume of naturally occurring silicon

VNIIM

D. I. Mendeleyev All-Russian Research Institute
for Metrology, St. Petersburg, Russian Federation

background image

4

V

90

Conventional unit of voltage based on the Joseph-
son effect and

K

J

−

90

:

V

90

= (

K

J

−

90

/K

J

) V

WGAC

Working Group on the Avogadro Constant of the
CIPM Consultative Committee for Mass and Re-
lated Quantities (CCM)

W

90

Conventional unit of power:

W

90

=

V

2

90

/

Ω

90

XROI

Combined x-ray and optical interferometer

xu(CuK

α

1

) Cu x unit:

λ

(CuK

α

1

) = 1 537.400 xu(CuK

α

1

)

xu(MoK

α

1

) Mo x unit:

λ

(MoK

α

1

) = 707.831 xu(MoK

α

1

)

x

(

X

)

Amount-of-substance fraction of

X

YAG

Yttrium aluminium garnet; Y

3

Al

5

O

12

Yale; YaleU Yale University, New Haven, Connecticut, USA

α

Fine-structure constant:

α

=

e

2

/

4

Ï€

Ç«

0

¯

hc

≈

1

/

137

α

Alpha particle (nucleus of

4

He)

Γ

′

X

−

90

(lo)

Γ

′

X

−

90

(lo) = (

γ

′

X

A

90

) A

−

1

,

X

= p or h

Γ

′

p

−

90

(hi)

Γ

′

p

−

90

(hi) = (

γ

′

p

/

A

90

) A

γ

p

Proton gyromagnetic ratio:

γ

p

= 2

µ

p

/

¯

h

γ

′

p

Shielded proton gyromagnetic ratio:

γ

′

p

= 2

µ

′

p

/

¯

h

γ

′

h

Shielded helion gyromagnetic ratio:

γ

′

h

= 2

|

µ

′

h

|

/

¯

h

∆

ν

Mu

Muonium ground-state hyperï¬ne splitting

δ

e

Additive correction to the theoretical expression
for the electron magnetic moment anomaly

a

e

δ

Mu

Additive correction to the theoretical expression
for the ground-state hyperï¬ne splitting of muon-
ium âˆ†

ν

Mu

δ

p He

Additive correction to the theoretical expression
for a particular transition frequency of antipro-
tonic helium

δ

X

(

n

L

j

)

Additive correction to the theoretical expression
for an energy level of either hydrogen H or deu-
terium D with quantum numbers

n

, L, and

j

δ

µ

Additive correction to the theoretical expression
for the muon magnetic moment anomaly

a

µ

Ç«

0

Electric constant:

Ç«

0

= 1

/µ

0

c

2

λ

(

X

K

α

1

)

Wavelength of K

α

1

x-ray line of element

X

λ

meas

Measured wavelength of the 2.2 MeV capture

γ

-

ray emitted in the reaction n + p

→

d +

γ

µ

Symbol for either member of the muon-antimuon
pair; when necessary,

µ

−

or

µ

+

is used to indicate

the negative muon or positive muon

µ

B

Bohr magneton:

µ

B

=

e

¯

h/

2

m

e

µ

N

Nuclear magneton:

µ

N

=

e

¯

h/

2

m

p

µ

X

(

Y

)

Magnetic moment of particle

X

in atom or

molecule

Y

.

µ

0

Magnetic constant:

µ

0

= 4

Ï€

×

10

−

7

N/A

2

µ

X

,

µ

′

X

Magnetic moment, or shielded magnetic moment,
of particle

X

ν

Degrees of freedom of a particular adjustment

ν

(

f

p

)

Difference between muonium hyperï¬ne splitting
Zeeman transition frequencies

ν

34

and

ν

12

at a

magnetic ï¬‚ux density

B

corresponding to the free

proton NMR frequency

f

p

σ

Stefan-Boltzmann constant:

σ

= 2

Ï€

5

k

4

/

(15

h

3

c

2

)

Ï„

Symbol for either member of the tau-antitau pair;
when necessary,

Ï„

−

or

Ï„

+

is used to indicate the

negative tau or positive tau

χ

2

The statistic â€œchi squareâ€

Ω

90

Conventional unit of resistance based on the quan-
tum Hall effect and

R

K

−

90

:

Ω

90

= (

R

K

/R

K

−

90

) â„¦

.

=

Symbol used to relate an input datum to its ob-
servational equation

I. INTRODUCTION

A. Background

This paper gives the complete 2006 CODATA self-

consistent set of recommended values of the fundamental
physical constants and describes in detail the 2006 least-
squares adjustment, including the selection of the ï¬nal
set of input data based on the results of least-squares
analyses. Prepared under the auspices of the CODATA
Task Group on Fundamental Constants, this is the ï¬fth
such report of the Task Group since its establishment
in 1969

1

and the third in the four-year cycle of reports

begun in 1998. The 2006 set of recommended values re-
places its immediate predecessor, the 2002 set. The clos-
ing date for the availability of the data considered for
inclusion in this adjustment was 31 December 2006. As
a consequence of the new data that became available in
the intervening four years there has been a signiï¬cant re-
duction of the uncertainty of many constants. The 2006
set of recommended values ï¬rst became available on 29
March 2007 at http://physics.nist.gov/constants, a Web
site of the NIST Fundamental Constants Data Center
(FCDC).

The 1998 and 2002 reports describing the 1998 and

2002 adjustments (Mohr and Taylor, 2000, 2005), re-
ferred to as CODATA-98 and CODATA-02 throughout
this article, describe in detail much of the currently avail-
able data, its analysis, and the techniques used to obtain
a set of best values of the constants using the standard
method of least squares for correlated input data. This
paper focuses mainly on the new information that has be-
come available since 31 December 2002 and references the
discussions in CODATA-98 and CODATA-02 for earlier
work in the interest of brevity. More speciï¬cally, if a po-
tential input datum is not discussed in detail, the reader
can assume that it (or a closely related datum) has been
reviewed in either CODATA-98 or CODATA-02.

The reader is also referred to these papers for a discus-

sion of the motivation for and the philosophy behind the
periodic adjustment of the values of the constants and
for descriptions of how units, quantity symbols, numeri-
cal values, numerical calculations, and uncertainties are
treated, in addition to how the data are characterized, se-
lected, and evaluated. Since the calculations are carried
out with more signiï¬cant ï¬gures than are displayed in the
text to avoid rounding errors, data with more digits are
available on the FCDC Web site for possible independent
analysis.

However, because of their importance, we recall in de-

tail the following two points also discussed in these ref-
erences. First, although it is generally agreed that the

1

The Committee on Data for Science and Technology was estab-
lished in 1966 as an interdisciplinary committee of the Interna-
tional Council for Science.

background image

5

correctness and over-all consistency of the basic theo-
ries and experimental methods of physics can be tested
by comparing values of particular fundamental constants
obtained from widely differing experiments, throughout
this adjustment, as a working principle, we assume the
validity of the physical theory that necessarily underlies
it. This includes special relativity, quantum mechanics,
quantum electrodynamics (QED), the Standard Model
of particle physics, including combined charge conjuga-
tion, parity inversion, and time reversal (

CP T

) invari-

ance, and the theory of the Josephson and quantum Hall
effects, especially the exactness of the relationships be-
tween the Josephson and von Klitzing constants

K

J

and

R

K

and the elementary charge

e

and Planck constant

h

.

In fact, tests of these relations,

K

J

= 2

e/h

and

R

K

=

h/e

2

, using the input data of the 2006 adjustment

are discussed in Sec. XII.B.2.

The second point has to do with the 31 December 2006

closing date for data to be considered for inclusion in the
2006 adjustment. A datum was considered to have met
this date, even though not yet reported in an archival
journal, as long as a description of the work was available
that allowed the Task Group to assign a valid standard
uncertainty

u

(

x

i

) to the datum. Thus, any input datum

labeled with an â€œ07†identiï¬er because it was published
in 2007 was, in fact, available by the cutoff date. Also,
some references to results that became available after the
deadline are included, even though they were not used in
the adjustment.

B. Time variation of the constants

This subject, which was briefly touched upon in

CODATA-02, continues to be an active ï¬eld of exper-
imental and theoretical research, because of its impor-
tance to our understanding of physics at the most fun-
damental level. Indeed, a large number of papers rele-
vant to the topic have appeared in the last four years;
see the FCDC bibliographic database on the funda-
mental constants using the keyword â€œtime variation†at
http://physics.nist.gov/constantsbib. For example, see
Fortier

et al.

(2007); Lea (2007). However, there has

been no laboratory observation of time dependence of
any constant that might be relevant to the recommended
values.

C. Outline of paper

Section II touches on special quantities and units, that

is, those that have exact values by deï¬nition.

Sections III-XI review all of the available experimental

and theoretical data that might be relevant to the 2006
adjustment of the values of the constants. As discussed
in Appendix E of CODATA-98, in a least squares anal-
ysis of the fundamental constants the numerical data,
both experimental and theoretical, also called

observa-

tional data

or

input data

, are expressed as functions of

a set of independent variables called

adjusted constants

.

The functions that relate the input data to the adjusted
constants are called

observational equations

, and the least

squares procedure provides best estimated values, in the
least squares sense, of the adjusted constants. The fo-
cus of the review-of-data sections is thus the identiï¬ca-
tion and discussion of the input data and observational
equations of interest for the 2006 adjustment. Although
not all observational equations that we use are explicitly
given in the text, all are summarized in Tables XXXVIII,
XL, and XLII of Sec. XII.B.

As part of our discussion of a particular datum, we

often deduce from it an inferred value of a constant, such
as the ï¬ne-structure constant

α

or Planck constant

h

. It

should be understood, however, that these inferred values
are for comparison purposes only; the datum from which
it is obtained, not the inferred value, is the input datum
in the adjustment.

Although just 4 years separate the 31 December clos-

ing dates of the 2002 and 2006 adjustments, there are
a number of important new results to consider. Experi-
mental advances include the 2003 Atomic Mass Evalua-
tion from the Atomic Mass Data Center (AMDC) that
provides new values for the relative atomic masses

A

r

(

X

)

of a number of relevant atoms; a new value of the elec-
tron magnetic moment anomaly

a

e

from measurements

on a single electron in a cylindrical penning trap that
provides a value of the ï¬ne-structure constant

α

; better

measurements of the relative atomic masses of

2

H,

3

H,

and

4

He; new measurements of transition frequencies in

antiprotonic helium (¯

p

A

He

+

atom) that provide a com-

petitive value of the relative atomic mass of the electron

A

r

(e); improved measurements of the nuclear magnetic

resonance (NMR) frequencies of the proton and deuteron
in the HD molecule and of the proton and triton in the
HT molecule; a highly accurate value of the Planck con-
stant obtained from an improved measurement of the
product

K

2

J

R

K

using a moving-coil watt balance; new

results using combined x-ray and optical interferometers
for the

{

220

}

lattice spacing of single crystals of natu-

rally occurring silicon; and an accurate value of the quo-
tient

h/m

(

87

Rb) obtained by measuring the recoil veloc-

ity of rubidium-87 atoms upon absorption or emission
of photons—a result that provides an accurate value of

α

that is virtually independent of the electron magnetic

moment anomaly.

Theoretical advances include improvements in certain

aspects of the theory of the energy levels of hydrogen
and deuterium; improvements in the theory of antipro-
tonic helium transition frequencies that, together with
the new transition frequency measurements, have led to
the aforementioned competitive value of

A

r

(e); a new

theoretical expression for

a

e

that, together with the new

experimental value of

a

e

, has led to the aforementioned

value of

α

; improvements in the theory of the

g

-factor of

the bound electron in hydrogenic ions with nuclear spin
quantum number

i

= 0 relevant to the determination of

background image

6

A

r

(e); and improved theory of the ground state hyperï¬ne

splitting of muonium âˆ†

ν

Mu

(the

µ

+

e

−

atom).

Section XII describes the analysis of the data, with

the exception of the Newtonian constant of gravitation
which is analyzed in Sec. X. The consistency of the data
and potential impact on the determination of the 2006
recommended values were appraised by comparing mea-
sured values of the same quantity, comparing measured
values of different quantities through inferred values of a
third quantity such as

α

or

h

, and ï¬nally by using the

method of least squares. Based on these investigations,
the ï¬nal set of input data used in the 2006 adjustment
was selected.

Section XIII provides, in several tables, the 2006

CODATA recommended values of the basic constants and
conversion factors of physics and chemistry, including the
covariance matrix of a selected group of constants.

Section XIV concludes the paper with a comparison of

the 2006 and 2002 recommended values of the constants,
a survey of implications for physics and metrology of the
2006 values and adjustment, and suggestions for future
work that can advance our knowledge of the values of the
constants.

II. SPECIAL QUANTITIES AND UNITS

Table I lists those special quantities whose numerical

values are exactly deï¬ned. In the International System
of Units (SI) (BIPM, 2006), which we use throughout
this paper, the deï¬nition of the meter ï¬xes the speed
of light in vacuum

c

, the deï¬nition of the ampere ï¬xes

the magnetic constant (also called the permeability of
vacuum)

µ

0

, and the deï¬nition of the mole ï¬xes the molar

mass of the carbon 12 atom

M

(

12

C) to have the exact

values given in the table. Since the electric constant (also
called the permittivity of vacuum) is related to

µ

0

by

Ç«

0

= 1

/µ

0

c

2

, it too is known exactly.

The relative atomic mass

A

r

(

X

) of an entity

X

is de-

ï¬ned by

A

r

(

X

) =

m

(

X

)

/m

u

, where

m

(

X

) is the mass of

X

and

m

u

is the atomic mass constant deï¬ned by

m

u

=

1

12

m

(

12

C) = 1 u

≈

1

.

66

×

10

−

27

kg

,

(1)

where

m

(

12

C) is the mass of the carbon 12 atom and u is

the uniï¬ed atomic mass unit (also called the dalton, Da).
Clearly,

A

r

(

X

) is a dimensionless quantity and

A

r

(

12

C) =

12 exactly. The molar mass

M

(

X

) of entity

X

, which is

the mass of one mole of

X

with SI unit kg/mol, is given

by

M

(

X

) =

N

A

m

(

X

) =

A

r

(

X

)

M

u

,

(2)

where

N

A

≈

6

.

02

×

10

23

/mol is the Avogadro constant

and

M

u

= 10

−

3

kg/mol is the molar mass constant. The

numerical value of

N

A

is the number of entities in one

mole, and since the deï¬nition of the mole states that one
mole contains the same number of entities as there are in
0.012 kg of carbon 12,

M

(

12

C) = 0

.

012 kg/mol exactly.

The Josephson and quantum Hall effects have played

and continue to play important roles in adjustments of
the values of the constants, because the Josephson and
von Klitzing constants

K

J

and

R

K

, which underlie these

two effects, are related to

e

and

h

by

K

J

=

2

e

h

;

R

K

=

h

e

2

=

µ

0

c

2

α

.

(3)

Although we assume these relations are exact, and no
evidence—either theoretical or experimental—has been
put forward that challenges this assumption, the conse-
quences of relaxing it are explored in Sec. XII.B.2. Some
references to recent work related to the Josephson and
quantum Hall effects may be found in the FCDC biblio-
graphic database (see Sec. I.B).

The next-to-last two entries in Table I are the conven-

tional values of the Josephson and von Klitzing constants
adopted by the International Committee for Weights and
Measures (CIPM) and introduced on 1 January 1990 to
establish worldwide uniformity in the measurement of
electrical quantities. In this paper, all electrical quanti-
ties are expressed in SI units. However, those measured
in terms of the Josephson and quantum Hall effects with
the assumption that

K

J

and

R

K

have these conventional

values are labeled with a subscript 90.

For high-accuracy experiments involving the force of

gravity, such as the watt-balance, an accurate measure-
ment of the local acceleration of free fall at the site of the
experiment is required. Fortunately, portable and easy-
to-use commercial absolute gravimeters are available that
can provide a local value of

g

with a relative standard un-

certainty of a few parts in 10

9

. That these instruments

can achieve such a small uncertainty if properly used is
demonstrated by a periodic international comparison of
absolute gravimeters (ICAG) carried out at the Interna-
tional Bureau of Weights and Measures (BIPM), S`evres,
France; the seventh and most recent, denoted ICAG-
2005, was completed in September 2005 (Vitushkin

et

al.

, 2005); the next is scheduled for 2009. In the future,

atom interferometry or Bloch oscillations using ultracold
atoms could provide a competitive or possibly more ac-
curate method for determining a local value of

g

(Clad´e

et al.

, 2005; McGuirk

et al.

, 2002; Peters

et al.

, 2001).

III. RELATIVE ATOMIC MASSES

Included in the set of adjusted constants are the rel-

ative atomic masses

A

r

(

X

) of a number of particles,

atoms, and ions. Tables II-VI and the following sections
summarize the relevant data.

A. Relative atomic masses of atoms

Most values of the relative atomic masses of neu-

tral atoms used in this adjustment are taken from the
2003 atomic mass evaluation (AME2003) of the Atomic

background image

7

TABLE I Some exact quantities relevant to the 2006 adjustment.

Quantity

Symbol

Value

speed of light in vacuum

c

,

c

0

299 792 458 m s

−

1

magnetic constant

µ

0

4

Ï€

×

10

−

7

N A

−

2

= 12

.

566 370 614

...

×

10

−

7

N A

−

2

electric constant

Ç«

0

(

µ

0

c

2

)

−

1

= 8

.

854 187 817

...

×

10

−

12

F m

−

1

relative atomic mass of

12

C

A

r

(

12

C)

12

molar mass constant

M

u

10

−

3

kg mol

−

1

molar mass of

12

C

A

r

(

12

C)

M

u

M

(

12

C)

12

×

10

−

3

kg mol

−

1

conventional value of Josephson constant

K

J

−

90

483 597

.

9 GHz V

−

1

conventional value of von Klitzing constant

R

K

−

90

25 812

.

807 â„¦

Mass Data Center, Centre de Spectrom´etrie Nucl´eaire
et de Spectrom´etrie de Masse (CSNSM), Orsay, France
(AMDC, 2006; Audi

et al.

, 2003; Wapstra

et al.

, 2003).

The results of AME2003 supersede those of both the 1993
atomic mass evaluation and the 1995 update. Table II
lists the values from AME2003 of interest here, while Ta-
ble III gives the covariance for hydrogen and deuterium
(AMDC, 2003). Other non-negligible covariances of these
values are discussed in the appropriate sections.

Table IV gives six values of

A

r

(

X

) relevant to the 2006

adjustment reported since the completion and publica-
tion of AME2003 in late 2003 that we use in place of the
corresponding values in Table II.

The

3

H and

3

He values are those reported by the

SMILETRAP group at the Manne Siegbahn Laboratory
(MSL), Stockholm, Sweden (Nagy

et al.

, 2006), using a

Penning trap and a time of ï¬‚ight technique to detect
cyclotron resonances. This new

3

He result is in good

agreement with a more accurate, but still preliminary,
result from the University of Washington group in Seat-
tle, USA (Van Dyck, 2006). The AME2003 values for

3

H

and

3

He were influenced by an earlier result for

3

He from

the University of Washington group which is in disagree-
ment with their new result.

The values for

4

He and

16

O are those reported by the

University of Washington group (Van Dyck

et al.

, 2006)

using their improved mass spectrometer; they are based
on a thorough reanalysis of data that yielded preliminary
results for these atoms which were used in AME2003.
They include an experimentally determined image-charge
correction with a relative standard uncertainty

u

r

= 7

.

9

×

10

−

12

in the case of

4

He and

u

r

= 4

.

0

×

10

−

12

in the

case of

16

O. The value of

A

r

(

2

H) is also from this group

and is a near-ï¬nal result based on the analysis of ten
runs carried out over a 4 year period (Van Dyck, 2006).
Because the result is not yet ï¬nal, the total uncertainty is
conservatively assigned;

u

r

= 9

.

9

×

10

−

12

for the image-

charge correction. This value of

A

r

(

2

H) is consistent with

the preliminary value reported by Van Dyck

et al.

(2006)

based on the analysis of only three runs.

The covariance and correlation coefficient of

A

r

(

3

H)

and

A

r

(

3

He) given in Table V are due to the common

component of uncertainty

u

r

= 1

.

4

×

10

−

10

of the rel-

ative atomic mass of the H

+

2

reference ion used in the

SMILETRAP measurements; the covariances and corre-

lation coefficients of the University of Washington values
of

A

r

(

2

H),

A

r

(

4

He), and

A

r

(

16

O) given in Table VI are

due to the uncertainties of the image-charge corrections,
which are based on the same experimentally determined
relation.

The

29

Si value is that implied by the ratio

A

r

(

29

Si

+

)/

A

r

(

28

Si H

+

)= 0

.

999 715 124 1812(65) obtained

at the Massachusetts Institute of Technology (MIT),
Cambridge, USA, using a recently developed technique
of determining mass ratios by directly comparing the cy-
clotron frequencies of two different ions simultaneously
conï¬ned in a Penning trap (Rainville

et al.

, 2005). (The

relative atomic mass work of the MIT group has now
been transferred to Florida State University, Tallahas-
see, USA.) This approach eliminates many components
of uncertainty arising from systematic effects. The value
for

A

r

(

29

Si) is given in the Supplementary Information

to Rainville

et al.

(2005) and has a signiï¬cantly smaller

uncertainty than the corresponding AME2003 value.

B. Relative atomic masses of ions and nuclei

The relative atomic mass

A

r

(

X

) of a neutral atom

X

is given in terms of the relative atomic mass of an ion of
the atom formed by the removal of

n

electrons by

A

r

(

X

) =

A

r

(

X

n

+

) +

nA

r

(e)

−

E

b

(

X

)

−

E

b

(

X

n

+

)

m

u

c

2

.

(4)

Here

E

b

(

X

)

/m

u

c

2

is the relative-atomic-mass equivalent

of the total binding energy of the

Z

electrons of the atom,

where

Z

is the atomic number (proton number), and

E

b

(

X

n

+

)

/m

u

c

2

is the relative-atomic-mass-equivalent of

the binding energy of the

Z

−

n

electrons of the

X

n

+

ion. For a fully stripped atom, that is, for

n

=

Z

,

X

Z

+

is

N

, where

N

represents the nucleus of the atom, and

E

b

(

X

Z

+

)

/m

u

c

2

= 0, which yields the ï¬rst few equations

of Table XL in Sec. XII.B.

The binding energies

E

b

used in this work are the same

as those used in the 2002 adjustment; see Table IV of
CODATA-02. For tritium, which is not included there,
we use the value 1

.

097 185 439

×

10

7

m

−

1

(Kotochigova,

2006). The uncertainties of the binding energies are neg-
ligible for our application.

background image

8

TABLE II Values of the relative atomic masses of the neutron
and various atoms as given in the 2003 atomic mass evaluation
together with the deï¬ned value for

12

C.

Atom

Relative atomic

Relative standard

mass

A

r

(X)

uncertainty

u

r

n

1

.

008 664 915 74(56)

5

.

6

×

10

−

10

1

H

1

.

007 825 032 07(10)

1

.

0

×

10

−

10

2

H

2

.

014 101 777 85(36)

1

.

8

×

10

−

10

3

H

3

.

016 049 2777(25)

8

.

2

×

10

−

10

3

He

3

.

016 029 3191(26)

8

.

6

×

10

−

10

4

He

4

.

002 603 254 153(63)

1

.

6

×

10

−

11

12

C

12

(exact)

16

O

15

.

994 914 619 56(16)

1

.

0

×

10

−

11

28

Si

27

.

976 926 5325(19)

6

.

9

×

10

−

11

29

Si

28

.

976 494 700(22)

7

.

6

×

10

−

10

30

Si

29

.

973 770 171(32)

1

.

1

×

10

−

9

36

Ar

35

.

967 545 105(28)

7

.

8

×

10

−

10

38

Ar

37

.

962 732 39(36)

9

.

5

×

10

−

9

40

Ar

39

.

962 383 1225(29)

7

.

2

×

10

−

11

87

Rb

86

.

909 180 526(12)

1

.

4

×

10

−

10

107

Ag

106

.

905 0968(46)

4

.

3

×

10

−

8

109

Ag

108

.

904 7523(31)

2

.

9

×

10

−

8

133

Cs

132

.

905 451 932(24)

1

.

8

×

10

−

10

TABLE III The variances, covariance, and correlation coeffi-
cient of the AME2003 values of the relative atomic masses of
hydrogen and deuterium. The number in bold above the main
diagonal is 10

18

times the numerical value of the covariance;

the numbers in bold on the main diagonal are 10

18

times the

numerical values of the variances; and the number in italics
below the main diagonal is the correlation coefficient.

A

r

(

1

H)

A

r

(

2

H)

A

r

(

1

H)

0

.

0107 0

.

0027

A

r

(

2

H)

0

.

0735

0

.

1272

C. Cyclotron resonance measurement of the electron
relative atomic mass

A

r

(e)

A value of

A

r

(e) is available from a Penning-trap mea-

surement carried out by the University of Washington
group (Farnham

et al.

, 1995); it is used as an input datum

in the 2006 adjustment, as it was in the 2002 adjustment:

A

r

(e) = 0

.

000 548 579 9111(12)

[2

.

1

×

10

−

9

]

.

(5)

IV. ATOMIC TRANSITION FREQUENCIES

Atomic transition frequencies in hydrogen, deuterium,

and anti-protonic helium yield information on the Ryd-
berg constant, the proton and deuteron charge radii, and
the relative atomic mass of the electron. The hyperï¬ne
splitting in hydrogen and ï¬ne-structure splitting in he-
lium do not yield a competitive value of any constant at
the current level of accuracy of the relevant experiment

TABLE IV Values of the relative atomic masses of various
atoms that have become available since the 2003 atomic mass
evaluation.

Atom

Relative atomic

Relative standard

mass

A

r

(

X

)

uncertainty

u

r

2

H

2

.

014 101 778 040(80)

4

.

0

×

10

−

11

3

H

3

.

016 049 2787(25)

8

.

3

×

10

−

10

3

He

3

.

016 029 3217(26)

8

.

6

×

10

−

10

4

He

4

.

002 603 254 131(62)

1

.

5

×

10

−

11

16

O

15

.

994 914 619 57(18)

1

.

1

×

10

−

11

29

Si

28

.

976 494 6625(20)

6

.

9

×

10

−

11

TABLE V The variances, covariance, and correlation coeffi-
cient of the values of the SMILETRAP relative atomic masses
of tritium and helium three. The number in bold above the
main diagonal is 10

18

times the numerical value of the co-

variance; the numbers in bold on the main diagonal are 10

18

times the numerical values of the variances; and the number
in italics below the main diagonal is the correlation coefficient.

A

r

(

3

H)

A

r

(

3

He)

A

r

(

3

H)

6

.

2500

0

.

1783

A

r

(

3

He)

0

.

0274

6

.

7600

and/or theory. All of these topics are discussed in this
section.

A. Hydrogen and deuterium transition frequencies, the
Rydberg constant

R

∞

, and the proton and deuteron

charge radii

R

p

, R

d

The Rydberg constant is related to other constants by

the deï¬nition

R

∞

=

α

2

m

e

c

2

h

.

(6)

It can be accurately determined by comparing measured
resonant frequencies of transitions in hydrogen (H) and
deuterium (D) to the theoretical expressions for the en-
ergy level differences in which it is a multiplicative factor.

TABLE VI The variances, covariances, and correlation coef-
ï¬cients of the University of Washington values of the relative
atomic masses of deuterium, helium 4, and oxygen 16. The
numbers in bold above the main diagonal are 10

20

times the

numerical values of the covariances; the numbers in bold on
the main diagonal are 10

20

times the numerical values of the

variances; and the numbers in italics below the main diagonal
are the correlation coefficients.

A

r

(

2

H)

A

r

(

4

He)

A

r

(

16

O)

A

r

(

2

H)

0

.

6400

0

.

0631

0

.

1276

A

r

(

4

He)

0

.

1271

0

.

3844

0

.

2023

A

r

(

16

O)

0

.

0886

0

.

1813

3

.

2400

background image

9

1. Theory relevant to the Rydberg constant

The theory of the energy levels of hydrogen and deu-

terium atoms relevant to the determination of the Ryd-
berg constant

R

∞

, based on measurements of transition

frequencies, is summarized in this section. Complete in-
formation necessary to determine the theoretical values
of the relevant energy levels is provided, with an emphasis
on results that have become available since the previous
adjustment described in CODATA-02. For brevity, refer-
ences to earlier work, which can be found in Eides

et al.

(2001b), for example, are not included here.

An important consideration is that the theoretical val-

ues of the energy levels of different states are highly cor-
related. For example, for S states, the uncalculated terms
are primarily of the form of an unknown common con-
stant divided by

n

3

. This fact is taken into account by

calculating covariances between energy levels in addition
to the uncertainties of the individual levels as discussed
in detail in Sec. IV.A.1.l. In order to take these corre-
lations into account, we distinguish between components
of uncertainty that are proportional to 1

/n

3

, denoted by

u

0

, and components of uncertainty that are essentially

random functions of

n

, denoted by

u

n

.

The energy levels of hydrogen-like atoms are deter-

mined mainly by the Dirac eigenvalue, QED effects such
as self energy and vacuum polarization, and nuclear size
and motion effects, all of which are summarized in the
following sections.

a. Dirac eigenvalue

The binding energy of an electron in

a static Coulomb ï¬eld (the external electric ï¬eld of a
point nucleus of charge

Ze

with inï¬nite mass) is deter-

mined predominantly by the Dirac eigenvalue

E

D

=

f

(

n, j

)

m

e

c

2

,

(7)

where

f

(

n, j

) =

1 +

(

Zα

)

2

(

n

−

δ

)

2

−

1

/

2

,

(8)

n

and

j

are the principal quantum number and total

angular momentum of the state, respectively, and

δ

=

j

+

1
2

−

(

j

+

1
2

)

2

−

(

Zα

)

2

1

/

2

.

(9)

Although we are interested only in the case where the
nuclear charge is

e

, we retain the atomic number

Z

in

order to indicate the nature of various terms.

Corrections to the Dirac eigenvalue that approximately

take into account the ï¬nite mass of the nucleus

m

N

are

included in the more general expression for atomic energy
levels, which replaces Eq. (7) (Barker and Glover, 1955;
Sapirstein and Yennie, 1990):

E

M

=

M c

2

+ [

f

(

n, j

)

−

1]

m

r

c

2

−

[

f

(

n, j

)

−

1]

2

m

2

r

c

2

2

M

+

1

−

δ

l

0

κ

(2

l

+ 1)

(

Zα

)

4

m

3

r

c

2

2

n

3

m

2

N

+

· Â· Â·

,

(10)

where

l

is the nonrelativistic orbital angular momentum

quantum number,

κ

is the angular-momentum-parity

quantum number

κ

= (

−

1)

j

−

l

+1

/

2

(

j

+

1
2

),

M

=

m

e

+

m

N

,

and

m

r

=

m

e

m

N

/

(

m

e

+

m

N

) is the reduced mass.

b. Relativistic recoil

Relativistic corrections to Eq. (10)

associated with motion of the nucleus are considered
relativistic-recoil corrections. The leading term, to low-
est order in

Zα

and all orders in

m

e

/m

N

, is (Erickson,

1977; Sapirstein and Yennie, 1990)

E

S

=

m

3

r

m

2

e

m

N

(

Zα

)

5

Ï€

n

3

m

e

c

2

×

1
3

δ

l

0

ln(

Zα

)

−

2

−

8
3

ln

k

0

(

n, l

)

−

1
9

δ

l

0

−

7
3

a

n

−

2

m

2

N

−

m

2

e

δ

l

0

m

2

N

ln

m

e

m

r

−

m

2

e

ln

m

N

m

r

 

,

(11)

where

a

n

=

−

2

"

ln

2

n

+

n

X

i

=1

1

i

+ 1

−

1

2

n

#

δ

l

0

+

1

−

δ

l

0

l

(

l

+ 1)(2

l

+ 1)

.

(12)

To lowest order in the mass ratio, higher-order cor-

rections in

Zα

have been extensively investigated; the

contribution of the next two orders in

Zα

is

E

R

=

m

e

m

N

(

Zα

)

6

n

3

m

e

c

2

×

D

60

+

D

72

Zα

ln

2

(

Zα

)

−

2

+

· Â· Â·

,

(13)

where for

n

S

1

/

2

states (Eides and Grotch, 1997c;

Pachucki and Grotch, 1995)

D

60

= 4 ln 2

−

7
2

(14)

and (Melnikov and Yelkhovsky, 1999; Pachucki and
Karshenboim, 1999)

D

72

=

−

11

60

Ï€

,

(15)

and for states with

l

≥

1 (Elkhovski˘ı, 1996; Golosov

et al.

,

1995; Jentschura and Pachucki, 1996)

D

60

=

3

−

l

(

l

+ 1)

n

2

2

(4

l

2

−

1)(2

l

+ 3)

.

(16)

In Eq. (16) and subsequent discussion, the ï¬rst subscript
on the coefficient of a term refers to the power of

Zα

and the second subscript to the power of ln(

Zα

)

−

2

. The

relativistic recoil correction used in the 2006 adjustment
is based on Eqs. (11) to (16). The estimated uncertainty

background image

10

for S states is taken to be 10 % of Eq. (13), and for states
with

l

≥

1, it is taken to be 1 % of that equation.

Numerical values for the complete contribution of

Eq. (13) to all orders in

Zα

have been obtained by

(Shabaev

et al.

, 1998). Although the difference between

the all-orders calculation and the truncated power series
for S states is about three times their quoted uncertainty,
the two results are consistent within the uncertainty as-
signed here. The covariances of the theoretical values
are calculated by assuming that the uncertainties are
predominately due to uncalculated terms proportional to
(

m

e

/m

N

)

/n

3

.

c. Nuclear polarization

Interactions between the atomic

electron and the nucleus which involve excited states
of the nucleus give rise to nuclear polarization correc-
tions. For hydrogen, we use the result (Khriplovich and
Sen’kov, 2000)

E

P

(H) =

−

0

.

070(13)

h

δ

l

0

n

3

kHz

.

(17)

For deuterium, the sum of the proton polarizability, the
neutron polarizability (Khriplovich and Sen’kov, 1998),
and the dominant nuclear structure polarizability (Friar
and Payne, 1997a), gives

E

P

(D) =

−

21

.

37(8)

h

δ

l

0

n

3

kHz

.

(18)

We assume that this effect is negligible in states of higher

l

.

d. Self energy

The one-photon electron self energy is

given by

E

(2)

SE

=

α

Ï€

(

Zα

)

4

n

3

F

(

Zα

)

m

e

c

2

,

(19)

where

F

(

Zα

) =

A

41

ln(

Zα

)

−

2

+

A

40

+

A

50

(

Zα

)

+

A

62

(

Zα

)

2

ln

2

(

Zα

)

−

2

+

A

61

(

Zα

)

2

ln(

Zα

)

−

2

+

G

SE

(

Zα

) (

Zα

)

2

.

(20)

From Erickson and Yennie (1965) and earlier papers cited
therein,

A

41

=

4
3

δ

l

0

A

40

=

−

4
3

ln

k

0

(

n, l

) +

10

9

δ

l

0

−

1

2

κ

(2

l

+ 1)

(1

−

δ

l

0

)

A

50

=

139

32

−

2 ln 2

Ï€

δ

l

0

(21)

A

62

=

−

δ

l

0

A

61

=

4

1 +

1
2

+

· Â· Â·

+

1

n

+

28

3

ln 2

−

4 ln

n

−

601
180

−

77

45

n

2

δ

l

0

+

1

−

1

n

2

 

2

15

+

1
3

δ

j

1
2

δ

l

1

+

96

n

2

−

32

l

(

l

+ 1)

3

n

2

(2

l

−

1)(2

l

)(2

l

+ 1)(2

l

+ 2)(2

l

+ 3)

(1

−

δ

l

0

)

.

TABLE VII Bethe logarithms ln

k

0

(

n, l

) relevant to the de-

termination of

R

∞

.

n

S

P

D

1

2

.

984 128 556

2

2

.

811 769 893

−

0

.

030 016 709

3

2

.

767 663 612

4

2

.

749 811 840

−

0

.

041 954 895

−

0

.

006 740 939

6

2

.

735 664 207

−

0

.

008 147 204

8

2

.

730 267 261

−

0

.

008 785 043

12

−

0

.

009 342 954

The Bethe logarithms ln

k

0

(

n, l

) in Eq. (21) are given in

Table VII (Drake and Swainson, 1990).

The function

G

SE

(

Zα

) in Eq. (20) is the higher-order

contribution (in

Zα

) to the self energy, and the values for

G

SE

(

α

) that we use here are listed in Table VIII. For S

and P states with

n

≤

4 the values in the table are based

on direct numerical evaluations by Jentschura and Mohr
(2004, 2005); Jentschura

et al.

(1999, 2001). The values

of

G

SE

(

α

) for the 6S and 8S states are based on the low-

Z

limit of this function

G

SE

(0) =

A

60

(Jentschura

et al.

,

2005a) together with extrapolations of the results of com-
plete numerical calculations of

F

(

Zα

) [see Eq. (20)] at

higher

Z

(Kotochigova and Mohr, 2006). The values of

G

SE

(

α

) for D states are from Jentschura

et al.

(2005b)

The dominant effect of the ï¬nite mass of the nucleus on

the self energy correction is taken into account by mul-
tiplying each term of

F

(

Zα

) by the reduced-mass fac-

tor (

m

r

/m

e

)

3

, except that the magnetic moment term

−

1

/

[2

κ

(2

l

+ 1)] in

A

40

is instead multiplied by the factor

(

m

r

/m

e

)

2

. In addition, the argument (

Zα

)

−

2

of the log-

arithms is replaced by (

m

e

/m

r

)(

Zα

)

−

2

(Sapirstein and

Yennie, 1990).

The uncertainty of the self energy contribution to a

given level arises entirely from the uncertainty of

G

SE

(

α

)

listed in Table VIII and is taken to be entirely of type

u

n

.

e. Vacuum

polarization

The

second-order

vacuum-

polarization level shift is

E

(2)

VP

=

α

Ï€

(

Zα

)

4

n

3

H

(

Zα

)

m

e

c

2

,

(22)

where the function

H

(

Zα

) is divided into the part cor-

responding to the Uehling potential, denoted here by

H

(1)

(

Zα

), and the higher-order remainder

H

(R)

(

Zα

),

where

H

(1)

(

Zα

) =

V

40

+

V

50

(

Zα

) +

V

61

(

Zα

)

2

ln(

Zα

)

−

2

+

G

(1)
VP

(

Zα

) (

Zα

)

2

(23)

H

(R)

(

Zα

) =

G

(R)
VP

(

Zα

) (

Zα

)

2

,

(24)

background image

11

TABLE VIII Values of the function

G

SE

(

α

).

n

S

1

/

2

P

1

/

2

P

3

/

2

D

3

/

2

D

5

/

2

1

−

30

.

290 240(20)

2

−

31

.

185 150(90)

−

0

.

973 50(20)

−

0

.

486 50(20)

3

−

31

.

047 70(90)

4

−

30

.

9120(40)

−

1

.

1640(20)

−

0

.

6090(20)

0

.

031 63(22)

6

−

30

.

711(47)

0

.

034 17(26)

8

−

30

.

606(47)

0

.

007 940(90)

0

.

034 84(22)

12

0

.

0080(20)

0

.

0350(30)

with

V

40

=

−

4

15

δ

l

0

V

50

=

5

48

Ï€

δ

l

0

(25)

V

61

=

−

2

15

δ

l

0

.

The part

G

(1)
VP

(

Zα

) arises from the Uehling potential

with values given in Table IX (Kotochigova

et al.

, 2002;

Mohr, 1982). The higher-order remainder

G

(R)
VP

(

Zα

) has

been considered by Wichmann and Kroll, and the leading
terms in powers of

Zα

are (Mohr, 1975, 1983; Wichmann

and Kroll, 1956)

G

(R)
VP

(

Zα

) =

19
45

−

Ï€

2

27

δ

l

0

+

1

16

−

31

Ï€

2

2880

Ï€

(

Zα

)

δ

l

0

+

· Â· Â·

.

(26)

Higher-order terms omitted from Eq. (26) are negligible.

In a manner similar to that for the self energy, the

leading effect of the ï¬nite mass of the nucleus is taken into
account by multiplying Eq. (22) by the factor (

m

r

/m

e

)

3

and including a multiplicative factor of (

m

e

/m

r

) in the

argument of the logarithm in Eq. (23).

There is also a second-order vacuum polarization level

shift due to the creation of virtual particle pairs other
than the e

−

e

+

pair. The predominant contribution for

n

S states arises from

µ

+

µ

−

, with the leading term being

(Eides and Shelyuto, 1995; Karshenboim, 1995)

E

(2)

µ

VP

=

α

Ï€

(

Zα

)

4

n

3

−

4

15

 

m

e

m

µ

2

m

r

m

e

3

m

e

c

2

.

(27)

The next order term in the contribution of muon vacuum
polarization to

n

S states is of relative order

Zαm

e

/m

µ

and is therefore negligible. The analogous contribution

E

(2)

Ï„

VP

from

Ï„

+

Ï„

−

(

−

18 Hz for the 1S state) is also negli-

gible at the level of uncertainty of current interest.

For the hadronic vacuum polarization contribution, we

take the result given by Friar

et al.

(1999) that utilizes

all available e

+

e

−

scattering data:

E

(2)

had VP

= 0

.

671(15)

E

(2)

µ

VP

,

(28)

where the uncertainty is of type

u

0

.

The muonic and hadronic vacuum polarization contri-

butions are negligible for P and D states.

f. Two-photon corrections

Corrections from two virtual

photons have been partially calculated as a power series
in

Zα

:

E

(4)

=

α

Ï€

2

(

Zα

)

4

n

3

m

e

c

2

F

(4)

(

Zα

)

,

(29)

where

F

(4)

(

Zα

) =

B

40

+

B

50

(

Zα

) +

B

63

(

Zα

)

2

ln

3

(

Zα

)

−

2

+

B

62

(

Zα

)

2

ln

2

(

Zα

)

−

2

+

B

61

(

Zα

)

2

ln(

Zα

)

−

2

+

B

60

(

Zα

)

2

+

· Â· Â·

.

(30)

The leading term

B

40

is well known:

B

40

=

3

Ï€

2

2

ln 2

−

10

Ï€

2

27

−

2179

648

−

9
4

ζ

(3)

δ

l

0

+

Ï€

2

ln 2

2

−

Ï€

2

12

−

197
144

−

3

ζ

(3)

4

1

−

δ

l

0

κ

(2

l

+ 1)

.

(31)

The second term is (Eides

et al.

, 1997; Eides and She-

lyuto, 1995; Pachucki, 1993a, 1994)

B

50

=

−

21

.

5561(31)

δ

l

0

,

(32)

and the next coefficient is (Karshenboim, 1993; Manohar
and Stewart, 2000; Pachucki, 2001; Yerokhin, 2000)

B

63

=

−

8

27

δ

l

0

.

(33)

For S states the coefficient

B

62

is given by

B

62

=

16

9

71
60

−

ln 2 +

γ

+

ψ

(

n

)

−

ln

n

−

1

n

+

1

4

n

2

,

(34)

where

γ

= 0

.

577

...

is Euler’s constant and

ψ

is the psi

function (Abramowitz and Stegun, 1965). The difference

B

62

(1)

−

B

62

(

n

) was calculated by Karshenboim (1996)

background image

12

TABLE IX Values of the function

G

(1)
VP

(

α

).

n

S

1

/

2

P

1

/

2

P

3

/

2

D

3

/

2

D

5

/

2

1

−

0

.

618 724

2

−

0

.

808 872

−

0

.

064 006

−

0

.

014 132

3

−

0

.

814 530

4

−

0

.

806 579

−

0

.

080 007

−

0

.

017 666

−

0

.

000 000

6

−

0

.

791 450

−

0

.

000 000

8

−

0

.

781 197

−

0

.

000 000

−

0

.

000 000

12

−

0

.

000 000

−

0

.

000 000

and conï¬rmed by Pachucki (2001) who also calculated
the

n

-independent additive constant. For P states the

calculated value is (Karshenboim, 1996)

B

62

=

4

27

n

2

−

1

n

2

.

(35)

This result has been conï¬rmed by Jentschura and
N´

andori (2002) who also show that for D and higher an-

gular momentum states

B

62

= 0.

Recent work has led to new results for

B

61

and higher-

order coefficients. In Jentschura

et al.

(2005a) an ad-

ditional state-independent contribution to the coefficient

B

61

for S states is given, which slightly differs (2 %) from

the earlier result of Pachucki (2001) quoted in CODATA
2002. The revised coefficient for S states is

B

61

=

413 581

64 800

+

4

N

(

n

S)

3

+

2027

Ï€

2

864

−

616 ln 2

135

−

2

Ï€

2

ln 2

3

+

40 ln

2

2

9

+

ζ

(3) +

304
135

−

32 ln 2

9

×

3
4

+

γ

+

ψ

(

n

)

−

ln

n

−

1

n

+

1

4

n

2

,

(36)

where

ζ

is the Riemann zeta function (Abramowitz and

Stegun, 1965). The coefficients

N

(

n

S) are listed in Ta-

ble X. The state-dependent part

B

61

(

n

S)

−

B

61

(1S) was

conï¬rmed by Jentschura

et al.

(2005a) in their Eqs. (4.26)

and (6.3). For higher-

l

states,

B

61

has been calculated

by Jentschura

et al.

(2005a); for P states

B

61

(

n

P

1

/

2

) =

4
3

N

(

n

P) +

n

2

−

1

n

2

166
405

−

8

27

ln 2

,

(37)

B

61

(

n

P

3

/

2

) =

4
3

N

(

n

P) +

n

2

−

1

n

2

31

405

−

8

27

ln 2

,

(38)

and for D states

B

61

(

n

D) = 0

.

(39)

The coefficient

B

61

also vanishes for states with

l >

2.

The necessary values of

N

(

n

P) are given in Eq. (17) of

Jentschura (2003) and are listed in Table X.

The next term is

B

60

, and recent work has also been

done for this contribution. For S states, the state depen-
dence is considered ï¬rst, and is given by Czarnecki

et al.

(2005); Jentschura

et al.

(2005a)

B

60

(

n

S)

−

B

60

(1S) =

b

L

(

n

S)

−

b

L

(1S) +

A

(

n

)

,

(40)

TABLE X Values of

N

used in the 2006 adjustment

n

N

(

n

S)

N

(

n

P)

1

17

.

855 672 03(1)

2

12

.

032 141 58(1)

0

.

003 300 635(1)

3

10

.

449 809(1)

4

9

.

722 413(1)

−

0

.

000 394 332(1)

6

9

.

031 832(1)

8

8

.

697 639(1)

where

A

(

n

) =

38
45

−

4
3

ln 2

[

N

(

n

S)

−

N

(1S)]

−

337 043
129 600

−

94 261

21 600

n

+

902 609

129 600

n

2

+

4
3

−

16

9

n

+

4

9

n

2

ln

2

2

+

−

76
45

+

304

135

n

−

76

135

n

2

ln 2

+

−

53
15

+

35

2

n

−

419

30

n

2

ζ

(2) ln 2

+

28 003
10 800

−

11

2

n

+

31 397

10 800

n

2

ζ

(2)

+

53
60

−

35

8

n

+

419

120

n

2

ζ

(3)

+

37 793
10 800

+

16

9

ln

2

2

−

304
135

ln 2 + 8

ζ

(2) ln 2

−

13

3

ζ

(2)

−

2

ζ

(3)

[

γ

+

ψ

(

n

)

−

ln

n

]

.

(41)

The term

A

(

n

) makes a small contribution in the range

0.3 to 0.4 for the states under consideration.

The two-loop Bethe logarithms

b

L

in Eq. (40) are

listed in Table XI. The values for

n

= 1 to 6 are from

Jentschura (2004); Pachucki and Jentschura (2003), and
the value at

n

= 8 is obtained by extrapolation of the

calculated values from

n

= 4 to 6 [

b

L

(5S) =

−

60

.

6(8)]

with a function of the form

b

L

(

n

S) =

a

+

b

n

+

c

n

(

n

+ 1)

,

(42)

background image

13

which yields

b

L

(

n

S) =

−

55

.

8

−

24

n

.

(43)

It happens that the ï¬t gives

c

= 0. An estimate for

B

60

given by

B

60

(

n

S) =

b

L

(

n

S) +

10

9

N

(

n

S) +

· Â· Â·

(44)

was derived by Pachucki (2001). The dots represent

uncalculated contributions at the relative level of 15 %
(Pachucki and Jentschura, 2003). Equation (44) gives

B

60

(1S) =

−

61

.

6(9

.

2). However, more recently Yerokhin

et al.

(2003, 2005a,b, 2007) have calculated the 1S-state

two-loop self energy correction for

Z

≥

10. This is ex-

pected to give the main contribution to the higher-order
two-loop correction. Their results extrapolated to

Z

= 1

yield a value for the contribution of all terms of order

B

60

or higher of

−

127

×

(1

±

0

.

3), which corresponds to a

value of roughly

B

60

=

−

129(39), assuming a linear ex-

trapolation from

Z

= 1 to

Z

= 0. This differs by about a

factor of two from the result given by Eq. (44). In view of
this difference between the two calculations, for the 2006
adjustment, we use the average of the two values with an
uncertainty that is half the difference, which gives

B

60

(1S) =

−

95

.

3(0

.

3)(33

.

7)

.

(45)

In Eq. (45), the ï¬rst number in parentheses is the state-
dependent uncertainty

u

n

(

B

60

) associated with the two-

loop Bethe logarithm, and the second number in paren-
theses is the state-independent uncertainty

u

0

(

B

60

) that

is common to all S-state values of

B

60

. Values of

B

60

for

all relevant S-states are given in Table XI. For higher-

l

states,

B

60

has not been calculated, so we take it

to be zero, with uncertainties

u

n

[

B

60

(

n

P)] = 5

.

0 and

u

n

[

B

60

(

n

D)] = 1

.

0. We assume that these uncertain-

ties account for higher-order P and D state uncertainties
as well. For S states, higher-order terms have been es-
timated by Jentschura

et al.

(2005a) with an effective

potential model. They ï¬nd that the next term has a
coefficient of

B

72

and is state independent. We thus as-

sume that the uncertainty

u

0

[

B

60

(

n

S)] is sufficient to ac-

count for the uncertainty due to omitting such a term
and higher-order state-independent terms. In addition,
they ï¬nd an estimate for the state dependence of the next
term, given by

∆

B

71

(

n

S) =

B

71

(

n

S)

−

B

71

(1S) =

Ï€

427

36

−

16

3

ln 2

×

3
4

−

1

n

+

1

4

n

2

+

γ

+

ψ

(

n

)

−

ln

n

(46)

with a relative uncertainty of 50 %. We include this ad-
ditional term, which is listed in Table XI, along with the
estimated uncertainty

u

n

(

B

71

) =

B

71

/

2.

The disagreement of the analytic and numerical calcu-

lations results in an uncertainty of the two-photon contri-
bution that is larger than the estimated uncertainty used

TABLE XI Values of

b

L

,

B

60

, and âˆ†

B

71

used in the 2006

adjustment

n

b

L

(

n

S)

B

60

(

n

S)

∆

B

71

(

n

S)

1

−

81

.

4(0

.

3)

−

95

.

3(0

.

3)(33

.

7)

2

−

66

.

6(0

.

3)

−

80

.

2(0

.

3)(33

.

7)

16(8)

3

−

63

.

5(0

.

6)

−

77

.

0(0

.

6)(33

.

7)

22(11)

4

−

61

.

8(0

.

8)

−

75

.

3(0

.

8)(33

.

7)

25(12)

6

−

59

.

8(0

.

8)

−

73

.

3(0

.

8)(33

.

7)

28(14)

8

−

58

.

8(2

.

0)

−

72

.

3(2

.

0)(33

.

7)

29(15)

in the 2002 adjustment. As a result, the uncertainties of
the recommended values of the Rydberg constant and
proton and deuteron radii are slightly larger in the 2006
adjustment, although the 2002 and 2006 recommended
values are consistent with each other. On the other hand,
the uncertainty of the 2P state ï¬ne structure is reduced
as a result of the new analytic calculations.

As in the case of the order

α

self-energy and vacuum-

polarization contributions, the dominant effect of the ï¬-
nite mass of the nucleus is taken into account by mul-
tiplying each term of the two-photon contribution by
the reduced-mass factor (

m

r

/m

e

)

3

, except that the mag-

netic moment term, the second line of Eq. (31), is in-
stead multiplied by the factor (

m

r

/m

e

)

2

. In addition,

the argument (

Zα

)

−

2

of the logarithms is replaced by

(

m

e

/m

r

)(

Zα

)

−

2

.

g. Three-photon corrections

The leading contribution

from three virtual photons is expected to have the form

E

(6)

=

α

Ï€

3

(

Zα

)

4

n

3

m

e

c

2

[

C

40

+

C

50

(

Zα

) +

· Â· Â·

]

,

(47)

in analogy with Eq. (29) for two photons. The leading
term

C

40

is (Baikov and Broadhurst, 1995; Eides and

Grotch, 1995a; Laporta and Remiddi, 1996; Melnikov and

background image

14

van Ritbergen, 2000)

C

40

=

−

568 a

4

9

+

85

ζ

(5)

24

−

121

Ï€

2

ζ

(3)

72

−

84 071

ζ

(3)

2304

−

71 ln

4

2

27

−

239

Ï€

2

ln

2

2

135

+

4787

Ï€

2

ln 2

108

+

1591

Ï€

4

3240

−

252 251

Ï€

2

9720

+

679 441

93 312

δ

l

0

+

−

100 a

4

3

+

215

ζ

(5)

24

−

83

Ï€

2

ζ

(3)

72

−

139

ζ

(3)

18

−

25 ln

4

2

18

+

25

Ï€

2

ln

2

2

18

+

298

Ï€

2

ln 2

9

+

239

Ï€

4

2160

−

17 101

Ï€

2

810

−

28 259

5184

1

−

δ

l

0

κ

(2

l

+ 1)

,

(48)

where

a

4

=

P

∞

n

=1

1

/

(2

n

n

4

) = 0

.

517 479 061

. . .

. Higher-

order terms have not been calculated, although partial
results have been obtained (Eides and Shelyuto, 2007).
An uncertainty is assigned by taking

u

0

(

C

50

) = 30

δ

l

0

and

u

n

(

C

63

) = 1, where

C

63

is deï¬ned by the usual con-

vention. The dominant effect of the ï¬nite mass of the
nucleus is taken into account by multiplying the term
proportional to

δ

l

0

by the reduced-mass factor (

m

r

/m

e

)

3

and the term proportional to 1

/

[

κ

(2

l

+ 1)], the magnetic

moment term, by the factor (

m

r

/m

e

)

2

.

The contribution from four photons is expected to be

of order

α

Ï€

4

(

Zα

)

4

n

3

m

e

c

2

,

(49)

which is about 10 Hz for the 1S state and is negligible at
the level of uncertainty of current interest.

h. Finite nuclear size

At low

Z

, the leading contribution

due to the ï¬nite size of the nucleus is

E

(0)

NS

=

E

NS

δ

l

0

,

(50)

with

E

NS

=

2
3

m

r

m

e

3

(

Zα

)

2

n

3

m

e

c

2

ZαR

N

λ

C

2

,

(51)

where

R

N

is the bound-state root-mean-square (rms)

charge radius of the nucleus and

λ

C

is the Compton wave-

length of the electron divided by 2

Ï€

. The leading higher-

order contributions have been examined by Friar (1979b);
Friar and Payne (1997b); Karshenboim (1997) [see also
Borisoglebsky and Troï¬menko (1979); Mohr (1983)]. The
expressions that we employ to evaluate the nuclear size

correction are the same as those discussed in more detail
in CODATA-98.

For S states the leading and next-order corrections are

given by

E

NS

=

E

NS

(

1

−

C

η

m

r

m

e

R

N

λ

C

Zα

−

ln

m

r

m

e

R

N

λ

C

Zα

n

+

ψ

(

n

) +

γ

−

(5

n

+ 9)(

n

−

1)

4

n

2

−

C

θ

(

Zα

)

2

)

,

(52)

where

C

η

and

C

θ

are constants that depend on the details

of the assumed charge distribution in the nucleus. The
values used here are

C

η

= 1

.

7(1) and

C

θ

= 0

.

47(4) for

hydrogen or

C

η

= 2

.

0(1) and

C

θ

= 0

.

38(4) for deuterium.

For the P

1

/

2

states in hydrogen the leading term is

E

NS

=

E

NS

(

Zα

)

2

(

n

2

−

1)

4

n

2

.

(53)

For P

3

/

2

states and D states the nuclear-size contribution

is negligible.

i. Nuclear-size correction to self energy and vacuum polar-
ization

For the self energy, the additional contribution

due to the ï¬nite size of the nucleus is (Eides and Grotch,
1997b; Milstein

et al.

, 2002, 2003a; Pachucki, 1993b)

E

NSE

=

4 ln 2

−

23

4

α

(

Zα

)

E

NS

δ

l

0

,

(54)

and for the vacuum polarization it is (Eides and Grotch,
1997b; Friar, 1979a, 1981; Hylton, 1985)

E

NVP

=

3
4

α

(

Zα

)

E

NS

δ

l

0

.

(55)

For the self-energy term, higher-order size corrections

for S states (Milstein

et al.

, 2002) and size corrections

for P states have been calculated (Jentschura, 2003; Mil-
stein

et al.

, 2003b), but these corrections are negligible

for the current work, and are not included. The D-state
corrections are assumed to be negligible.

j. Radiative-recoil corrections

The dominant effect of nu-

clear motion on the self energy and vacuum polarization
has been taken into account by including appropriate
reduced-mass factors. The additional contributions be-
yond this prescription are termed radiative-recoil effects
with leading terms given by

E

RR

=

m

3

r

m

2

e

m

N

α

(

Zα

)

5

Ï€

2

n

3

m

e

c

2

δ

l

0

×

6

ζ

(3)

−

2

Ï€

2

ln 2 +

35

Ï€

2

36

−

448

27

+

2
3

Ï€

(

Zα

) ln

2

(

Zα

)

−

2

+

· Â· Â·

.

(56)

background image

15

The constant term in Eq. (56) is the sum of the an-
alytic result for the electron-line contribution (Czar-
necki and Melnikov, 2001; Eides

et al.

, 2001a) and

the vacuum-polarization contribution (Eides and Grotch,
1995b; Pachucki, 1995). This term agrees with the nu-
merical value (Pachucki, 1995) used in CODATA-98. The
log-squared term has been calculated by Pachucki and
Karshenboim (1999) and by Melnikov and Yelkhovsky
(1999).

For the uncertainty, we take a term of order

(

Zα

) ln(

Zα

)

−

2

relative to the square brackets in Eq. (56)

with numerical coefficients 10 for

u

0

and 1 for

u

n

. These

coefficients are roughly what one would expect for the
higher-order uncalculated terms. For higher-

l

states in

the present evaluation, we assume that the uncertainties
of the two- and three-photon corrections are much larger
than the uncertainty of the radiative-recoil correction.
Thus, we assign no uncertainty for the radiative-recoil
correction for P and D states.

k. Nucleus self energy

An additional contribution due to

the self energy of the nucleus has been given by Pachucki
(1995):

E

SEN

=

4

Z

2

α

(

Zα

)

4

3

Ï€

n

3

m

3

r

m

2

N

c

2

×

ln

m

N

m

r

(

Zα

)

2

δ

l

0

−

ln

k

0

(

n, l

)

.

(57)

This correction has also been examined by Eides

et al.

(2001b), who consider how it is modiï¬ed by the effect of
structure of the proton. The structure effect would lead
to an additional model-dependent constant in the square
brackets in Eq. (57).

To evaluate the nucleus self-energy correction, we use

Eq. (57) and assign an uncertainty

u

0

that corresponds

to an additive constant of 0.5 in the square brackets for
S states. For P and D states, the correction is small
and its uncertainty, compared to other uncertainties, is
negligible.

l. Total energy and uncertainty

The total energy

E

X

n

L

j

of

a particular level (where L = S, P, ... and

X

= H, D)

is the sum of the various contributions listed above plus
an additive correction

δ

X

n

L

j

that accounts for the uncer-

tainty in the theoretical expression for

E

X

n

L

j

. Our theo-

retical estimate of the value of

δ

X

n

L

j

for a particular level

is zero with a standard uncertainty of

u

(

δ

X

n

L

j

) equal to

the square root of the sum of the squares of the indi-
vidual uncertainties of the contributions; as they are de-
ï¬ned above, the contributions to the energy of a given
level are independent. (Components of uncertainty asso-
ciated with the fundamental constants are not included
here, because they are determined by the least squares
adjustment itself.) Thus, we have for the square of the

uncertainty, or variance, of a particular level

u

2

(

δ

X

n

L

j

) =

X

i

u

2

0

i

(

XLj

) +

u

2

ni

(

XLj

)

n

6

,

(58)

where

the

individual

values

u

0

i

(

XLj

)

/n

3

and

u

ni

(

XLj

)

/n

3

are

the

components

of

uncertainty

from each of the contributions, labeled by

i

, discussed

above. (The factors of 1

/n

3

are isolated so that

u

0

i

(

XLj

)

is explicitly independent of

n

.)

The covariance of any two

δ

’s follows from Eq. (F7) of

Appendix F of CODATA-98. For a given isotope

X

, we

have

u

(

δ

X

n

1

L

j

, Î´

X

n

2

L

j

) =

X

i

u

2

0

i

(

XLj

)

(

n

1

n

2

)

3

,

(59)

which follows from the fact that

u

(

u

0

i

, u

ni

) = 0 and

u

(

u

n

1

i

, u

n

2

i

) = 0 for

n

1

6

=

n

2

. We also set

u

(

δ

X

n

1

L

1

j

1

, Î´

X

n

2

L

2

j

2

) = 0

,

(60)

if L

1

6

= L

2

or

j

1

6

=

j

2

.

For covariances between

δ

’s for hydrogen and deu-

terium, we have for states of the same

n

u

(

δ

H

n

L

j

, Î´

D

n

L

j

)

=

X

i

=

i

c

u

0

i

(HL

j

)

u

0

i

(DL

j

) +

u

ni

(HL

j

)

u

ni

(DL

j

)

n

6

,

(61)

and for

n

1

6

=

n

2

u

(

δ

H

n

1

L

j

, Î´

D

n

2

L

j

) =

X

i

=

i

c

u

0

i

(HL

j

)

u

0

i

(DL

j

)

(

n

1

n

2

)

3

,

(62)

where the summation is over the uncertainties common
to hydrogen and deuterium. In most cases, the uncer-
tainties can in fact be viewed as common except for a
known multiplicative factor that contains all of the mass
dependence. We assume

u

(

δ

H

n

1

L

1

j

1

, Î´

D

n

2

L

2

j

2

) = 0

,

(63)

if L

1

6

= L

2

or

j

1

6

=

j

2

.

The values of

u

(

δ

X

n

L

j

) of interest for the 2006 adjust-

ment are given in Table XXVIII of Sec. XII, and the non
negligible covariances of the

δ

’s are given in the form

of correlation coefficients in Table XXIX of that section.
These coefficients are as large as 0.9999.

Since the transitions between levels are measured in

frequency units (Hz), in order to apply the above equa-
tions for the energy level contributions we divide the the-
oretical expression for the energy difference âˆ†

E

of the

transition by the Planck constant

h

to convert it to a

frequency. Further, since we take the Rydberg constant

R

∞

=

α

2

m

e

c/

2

h

(expressed in m

−

1

) rather than the elec-

tron mass

m

e

to be an adjusted constant, we replace the

group of constants

α

2

m

e

c

2

/

2

h

in âˆ†

E/h

by

cR

∞

.

background image

16

m. Transition frequencies between levels with

n

= 2

As an

indication of the consistency of the theory summarized
above and the experimental data, we list below values of
the transition frequencies between levels with

n

= 2 in

hydrogen. These results are based on values of the con-
stants obtained in a variation of the 2006 least squares
adjustment in which the measurements of the directly
related transitions (items

A

38,

A

39

.

1, and

A

39

.

2 in Ta-

ble XXVIII) are not included, and the weakly coupled
constants

A

r

(e),

A

r

(p),

A

r

(d), and

α

, are assigned their

2006 adjusted values. The results are

ν

H

(2P

1

/

2

−

2S

1

/

2

) = 1 057 843

.

9(2

.

5) kHz

[2

.

3

×

10

−

6

]

ν

H

(2S

1

/

2

−

2P

3

/

2

) = 9 911 197

.

6(2

.

5) kHz

[2

.

5

×

10

−

7

]

ν

H

(2P

1

/

2

−

2P

3

/

2

)

= 10 969 041

.

475(99) kHz

[9

.

0

×

10

−

9

]

,

(64)

which agree well with the relevant experimental results of
Table XXVIII. Although the ï¬rst two values in Eq. (64)
have changed only slightly from the results of the 2002
adjustment, the third value, the ï¬ne-structure splitting,
has an uncertainty that is almost an order-of-magnitude
smaller than the 2002 value, due mainly to improvements
in the theory of the two-photon correction.

A value of the ï¬ne structure constant

α

can be obtained

from the data on the hydrogen and deuterium transi-
tions. This is done by running a variation of the 2006
least-squares adjustment that includes all the transition
frequency data in Table XXVIII and the 2006 adjusted
values of

A

r

(e),

A

r

(p), and

A

r

(d). The resulting value is

α

−

1

= 137

.

036 002(48)

[3

.

5

×

10

−

7

]

,

(65)

which is consistent with the 2006 recommended value,
although substantially less accurate. This result is in-
cluded in Table XXXIV.

2. Experiments on hydrogen and deuterium

Table XII summarizes the transition frequency data

relevant to the determination of

R

∞

. With the excep-

tion of the ï¬rst entry, which is the most recent result for
the 1S

1

/

2

– 2S

1

/

2

transition frequency in hydrogen from

the group at the Max-Planck-Institute f¨

ur Quantenop-

tik (MPQ), Garching, Germany, all of these data are the
same as those used in the 2002 adjustment. Since these
data are reviewed in CODATA-98 or CODATA-02, they
are not discussed here. For a brief discussion of data not
included in Table XII, see Sec. II.B.3 of CODATA-02.

The new MPQ result,

ν

H

(1S

1

/

2

−

2S

1

/

2

) = 2 466 061 413 187

.

074(34) kHz

[1

.

4

×

10

−

14

]

,

(66)

was obtained in the course of an experiment to search
for a temporal variation of the ï¬ne-structure constant

α

(Fischer

et al.

, 2004; H¨

ansch

et al.

, 2005; Poirier

et al.

, 2004; Udem, 2006). It is consistent with, but

has a somewhat smaller uncertainty than, the previ-
ous result from the MPQ group,

ν

H

(1S

1

/

2

−

2S

1

/

2

) =

2

.

466 061 413 187

.

103(46) kHz [1

.

9

×

10

−

14

] (Niering

et al.

,

2000), which was the value used in the 2002 adjustment.
The improvements that led to the reduction in uncer-
tainty include a more stable external reference cavity
for locking the 486 nm cw dye laser, thereby reducing
its linewidth; an upgraded vacuum system that lowered
the background gas pressure in the interaction region,
thereby reducing the background gas pressure shift and
its associated uncertainty; and a signiï¬cantly reduced
within-day Type A (

i.e.,

statistical) uncertainty due to

the narrower laser linewidth and better signal-to-noise
ratio.

The MPQ result in Eq. (66) and Table XII for

ν

H

(1S

1

/

2

−

2S

1

/

2

) was provided by Udem (2006) of

the MPQ group. It follows from the measured value

ν

H

(1S

1

/

2

−

2S

1

/

2

) = 2

.

466 061 102 474

.

851(34) kHz [1

.

4

×

10

−

14

] obtained for the (1S

, F

= 1

, m

F

=

±

1)

−→

(2S

, F

′

= 1

, m

′

F

=

±

1) transition frequency (Fischer

et al.

, 2004; H¨

ansch

et al.

, 2005; Poirier

et al.

, 2004) by

using the well known 1S and 2S hyperï¬ne splittings (Ko-
lachevsky

et al.

, 2004; Ramsey, 1990) to convert it to the

frequency corresponding to the hyperï¬ne centroid.

3. Nuclear radii

The theoretical expressions for the ï¬nite nuclear size

correction to the energy levels of hydrogen H and deu-
terium D (see Sec. IV.A.1.h) are functions of the bound-
state nuclear rms charge radius for the proton,

R

p

, and

for the deuteron,

R

d

. These values are treated as vari-

ables in the adjustment, so the transition frequency data,
together with theory, determine values for the radii. The
radii are also determined by elastic electron-proton scat-
tering data in the case of

R

p

and from elastic electron-

deuteron scattering data in the case of

R

d

. These inde-

pendently determined values are used as additional in-
formation on the radii. There have been no new results
during the last 4 years and thus we take as input data for
these two radii the values used in the 2002 adjustment:

R

p

= 0

.

895(18) fm

(67)

R

d

= 2

.

130(10) fm

.

(68)

The result for

R

p

is due to Sick (2003) [see also Sick

(2007b)]. The result for

R

d

is that given in Sec. III.B.7

of CODATA-98 based on the analysis of Sick and Traut-
mann (1998).

An experiment currently underway to measure the

Lamb shift in muonic hydrogen may eventually provide a
signiï¬cantly improved value of

R

p

and hence an improved

value of

R

∞

(Nebel

et al.

, 2007).

background image

17

TABLE XII Summary of measured transition frequencies

ν

considered in the present work for the determination of the Rydberg

constant

R

∞

(H is hydrogen and D is deuterium).

Authors

Laboratory

Frequency interval(s)

Reported value

Rel. stand.

ν

/kHz

uncert.

u

r

(Fischer

et al.

, 2004)

MPQ

ν

H

(1S

1

/

2

−

2S

1

/

2

)

2 466 061 413 187

.

074(34) 1

.

4

×

10

−

14

(Weitz

et al.

, 1995)

MPQ

ν

H

(2S

1

/

2

−

4S

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

)

4 797 338(10)

2

.

1

×

10

−

6

ν

H

(2S

1

/

2

−

4D

5

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

) 6 490 144(24)

3

.

7

×

10

−

6

ν

D

(2S

1

/

2

−

4S

1

/

2

)

−

1
4

ν

D

(1S

1

/

2

−

2S

1

/

2

)

4 801 693(20)

4

.

2

×

10

−

6

ν

D

(2S

1

/

2

−

4D

5

/

2

)

−

1
4

ν

D

(1S

1

/

2

−

2S

1

/

2

) 6 494 841(41)

6

.

3

×

10

−

6

(Huber

et al.

, 1998)

MPQ

ν

D

(1S

1

/

2

−

2S

1

/

2

)

−

ν

H

(1S

1

/

2

−

2S

1

/

2

)

670 994 334

.

64(15)

2

.

2

×

10

−

10

(de Beauvoir

et al.

, 1997)

LKB/SYRTE

ν

H

(2S

1

/

2

−

8S

1

/

2

)

770 649 350 012

.

0(8

.

6)

1

.

1

×

10

−

11

ν

H

(2S

1

/

2

−

8D

3

/

2

)

770 649 504 450

.

0(8

.

3)

1

.

1

×

10

−

11

ν

H

(2S

1

/

2

−

8D

5

/

2

)

770 649 561 584

.

2(6

.

4)

8

.

3

×

10

−

12

ν

D

(2S

1

/

2

−

8S

1

/

2

)

770 859 041 245

.

7(6

.

9)

8

.

9

×

10

−

12

ν

D

(2S

1

/

2

−

8D

3

/

2

)

770 859 195 701

.

8(6

.

3)

8

.

2

×

10

−

12

ν

D

(2S

1

/

2

−

8D

5

/

2

)

770 859 252 849

.

5(5

.

9)

7

.

7

×

10

−

12

(Schwob

et al.

, 1999, 2001)

LKB/SYRTE

ν

H

(2S

1

/

2

−

12D

3

/

2

)

799 191 710 472

.

7(9

.

4)

1

.

2

×

10

−

11

ν

H

(2S

1

/

2

−

12D

5

/

2

)

799 191 727 403

.

7(7

.

0)

8

.

7

×

10

−

12

ν

D

(2S

1

/

2

−

12D

3

/

2

)

799 409 168 038

.

0(8

.

6)

1

.

1

×

10

−

11

ν

D

(2S

1

/

2

−

12D

5

/

2

)

799 409 184 966

.

8(6

.

8)

8

.

5

×

10

−

12

(Bourzeix

et al.

, 1996)

LKB

ν

H

(2S

1

/

2

−

6S

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

3S

1

/

2

)

4 197 604(21)

4

.

9

×

10

−

6

ν

H

(2S

1

/

2

−

6D

5

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

3S

1

/

2

) 4 699 099(10)

2

.

2

×

10

−

6

(Berkeland

et al.

, 1995)

Yale

ν

H

(2S

1

/

2

−

4P

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

) 4 664 269(15)

3

.

2

×

10

−

6

ν

H

(2S

1

/

2

−

4P

3

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

) 6 035 373(10)

1

.

7

×

10

−

6

(Hagley and Pipkin, 1994)

Harvard

ν

H

(2S

1

/

2

−

2P

3

/

2

)

9 911 200(12)

1

.

2

×

10

−

6

(Lundeen and Pipkin, 1986) Harvard

ν

H

(2P

1

/

2

−

2S

1

/

2

)

1 057 845

.

0(9

.

0)

8

.

5

×

10

−

6

(Newton

et al.

, 1979)

U. Sussex

ν

H

(2P

1

/

2

−

2S

1

/

2

)

1 057 862(20)

1

.

9

×

10

−

5

B. Antiprotonic helium transition frequencies and

A

r

(e)

The antiprotonic helium atom is a three-body system

consisting of a

4

He or

3

He nucleus, an antiproton, and

an electron, denoted by Â¯

p He

+

. Even though the Bohr

radius for the antiproton in the ï¬eld of the nucleus is
about 1836 times smaller than the electron Bohr radius,
in the highly-excited states studied experimentally, the
average orbital radius of the antiproton is comparable
to the electron Bohr radius, giving rise to relatively long-
lived states. Also, for the high-

l

states studied, because of

the vanishingly small overlap of the antiproton wavefunc-
tion with the helium nucleus, strong interactions between
the antiproton and the nucleus are negligible.

One of the goals of the experiments is to measure the

antiproton-electron mass ratio. However, since we as-
sume that

CP T

is a valid symmetry, for the purpose of

the least squares adjustment we take the masses of the
antiproton and proton to be equal and use the data to de-
termine the proton-electron mass ratio. Since the proton
mass is known more accurately than the electron mass
from other experiments, the mass ratio yields informa-
tion primarily on the electron mass. Other experiments
have demonstrated the equality of the charge-to-mass ra-
tio of p and Â¯

p to within 9 parts in 10

11

; see Gabrielse

(2006).

1. Theory relevant to antiprotonic helium

Calculations of transition frequencies of antiprotonic

helium have been done by Kino

et al.

(2003) and by Ko-

robov (2003, 2005). The uncertainties of calculations by
Korobov (2005) are of the order of 1 MHz to 2 MHz,
while the uncertainties and scatter relative to the ex-
perimental values of the results of Kino

et al.

(2003) are

substantially larger, so we use the results Korobov (2005)
in the 2006 adjustment. [See also the remarks in Hayano
(2007) concerning the theory.]

The dominant contribution to the energy levels is just

the non-relativistic solution of the Schr¨odinger equation
for the three-body system together with relativistic and
radiative corrections treated as perturbations. The non-
relativistic levels are resonances, because the states can
decay by the Auger effect in which the electron is ejected.
Korobov (2005) calculates the nonrelativistic energy by
using one of two formalisms, depending on whether the
Auger rate is small or large. In the case where the rate
is small, the Feshbach formalism is used with an optical
potential. The optical potential is omitted in the calcula-
tion of higher-order relativistic and radiative corrections.
For broad resonances with a higher Auger rate, the non-
relativistic energies are calculated with the Complex Co-
ordinate rotation method. In checking the convergence of

background image

18

the nonrelativistic levels, attention was paid to the con-
vergence of the expectation value of the the delta func-
tion operators used in the evaluation of the relativistic
and radiative corrections.

Korobov (2005) evaluated the relativistic and radia-

tive corrections as perturbations to the nonrelativistic
levels, including relativistic corrections of order

α

2

R

∞

,

anomalous magnetic moment corrections of order

α

3

R

∞

and higher, one-loop self-energy and vacuum-polarization
corrections of order

α

3

R

∞

, higher-order one-loop and

leading two-loop corrections of order

α

4

R

∞

.

Higher-

order relativistic corrections of order

α

4

R

∞

and radiative

corrections of order

α

5

R

∞

were estimated with effective

operators. The uncertainty estimates account for uncal-
culated terms of order

α

5

ln

α R

∞

.

Transition frequencies obtained by Korobov (2005,

2006) using the CODATA-02 values of the relevant con-
stants are listed in Table XIII under the column header
“Calculated Value.†We denote these values of the fre-
quencies by

ν

(0)

¯

p He

(

n, l

:

n

′

, l

′

), where He is either

3

He

+

or

4

He

+

. Also calculated are the leading-order changes

in the theoretical values of the transition frequencies as
a function of the relative changes in the mass ratios

A

r

(¯

p)

/A

r

(e) and

A

r

(

N

)

/A

r

(¯

p); here

N

is either

3

He

2+

or

4

He

2+

. If we denote the transition frequencies as func-

tions of these mass ratios by

ν

¯

p He

(

n, l

:

n

′

, l

′

), then the

changes can be written as

a

¯

p He

(

n, l

:

n

′

, l

′

) =

A

r

(¯

p)

A

r

(e)

(0)

∂ν

¯

p He

(

n, l

:

n

′

, l

′

)

∂

A

r

(¯

p)

A

r

(e)

(69)

b

¯

p He

(

n, l

:

n

′

, l

′

) =

A

r

(

He

)

A

r

(¯

p)

(0)

∂ν

¯

p He

(

n, l

:

n

′

, l

′

)

∂

A

r

(

N

)

A

r

(¯

p)

.

(70)

Values of these derivatives, in units of 2

cR

∞

, are listed in

Table XIII in the columns with the headers â€œ

a

†and â€œ

b

,â€

respectively. The zero-order frequencies and the deriva-
tives are used in the expression

ν

¯

p He

(

n, l

:

n

′

, l

′

) =

ν

(0)

¯

p He

(

n, l

:

n

′

, l

′

)

+

a

¯

p He

(

n, l

:

n

′

, l

′

)

"

A

r

(e)

A

r

(¯

p)

(0)

A

r

(¯

p )

A

r

(e)

−

1

#

(71)

+

b

¯

p He

(

n, l

:

n

′

, l

′

)

"

A

r

(¯

p)

A

r

(

N

)

(0)

A

r

(

N

)

A

r

(¯

p)

−

1

#

+

. . . ,

which provides a ï¬rst-order approximation to the tran-
sition frequencies as a function of changes to the mass
ratios. This expression is used to incorporate the ex-
perimental data and the calculations for the antiprotonic
system as a function of the mass ratios into the least-
squares adjustment. It should be noted that even though
the mass ratios are the independent variables in Eq. (71)
and the atomic relative masses

A

r

(e),

A

r

(p ), and

A

r

(

N

)

are the adjusted constants in the 2006 least-squares ad-
justment, the primary effect of including this data in
the adjustment is on the electron relative atomic mass,
because independent data in the adjustment constrains
the proton and helium nuclei relative atomic masses with
smaller uncertainties.

The uncertainties in the theoretical expressions for the

transition frequencies are included in the adjustment as
additive constants

δ

¯

p He

(

n, l

:

n

′

, l

′

). Values for the theo-

retical uncertainties and covariances used in the adjust-
ment are given in Sec. XII, Tables XXXII and XXXIII,
respectively (Korobov, 2006).

2. Experiments on antiprotonic helium

Experimental work on antiprotonic helium began in

the early 1990s and it continues to be an active ï¬eld of re-
search; a comprehensive review through 2000 is given by
Yamazaki

et al.

(2002) and a very concise review through

2006 by Hayano (2007). The ï¬rst measurements of Â¯

p He

+

transition frequencies at CERN with

u

r

<

10

−

6

were re-

ported in 2001 (Hori

et al.

, 2001), improved results were

reported in 2003 (Hori

et al.

, 2003), and transition fre-

quencies with uncertainties sufficiently small that they
can, together with the theory of the transitions, provide
a competitive value of

A

r

(e), were reported in 2006 (Hori

et al.

, 2006).

The 12 transition frequencies—seven for

4

He and ï¬ve

for

3

He given by Hori

et al.

(2006)—which we take as

input data in the 2006 adjustment are listed in column
2 of Table XIII with the corresponding transitions indi-
cated in column 1. To reduce rounding errors, an addi-
tional digit for both the frequencies and their uncertain-
ties as provided by Hori (2006) have been included. All
twelve frequencies are correlated; their correlation coef-
ï¬cients, based on detailed uncertainty budgets for each,
also provided by Hori (2006), are given in Table XXXIII
in Sec XII.

In the current version of the experiment, 5.3 MeV an-

tiprotons from the CERN Antiproton Decelerator (AD)
are decelerated using a radio-frequency quadrupole decel-
erator (RFQD) to energies in the range 10 keV to 120 keV
controlled by a dc potential bias on the RFQD’s elec-
trodes. The decelerated antiprotons, about 30 % of the
antiprotons entering the RFQD, are then diverted to a
low pressure cryogenic helium gas target at 10 K by an
achromatic momentum analyzer, the purpose of which
is to eliminate the large background that the remaining
70 % of undecelerated antiprotons would have produced.

About 3 % of the Â¯

p stopped in the target form Â¯

p He

+

, in

which a Â¯

p with large principle quantum number (

n

≈

38)

and angular momentum quantum number (

l

≈

n

) cir-

culates in a localized, nearly circular orbit around the
He

2+

nucleus while the electron occupies the distributed

1S state. These Â¯

p energy levels are metastable with life-

times of several microseconds and de-excite radiatively.
There are also short lived Â¯

p states with similar values of

n

background image

19

TABLE XIII Summary of data related to the determination of

A

r

(e) from measurements on antiprotonic helium

Transition

Experimental

Calculated

a

b

(

n, l

)

→

(

n

′

, l

′

)

Value (MHz)

Value (MHz)

(2

cR

∞

)

(2

cR

∞

)

¯

p

4

He

+

: (32

,

31)

→

(31

,

30)

1 132 609 209(15)

1 132 609 223

.

50(82)

0

.

2179

0

.

0437

¯

p

4

He

+

: (35

,

33)

→

(34

,

32)

804 633 059

.

0(8

.

2)

804 633 058

.

0(1

.

0)

0

.

1792

0

.

0360

¯

p

4

He

+

: (36

,

34)

→

(35

,

33)

717 474 004(10)

717 474 001

.

1(1

.

2)

0

.

1691

0

.

0340

¯

p

4

He

+

: (37

,

34)

→

(36

,

33)

636 878 139

.

4(7

.

7)

636 878 151

.

7(1

.

1)

0

.

1581

0

.

0317

¯

p

4

He

+

: (39

,

35)

→

(38

,

34)

501 948 751

.

6(4

.

4)

501 948 755

.

4(1

.

2)

0

.

1376

0

.

0276

¯

p

4

He

+

: (40

,

35)

→

(39

,

34)

445 608 557

.

6(6

.

3)

445 608 569

.

3(1

.

3)

0

.

1261

0

.

0253

¯

p

4

He

+

: (37

,

35)

→

(38

,

34)

412 885 132

.

2(3

.

9)

412 885 132

.

8(1

.

8)

−

0

.

1640

−

0

.

0329

¯

p

3

He

+

: (32

,

31)

→

(31

,

30)

1 043 128 608(13)

1 043 128 579

.

70(91)

0

.

2098

0

.

0524

¯

p

3

He

+

: (34

,

32)

→

(33

,

31)

822 809 190(12)

822 809 170

.

9(1

.

1)

0

.

1841

0

.

0460

¯

p

3

He

+

: (36

,

33)

→

(35

,

32)

646 180 434(12)

646 180 408

.

2(1

.

2)

0

.

1618

0

.

0405

¯

p

3

He

+

: (38

,

34)

→

(37

,

33)

505 222 295

.

7(8

.

2)

505 222 280

.

9(1

.

1)

0

.

1398

0

.

0350

¯

p

3

He

+

: (36

,

34)

→

(37

,

33)

414 147 507

.

8(4

.

0)

414 147 509

.

3(1

.

8)

−

0

.

1664

−

0

.

0416

and

l

but with lifetimes on the order of 10 ns and which

de-excite by Auger transitions to form Â¯

p He

2+

hydrogen-

like ions. These undergo Stark collisions, which cause the
rapid annihilation of the Â¯

p in the helium nucleus. The

annihilation rate vs. time elapsed since Â¯

p He

+

formation,

or delayed annihilation time spectrum (DATS), is mea-
sured using Cherenkov counters.

With the exception of the (36

,

34)

→

(35

,

33) transi-

tion frequency, all of the frequencies given in Table XIII
were obtained by stimulating transitions from the Â¯

p He

+

metastable states with values of

n

and

l

indicated in col-

umn one on the left-hand side of the arrow to the short
lived, Auger-decaying states with values of

n

and

l

indi-

cated on the right-hand side of the arrow.

The megawatt-scale light intensities needed to induce

the Â¯

p He

+

transitions, which cover the wavelength range

265 nm to 726 nm, can only be provided by a pulsed laser.
Frequency and linewidth ï¬‚uctuations and frequency cal-
ibration problems associated with such lasers were over-
come by starting with a cw â€œseed†laser beam of fre-
quency

ν

cw

, known with

u

r

<

4

×

10

−

10

through its sta-

bilization by an optical frequency comb, and then ampli-
fying the intensity of the laser beam by a factor of 10

6

in

a cw pulse ampliï¬er consisting of three dye cells pumped
by a pulsed Nd:YAG laser. The 1 W seed laser beam with
wavelength in the range 574 nm to 673 nm was obtained
from a pumped cw dye laser, and the 1 W seed laser beam
with wavelength in the range 723 nm to 941 nm was ob-
tained from a pumped cw Ti:sapphire laser. The shorter
wavelengths (265 nm to 471 nm) for inducing transitions
were obtained by frequency doubling the ampliï¬er out-
put at 575 nm and 729 nm to 941 nm or by frequency
tripling its 794 nm output. The frequency of the seed
laser beam

ν

cw

, and thus the frequency

ν

pl

of the pulse

ampliï¬ed beam, was scanned over a range of

±

4 GHz

around the Â¯

p He

+

transition frequency by changing the

repetition frequency

f

rep

of the frequency comb.

The resonance curve for a transition was obtained by

plotting the area under the resulting DATS peak vs.

ν

pl

.

Because of the approximate 400 MHz Doppler broaden-

ing of the resonance due to the 10 K thermal motion of
the Â¯

p He

+

atoms, a rather sophisticated theoretical line

shape that takes into account many factors must be used
to obtained the desired transition frequency.

Two other effects of major importance are the so-called

chirp effect and linear shifts in the transition frequencies
due to collisions between the Â¯

p He

+

and background he-

lium atoms. The frequency

ν

pl

can deviate from

ν

cw

due

to sudden changes in the index of refraction of the dye
in the cells of the ampliï¬er. This chirp, which can be
expressed as âˆ†

ν

c

(

t

) =

ν

pl

(

t

)

−

ν

cw

, can shift the mea-

sured Â¯

p He

+

frequencies from their actual values. Hori

et al.

(2006) eliminated this effect by measuring âˆ†

ν

c

(

t

)

in real time and applying a frequency shift to the seed
laser, thereby canceling the dye-cell chirp. This effect is
the predominant contributor to the correlations among
the 12 transitions (Hori, 2006). The collisional shift was
eliminated by measuring the frequencies of ten transi-
tions in helium gas targets with helium atom densities

Ï

in the range 2

×

10

18

/

cm

3

to 3

×

10

21

/

cm

3

to determine

dν/dÏ

. The

in vacuo

(

Ï

= 0) values were obtained by

applying a suitable correction in the range

−

14 MHz to

1 MHz to the initially measured frequencies obtained at

Ï

≈

2

×

10

18

/

cm

3

.

In contrast to the other 11 transition frequencies in

Table XIII, which were obtained by inducing a transi-
tion from a long-lived, metastable state to a short-lived,
Auger-decaying state, the (36

,

34)

→

(35

,

33) transition

frequency was obtained by inducing a transition from
the (36, 34) metastable state to the (35, 33) metastable
state using three different lasers.

This was done by

ï¬rst depopulating at time

t

1

the (35, 33) metastable

state by inducing the (35

,

33)

→

(34

,

32) metastable-state

to short-lived-state transition, then at time

t

2

inducing

the (36

,

34)

→

(35

,

33) transition using the cw pulse-

ampliï¬ed laser, and then at time

t

3

again inducing the

(35

,

33)

→

(34

,

32) transition. The resonance curve for

the (36

,

34)

→

(35

,

33) transition was obtained from the

DATS peak resulting from this last induced transition.

The 4 MHz to 15 MHz standard uncertainties of the

background image

20

transition frequencies in Table XIII arise from the reso-
nance line shape ï¬t (3 MHz to 13 MHz, statistical or Type
A), not completely eliminating the chirp effect (2 MHz
to 4 MHz, nonstatistical or Type B), collisional shifts
(0.1 MHz to 2 MHz, Type B), and frequency doubling or
tripling (1 MHz to 2 MHz, Type B).

3. Values of

A

r

(e)

inferred from antiprotonic helium

From the theory of the 12 antiprotonic transition fre-

quencies discussed in Sec IV.B.1, the 2006 recommended
values of the relative atomic masses of the proton, al-
pha particle (nucleus of the

4

He atom), and the helion

(nucleus of the

3

He atom),

A

r

(p),

A

r

(alpha), and

A

r

(h),

respectively, together with the 12 experimental values for
these frequencies given in Table XIII, we ï¬nd the follow-
ing three values for

A

r

(e) from the seven Â¯

p

4

He

+

frequen-

cies alone, from the ï¬ve Â¯

p

3

He

+

frequencies alone, and

from the 12 frequencies together:

A

r

(e) = 0

.

000 548 579 9103(12) [2

.

1

×

10

−

9

]

(72)

A

r

(e) = 0

.

000 548 579 9053(15) [2

.

7

×

10

−

9

]

(73)

A

r

(e) = 0

.

000 548 579 908 81(91) [1

.

7

×

10

−

9

]

.

(74)

The separate inferred values from the Â¯

p

4

He

+

and Â¯

p

3

He

+

frequencies differ somewhat, but the value from all 12
frequencies not only agrees with the three other available
results for

A

r

(e) (see Table XXXVI, Sec XII.A), but has

a competitive level of uncertainty as well.

C. Hyperfine structure and fine structure

1. Hyperfine structure

Because the ground-state hyperï¬ne transition frequen-

cies âˆ†

ν

H

, âˆ†

ν

Mu

, and âˆ†

ν

Ps

of the comparatively sim-

ple atoms hydrogen, muonium, and positronium, respec-
tively, are proportional to

α

2

R

∞

c

, in principle a value of

α

can be obtained by equating an experimental value of

one of these transition frequencies to its presumed read-
ily calculable theoretical expression. However, currently
only measurements of âˆ†

ν

Mu

and the theory of the muon-

ium hyperï¬ne structure have sufficiently small uncertain-
ties to provide a useful result for the 2006 adjustment,
and even in this case the result is not a competitive value
of

α

, but rather the most accurate value of the electron-

muon mass ratio

m

e

/m

µ

. Indeed, we discuss the relevant

experiments and theory in Sec.VI.B.

Although the ground-state hyperï¬ne transition fre-

quency of hydrogen has long been of interest as a po-
tential source of an accurate value of

α

because it is ex-

perimentally known with

u

r

≈

10

−

12

(Ramsey, 1990),

the relative uncertainty of the theory is still of the or-
der of 10

−

6

. Thus, âˆ†

ν

H

cannot yet provide a competi-

tive value of the ï¬ne-structure constant. At present, the
main sources of uncertainty in the theory arise from the
internal structure of the proton, namely (i) the electric

charge and magnetization densities of the proton, which
are taken into account by calculating the proton’s so-
called Zemach radius; and (ii) the polarizability of the
proton (that is, protonic excited states). For details of
the progress made over the last four years in reducing
the uncertainties from both sources, see (Carlson, 2007;
Pachucki, 2007; Sick, 2007a) and the references cited
therein. Because the muon is a structureless point-like
particle, the theory of âˆ†

ν

Mu

is free of such uncertainties.

It is also not yet possible to obtain a useful value of

α

from âˆ†

ν

Ps

since the most accurate experimental result

has

u

r

= 3

.

6

×

10

−

6

(Ritter

et al.

, 1984). The uncertainty

of the theory of âˆ†

ν

Ps

is not signiï¬cantly smaller and may

in fact be larger (Adkins

et al.

, 2002; Penin, 2004).

2. Fine structure

As in the case of hyperï¬ne splittings, ï¬ne-structure

transition frequencies are proportional to

α

2

R

∞

c

and

could be used to deduce a value of

α

. Some data re-

lated to the ï¬ne structure of hydrogen and deuterium are
discussed in Sec. IV.A.2 in connection with the Rydberg
constant. They are included in the adjustment because of
their influence on the adjusted value of

R

∞

. However, the

value of

α

that can be derived from these data is not com-

petitive; see Eq. (65). See also Sec. III.B.3 of CODATA-
02 for a discussion of why earlier ï¬ne structure-related
results in H and D are not considered.

Because the transition frequencies corresponding to

the differences in energy of the three 2

3

P levels of

4

He

can be both measured and calculated with reasonable ac-
curacy, the ï¬ne structure of

4

He has long been viewed as

a potential source of a reliable value of

α

. The three fre-

quencies of interest are

ν

01

≈

29

.

6 GHz,

ν

12

≈

2

.

29 GHz,

and

ν

02

≈

31

.

9 GHz, which correspond to the intervals

2

3

P

1

−

2

3

P

0

,

2

3

P

2

−

2

3

P

1

, and 2

3

P

2

−

2

3

P

0

, respectively.

The value with the smallest uncertainty for any of these
frequencies was obtained at Harvard (Zelevinsky

et al.

,

2005):

ν

01

= 29 616 951

.

66(70) kHz

[2

.

4

×

10

−

8

]

.

(75)

It is consistent with the value of

ν

01

reported by George

et al.

(2001) with

u

r

= 3

.

0

×

10

−

8

, and that reported

by Giusfredi

et al.

(2005) with

u

r

= 3

.

4

×

10

−

8

. If the

theoretical expression for

ν

01

were exactly known, the

weighted mean of the three results would yield a value of

α

with

u

r

≈

8

×

10

−

9

.

However, as discussed in CODATA-02, the theory of

the 2

3

P

J

transition frequencies is far from satisfactory.

First, different calculations disagree, and because of the
considerable complexity of the calculations and the his-
tory of their evolution, there is general agreement that re-
sults that have not been conï¬rmed by independent evalu-
ation should be taken as tentative. Second, there are sig-
niï¬cant disagreements between theory and experiment.
Recently, Pachucki (2006) has advanced the theory by

background image

21

calculating the complete contribution to the 2

3

P

J

ï¬ne-

structure levels of order

mα

7

(or

α

5

Ryd), with the ï¬nal

theoretical result for

ν

01

being

ν

01

= 29 616 943

.

01(17) kHz

[5

.

7

×

10

−

9

]

.

(76)

This value disagrees with the experimental value given
in Eq (75) as well as with the theoretical value

ν

01

=

29 616 946

.

42(18) kHz [6

.

1

×

10

−

9

] given by Drake (2002),

which also disagrees with the experimental value. These
disagreements suggest that there is a problem with the-
ory and/or experiment which must be resolved before a
meaningful value of

α

can be obtained from the helium

ï¬ne structure (Pachucki, 2006). Therefore, as in the 2002
adjustment, we do not include

4

He ï¬ne-structure data in

the 2006 adjustment.

V. MAGNETIC MOMENT ANOMALIES AND

g

-FACTORS

In this section, the theory and experiment for the mag-

netic moment anomalies of the free electron and muon
and the bound-state

g

-factor of the electron in hydro-

genic carbon (

12

C

5+

) and in hydrogenic oxygen (

16

O

7+

)

are reviewed.

The magnetic moment of any of the three charged lep-

tons

â„“

= e

,

µ

,

Ï„

is written as

µ

â„“

=

g

â„“

e

2

m

â„“

s

,

(77)

where

g

â„“

is the

g

-factor of the particle,

m

â„“

is its mass,

and

s

is its spin. In Eq. (77),

e

is the elementary charge

and is positive. For the negatively charged leptons

â„“

−

,

g

â„“

is negative, and for the corresponding antiparticles

â„“

+

,

g

â„“

is positive.

CP T

invariance implies that the masses

and absolute values of the

g

-factors are the same for each

particle-antiparticle pair. These leptons have eigenvalues
of spin projection

s

z

=

±

¯

h/

2, and it is conventional to

write, based on Eq. (77),

µ

â„“

=

g

â„“

2

e

¯

h

2

m

â„“

,

(78)

where in the case of the electron,

µ

B

=

e

¯

h/

2

m

e

is the

Bohr magneton.

The free lepton magnetic moment anomaly

a

â„“

is de-

ï¬ned as

|

g

â„“

|

= 2(1 +

a

â„“

)

,

(79)

where

g

D

=

−

2 is the value predicted by the free-electron

Dirac equation. The theoretical expression for

a

â„“

may be

written as

a

â„“

(th) =

a

â„“

(QED) +

a

â„“

(weak) +

a

â„“

(had)

,

(80)

where the terms denoted by QED, weak, and had account
for the purely quantum electrodynamic, predominantly

electroweak, and predominantly hadronic (that is, strong
interaction) contributions to

a

â„“

, respectively.

The QED contribution may be written as (Kinoshita

et al.

, 1990)

a

â„“

(QED) =

A

1

+

A

2

(

m

â„“

/m

â„“

′

) +

A

2

(

m

â„“

/m

â„“

′′

)

+

A

3

(

m

â„“

/m

â„“

′

, m

â„“

/m

â„“

′′

)

,

(81)

where for the electron, (

â„“, â„“

′

, â„“

′′

) = (e

,

µ

,

Ï„

), and for the

muon, (

â„“, â„“

′

, â„“

′′

) = (

µ

,

e

,

Ï„

). The anomaly for the

Ï„

,

which is poorly known experimentally (Yao

et al.

, 2006),

is not considered here. For recent work on the theory of

a

Ï„

, see Eidelman and Passera (2007). In Eq. (81), the

term

A

1

is mass independent, and the mass dependence

of

A

2

and

A

3

arises from vacuum polarization loops with

lepton

â„“

′

,

â„“

′′

, or both. Each of the four terms on the

right-hand side of Eq. (81) can be expressed as a power
series in the ï¬ne-structure constant

α

:

A

i

=

A

(2)

i

α

Ï€

+

A

(4)

i

α

Ï€

2

+

A

(6)

i

α

Ï€

3

+

A

(8)

i

α

Ï€

4

+

A

(10)

i

α

Ï€

5

+

· Â· Â·

,

(82)

where

A

(2)
2

=

A

(2)
3

=

A

(4)
3

= 0. Coefficients proportional

to (

α/

Ï€

)

n

are of order

e

2

n

and are referred to as 2

n

th-

order coefficients.

The second-order coefficient is known exactly, and the

fourth- and sixth-order coefficients are known analyti-
cally in terms of readily evaluated functions:

A

(2)
1

=

1
2

(83)

A

(4)
1

=

−

0

.

328 478 965 579

. . .

(84)

A

(6)
1

= 1

.

181 241 456

. . . .

(85)

A total of 891 Feynman diagrams give rise to the mass-

independent eighth-order coefficient

A

(8)
1

, and only a few

of these are known analytically. However, in an effort
that has its origins in the 1960s, Kinoshita and collab-
orators have calculated all of

A

(8)
1

numerically, with the

result of this ongoing project that was used in the 2006
adjustment being (Gabrielse

et al.

, 2006, 2007; Kinoshita

and Nio, 2006a)

A

(8)
1

=

−

1

.

7283(35)

.

(86)

Work was done in the evaluation and checking of this

coefficient in an effort to obtain a reliable quantitative re-
sult. A subset of 373 diagrams containing closed electron
loops was veriï¬ed by more than one independent formu-
lation. The remaining 518 diagrams with no closed elec-
tron loops were formulated in only one way. As a check
on this set, extensive cross checking was performed on the
renormalization terms both among themselves and with
lower-order diagrams that are known exactly (Kinoshita
and Nio, 2006a) [see also Gabrielse

et al.

(2006, 2007)].

For the ï¬nal numerical integrations, an adaptive-iterative
Monte Carlo routine was used. A time-consuming part

background image

22

TABLE XIV Summary of data related to magnetic moments of the electron and muon and inferred values of the ï¬ne structure
constant. (The source data and not the inferred values given here are used in the adjustment.)

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

a

e

1

.

159 652 1883(42)

×

10

−

3

3

.

7

×

10

−

9

UWash-87

V.A.2.a (102)

α

−

1

(

a

e

)

137

.

035 998 83(50)

3

.

7

×

10

−

9

V.A.3 (104)

a

e

1

.

159 652 180 85(76)

×

10

−

3

6

.

6

×

10

−

10

HarvU-06

V.A.2.b (103)

α

−

1

(

a

e

)

137

.

035 999 711(96)

7

.

0

×

10

−

10

V.A.3 (105)

R

0

.

003 707 2064(20)

5

.

4

×

10

−

7

BNL-06

V.B.2 (128)

a

µ

1

.

165 920 93(63)

×

10

−

3

5

.

4

×

10

−

7

V.B.2 (129)

α

−

1

(

R

)

137

.

035 67(26)

1

.

9

×

10

−

6

V.B.2.a (132)

of the work was checking for round-off error in the inte-
gration.

The 0

.

0035 standard uncertainty of

A

(8)
1

contributes a

standard uncertainty to

a

e

(th) of 0

.

88

×

10

−

10

a

e

, which is

smaller than the uncertainty due to uncalculated higher-
order contributions. Independent work is in progress on
analytic calculations of eighth-order integrals. See, for
example, Laporta (2001); Laporta

et al.

(2004); Mastrolia

and Remiddi (2001).

Little is known about the tenth-order coefficient

A

(10)
1

and higher-order coefficients, although Kinoshita

et al.

(2006) are starting the numerical evaluation of the 12 672
Feynman diagrams for this coefficient. To evaluate the
contribution to the uncertainty of

a

e

(th) due to lack of

knowledge of

A

(10)
1

, we follow CODATA-98 to obtain

A

(10)
1

= 0

.

0(3

.

7). The 3

.

7 standard uncertainty of

A

(10)
1

contributes a standard uncertainty component to

a

e

(th)

of 2

.

2

×

10

−

10

a

e

; the uncertainty contributions to

a

e

(th)

from all other higher-order coefficients, which should be
signiï¬cantly smaller, are assumed to be negligible.

The 2006 least-squares adjustment was carried out us-

ing the theoretical results given above, including the
value of

A

(8)
1

given in Eq. (86). Well after the dead-

line for new data and the recommended values from the
adjustment were made public (Mohr

et al.

, 2007), it was

discovered by Aoyama

et al.

(2007) that 2 of the 47 inte-

grals representing 518 QED diagrams that had not previ-
ously been conï¬rmed independently required a corrected
treatment of infrared divergences. The revised value they
give is

A

(8)
1

=

−

1

.

9144(35)

,

(87)

although the new calculation is still tentative (Aoyama

et al.

, 2007). This result would lead to the value

α

−

1

= 137

.

035 999 070(98)

[7

.

1

×

10

−

10

] (88)

for the inverse ï¬ne-structure constant derived from the
electron anomaly using the Harvard measurement result
for

a

e

(Gabrielse

et al.

, 2006, 2007). This number is

shifted down from the previous result by 641

×

10

−

9

and its uncertainty is increased from (96) to (98) (see
Sec. V.A.3), but it is still consistent with the values ob-
tained from recoil experiments (see Table XXVI). If this
result for

A

(8)
1

had been used in the 2006 adjustment,

the recommended value of the inverse ï¬ne-structure con-
stant would differ by a similar, although slightly smaller,
change. The effect on the muon anomaly theory is com-
pletely negligible.

The mass independent term

A

1

contributes equally to

the free electron and muon anomalies and the bound-
electron

g

-factors. The mass-dependent terms are differ-

ent for the electron and muon and are considered sepa-
rately in the following. For the bound-electron

g

-factor,

there are bound-state corrections in addition to the free-
electron value of the

g

-factor, as discussed below.

A. Electron magnetic moment anomaly

a

e

and the

fine-structure constant

α

The combination of theory and experiment for the elec-

tron magnetic moment anomaly yields the value for the
ï¬ne-structure constant

α

with the smallest estimated un-

certainty (see Table XIV for the values corresponding to
the 2006 adjustment).

1. Theory of

a

e

The mass-dependent coefficients of interest and cor-

responding contributions to the theoretical value of the
anomaly

a

e

(th), based on the 2006 recommended values

of the mass ratios, are

background image

23

A

(4)
2

(

m

e

/m

µ

) = 5

.

197 386 78(26)

×

10

−

7

→

24

.

182

×

10

−

10

a

e

(89)

A

(4)
2

(

m

e

/m

Ï„

) = 1

.

837 63(60)

×

10

−

9

→

0

.

085

×

10

−

10

a

e

(90)

A

(6)
2

(

m

e

/m

µ

) =

−

7

.

373 941 72(27)

×

10

−

6

→ âˆ’

0

.

797

×

10

−

10

a

e

(91)

A

(6)
2

(

m

e

/m

Ï„

) =

−

6

.

5819(19)

×

10

−

8

→ âˆ’

0

.

007

×

10

−

10

a

e

,

(92)

where the standard uncertainties of the coefficients are
due to the uncertainties of the mass ratios, which are
negligible. The contributions from

A

(6)
3

(

m

e

/m

µ

, m

e

/m

Ï„

)

and all higher-order mass-dependent terms are negligible
as well.

The value for

A

(6)
2

(

m

e

/m

µ

) in Eq. (91) has been up-

dated from the value in CODATA-02 and is in agreement
with the result of Passera (2007) based on a calculation
to all orders in the mass ratio. The change is given by
the term

17

x

6

ζ

(3)

36

−

4381

x

6

ln

2

x

30240

+

24761

x

6

ln

x

158760

−

13

Ï€

2

x

6

1344

−

1840256147

x

6

3556224000

,

(93)

where

x

=

m

e

/m

µ

, which was not included in CODATA-

02. The earlier result was based on Eq. (4) of Laporta
and Remiddi (1993), which only included terms to order

x

4

. The additional term was kindly provided by Laporta

and Remiddi (2006).

For the electroweak contribution we have

a

e

(weak) = 0

.

029 73(52)

×

10

−

12

= 0

.

2564(45)

×

10

−

10

a

e

,

(94)

as calculated in CODATA-98 but with the current values
of

G

F

and sin

2

θ

W

(see Sec. XI.B).

The hadronic contribution is

a

e

(had) = 1

.

682(20)

×

10

−

12

= 1

.

450(17)

×

10

−

9

a

e

.

(95)

It is the sum of the following three contributions:

a

(4)

e

(had) = 1

.

875(18)

×

10

−

12

obtained by Davier and

H¨

ocker (1998);

a

(6

a

)

e

(had) =

−

0

.

225(5)

×

10

−

12

given by

Krause (1997); and

a

(

γγ

)

e

(had) = 0

.

0318(58)

×

10

−

12

cal-

culated by multiplying the corresponding result for the
muon given in Sec. V.B.1 by the factor (

m

e

/m

µ

)

2

, since

a

(

γγ

)

e

(had) is assumed to vary approximately as the square

of the mass.

Since the dependence on

α

of any contribution other

than

a

e

(QED) is negligible, the anomaly as a function of

α

is given by combining terms that have like powers of

α/

Ï€

to yield

a

e

(th) =

a

e

(QED) +

a

e

(weak) +

a

e

(had)

,

(96)

where

a

e

(QED) =

C

(2)

e

α

Ï€

+

C

(4)

e

α

Ï€

2

+

C

(6)

e

α

Ï€

3

+

C

(8)

e

α

Ï€

4

+

C

(10)

e

α

Ï€

5

+

· Â· Â·

,

(97)

with

C

(2)

e

= 0

.

5

C

(4)

e

=

−

0

.

328 478 444 00

C

(6)

e

= 1

.

181 234 017

C

(8)

e

=

−

1

.

7283(35)

C

(10)

e

= 0

.

0(3

.

7)

,

(98)

and where

a

e

(weak) and

a

e

(had) are given in Eqs. (94)

and (95).

The standard uncertainty of

a

e

(th) from the uncertain-

ties of the terms listed above, other than that due to

α

,

is

u

[

a

e

(th)] = 0

.

27

×

10

−

12

= 2

.

4

×

10

−

10

a

e

,

(99)

and is dominated by the uncertainty of the coefficient

C

(10)

e

.

For the purpose of the least-squares calculations car-

ried out in Sec. XII.B, we deï¬ne an additive correction

δ

e

to

a

e

(th) to account for the lack of exact knowledge

of

a

e

(th), and hence the complete theoretical expression

for the electron anomaly is

a

e

(

α, Î´

e

) =

a

e

(th) +

δ

e

.

(100)

Our theoretical estimate of

δ

e

is zero and its standard

uncertainty is

u

[

a

e

(th)]:

δ

e

= 0

.

00(27)

×

10

−

12

.

(101)

2. Measurements of

a

e

a. Measurement of

a

e

: University of Washington.

The clas-

sic series of measurements of the electron and positron
anomalies carried out at the University of Washington by
Van Dyck

et al.

(1987) yield the value

a

e

= 1

.

159 652 1883(42)

×

10

−

3

[3

.

7

×

10

−

9

]

,

(102)

as discussed in CODATA-98. This result assumes that

CP T

invariance holds for the electron-positron system.

background image

24

b. Measurement of

a

e

: Harvard University.

A new deter-

mination of the electron anomaly using a cylindrical Pen-
ning trap has been carried out by Odom

et al.

(2006) at

Harvard University, yielding the value

a

e

= 1

.

159 652 180 85(76)

×

10

−

3

[6

.

6

×

10

−

10

]

,

(103)

which has an uncertainty that is nearly six times smaller
than that of the University of Washington result.

As in the University of Washington experiment, the

anomaly is obtained in essence from the relation

a

e

=

f

a

/f

c

by determining, in the same magnetic ï¬‚ux den-

sity

B

(about 5 T), the anomaly difference frequency

f

a

=

f

s

−

f

c

and cyclotron frequency

f

c

=

eB/

2

Ï€m

e

,

where

f

s

=

g

e

µ

B

B/h

is the electron spin-flip (often

called precession) frequency. The marked improvement
achieved by the Harvard group, the culmination of a 20
year effort, is due in large part to the use of a cylin-
drical Penning trap with a resonant cavity that interacts
with the trapped electron in a readily calculable way, and
through its high

Q

resonances, signiï¬cantly increases the

lifetime of the electron in its lowest few energy states by
inhibiting the decay of these states through spontaneous
emission. Further, cooling the trap and its vacuum enclo-
sure to 100 mK by means of a dilution refrigerator elim-
inates blackbody radiation that could excite the electron
from these states.

The frequencies

f

a

and

f

c

are determined by apply-

ing quantum-jump spectroscopy (QJS) to transitions be-
tween the lowest spin (

m

s

=

±

1

/

2) and cyclotron (

n

=

0

,

1

,

2) quantum states of the electron in the trap. (In

QJS, the quantum jumps per attempt to drive them are
measured as a function of drive frequency.) The transi-
tions are induced by applying a signal of frequency

≈

f

a

to trap electrodes or by transmitting microwaves of fre-
quency

≈

f

c

into the trap cavity. A change in the cy-

clotron or spin state of the electron is reflected in a shift
in

ν

z

, the self excited axial oscillation of the electron.

(The trap axis and

B

are in the

z

direction.) This oscil-

lation induces a signal in a resonant circuit that is am-
pliï¬ed and fed back to the trap to drive the oscillation.
Saturated nickel rings surrounding the trap produce a
small magnetic bottle that provides quantum nondemo-
lition couplings of the spin and cyclotron energies to

ν

z

.

Failure to resolve the cyclotron energy levels would result
in an increase of uncertainty due to the leading relativis-
tic correction

δ/f

c

≡

hf

c

/mc

2

≈

10

−

9

.

Another unique feature of the Harvard experiment is

that the effect of the trap cavity modes on

f

c

, and hence

on the measured value of

a

e

, are directly observed for

the ï¬rst time. The modes are quantitatively identiï¬ed
as the familiar transverse electric (TE) and transverse
magnetic (TM) modes by observing the response of a
cloud of electrons to an axial parametric drive, and, based
on the work of Brown and Gabrielse (1986), the range of
possible shifts of

f

c

for a cylindrical cavity with a

Q >

500 as used in the Harvard experiment can be readily
calculated. Two measurements of

a

e

were made: one,

which resulted in the value of

a

e

given in Eq. (103), was

at a value of

B

for which

f

c

= 149 GHz, far from modes

that couple to the cyclotron motion; the other was at
146.8 GHz, close to mode TE

127

. Within the calibration

and identiï¬cation uncertainties for the mode frequencies,
very good agreement was found between the measured
and predicted difference in the two values. Indeed, their
weighted mean gives a value of

a

e

that is larger than the

value in Eq. (103) by only the fractional amount 0

.

5

×

10

−

10

, with

u

r

slightly reduced to 6

.

5

×

10

−

10

.

The largest component of uncertainty, 5

.

2

×

10

−

10

, in

the 6

.

6

×

10

−

10

u

r

of the Harvard result for

a

e

arises

from ï¬tting the resonance line shapes for

f

a

and

f

c

ob-

tained from the quantum jump spectroscopy data. It is
based on the consistency of three different methods of
extracting these frequencies from the line shapes. The
method that yielded the best ï¬ts and which was used to
obtain the reported value of

a

e

weights each drive fre-

quency, spin ï¬‚ip or cyclotron, by the number of quantum
jumps it produces, and then uses the weighted average
of the resulting spin ï¬‚ip and cyclotron frequencies in the
ï¬nal calculation of

a

e

. Although the cavity shifts are

well characterized, they account for the second largest
fractional uncertainty component, 3

.

4

×

10

−

10

. The sta-

tistical (Type A) component, which is the next largest,
is only 1

.

5

×

10

−

10

.

3. Values of

α

inferred from

a

e

Equating the theoretical expression with the two ex-

perimental values of

a

e

given in Eqs. (102) and (103)

yields

α

−

1

(

a

e

) = 137

.

035 998 83(50) [3

.

7

×

10

−

9

]

(104)

from the University of Washington result and

α

−

1

(

a

e

) = 137

.

035 999 711(96) [7

.

0

×

10

−

10

] (105)

from the Harvard University result. The contribution
of the uncertainty in

a

e

(th) to the relative uncertainty

of either of these results is 2

.

4

×

10

−

10

. The value in

Eq. (105) has the smallest uncertainty of any value of
alpha currently available. Both values are included in
Table XIV.

B. Muon magnetic moment anomaly

a

µ

Comparison of theory and experiment for the muon

magnetic moment anomaly gives a test of the theory of
the hadronic contributions, with the possibility of reveal-
ing physics beyond the Standard Model.

1. Theory of

a

µ

The current theory of

a

µ

has been throughly reviewed

in a number of recent publications by different authors,

background image

25

including a book devoted solely to the subject; see, for
example, Davier

et al.

(2006); Jegerlehner (2007); Mel-

nikov and Vainshtein (2006); Miller

et al.

(2007); Passera

(2005).

The relevant mass-dependent terms and the corre-

sponding contributions to

a

µ

(th), based on the 2006 rec-

ommended values of the mass ratios, are

A

(4)
2

(

m

µ

/m

e

) = 1

.

094 258 3088(82)

(106)

→

506 386

.

4561(38)

×

10

−

8

a

µ

,

A

(4)
2

(

m

µ

/m

Ï„

) = 0

.

000 078 064(25)

(107)

→

36

.

126(12)

×

10

−

8

a

µ

,

A

(6)
2

(

m

µ

/m

e

) = 22

.

868 379 97(19)

(108)

→

24 581

.

766 16(20)

×

10

−

8

a

µ

,

A

(6)
2

(

m

µ

/m

Ï„

) = 0

.

000 360 51(21)

(109)

→

0

.

387 52(22)

×

10

−

8

a

µ

,

A

(8)
2

(

m

µ

/m

e

) = 132

.

6823(72)

(110)

→

331

.

288(18)

×

10

−

8

a

µ

,

A

(10)
2

(

m

µ

/m

e

) = 663(20)

(111)

→

3

.

85(12)

×

10

−

8

a

µ

,

(112)

A

(6)
3

(

m

µ

/m

e

, m

µ

/m

Ï„

) = 0

.

000 527 66(17)

(113)

→

0

.

567 20(18)

×

10

−

8

a

µ

,

A

(8)
3

(

m

µ

/m

e

, m

µ

/m

Ï„

) = 0

.

037 594(83)

(114)

→

0

.

093 87(21)

×

10

−

8

a

µ

.

These contributions and their uncertainties, as well as
the values (including their uncertainties) of

a

µ

(weak) and

a

µ

(had) given below, should be compared with the 54

×

10

−

8

a

µ

standard uncertainty of the experimental value

of

a

µ

from Brookhaven National Laboratory (BNL) (see

next section).

Some of the above terms reflect the results of recent

calculations.

The value of

A

(6)
2

(

m

µ

/m

Ï„

) in Eq. (109)

includes an additional contribution as discussed in
connection with Eq. (91).

The terms

A

(8)
2

(

m

µ

/m

e

)

and

A

(8)
3

(

m

µ

/m

e

, m

µ

/m

Ï„

) have been updated by Ki-

noshita and Nio (2004), with the resulting value for

A

(8)
2

(

m

µ

/m

e

) in Eq. (110) differing from the previous

value of 127

.

50(41) due to the elimination of various

problems with the earlier calculations, and the result-
ing value for

A

(8)
3

(

m

µ

/m

e

, m

µ

/m

Ï„

) in Eq. (114) differ-

ing from the previous value of 0

.

079(3), because dia-

grams that were thought to be negligible do in fact con-
tribute to the result. Further, the value for

A

(10)
2

(

m

µ

/m

e

)

in Eq. (111) from Kinoshita and Nio (2006b) replaces
the previous value, 930(170).

These authors believe

that their result, obtained from the numerical evalua-
tion of all of the integrals from 17 key subsets of Feyn-
man diagrams, accounts for the leading contributions to

A

(10)
2

(

m

µ

/m

e

), and the work of Kataev (2006), based

on the so-called renormalization group-inspired scheme-
invariant approach, strongly supports this view.

The electroweak contribution to

a

µ

(th) is taken to be

a

µ

(weak) = 154(2)

×

10

−

11

,

(115)

as given by Czarnecki

et al.

(2003, 2006). This value

was used in the 2002 adjustment and is discussed in
CODATA-02.

The hadronic contribution to

a

µ

(th) may be written as

a

µ

(had) =

a

(4)

µ

(had) +

a

(6

a

)

µ

(had) +

a

(

γγ

)

µ

(had) +

· Â· Â·

,

(116)

where

a

(4)

µ

(had) and

a

(6

a

)

µ

(had) arise from hadronic vac-

uum polarization and are of order (

α/

Ï€

)

2

and (

α/

Ï€

)

3

,

respectively; and

a

(

γγ

)

µ

(had), which arises from hadronic

light-by-light vacuum polarization, is also of order
(

α/

Ï€

)

3

.

Values of

a

(4)

µ

(had) are obtained from calculations that

evaluate dispersion integrals over measured cross sections
for the scattering of e

+

e

−

into hadrons. In addition,

in some such calculations, data on decays of the

Ï„

into

hadrons is used to replace the e

+

e

−

data in certain parts

of the calculation. In the 2002 adjustment, results from
both types of calculation were averaged to obtain a value
that would be representative of both approaches.

There have been improvements in the calculations that

use only e

+

e

−

data with the addition of new data from

the detectors CMD-2 at Novosibirsk, KLOE at Frascati,
BaBar at the Stanford Linear Accelerator Center, and
corrected data from the detector SND at Novosibirsk
(Davier, 2007; Hagiwara

et al.

, 2007; Jegerlehner, 2007).

However, there is a persistent disagreement between the
results that include the

Ï„

decay data and those that use

only e

+

e

−

data. In view of the improvements in the re-

sults based solely on e

+

e

−

data and the unresolved ques-

tions concerning the assumptions required to incorporate
the

Ï„

data into the analysis (Davier, 2007; Davier

et al.

,

2006; Melnikov and Vainshtein, 2006), we use in the 2006
adjustment results based solely on e

+

e

−

data. The value

employed is

a

(4)

µ

(had) = 690(21)

×

10

−

10

,

(117)

which is the unweighted mean of the values

a

(4)

µ

(had) =

689

.

4(4

.

6)

×

10

−

10

(Hagiwara

et

al.

,

2007) and

a

(4)

µ

(had) = 690

.

9(4

.

4)

×

10

−

10

(Davier, 2007). The un-

certainty assigned the value of

a

(4)

µ

(had), as expressed in

Eq (117), is essentially the difference between the values
that include

Ï„

data and those that do not. In particular,

background image

26

the result that includes

Ï„

data that we use to estimate

the uncertainty is 711

.

0(5

.

8)

×

10

−

11

from Davier

et al.

(2003); the value of

a

(4)

µ

(had) used in the 2002 adjust-

ment was based in part on this result. Although there
is the smaller value 701

.

8(5

.

8)

×

10

−

11

from Troc´

oniz

and Yndur´

ain (2005), we use only the larger value in

order to obtain an uncertainty that covers the possibil-
ity of physics beyond the Standard Model not included
in the calculation of

a

µ

(th). Other, mostly older results

for

a

(4)

µ

(had), but which in general agree with the two

values we have averaged, are summarized in Table III of
Jegerlehner (2007).

For the second term in Eq. (116), we employ the value

a

(6

a

)

µ

(had) =

−

97

.

90(95)

×

10

−

11

(118)

calculated by Hagiwara

et al.

(2004), which was also used

in the 2002 adjustment.

The light-by-light contribution in Eq. (116) has been

calculated by Melnikov and Vainshtein (2004, 2006), who
obtain the value

a

(

γγ

)

µ

(had) = 136(25)

×

10

−

11

.

(119)

It is somewhat larger than earlier results, because it
includes short distance constraints imposed by quan-
tum chromodynamics (QCD) that were not included
in the previous calculations. It is consistent with the
95 % conï¬dence limit upper bound of 159

×

10

−

11

for

a

(

γγ

)

µ

(had) obtained by Erler and S´

anchez (2006), the

value 110(40)

×

10

−

11

proposed by Bijnens and Prades

(2007), and the value 125(35)

×

10

−

11

suggested by Davier

and Marciano (2004).

The total hadronic contribution is

a

µ

(had) = 694(21)

×

10

−

10

= 595(18)

×

10

−

7

a

µ

.

(120)

Combining terms in

a

µ

(QED) that have like powers of

α/

Ï€

, we summarize the theory of

a

µ

as follows:

a

µ

(th) =

a

µ

(QED) +

a

µ

(weak) +

a

µ

(had)

,

(121)

where

a

µ

(QED) =

C

(2)

µ

α

Ï€

+

C

(4)

µ

α

Ï€

2

+

C

(6)

µ

α

Ï€

3

+

C

(8)

µ

α

Ï€

4

+

C

(10)

µ

α

Ï€

5

+

· Â· Â·

,

(122)

with

C

(2)

µ

= 0

.

5

C

(4)

µ

= 0

.

765 857 408(27)

C

(6)

µ

= 24

.

050 509 59(42)

C

(8)

µ

= 130

.

9916(80)

C

(10)

µ

= 663(20)

,

(123)

and where

a

µ

(weak) and

a

µ

(had) are as given in

Eqs. (115) and (120). The standard uncertainty of

a

µ

(th)

from the uncertainties of the terms listed above, other
than that due to

α

, is

u

[

a

µ

(th)] = 2

.

1

×

10

−

9

= 1

.

8

×

10

−

6

a

µ

,

(124)

and is primarily due to the uncertainty of

a

µ

(had).

For the purpose of the least-squares calculations car-

ried out in Sec. XII.B, we deï¬ne an additive correction

δ

µ

to

a

µ

(th) to account for the lack of exact knowledge

of

a

µ

(th), and hence the complete theoretical expression

for the muon anomaly is

a

µ

(

α, Î´

µ

) =

a

µ

(th) +

δ

µ

.

(125)

Our theoretical estimate of

δ

µ

is zero and its standard

uncertainty is

u

[

a

µ

(th)]:

δ

µ

= 0

.

0(2

.

1)

×

10

−

9

.

(126)

Although

a

µ

(th) and

a

e

(th) have some common compo-

nents of uncertainty, the covariance of

δ

µ

and

δ

e

is negli-

gible.

2. Measurement of

a

µ

: Brookhaven.

Experiment E821 at Brookhaven National Laboratory

(BNL), Upton, New York, was initiated by the Muon

g

−

2

Collaboration in the early-1980s with the goal of mea-
suring

a

µ

with a signiï¬cantly smaller uncertainty than

u

r

= 7

.

2

×

10

−

6

. This is the uncertainty achieved in the

third

g

−

2 experiment carried out at the European Orga-

nization for Nuclear Research (CERN), Geneva, Switzer-
land, in the mid-1970s using both positive and negative
muons and which was the culmination of nearly 20 years
of effort (Bailey

et al.

, 1979).

The basic principle of the experimental determination

of

a

µ

is similar to that used to determine

a

e

and involves

measuring the anomaly difference frequency

f

a

=

f

s

−

f

c

,

where

f

s

=

|

g

µ

|

(

e

¯

h/

2

m

µ

)

B/h

is the muon spin-flip (of-

ten called precession) frequency in the applied magnetic
flux density

B

and where

f

c

=

eB/

2

Ï€

m

µ

is the corre-

sponding muon cyclotron frequency. However, instead of
eliminating

B

by measuring

f

c

as is done for the electron,

B

is determined from proton nuclear magnetic resonance

(NMR) measurements. As a consequence, the value of

µ

µ

/µ

p

is required to deduce the value of

a

µ

from the

data. The relevant equation is

a

µ

=

R

|

µ

µ

/µ

p

| âˆ’

R

,

(127)

where

R

=

f

a

/f

p

, and

f

p

is the free proton NMR fre-

quency corresponding to the average ï¬‚ux density seen by
the muons in their orbits in the muon storage ring used in
the experiment. (Of course, in the corresponding experi-
ment for the electron, a Penning trap is employed rather
than a storage ring.)

background image

27

The BNL

a

µ

experiment was discussed in both

CODATA-98 and CODATA-02. In the 1998 adjustment,
the CERN ï¬nal result for

R

with

u

r

= 7

.

2

×

10

−

6

, and the

ï¬rst BNL result for

R

, obtained from the 1997 engineer-

ing run using positive muons and with

u

r

= 13

×

10

−

6

,

were taken as input data. By the time of the 2002 adjust-
ment, the BNL experiment had progressed to the point
where the CERN result was no longer competitive, and
the input datum used was the BNL mean value of

R

with

u

r

= 6

.

7

×

10

−

7

obtained from the 1998, 1999, and 2000

runs using

µ

+

. The ï¬nal run of the BNL E821 experi-

ment was carried out in 2001 with

µ

−

and achieved an

uncertainty for

R

of

u

r

= 7

.

0

×

10

−

7

, but the result only

became available in early 2004, well after the closing date
of the 2002 adjustment.

Based on the data obtained in all ï¬ve runs and as-

suming

CP T

invariance, an assumption justiï¬ed by the

consistency of the values of

R

obtained from either

µ

+

or

µ

−

, the ï¬nal report on the E821 experiment gives as the

ï¬nal value of

R

(Bennett

et al.

, 2006) [see also (Miller

et al.

, 2007)]

R

= 0

.

003 707 2064(20) [5

.

4

×

10

−

7

]

,

(128)

which we take as an input datum in the 2006 adjustment.
A new BNL experiment to obtain a value of

R

with a

smaller uncertainty is under discussion (Hertzog, 2007).

The experimental value of

a

µ

implied by this value of

R

is, from Eq. (127) and the 2006 recommended value

of

µ

µ

/µ

p

, the uncertainty of which is inconsequential in

this application,

a

µ

(exp) = 1

.

165 920 93(63)

×

10

−

3

[5

.

4

×

10

−

7

]

.

(129)

Further, with the aid of Eq. (217) in Sec. VI.B, Eq. (127)
can be written as

R

=

−

a

µ

(

α, Î´

µ

)

1 +

a

e

(

α, Î´

e

)

m

e

m

µ

µ

e

−

µ

p

,

(130)

where we have used the relations

g

e

=

−

2(1 +

a

e

) and

g

µ

=

−

2(1 +

a

µ

) and replaced

a

e

and

a

µ

with their

complete theoretical expressions

a

e

(

α, Î´

e

) and

a

µ

(

α, Î´

µ

),

which are discussed in Sec. V.A.1 and Sec. V.B.1, re-
spectively. Equation (130) is, in fact, the observational
equation for the input datum

R

.

a. Theoretical value of

a

µ

and inferred value of

α

Evalu-

ation of the theoretical expression for

a

µ

in Eq. (121)

with the 2006 recommended value of

α

, the uncertainty

of which is negligible in this context, yields

a

µ

(th) = 1

.

165 9181(21)

×

10

−

3

[1

.

8

×

10

−

6

]

,

(131)

which may be compared to the value in Eq. (129) de-
duced from the BNL result for

R

given in Eq. (128).

The experimental value exceeds the theoretical value by
1

.

3

u

diff

, where

u

diff

is the standard uncertainty of the

difference. It should be recognized, however, that this

reasonable agreement is a consequence of the compar-
atively large uncertainty we have assigned to

a

(4)

µ

(had)

[see Eq. (124)]. If the result for

a

(4)

µ

(had) that includes

tau data were ignored and the uncertainty of

a

(4)

µ

(had)

were based on the estimated uncertainties of the calcu-
lated values using only e

+

e

−

data, then the experimental

value would exceed the theoretical value by 3

.

5

u

diff

. This

inconsistency is well known to the high-energy physics
community and is of considerable interest because it may
be an indication of â€œNew Physics†beyond the Standard
Model, such as supersymmetry (St¨ockinger, 2007).

One might ask, why include the theoretical value for

a

µ

in the 2006 adjustment given its current problems?

By retaining the theoretical expression with an increased
uncertainty, we ensure that the 2006 recommended value
of

a

µ

reflects, even though with a comparatively small

weight, the existence of the theoretical value.

The consistency between theory and experiment may

also be examined by considering the value of

α

obtained

by equating the theoretical expression for

a

µ

with the

BNL experimental value, as was done for

a

e

in Sec. V.A.3.

The result is

α

−

1

= 137

.

035 67(26) [1

.

9

×

10

−

6

]

,

(132)

which is the value included in Table XIV.

C. Bound electron

g

-factor in

12

C

5+

and in

16

O

7+

and

A

r

(e)

Precise measurements and theoretical calculations of

the

g

-factor of the electron in hydrogenic

12

C and in hy-

drogenic

16

O lead to values of

A

r

(e) that contribute to

the determination of the 2006 recommended value of this
important constant.

For a ground-state hydrogenic ion

A

X

(

Z

−

1)+

with

mass number

A

, atomic number (proton number)

Z

,

nuclear spin quantum number

i

= 0, and

g

-factor

g

e

−

(

A

X

(

Z

−

1)+

) in an applied magnetic ï¬‚ux density

B

,

the ratio of the electron’s spin-flip (often called pre-
cession) frequency

f

s

=

|

g

e

−

(

A

X

(

Z

−

1)+

)

|

(

e

¯

h/

2

m

e

)

B/h

to the cyclotron frequency of the ion

f

c

= (

Z

−

1)

eB/

2

Ï€

m

(

A

X

(

Z

−

1)+

) in the same magnetic ï¬‚ux density

is

f

s

(

A

X

(

Z

−

1)+

)

f

c

(

A

X

(

Z

−

1)+

)

=

−

g

e

−

(

A

X

(

Z

−

1)+

)

2(

Z

−

1)

A

r

(

A

X

(

Z

−

1)+

)

A

r

(e)

,

(133)

where as usual,

A

r

(

X

) is the relative atomic mass of par-

ticle

X

. If the frequency ratio

f

s

/f

c

is determined exper-

imentally with high accuracy, and

A

r

(

A

X

(

Z

−

1)+

) of the

ion is also accurately known, then this expression can be
used to determine an accurate value of

A

r

(e), assuming

the bound-state electron

g

-factor can be calculated from

QED theory with sufficient accuracy; or the

g

-factor can

be determined if

A

r

(e) is accurately known from another

background image

28

experiment. In fact, a broad program involving workers
from a number of European laboratories has been under-
way since the mid-1990s to measure the frequency ratio
and calculate the

g

-factor for different ions, most notably

(to date)

12

C

5+

and

16

O

7+

. The measurements them-

selves are being performed at the Gesellschaft f¨

ur Schwe-

rionenforschung, Darmstadt, Germany (GSI) by GSI and
University of Mainz researchers, and we discuss the ex-
perimental determinations of

f

s

/f

c

for

12

C

5+

and

16

O

7+

at GSI in Secs. V.C.2.a and V.C.2.b. The theoretical
expressions for the bound-electron

g

-factors of these two

ions are reviewed in the next section.

1. Theory of the bound electron

g

-factor

In this section, we consider an electron in the 1S state

of hydrogen like carbon 12 or oxygen 16 within the frame-
work of bound-state QED. The measured quantity is the
transition frequency between the two Zeeman levels of
the atom in an externally applied magnetic ï¬eld.

The energy of a free electron with spin projection

s

z

in a magnetic ï¬‚ux density

B

in the

z

direction is

E

=

−

µ

·

B

=

−

g

e

−

e

2

m

e

s

z

B ,

(134)

and hence the spin-flip energy difference is

∆

E

=

−

g

e

−

µ

B

B .

(135)

(In keeping with the deï¬nition of the

g

-factor in Sec. V,

the quantity

g

e

−

is negative.) The analogous expression

for ions with no nuclear spin is

∆

E

b

(

X

) =

−

g

e

−

(

X

)

µ

B

B ,

(136)

which deï¬nes the bound-state electron

g

-factor, and

where

X

is either

12

C

5+

or

16

O

7+

.

The theoretical expression for

g

e

−

(

X

) is written as

g

e

−

(X) =

g

D

+ âˆ†

g

rad

+ âˆ†

g

rec

+ âˆ†

g

ns

+

· Â· Â·

,

(137)

where the individual terms are the Dirac value, the ra-
diative corrections, the recoil corrections, and the nuclear
size corrections, respectively. These theoretical contribu-
tions are discussed in the following paragraphs; numerical
results based on the 2006 recommended values are sum-
marized in Tables XV and XVI. In the 2006 adjustment

α

in the expression for

g

D

is treated as a variable, but the

constants in the rest of the calculation of the

g

-factors are

taken as ï¬xed quantities.

(Breit, 1928) obtained the exact value

g

D

=

−

2
3

h

1 + 2

p

1

−

(

Zα

)

2

i

=

−

2

1

−

1
3

(

Zα

)

2

−

1

12

(

Zα

)

4

−

1

24

(

Zα

)

6

+

· Â· Â·

(138)

from the Dirac equation for an electron in the ï¬eld of
a ï¬xed point charge of magnitude

Ze

, where the only

uncertainty is that due to the uncertainty in

α

.

The radiative corrections may be written as

∆

g

rad

=

−

2

C

(2)

e

(

Zα

)

α

Ï€

+

C

(4)

e

(

Zα

)

α

Ï€

2

+

· Â· Â·

,

(139)

where the coefficients

C

(2

n

)

e

(

Zα

), corresponding to

n

vir-

tual photons, are slowly varying functions of

Zα

. These

coefficients are deï¬ned in direct analogy with the corre-
sponding coefficients for the free electron

C

(2

n

)

e

given in

Eq. (98) so that

lim

Zα

→

0

C

(2

n

)

e

(

Zα

) =

C

(2

n

)

e

.

(140)

The ï¬rst two terms of the coefficient

C

(2)

e

(

Zα

) have

been known for some time (Close and Osborn, 1971;
Faustov, 1970; Grotch, 1970). Recently, Pachucki

et al.

(2005a, 2004, 2005b) have calculated additional terms
with the result

C

(2)

e

,

SE

(

Zα

) =

1
2

1 +

(

Zα

)

2

6

+ (

Zα

)

4

32

9

ln (

Zα

)

−

2

+

247
216

−

8
9

ln

k

0

−

8
3

ln

k

3

+(

Zα

)

5

R

SE

(

Zα

)

,

(141)

where

ln

k

0

= 2

.

984 128 556

(142)

ln

k

3

= 3

.

272 806 545

(143)

R

SE

(6

α

) = 22

.

160(10)

(144)

R

SE

(8

α

) = 21

.

859(4)

.

(145)

The quantity ln

k

0

is the Bethe logarithm for the 1S state

(see Table VII) and ln

k

3

is a generalization of the Bethe

logarithm relevant to the

g

-factor calculation. The re-

mainder function

R

SE

(

Zα

) was obtained by Pachucki

et al.

(2004, 2005b) by extrapolation of the results of

numerical calculations of the self energy for

Z >

8 by

Yerokhin

et al.

(2002) using Eq. (141) to remove the

lower-order terms. For

Z

= 6 and

Z

= 8 this yields

C

(2)

e

,

SE

(6

α

) = 0

.

500 183 606 65(80)

C

(2)

e

,

SE

(8

α

) = 0

.

500 349 2887(14)

.

(146)

The lowest-order vacuum-polarization correction con-

sists of a wave-function correction and a potential correc-
tion. The wave-function correction has been calculated
numerically by Beier

et al.

(2000), with the result (in our

notation)

C

(2)

e

,

VPwf

(6

α

) =

−

0

.

000 001 840 3431(43)

.

C

(2)

e

,

VPwf

(8

α

) =

−

0

.

000 005 712 028(26)

.

(147)

background image

29

Each of these values is the sum of the Uehling potential
contribution and the higher-order Wichmann-Kroll con-
tribution, which were calculated separately with the un-
certainties added linearly, as done by Beier

et al.

(2000).

The values in Eq. (147) are consistent with the result of
an evaluation of the correction in powers of

Zα

(Karshen-

boim, 2000; Karshenboim

et al.

, 2001a,b). For the po-

tential correction, Beier

et al.

(2000) found that the

Uehling potential contribution is zero and calculated the
Wichmann-Kroll contribution numerically over a wide
range of

Z

(Beier, 2000). An extrapolation of the nu-

merical values from higher-

Z

, taken together with the

analytic result of Karshenboim and Milstein (2002),

C

(2)

e

,

VPp

(

Zα

) =

7

Ï€

432

(

Zα

)

5

+

· Â· Â·

,

(148)

for the lowest-order Wichmann-Kroll contribution, yields

C

(2)

e

,

VPp

(6

α

) = 0

.

000 000 007 9595(69)

C

(2)

e

,

VPp

(8

α

) = 0

.

000 000 033 235(29)

.

(149)

More recently, Lee

et al.

(2005) have obtained the result

C

(2)

e

,

VPp

(6

α

) = 0

.

000 000 008 201(11)

C

(2)

e

,

VPp

(8

α

) = 0

.

000 000 034 23(11)

.

(150)

The values in Eq. (149) and Eq. (150) disagree somewhat,
so in the present analysis, we use a value that is an un-
weighted average of the two, with half the difference for
the uncertainty. These average values are

C

(2)

e

,

VPp

(6

α

) = 0

.

000 000 008 08(12)

C

(2)

e

,

VPp

(8

α

) = 0

.

000 000 033 73(50)

.

(151)

The total one-photon vacuum polarization coefficients
are given by the sum of Eqs. (147) and (151):

C

(2)

e

,

VP

(6

α

) =

C

(2)

e

,

VPwf

(6

α

) +

C

(2)

e

,

VPp

(6

α

)

=

−

0

.

000 001 832 26(12)

C

(2)

e

,

VP

(8

α

) =

C

(2)

e

,

VPwf

(8

α

) +

C

(2)

e

,

VPp

(8

α

)

=

−

0

.

000 005 678 30(50)

.

(152)

The total for the one-photon coefficient

C

(2)

e

(

Zα

),

given by the sum of Eqs. (146) and (152), is

C

(2)

e

(6

α

) =

C

(2)

e

,

SE

(6

α

) +

C

(2)

e

,

VP

(6

α

)

= 0

.

500 181 774 38(81)

C

(2)

e

(8

α

) =

C

(2)

e

,

SE

(8

α

) +

C

(2)

e

,

VP

(8

α

)

= 0

.

500 343 6104(14)

,

(153)

and the total one-photon contribution âˆ†

g

(2)

to the

g

-

factor is thus

∆

g

(2)

=

−

2

C

(2)

e

(

Zα

)

α

Ï€

=

−

0

.

002 323 663 914(4) for

Z

= 6

=

−

0

.

002 324 415 746(7) for

Z

= 8

.

(154)

The separate one-photon self energy and vacuum po-
larization contributions to the

g

-factor are given in Ta-

bles XV and XVI.

Calculations by Eides and Grotch (1997a) using the

Bargmann-Michel-Telegdi equation and by Czarnecki

et al.

(2001) using an effective potential approach yield

C

(2

n

)

e

(

Zα

) =

C

(2

n

)

e

1 +

(

Zα

)

2

6

+

· Â· Â·

(155)

as the leading binding correction to the free electron coef-
ï¬cients

C

(2

n

)

e

for any order

n

. For

C

(2)

e

(

Zα

), this correc-

tion was known for some time. For higher-order terms,
it provides the leading binding effect.

The two-loop contribution of relative order (

Zα

)

4

has

recently been calculated by Jentschura

et al.

(2006);

Pachucki

et al.

(2005a) for any S state. Their result for

the ground-state correction is

C

(4)

e

(

Zα

) =

C

(4)

e

1 +

(

Zα

)

2

6

+ (

Zα

)

4

14

9

ln (

Zα

)

−

2

+

991343
155520

−

2
9

ln

k

0

−

4
3

ln

k

3

+

679

Ï€

2

12960

−

1441

Ï€

2

720

ln 2 +

1441

480

ζ

(3)

+

O

(

Zα

)

5

=

−

0

.

328 5778(23) for

Z

= 6

=

−

0

.

328 6578(97) for

Z

= 8

,

(156)

where ln

k

0

and ln

k

3

are given in Eqs. (142) and (143).

The uncertainty due to uncalculated terms is estimated
by assuming that the unknown higher-order terms, of or-
der (

Zα

)

5

or higher for two loops, are comparable to the

higher-order one-loop terms scaled by the free-electron
coefficients in each case, with an extra factor of 2 in-
cluded (Pachucki

et al.

, 2005a):

u

h

C

(4)

e

(

Zα

)

i

= 2



(

Zα

)

5

C

(4)

e

R

SE

(

Zα

)



.

(157)

The three- and four-photon terms are calculated with

the leading binding correction included:

C

(6)

e

(

Zα

) =

C

(6)

e

1 +

(

Zα

)

2

6

+

· Â· Â·

= 1

.

181 611

. . .

for

Z

= 6

= 1

.

181 905

. . .

for

Z

= 8

,

(158)

where

C

(6)

e

= 1

.

181 234

. . .

, and

C

(8)

e

(

Zα

) =

C

(8)

e

1 +

(

Zα

)

2

6

+

· Â· Â·

=

−

1

.

7289(35)

. . .

for

Z

= 6

=

−

1

.

7293(35)

. . .

for

Z

= 8

,

(159)

where

C

(8)

e

=

−

1

.

7283(35) (Kinoshita and Nio, 2006a).

This value would shift somewhat if the more recent ten-
tative value

C

(8)

e

=

−

1

.

9144(35) (Aoyama

et al.

, 2007)

background image

30

were used (see Sec. V). An uncertainty estimate

C

(10)

e

(

Zα

)

≈

C

(10)

e

= 0

.

0(3

.

7)

(160)

is included for the ï¬ve-loop correction.

The recoil correction to the bound-state

g

-factor as-

sociated with the ï¬nite mass of the nucleus is denoted
by âˆ†

g

rec

, which we write here as the sum âˆ†

g

(0)

rec

+ âˆ†

g

(2)

rec

corresponding to terms that are zero- and ï¬rst-order in

α/

Ï€

, respectively. For âˆ†

g

(0)

rec

, we have

∆

g

(0)

rec

=

−

(

Zα

)

2

+

(

Zα

)

4

3[1 +

p

1

−

(

Zα

)

2

]

2

−

(

Zα

)

5

P

(

Zα

)

m

e

m

N

+

O

m

e

m

N

2

=

−

0

.

000 000 087 71(1)

. . .

for

Z

= 6

=

−

0

.

000 000 117 11(1)

. . .

for

Z

= 8

,

(161)

where

m

N

is the mass of the nucleus.

The

mass ratios, obtained from the 2006 adjustment, are

m

e

/m

(

12

C

6+

) = 0

.

000 045 727 5

. . .

and

m

e

/m

(

16

O

8+

) =

0

.

000 034 306 5

. . .

. The recoil terms are the same as in

CODATA-02 and references to the original calculations
are given there. An additional term of the order of the
mass ratio squared is included as

S

Z

(

Zα

)

2

m

e

m

N

2

,

(162)

where

S

Z

is taken to be the average of the disagreeing

values 1 +

Z

, obtained by Eides (2002); Eides and Grotch

(1997a), and

Z/

3 obtained by Martynenko and Faustov

(2001, 2002) for this term. The uncertainty in

S

Z

is taken

to be half the difference of the two values.

For âˆ†

g

(2)

rec

, we have

∆

g

(2)

rec

=

α

Ï€

(

Zα

)

2

3

m

e

m

N

+

· Â· Â·

= 0

.

000 000 000 06

. . .

for

Z

= 6

= 0

.

000 000 000 09

. . .

for

Z

= 8

.

(163)

There is a small correction to the bound-state

g

-factor

due to the ï¬nite size of the nucleus, of order

∆

g

ns

=

−

8
3

(

Zα

)

4

R

N

λ

C

2

+

· Â· Â·

,

(164)

where

R

N

is the bound-state nuclear rms charge radius

and

λ

C

is the Compton wavelength of the electron di-

vided by 2

Ï€

. This term is calculated as in CODATA-02

(Glazov and Shabaev, 2002) with updated values for the
nuclear radii

R

N

= 2

.

4703(22) fm and

R

N

= 2

.

7013(55)

from the compilation of Angeli (2004) for

12

C and

16

O,

respectively. This yields the correction

∆

g

ns

=

−

0

.

000 000 000 408(1) for

12

C

∆

g

ns

=

−

0

.

000 000 001 56(1) for

16

O

.

(165)

The theoretical value for the

g

-factor of the electron

in hydrogenic carbon 12 or oxygen 16 is the sum of the
individual contributions discussed above and summarized
in Tables XV and XVI:

g

e

−

(

12

C

5+

) =

−

2

.

001 041 590 203(28)

g

e

−

(

16

O

7+

) =

−

2

.

000 047 020 38(11)

.

(166)

For the purpose of the least-squares calculations car-

ried out in Sec. XII.B, we deï¬ne

g

C

(th) to be the sum

of

g

D

as given in Eq. (138), the term

−

2(

α/

Ï€

)

C

(2)

e

, and

the numerical values of the remaining terms in Eq. (137)
as given in Table XV, where the standard uncertainty of
these latter terms is

u

[

g

C

(th)] = 0

.

3

×

10

−

10

= 1

.

4

×

10

−

11

|

g

C

(th)

|

.

(167)

The uncertainty in

g

C

(th) due to the uncertainty in

α

enters the adjustment primarily through the func-

tional dependence of

g

D

and the term

−

2(

α/

Ï€

)

C

(2)

e

on

α

. Therefore this particular component of uncertainty is

not explicitly included in

u

[

g

C

(th)]. To take the uncer-

tainty

u

[

g

C

(th)] into account we employ as the theoretical

expression for the

g

-factor

g

C

(

α, Î´

C

) =

g

C

(th) +

δ

C

,

(168)

where the input value of the additive correction

δ

C

is

taken to be zero and its standard uncertainty is

u

[

g

C

(th)]:

δ

C

= 0

.

00(27)

×

10

−

10

.

(169)

Analogous considerations apply for the

g

-factor in oxy-

gen:

u

[

g

O

(th)] = 1

.

1

×

10

−

10

= 5

.

3

×

10

−

11

|

g

O

(th)

|

(170)

g

O

(

α, Î´

O

) =

g

O

(th) +

δ

O

(171)

δ

O

= 0

.

0(1

.

1)

×

10

−

10

.

(172)

Since the uncertainties of the theoretical values of the

carbon and oxygen

g

-factors arise primarily from the

same sources, the quantities

δ

C

and

δ

O

are highly cor-

related. Their covariance is

u

(

δ

C

, Î´

O

) = 27

×

10

−

22

,

(173)

which corresponds to a correlation coefficient of

r

(

δ

C

, Î´

O

) = 0

.

92.

The theoretical value of the ratio of the two

g

-factors,

which is relevant to the comparison to experiment in
Sec. V.C.2.c, is

g

e

−

(

12

C

5+

)

g

e

−

(

16

O

7+

)

= 1

.

000 497 273 218(41)

,

(174)

where the covariance, including the contribution from the
uncertainty in

α

for this case, is taken into account.

background image

31

TABLE XV Theoretical contributions and total for the

g

-

factor of the electron in hydrogenic carbon 12 based on the
2006 recommended values of the constants.

Contribution

Value

Source

Dirac

g

D

−

1

.

998 721 354 402(2)

Eq. (138)

∆

g

(2)

SE

−

0

.

002 323 672 426(4)

Eq. (146)

∆

g

(2)

VP

0

.

000 000 008 512(1)

Eq. (152)

∆

g

(4)

0

.

000 003 545 677(25)

Eq. (156)

∆

g

(6)

−

0

.

000 000 029 618

Eq. (158)

∆

g

(8)

0

.

000 000 000 101

Eq. (159)

∆

g

(10)

0

.

000 000 000 000(1)

Eq. (160)

∆

g

rec

−

0

.

000 000 087 639(10)

Eqs. (161)-(163)

∆

g

ns

−

0

.

000 000 000 408(1)

Eq. (165)

g

e

−

(

12

C

5+

)

−

2

.

001 041 590 203(28)

Eq. (166)

TABLE XVI Theoretical contributions and total for the

g

-

factor of the electron in hydrogenic oxygen 16 based on the
2006 recommended values of the constants.

Contribution

Value

Source

Dirac

g

D

−

1

.

997 726 003 08

Eq. (138)

∆

g

(2)

SE

−

0

.

002 324 442 12(1)

Eq. (146)

∆

g

(2)

VP

0

.

000 000 026 38

Eq. (152)

∆

g

(4)

0

.

000 003 546 54(11)

Eq. (156)

∆

g

(6)

−

0

.

000 000 029 63

Eq. (158)

∆

g

(8)

0

.

000 000 000 10

Eq. (159)

∆

g

(10)

0

.

000 000 000 00

Eq. (160)

∆

g

rec

−

0

.

000 000 117 02(1)

Eqs. (161)-(163)

∆

g

ns

−

0

.

000 000 001 56(1)

Eq. (165)

g

e

−

(

16

O

7+

)

−

2

.

000 047 020 38(11)

Eq. (166)

2. Measurements of

g

e

(

12

C

5+

)

and

g

e

(

16

O

7+

)

.

The experimental data on the electron bound-state

g

-

factor in hydrogenic carbon and oxygen and the inferred
values of

A

r

(e) are summarized in Table XVII.

a. Experiment on

g

e

(

12

C

5+

)

.

The accurate determination

of the frequency ratio

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

) at GSI based

on the double Penning-trap technique was discussed in
CODATA-02.

[See also the recent concise review by

Werth

et al.

(2006).] Since the result used as an input

datum in the 2002 adjustment is unchanged, we take it
as an input datum in the 2006 adjustment as well (Beier

et al.

, 2002; H¨

affner

et al.

, 2003; Werth, 2003):

f

s

12

C

5+

f

c

(

12

C

5+

)

= 4376

.

210 4989(23)

.

(175)

From Eq. (133) and Eq. (4) we have

f

s

12

C

5+

f

c

(

12

C

5+

)

=

−

g

e

−

12

C

5+

10

A

r

(e)

×

"

12

−

5

A

r

(e) +

E

b

12

C

−

E

b

12

C

5+

m

u

c

2

#

,

(176)

which is the basis for the observational equation for the

12

C

5+

frequency-ratio input datum.

Evaluation of this expression using the result for

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

) in Eq. (175), the theoretical result

for

g

e

−

(

12

C

5+

) in Table XV, and the relevant binding

energies in Table IV of CODATA-02, yields

A

r

(e) = 0

.

000 548 579 909 32(29) [5

.

2

×

10

−

10

]

.

(177)

This value is consistent with that from antiprotonic
helium given in Eq. (74) and that from the University of
Washington given in Eq. (5), but has about a factor of
three to four smaller uncertainty.

b. Experiment

on

g

e

(

16

O

7+

)

.

The

double

Penning-

trap

determination

of

the

frequency

ratio

f

s

(

16

O

7+

)

/f

c

(

16

O

7+

) at GSI was also discussed in

CODATA-02, but the value used as an input datum
was not quite ï¬nal (Verd´

u

et al.

, 2003, 2002; Werth,

2003). A slightly different value for the ratio was given
in the ï¬nal report of the measurement (Tomaselli

et al.

,

2002), which is the value we take as the input datum
in the 2006 adjustment but modiï¬ed slightly as follows
based on information provided by Verd´

u (2006): (i) an

unrounded instead of a rounded value for the correction
due to extrapolating the axial temperature

T

z

to 0 K was

added to the uncorrected ratio (

−

0

.

000 004 7 in place of

−

0

.

000 005); and (ii) a more detailed uncertainty budget

was employed to evaluate the uncertainty of the ratio.
The resulting value is

f

s

16

O

7+

f

c

(

16

O

7+

)

= 4164

.

376 1837(32)

.

(178)

In analogy with what was done above with the ratio

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

), from Eq. (133) and Eq. (4) we have

f

s

16

O

7+

f

c

(

16

O

7+

)

=

−

g

e

−

16

O

7+

14

A

r

(e)

A

r

16

O

7+

(179)

with

A

r

16

O

=

A

r

16

O

7+

+ 7

A

r

(e)

−

E

b

16

O

−

E

b

16

O

7+

m

u

c

2

,

(180)

which are the basis for the observational equations
for the oxygen frequency ratio and

A

r

(

16

O), respec-

tively. The ï¬rst expression, evaluated using the result

background image

32

TABLE XVII Summary of experimental data on the electron bound-state

g

-factor in hydrogenic carbon and oxygen and

inferred values of the relative atomic mass of the electron.

Input datum

Value

Relative standard

Identiï¬cation

Sec. and Eq.

uncertainty

u

r

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

)

4376

.

210 4989(23)

5

.

2

×

10

−

10

GSI-02

V.C.2.a (175)

A

r

(e)

0

.

000 548 579 909 32(29)

5

.

2

×

10

−

10

V.C.2.a (177)

f

s

(

16

O

7+

)

/f

c

(

16

O

7+

)

4164

.

376 1837(32)

7

.

6

×

10

−

10

GSI-02

V.C.2.b (178)

A

r

(e)

0

.

000 548 579 909 58(42)

7

.

6

×

10

−

10

V.C.2.b (181)

for

f

s

(

16

O

7+

)

/f

c

(

16

O

7+

) in Eq. (178) and the theoreti-

cal result for

g

e

−

(

16

O

7+

) in Table XVI, in combination

with the second expression, evaluated using the value of

A

r

(

16

O) in Table IV and the relevant binding energies in

Table IV of CODATA-02, yields

A

r

(e) = 0

.

000 548 579 909 58(42) [7

.

6

×

10

−

10

]

.

(181)

It is consistent with both the University of Washington
value in Eq. (5) and the value in Eq. (177) obtained from

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

).

c. Relations between

g

e

(

12

C

5+

)

and

g

e

(

16

O

7+

)

.

It should

be noted that the GSI frequency ratios for

12

C

5+

and

16

O

7+

are correlated. Based on the detailed uncertainty

budgets of the two results (Verd´

u, 2006; Werth, 2003),

we ï¬nd the correlation coefficient to be

r

"

f

s

12

C

5+

f

c

(

12

C

5+

)

,

f

s

16

O

7+

f

c

(

16

O

7+

)

#

= 0

.

082

.

(182)

Finally, as a consistency test, it is of interest to com-

pare the experimental and theoretical values of the ratio
of

g

e

−

(

12

C

5+

) to

g

e

−

(

16

O

7+

) (Karshenboim and Ivanov,

2002). The main reason is that the experimental value of
the ratio is only weakly dependent on the value of

A

r

(e).

The theoretical value of the ratio is given in Eq. (174) and
takes into account the covariance of the two theoretical
values. The experimental value of the ratio can be ob-
tained by combining Eqs. (175), (176), (178) to (180) and
(182), and using the 2006 recommended value for

A

r

(e).

Because of the weak dependence of the experimental ra-
tio on

A

r

(e), the value used is not at all critical. The

result is

g

e

−

(

12

C

5+

)

g

e

−

(

16

O

7+

)

= 1

.

000 497 273 68(89) [8

.

9

×

10

−

10

]

,

(183)

in agreement with the theoretical value.

VI. MAGNETIC MOMENT RATIOS AND THE
MUON-ELECTRON MASS RATIO

Magnetic moment ratios and the muon-electron mass

ratio are determined by experiments on bound states of
the relevant particles. The free electron and muon mag-
netic moments are discussed in Sec. V and the theory

of the

g

-factor of an electron bound in an atom with no

nuclear spin is considered in Sec. V.C.1.

For nucleons or nuclei with spin

I

, the magnetic mo-

ment can be written as

µ

=

g

e

2

m

p

I

,

(184)

or

µ

=

gµ

N

i .

(185)

In Eq. (185),

µ

N

=

e

¯

h/

2

m

p

is the nuclear magneton,

deï¬ned in analogy with the Bohr magneton, and

i

is the

spin quantum number of the nucleus deï¬ned by

I

2

=

i

(

i

+ 1)¯

h

2

and

I

z

=

−

i

¯

h, ...,

(

i

−

1)¯

h, i

¯

h

, where

I

z

is the

spin projection. However, in some publications, moments
of nucleons are expressed in terms of the Bohr magneton
with a corresponding change in the deï¬nition of the

g

-

factor.

For atoms with a nonzero nuclear spin, bound state

g

-factors are deï¬ned by considering the contribution to

the Hamiltonian from the interaction of the atom with
an applied magnetic ï¬‚ux density

B

. For example, for

hydrogen, in the framework of the Pauli approximation,
we have

H

=

β

(H)

µ

e

−

·

µ

p

−

µ

e

−

(H)

·

B

−

µ

p

(H)

·

B

=

2

Ï€

¯

h

∆

ν

H

s

·

I

−

g

e

−

(H)

µ

B

¯

h

s

·

B

−

g

p

(H)

µ

N

¯

h

I

·

B

,

(186)

where

β

(H) characterizes the strength of the hyperï¬ne

interaction, âˆ†

ν

H

is the ground-state hyperï¬ne frequency,

s

is the spin of the electron, and

I

is the spin of the

nucleus, that is, the proton. Equation (186), or its analog
for other combinations of particles, serves to deï¬ne the
corresponding bound-state

g

-factors, which are

g

e

−

(H)

and

g

p

(H) in this case.

A. Magnetic moment ratios

A number of magnetic moment ratios are of interest for

the 2006 adjustment. The results of measurements and
the inferred values of various quantities are summarized
in Sec. VI.A.2, and the measurement results themselves
are also summarized in Table XIX.

The inferred moment ratios depend on the relevant

theoretical binding corrections that relate the

g

-factor

background image

33

measured in the bound state to the corresponding free-
particle

g

-factor. To use the results of these experiments

in the 2006 adjustment, we employ theoretical expres-
sions that give predictions for the moments and

g

-factors

of the bound particles in terms of free-particle moments
and

g

-factors as well as adjusted constants; this is dis-

cussed in the following section. However, in a number of
cases, the differences between the bound-state and free-
state values are sufficiently small that the adjusted con-
stants can be taken as exactly known.

1. Theoretical ratios of atomic bound-particle to free-particle

g

-factors

Theoretical

g

-factor-related quantities used in the 2006

adjustment are the ratio of the

g

-factor of the electron

in the ground state of hydrogen to that of the free elec-
tron

g

e

−

(H)

/g

e

−

; the ratio of the

g

-factor of the proton

in hydrogen to that of the free proton

g

p

(H)

/g

p

; the anal-

ogous ratios for the electron and deuteron in deuterium,

g

e

−

(D)

/g

e

−

and

g

d

(D)

/g

d

, respectively; and the analo-

gous ratios for the electron and positive muon in muon-
ium,

g

e

−

(Mu)

/g

e

−

and

g

µ

+

(Mu)

/g

µ

+

, respectively.

These ratios and the references for the relevant calcu-

lations are discussed in CODATA-98 and CODATA-02;
only a summary of the results is included here.

For the electron in hydrogen, we have

g

e

−

(H)

g

e

−

= 1

−

1
3

(

Zα

)

2

−

1

12

(

Zα

)

4

+

1
4

(

Zα

)

2

α

Ï€

+

1
2

(

Zα

)

2

m

e

m

p

+

1
2

A

(4)
1

−

1
4

(

Zα

)

2

α

Ï€

2

−

5

12

(

Zα

)

2

α

Ï€

m

e

m

p

+

· Â· Â·

,

(187)

where

A

(4)
1

is given in Eq. (84). For the proton in hydro-

gen, we have

g

p

(H)

g

p

= 1

−

1
3

α

(

Zα

)

−

97

108

α

(

Zα

)

3

+

1
6

α

(

Zα

)

m

e

m

p

3 + 4

a

p

1 +

a

p

+

· Â· Â·

,

(188)

where the proton magnetic moment anomaly

a

p

is deï¬ned

by

a

p

=

µ

p

(

e

¯

h/

2

m

p

)

−

1

≈

1

.

793

.

(189)

For deuterium, similar expressions apply for the elec-

tron

g

e

−

(D)

g

e

−

= 1

−

1
3

(

Zα

)

2

−

1

12

(

Zα

)

4

+

1
4

(

Zα

)

2

α

Ï€

+

1
2

(

Zα

)

2

m

e

m

d

+

1
2

A

(4)
1

−

1
4

(

Zα

)

2

α

Ï€

2

−

5

12

(

Zα

)

2

α

Ï€

m

e

m

d

+

· Â· Â·

,

(190)

TABLE XVIII Theoretical values for various bound-particle
to free-particle

g

-factor ratios relevant to the 2006 adjustment

based on the 2006 recommended values of the constants.

Ratio

Value

g

e

−

(H)

/g

e

−

1

−

17

.

7054

×

10

−

6

g

p

(H)

/g

p

1

−

17

.

7354

×

10

−

6

g

e

−

(D)

/g

e

−

1

−

17

.

7126

×

10

−

6

g

d

(D)

/g

d

1

−

17

.

7461

×

10

−

6

g

e

−

(Mu)

/g

e

−

1

−

17

.

5926

×

10

−

6

g

µ

+

(Mu)

/g

µ

+

1

−

17

.

6254

×

10

−

6

and deuteron

g

d

(D)

g

d

= 1

−

1
3

α

(

Zα

)

−

97

108

α

(

Zα

)

3

+

1
6

α

(

Zα

)

m

e

m

d

3 + 4

a

d

1 +

a

d

+

· Â· Â·

,

(191)

where the deuteron magnetic moment anomaly

a

d

is de-

ï¬ned by

a

d

=

µ

d

(

e

¯

h/m

d

)

−

1

≈ âˆ’

0

.

143

.

(192)

In the case of muonium Mu, some additional higher-

order terms are included because of the larger mass ratio.
For the electron in muonium, we have

g

e

−

(Mu)

g

e

−

= 1

−

1
3

(

Zα

)

2

−

1

12

(

Zα

)

4

+

1
4

(

Zα

)

2

α

Ï€

+

1
2

(

Zα

)

2

m

e

m

µ

+

1
2

A

(4)
1

−

1
4

(

Zα

)

2

α

Ï€

2

−

5

12

(

Zα

)

2

α

Ï€

m

e

m

µ

−

1
2

(1 +

Z

)(

Zα

)

2

m

e

m

µ

2

+

· Â· Â·

,

(193)

and for the muon in muonium, the ratio is

g

µ

+

(Mu)

g

µ

+

= 1

−

1
3

α

(

Zα

)

−

97

108

α

(

Zα

)

3

+

1
2

α

(

Zα

)

m

e

m

µ

+

1

12

α

(

Zα

)

α

Ï€

m

e

m

µ

−

1
2

(1 +

Z

)

α

(

Zα

)

m

e

m

µ

2

+

· Â· Â·

.

(194)

The numerical values of the corrections in Eqs. (187)

to (194), based on the 2006 adjusted values of the rele-
vant constants, are listed in Table XVIII. Uncertainties
are negligible at the level of uncertainty of the relevant
experiments.

2. Ratio measurements

background image

34

a. Electron to proton magnetic moment ratio

µ

e

/µ

p

.

The

ratio

µ

e

/µ

p

is obtained from measurements of the ra-

tio of the magnetic moment of the electron to the mag-
netic moment of the proton in the 1S state of hydrogen

µ

e

−

(H)

/µ

p

(H). We use the value obtained by Winkler

et al.

(1972) at MIT:

µ

e

−

(H)

µ

p

(H)

=

−

658

.

210 7058(66) [1

.

0

×

10

−

8

]

,

(195)

where a minor typographical error in the original pub-
lication has been corrected (Kleppner, 1997). The free-
particle ratio

µ

e

/µ

p

follows from the bound-particle ratio

and the relation

µ

e

−

µ

p

=

g

p

(H)

g

p

g

e

−

(H)

g

e

−

−

1

µ

e

−

(H)

µ

p

(H)

=

−

658

.

210 6860(66) [1

.

0

×

10

−

8

]

,

(196)

where the bound-state

g

-factor ratios are given in Table

XVIII.

b. Deuteron to electron magnetic moment ratio

µ

d

/µ

e

.

From measurements of the ratio

µ

d

(D)

/µ

e

−

(D) in the 1S

state of deuterium, Phillips

et al.

(1984) at MIT obtained

µ

d

(D)

µ

e

−

(D)

=

−

4

.

664 345 392(50)

×

10

−

4

[1

.

1

×

10

−

8

]

.

(197)

Although this result has not been published, as in the
1998 and 2002 adjustments, we include it as an input da-
tum, because the method is described in detail by Win-
kler

et al.

(1972) in connection with their measurement

of

µ

e

−

(H)

/µ

p

(H). The free-particle ratio is given by

µ

d

µ

e

−

=

g

e

−

(D)

g

e

−

g

d

(D)

g

d

−

1

µ

d

(D)

µ

e

−

(D)

=

−

4

.

664 345 548(50)

×

10

−

4

[1

.

1

×

10

−

8

]

,

(198)

with the bound-state

g

-factor ratios given in Table XVIII.

c. Proton to deuteron and triton to proton magnetic moment
ratios

µ

p

/µ

d

and

µ

t

/µ

p

The ratios

µ

p

/µ

d

and

µ

t

/µ

p

can

be determined by nuclear magnetic resonance (NMR)
measurements on the HD molecule (bound state of hydro-
gen and deuterium) and the HT molecule (bound state
of hydrogen and tritium,

3

H), respectively. The relevant

expressions are (see CODATA-98)

µ

p

(HD)

µ

d

(HD)

= [1 +

σ

d

(HD)

−

σ

p

(HD)]

µ

p

µ

d

(199)

µ

t

(HT)

µ

p

(HT)

= [1

−

σ

t

(HT) +

σ

p

(HT)]

µ

t

µ

p

,

(200)

where

µ

p

(HD) and

µ

d

(HD) are the proton and deuteron

magnetic moments in HD, respectively, and

σ

p

(HD) and

σ

d

(HD) are the corresponding nuclear magnetic shielding

corrections. Similarly,

µ

t

(HT) and

µ

p

(HT) are the tri-

ton (nucleus of tritium) and proton magnetic moments
in HT, respectively, and

σ

t

(HT) and

σ

p

(HT) are the cor-

responding nuclear magnetic shielding corrections. [Note
that

µ

(bound) = (1

−

σ

)

µ

(free) and the nuclear magnetic

shielding corrections are small.]

The determination of

µ

d

/µ

p

from NMR measurements

on HD by Wimett (1953) and by a Russian group work-
ing in St. Petersburg (Gorshkov

et al.

, 1989; Neronov

et al.

, 1975) was discussed in CODATA-98. However, for

reasons given there, mainly the lack of sufficient infor-
mation to assign a reliable uncertainty to the reported
values of

µ

d

(HD)

/µ

p

(HD) and also to the nuclear mag-

netic shielding correction difference

σ

d

(HD)

−

σ

p

(HD),

the results were not used in the 1998 or 2002 adjust-
ments. Further, since neither of these adjustments ad-
dressed quantities related to the triton, the determina-
tion of

µ

t

/µ

p

from measurements on HT by the Russian

group (Neronov and Barzakh, 1977) was not considered
in either of these adjustments. It may be recalled that a
systematic error related to the use of separate inductance
coils for the proton and deuteron NMR resonances in the
measurements of Neronov

et al.

(1975) was eliminated in

the HT measurements of Neronov and Barzakh (1977)
as well as in the HD measurements of Gorshkov

et al.

(1989).

Recently, a member of the earlier St. Petersburg group

together with one or more other Russian colleagues in
St. Petersburg published the following results based in
part on new measurements and re-examination of rel-
evant theory (Karshenboim

et al.

, 2005; Neronov and

Karshenboim, 2003):

µ

p

(HD)

µ

d

(HD)

= 3

.

257 199 531(29)

[8

.

9

×

10

−

9

] (201)

µ

t

(HT)

µ

p

(HT)

= 1

.

066 639 887(10)

[9

.

4

×

10

−

9

] (202)

σ

dp

≡

σ

d

(HD)

−

σ

p

(HD) = 15(2)

×

10

−

9

(203)

σ

tp

≡

σ

t

(HT)

−

σ

p

(HT) = 20(3)

×

10

−

9

,

(204)

which together with Eqs. (199) and (200) yield

µ

p

µ

d

= 3

.

257 199 482(30)

[9

.

1

×

10

−

9

]

(205)

µ

t

µ

p

= 1

.

066 639 908(10)

[9

.

8

×

10

−

9

]

.

(206)

The purpose of the new work (Karshenboim

et al.

,

2005; Neronov and Karshenboim, 2003) was (i) to check
whether rotating the NMR sample and using a high-
pressure gas as the sample (60 to 130 atmospheres),
which was the case in most of the older Russian exper-
iments, influenced the results and to report a value of

µ

p

(HD)

/µ

d

(HD) with a reliable uncertainty; and (ii) to

background image

35

TABLE XIX Summary of data for magnetic moment ratios of various bound particles.

Quantity

Value

Relative standard Identiï¬cation Sect. and Eq.

uncertainty

u

r

µ

e

−

(H)

/µ

p

(H)

−

658

.

210 7058(66)

1

.

0

×

10

−

8

MIT-72

VI.A.2.a (195)

µ

d

(D)

/µ

e

−

(D)

−

4

.

664 345 392(50)

×

10

−

4

1

.

1

×

10

−

8

MIT-84

VI.A.2.b (197)

µ

p

(HD)

/µ

d

(HD)

3

.

257 199 531(29)

8

.

9

×

10

−

9

StPtrsb-03

VI.A.2.c (201)

σ

dp

15(2)

×

10

−

9

StPtrsb-03

VI.A.2.c (203)

µ

t

(HT)

/µ

p

(HT)

1

.

066 639 887(10)

9

.

4

×

10

−

9

StPtrsb-03

VI.A.2.c (202)

σ

tp

20(3)

×

10

−

9

StPtrsb-03

VI.A.2.c (204)

µ

e

−

(H)

/µ

′

p

−

658

.

215 9430(72)

1

.

1

×

10

−

8

MIT-77

VI.A.2.d (209)

µ

′

h

/µ

′

p

−

0

.

761 786 1313(33)

4

.

3

×

10

−

9

NPL-93

VI.A.2.e (211)

µ

n

/µ

′

p

−

0

.

684 996 94(16)

2

.

4

×

10

−

7

ILL-79

VI.A.2.f (212)

re-examine the theoretical values of the nuclear magnetic
shielding correction differences

σ

dp

and

σ

tp

and their un-

certainties. It was also anticipated that based on this new
work, a value of

µ

t

(HT)

/µ

p

(HT) with a reliable uncer-

tainty could be obtained from the highly precise mea-
surements of Neronov and Barzakh (1977). However,
Gorshkov

et al.

(1989), as part of their experiment to

determine

µ

d

/µ

p

, compared the result from a 100 atmo-

sphere HD rotating sample with a 100 atmosphere HD
non-rotating sample and found no statistically signiï¬cant
difference.

To test the effect of sample rotation and sample pres-

sure, Neronov and Karshenboim (2003) performed mea-
surements using a commercial NMR spectrometer op-
erating at a magnetic ï¬‚ux density of about 7 T and a
non-rotating 10 atmosphere HD gas sample. Because of
the relatively low pressure, the NMR signals were com-
paratively weak and a measurement time of 1 h was re-
quired. To simplify the measurements, the frequency of
the proton NMR signal from HD was determined rela-
tive to the frequency of the more easily measured proton
NMR signal from acetone, (CH

3

)

2

CO. Similarly, the fre-

quency of the deuteron NMR signal from HD was de-
termined relative to the frequency of the more easily
measured deuteron NMR signal from deuterated acetone,
(CD

3

)

2

CO. A number of tests involving the measurement

of the hyperï¬ne interaction constant in the case of the
proton triplet NMR spectrum, and the isotopic shift in
the case of the deuteron, where the deuteron HD doublet
NMR spectrum was compared with the singlet spectrum
of D

2

, were carried out to investigate the reliability of the

new data. The results of the tests were in good agreement
with the older results obtained with sample rotation and
high gas pressure.

The more recent result for

µ

p

(HD)

/µ

d

(HD) reported

by Karshenboim

et al.

(2005), which was obtained with

the same NMR spectrometer employed by Neronov and
Karshenboim (2003) but with a 20 atmosphere non-
rotating gas sample, agrees with the 10 atmosphere non-
rotating sample result of the latter researchers and is
interpreted by Karshenboim

et al.

(2005) as conï¬rming

the 2003 result. Although the values of

µ

p

(HD)

/µ

d

(HD)

reported by the Russian researchers in 2005, 2003, and

1989 agree, the 2003 result as given in Eq. (201) and
Table XIX, the uncertainty of which is dominated by
the proton NMR line ï¬tting procedure, is taken as the
input datum in the 2006 adjustment because of the at-
tention paid to possible systematic effects, both experi-
mental and theoretical.

Based on their HD measurements and related anal-

ysis, especially the fact that sample pressure and ro-
tation do not appear to be a problem at the current
level of uncertainty, Neronov and Karshenboim (2003)
conclude that the result for

µ

t

(HT)

/µ

p

(HT) reported

by Neronov and Barzakh (1977) is reliable but that it
should be assigned about the same relative uncertainty
as their result for

µ

p

(HD)

/µ

d

(HD). We therefore include

as an input datum in the 2006 adjustment the result for

µ

t

(HT)

/µ

p

(HT) given in Eq. (202) and Table XIX.

Without reliable theoretically calculated values for the

shielding correction differences

σ

dp

and

σ

tp

, reliable ex-

perimental values for the ratios

µ

p

(HD)

/µ

d

(HD) and

µ

t

(HT)

/µ

p

(HT) are of little use. Although Neronov and

Barzakh (1977) give theoretical estimates of these quan-
tities based on their own calculations, they do not discuss
the uncertainties of their estimates. To address this issue,
Neronov and Karshenboim (2003) carefully examined the
calculations and concluded that a reasonable estimate of
the relative uncertainty is 15 %. This leads to the values
for

σ

dp

and

σ

tp

in Eqs. (203) and (204) and Table XIX,

which we also take as input data for the 2006 adjustment.
[For simplicity, we use StPtrsb-03 as the identiï¬er in Ta-
ble XIX for

µ

p

(HD)

/µ

d

(HD),

µ

t

(HT)

/µ

p

(HT),

σ

dp

, and

σ

tp

, because they are directly or indirectly a consequence

of the work of Neronov and Karshenboim (2003).]

The equations for the measured moment ratios

µ

p

(HD)

/µ

d

(HD) and

µ

t

(HT)

/µ

p

(HT) in terms of the ad-

justed constants

µ

e

−

/µ

p

,

µ

d

/µ

e

−

,

µ

t

/µ

p

,

σ

dp

, and

σ

tp

are, from Eqs. (199) and (200),

µ

p

(HD)

µ

d

(HD)

= [1 +

σ

dp

]

µ

e

−

µ

p

−

1

µ

d

µ

e

−

−

1

(207)

µ

t

(HT)

µ

p

(HT)

= [1

−

σ

tp

]

µ

t

µ

p

.

(208)

background image

36

d. Electron to shielded proton magnetic moment ratio

µ

e

/µ

′

p

.

Based on the measurement of the ratio of the electron mo-
ment in the 1S state of hydrogen to the shielded proton
moment at 34.7

â—¦

C by Phillips

et al.

(1977) at MIT, and

temperature-dependence measurements of the shielded
proton moment by Petley and Donaldson (1984) at the
National Physical Laboratory (NPL), Teddington, UK,
we have

µ

e

−

(H)

µ

′

p

=

−

658

.

215 9430(72) [1

.

1

×

10

−

8

]

,

(209)

where the prime indicates that the protons are in a spher-
ical sample of pure H

2

O at 25

â—¦

C surrounded by vacuum.

Hence

µ

e

−

µ

′

p

=

g

e

−

(H)

g

e

−

−

1

µ

e

−

(H)

µ

′

p

=

−

658

.

227 5971(72) [1

.

1

×

10

−

8

]

,

(210)

where the bound-state

g

-factor ratio is given in Table

XVIII. Support for the MIT result in Eq. (210) from
measurements at NPL on the helion (see the following
section) is discussed in CODATA-02.

e. Shielded helion to shielded proton magnetic moment ratio

µ

′

h

/µ

′

p

.

The ratio of the magnetic moment of the helion

h, the nucleus of the

3

He atom, to the magnetic moment

of the proton in H

2

O was determined in a high-accuracy

experiment at NPL (Flowers

et al.

, 1993) with the result

µ

′

h

µ

′

p

=

−

0

.

761 786 1313(33) [4

.

3

×

10

−

9

]

.

(211)

The prime on the symbol for the helion moment indi-
cates that the helion is not free, but is bound in a helium
atom. Although the exact shape and temperature of the
gaseous

3

He sample is unimportant, we assume that it is

spherical, at 25

â—¦

C, and surrounded by vacuum.

f. Neutron to shielded proton magnetic moment ratio

µ

n

/µ

′

p

.

Based on a measurement carried out at the Institut
Max von Laue-Paul Langevin (ILL) in Grenoble, France
(Greene

et al.

, 1979, 1977), we have

µ

n

µ

′

p

=

−

0

.

684 996 94(16) [2

.

4

×

10

−

7

]

.

(212)

The observational equations for the measured values

of

µ

′

h

/µ

′

p

and

µ

n

/µ

′

p

are simply

µ

′

h

/µ

′

p

=

µ

′

h

/µ

′

p

(213)

and

µ

n

/µ

′

p

=

µ

n

/µ

′

p

,

(214)

while the observational equations for the measured values
of

µ

e

−

(H)

/µ

p

(H),

µ

d

(D)

/µ

e

−

(D), and

µ

e

−

(H)

/µ

′

p

follow

directly from Eqs. (196), (198), and (210), respectively.

B. Muonium transition frequencies, the muon-proton
magnetic moment ratio

µ

µ

/µ

p

, and muon-electron mass

ratio

m

µ

/m

e

Measurements of transition frequencies between Zee-

man energy levels in muonium (the

µ

+

e

−

atom) yield

values of

µ

µ

/µ

p

and the muonium ground-state hyper-

ï¬ne splitting âˆ†

ν

Mu

that depend weakly on theory. The

relevant expression for the magnetic moment ratio is

µ

µ

+

µ

p

=

∆

ν

2

Mu

−

ν

2

(

f

p

) + 2

s

e

f

p

ν

(

f

p

)

4

s

e

f

2

p

−

2

f

p

ν

(

f

p

)

g

µ

+

(Mu)

g

µ

+

−

1

,

(215)

where âˆ†

ν

Mu

and

ν

(

f

p

) are the sum and difference of

two measured transition frequencies,

f

p

is the free proton

NMR reference frequency corresponding to the magnetic
flux density used in the experiment,

g

µ

+

(Mu)

/g

µ

+

is the

bound-state correction for the muon in muonium given
in Table XVIII, and

s

e

=

µ

e

−

µ

p

g

e

−

(Mu)

g

e

−

,

(216)

where

g

e

−

(Mu)

/g

e

−

is the bound-state correction for the

electron in muonium given in the same table.

The muon to electron mass ratio

m

µ

/m

e

and the muon

to proton magnetic moment ratio

µ

µ

/µ

p

are related by

m

µ

m

e

=

µ

e

µ

p

 

µ

µ

µ

p

−

1

g

µ

g

e

.

(217)

The theoretical expression for the hyperï¬ne splitting

∆

ν

Mu

(th) is discussed in the following section and may

be written as

∆

ν

Mu

(th) =

16

3

cR

∞

α

2

m

e

m

µ

1 +

m

e

m

µ

−

3

F

α, m

e

/m

µ

= âˆ†

ν

F

F

α, m

e

/m

µ

,

(218)

where the function

F

depends weakly on

α

and

m

e

/m

µ

.

By equating this expression to an experimental value of
∆

ν

Mu

, one can calculate a value of

α

from a given value

of

m

µ

/m

e

or one can calculate a value of

m

µ

/m

e

from a

given value of

α

.

1. Theory of the muonium ground-state hyperfine splitting

This section gives a brief summary of the present

theory of âˆ†

ν

Mu

, the ground-state hyperï¬ne splitting of

muonium (

µ

+

e

−

atom). There has been essentially no

change in the theory since the 2002 adjustment. Al-
though complete results of the relevant calculations are
given here, references to the original literature included in
CODATA-98 or CODATA-02 are generally not repeated.

The hyperï¬ne splitting is given mainly by the Fermi

formula:

∆

ν

F

=

16

3

cR

∞

Z

3

α

2

m

e

m

µ

1 +

m

e

m

µ

−

3

.

(219)

background image

37

Some of the theoretical expressions correspond to a muon
with charge

Ze

rather than

e

in order to identify the

source of the terms. The theoretical value of the hyper-
ï¬ne splitting is given by

∆

ν

Mu

(th) = âˆ†

ν

D

+ âˆ†

ν

rad

+ âˆ†

ν

rec

+∆

ν

r

-

r

+ âˆ†

ν

weak

+ âˆ†

ν

had

,

(220)

where the terms labeled D, rad, rec, r-r, weak, and
had account for the Dirac (relativistic), radiative, recoil,
radiative-recoil, electroweak, and hadronic (strong inter-
action) contributions to the hyperï¬ne splitting, respec-
tively.

The contribution âˆ†

ν

D

, given by the Dirac equation, is

∆

ν

D

= âˆ†

ν

F

(1 +

a

µ

)

1 +

3
2

(

Zα

)

2

+

17

8

(

Zα

)

4

+

· Â· Â·

,

(221)

where

a

µ

is the muon magnetic moment anomaly.

The radiative corrections are written as

∆

ν

rad

= âˆ†

ν

F

(1 +

a

µ

)

h

D

(2)

(

Zα

)

α

Ï€

+

D

(4)

(

Zα

)

α

Ï€

2

+

D

(6)

(

Zα

)

α

Ï€

3

+

· Â· Â·

i

,

(222)

where the functions

D

(2

n

)

(

Zα

) are contributions associ-

ated with

n

virtual photons. The leading term is

D

(2)

(

Zα

) =

A

(2)
1

+ ln 2

−

5
2

Ï€

Zα

+

h

−

2
3

ln

2

(

Zα

)

−

2

+

281
360

−

8
3

ln 2

ln(

Zα

)

−

2

+16

.

9037

. . .

i

(

Zα

)

2

+

h

5
2

ln 2

−

547

96

ln(

Zα

)

−

2

i

Ï€

(

Zα

)

3

+

G

(

Zα

)(

Zα

)

3

,

(223)

where

A

(2)
1

=

1
2

, as in Eq. (83). The function

G

(

Zα

)

accounts for all higher-order contributions in powers of

Zα

, and can be divided into parts that correspond to the

self-energy or vacuum polarization,

G

(

Zα

) =

G

SE

(

Zα

)+

G

VP

(

Zα

). We adopt the value

G

SE

(

α

) =

−

14(2)

,

(224)

which is the simple mean and standard deviation of the
three values:

G

SE

(

α

) =

−

12

.

0(2

.

0) from Blundell

et al.

(1997);

G

SE

(0) =

−

15

.

9(1

.

6) from Nio (2001, 2002); and

G

SE

(

α

) =

−

14

.

3(1

.

1) from Yerokhin and Shabaev (2001).

The vacuum polarization part

G

VP

(

Zα

) has been calcu-

lated to several orders of

Zα

by Karshenboim

et al.

(1999,

2000). Their expression yields

G

VP

(

α

) = 7

.

227(9)

.

(225)

For

D

(4)

(

Zα

), as in CODATA-02, we have

D

(4)

(

Zα

) =

A

(4)
1

+ 0

.

7717(4)

Ï€

Zα

+

h

−

1
3

ln

2

(

Zα

)

−

2

−

0

.

6390

. . .

×

ln(

Zα

)

−

2

+ 10(2

.

5)

i

(

Zα

)

2

+

· Â· Â·

,

(226)

where

A

(4)
1

is given in Eq. (84).

Finally,

D

(6)

(

Zα

) =

A

(6)
1

+

· Â· Â·

,

(227)

where only the leading contribution

A

(6)
1

as given in

Eq. (85) is known. Higher-order functions

D

(2

n

)

(

Zα

)

with

n >

3 are expected to be negligible.

The recoil contribution is given by

∆

ν

rec

= âˆ†

ν

F

m

e

m

µ

 

−

3

1

−

m

e

/m

µ

2

ln

m

µ

m

e

Zα

Ï€

+

1

1 +

m

e

/m

µ

2

ln (

Zα

)

−

2

−

8 ln 2 +

65
18

+

9

2

Ï€

2

ln

2

m

µ

m

e

+

27

2

Ï€

2

−

1

ln

m

µ

m

e

+

93

4

Ï€

2

+

33

ζ

(3)

Ï€

2

−

13
12

−

12 ln 2

m

e

m

µ

(

Zα

)

2

+

−

3
2

ln

m

µ

m

e

ln(

Zα

)

−

2

−

1
6

ln

2

(

Zα

)

−

2

+

101

18

−

10 ln 2

ln(

Zα

)

−

2

+40(10)

(

Zα

)

3

Ï€

!

+

· Â· Â·

,

(228)

as discussed in CODATA-02

The radiative-recoil contribution is

∆

ν

r

-

r

=

ν

F

α

Ï€

2

m

e

m

µ

−

2 ln

2

m

µ

m

e

+

13
12

ln

m

µ

m

e

+

21

2

ζ

(3) +

Ï€

2

6

+

35

9

+

4
3

ln

2

α

−

2

+

16

3

ln 2

−

341
180

ln

α

−

2

−

40(10)

Ï€

α

+

−

4
3

ln

3

m

µ

m

e

+

4
3

ln

2

m

µ

m

e

α

Ï€

−

ν

F

α

2

m

e

m

µ

2

6 ln 2 +

13

6

+

· Â· Â·

,

(229)

where, for simplicity, the explicit dependence on

Z

is not

shown.

The electroweak contribution due to the exchange of a

Z

0

boson is (Eides, 1996)

∆

ν

weak

=

−

65 Hz

.

(230)

For the hadronic vacuum polarization contribution we

use the result of Eidelman

et al.

(2002),

∆

ν

had

= 236(4) Hz

,

(231)

which takes into account experimental data on the cross
section for e

−

e

+

→

Ï€

+

Ï€

−

and on the

φ

meson leptonic

background image

38

width. The leading hadronic contribution is 231.2(2.9)
and the next order term is 5(2) giving a total of 236(4).
The pion and kaon contributions to the hadronic cor-
rection have been considered within a chiral unitary ap-
proach and found to be in general agreement with (but
have a three times larger uncertainty) the correspond-
ing contributions given in earlier studies using data from
e

+

-e

−

scattering (Palomar, 2003).

The standard uncertainty of âˆ†

ν

Mu

(th) was fully dis-

cussed in Appendix E of CODATA-02.

The four

principle sources of uncertainty are the terms âˆ†

ν

rad

,

∆

ν

rec

, âˆ†

ν

r

−

r

, and âˆ†

ν

had

in Eq. (220).

Included in

the 67 Hz uncertainty of âˆ†

ν

r

−

r

is a 41 Hz compo-

nent, based on the partial calculations of Eides

et al.

(2002, 2003); Li

et al.

(1993), to account for a pos-

sible uncalculated radiative-recoil contribution of or-
der âˆ†

ν

F

(

m

e

/

(

m

µ

)(

α/

Ï€

)

3

ln(

m

µ

/m

e

) and non-logarithmic

terms. Since the completion of the 2002 adjustment, the
results of additional partial calculations have been pub-
lished that, if taken at face value, would lead to a small
reduction in the 41 Hz estimate (D’Agostino

et al.

, 2005;

Eides

et al.

, 2004; Eides and Shelyuto, 2003, 2004, 2007).

However, because the calculations are not yet complete
and the decrease of the 101 Hz total uncertainty assigned
to âˆ†

ν

Mu

(th) for the 2002 adjustment would only be a few

percent, the Task Group decided to retain the 101 Hz un-
certainty for the 2006 adjustment.

We thus have for the standard uncertainty of the the-

oretical expression for the muonium hyperï¬ne splitting
∆

ν

Mu

(th)

u

[∆

ν

Mu

(th)] = 101 Hz

[2

.

3

×

10

−

8

]

.

(232)

For the least-squares calculations, we use as the theoret-
ical expression for the hyperï¬ne splitting

∆

ν

Mu

R

∞

, Î±,

m

e

m

µ

, Î´

µ

, Î´

Mu

= âˆ†

ν

Mu

(th) +

δ

Mu

,

(233)

where

δ

Mu

is assigned, a priori, the value

δ

Mu

= 0(101) Hz

(234)

in order to account for the uncertainty of the theoretical
expression.

The theory summarized above predicts

∆

ν

Mu

= 4 463 302 881(272) Hz

[6

.

1

×

10

−

8

]

,

(235)

based on values of the constants obtained from a varia-
tion of the 2006 least-squares adjustment that omits as
input data the two LAMPF measured values of âˆ†

ν

Mu

discussed in the following section.

The main source of uncertainty in this value is the mass

ratio

m

e

/m

µ

that appears in the theoretical expression

as an overall factor. See the text following Eq. (D14) of
Appendix D of CODATA-98 for an explanation of why
the relative uncertainty of the predicted value of âˆ†

ν

Mu

in Eq. (235) is smaller than the relative uncertainty of
the electron-muon mass ratio as given in Eq. (243) of
Sec. VI.B.2.c.

2. Measurements of muonium transition frequencies and values
of

µ

µ

/µ

p

and

m

µ

/m

e

The two most precise determinations of muonium

Zeeman transition frequencies were carried out at the
Clinton P. Anderson Meson Physics Facility at Los
Alamos (LAMPF), USA, and were reviewed in detail in
CODATA-98. The following three sections and Table XX
give the key results.

a. LAMPF 1982

The results obtained by Mariam (1981);

Mariam

et al.

(1982), which we take as input data in the

current adjustment as in the two previous adjustments,
may be summarized as follows:

∆

ν

Mu

= 4 463 302

.

88(16) kHz

[3

.

6

×

10

−

8

]

(236)

ν

(

f

p

) = 627 994

.

77(14) kHz

[2

.

2

×

10

−

7

]

(237)

r

[∆

ν

Mu

, Î½

(

f

p

)] = 0

.

23

,

(238)

where

f

p

is very nearly 57

.

972 993 MHz, corresponding to

the ï¬‚ux density of about 1

.

3616 T used in the experiment,

and

r

[∆

ν

Mu

, Î½

(

f

p

)] is the correlation coefficient of âˆ†

ν

Mu

and

ν

(

f

p

).

b. LAMPF 1999

The results obtained by Liu

et al.

(1999), which we also take as input data in the current
adjustment as in the 1998 and 2002 adjustments, may be
summarized as follows:

∆

ν

Mu

= 4 463 302 765(53) Hz

[1

.

2

×

10

−

8

]

(239)

ν

(

f

p

) = 668 223 166(57) Hz

[8

.

6

×

10

−

8

]

(240)

r

[∆

ν

Mu

, Î½

(

f

p

)] = 0

.

19

,

(241)

where

f

p

is exactly 72

.

320 000 MHz, corresponding to the

flux density of approximately 1

.

7 T used in the experi-

ment, and

r

[∆

ν

Mu

, Î½

(

f

p

)] is the correlation coefficient of

∆

ν

Mu

and

ν

(

f

p

).

c. Combined LAMPF results

By carrying out a least-

squares adjustment using only the LAMPF 1982 and
LAMPF 1999 data, the 2006 recommended values of
the quantities

R

∞

,

µ

e

/µ

p

,

g

e

, and

g

µ

, together with

Eqs. (215) to (218), we obtain

µ

µ

+

µ

p

= 3

.

183 345 24(37) [1

.

2

×

10

−

7

]

(242)

m

µ

m

e

= 206

.

768 276(24) [1

.

2

×

10

−

7

]

(243)

α

−

1

= 137

.

036 0017(80) [5

.

8

×

10

−

8

]

,

(244)

background image

39

TABLE XX Summary of data related to the hyperï¬ne splitting in muonium and inferred values of

µ

µ

/µ

p

,

m

µ

/m

e

, and

α

from

the combined 1982 and 1999 LAMPF data.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

∆

ν

Mu

4 463 302

.

88(16) kHz

3

.

6

×

10

−

8

LAMPF-82

VI.B.2.a (236)

ν

(

f

p

)

627 994

.

77(14) kHz

2

.

2

×

10

−

7

LAMPF-82

VI.B.2.a (237)

∆

ν

Mu

4 463 302 765(53) Hz

1

.

2

×

10

−

8

LAMPF-99

VI.B.2.b (239)

ν

(

f

p

)

668 223 166(57) Hz

8

.

6

×

10

−

8

LAMPF-99

VI.B.2.b (240)

µ

µ

/µ

p

3

.

183 345 24(37)

1

.

2

×

10

−

7

LAMPF

VI.B.2.c (242)

m

µ

/m

e

206

.

768 276(24)

1

.

2

×

10

−

7

LAMPF

VI.B.2.c (243)

α

−

1

137

.

036 0017(80)

5

.

8

×

10

−

8

LAMPF

VI.B.2.c (244)

where this value of

α

may be called the muonium value of

the ï¬ne-structure constant and denoted as

α

−

1

(∆

ν

Mu

).

It is noteworthy that the uncertainty of the value of the

mass ratio

m

µ

/m

e

given in Eq. (243) is about four times

the uncertainty of the 2006 recommended value. The rea-
son is that taken together, the experimental value of and
theoretical expression for the hyperï¬ne splitting essen-
tially determine only the value of the product

α

2

m

µ

/m

e

,

as is evident from Eq. (218). In the full adjustment
the value of

α

is determined by other data with an un-

certainty signiï¬cantly smaller than that of the value in
Eq. (244), which in turn determines the value of

m

µ

/m

e

with a smaller uncertainty than that of Eq. (243).

VII. ELECTRICAL MEASUREMENTS

This section is devoted to the discussion of quantities

that require electrical measurements of the most basic
kind for their determination: the gyromagnetic ratios of
the shielded proton and helion, the von Klitzing constant

R

K

, the Josephson constant

K

J

, the product

K

2

J

R

K

, and

the Faraday constant. However, some of the results we
discuss were taken as input data for the 2002 adjust-
ment but were not included in the ï¬nal least-squares ad-
justment from which the 2002 recommended values were
obtained, mainly because of their comparatively large
uncertainties and hence low weight. Nevertheless, we
take them as input data in the 2006 adjustment because
they provide information on the overall consistency of
the available data and tests of the exactness of the rela-
tions

K

J

= 2

e/h

and

R

K

=

h/e

2

. The lone exception is

the low-ï¬eld measurement of the gyromagnetic ratio of
the helion reported by Tarbeev

et al.

(1989). Because of

its large uncertainty and strong disagreement with many
other data, we no longer consider it—see CODATA-02.

A. Shielded gyromagnetic ratios

γ

′

, the fine-structure

constant

α

, and the Planck constant

h

The gyromagnetic ratio

γ

of a bound particle of spin

quantum number

i

and magnetic moment

µ

is given by

γ

=

2

Ï€

f

B

=

ω

B

=

|

µ

|

i

¯

h

,

(245)

where

f

is the precession (that is, spin-flip) frequency and

ω

is the angular precession frequency of the particle in

the magnetic ï¬‚ux density

B

. The SI unit of

γ

is s

−

1

T

−

1

= C kg

−

1

= A s kg

−

1

. In this section we summarize

measurements of the gyromagnetic ratio of the shielded
proton

γ

′

p

=

2

µ

′

p

¯

h

,

(246)

and of the shielded helion

γ

′

h

=

2

|

µ

′

h

|

¯

h

,

(247)

where, as in previous sections that dealt with magnetic-
moment ratios involving these particles, the protons are
those in a spherical sample of pure H

2

O at 25

â—¦

C sur-

rounded by vacuum; and the helions are those in a spher-
ical sample of low-pressure, pure

3

He gas at 25

â—¦

C sur-

rounded by vacuum.

As discussed in detail in CODATA-98, two methods are

used to determine the shielded gyromagnetic ratio

γ

′

of a

particle: the low-ï¬eld method and the high-ï¬eld method.
In either case the measured current

I

in the experiment

can be expressed in terms of the product

K

J

R

K

, but

B

depends on

I

differently in the two cases. In essence, the

low-ï¬eld experiments determine

γ

′

/K

J

R

K

and the high-

ï¬eld experiments determine

γ

′

K

J

R

K

. This leads to the

relations

γ

′

=

Γ

′

90

(lo)

K

J

R

K

K

J

−

90

R

K

−

90

(248)

γ

′

=

Γ

′

90

(hi)

K

J

−

90

R

K

−

90

K

J

R

K

,

(249)

background image

40

where

Γ

′

90

(lo) and

Γ

′

90

(hi) are the experimental values of

γ

′

in SI units that would result from the low- and high-

ï¬eld experiments if

K

J

and

R

K

had the exactly known

conventional values of

K

J

−

90

and

R

K

−

90

, respectively.

The quantities

Γ

′

90

(lo) and

Γ

′

90

(hi) are the input data

used in the adjustment, but the observational equations
take into account the fact that

K

J

−

90

6

=

K

J

and

R

K

−

90

6

=

R

K

.

Accurate values of

Γ

′

90

(lo) and

Γ

′

90

(hi) for the proton

and helion are of potential importance because they pro-
vide information on the values of

α

and

h

. Assuming the

validity of the relations

K

J

= 2

e/h

and

R

K

=

h/e

2

, the

following expressions apply to the four available proton
results and one available helion result:

Γ

′

p

−

90

(lo) =

K

J

−

90

R

K

−

90

g

e

−

4

µ

0

R

∞

µ

′

p

µ

e

−

α

3

,

(250)

Γ

′

h

−

90

(lo) =

−

K

J

−

90

R

K

−

90

g

e

−

4

µ

0

R

∞

µ

′

h

µ

e

−

α

3

,

(251)

Γ

′

p

−

90

(hi) =

c Î±

2

g

e

−

2

K

J

−

90

R

K

−

90

R

∞

µ

′

p

µ

e

−

1

h

.

(252)

Since the ï¬ve experiments, including necessary correc-
tions, were discussed fully in CODATA-98, only a brief
summary is given in the following sections. The ï¬ve re-
sults, together with the value of

α

inferred from each

low-ï¬eld measurement and the value of

h

inferred from

each high-ï¬eld measurement, are collected in Table XXI.

1. Low-field measurements

A number of national metrology institutes have long

histories of measuring the gyromagnetic ratio of the
shielded proton, motivated, in part, by their need to mon-
itor the stability of their practical unit of current based
on groups of standard cells and standard resistors. This
was prior to the development of the Josephson and quan-
tum hall effects for the realization of practical electric
units.

a. NIST: Low field

The most recent National Institute of

Standards and Technology (NIST), Gaithersburg, USA,
low-ï¬eld measurement was reported by Williams

et al.

(1989). Their result is

Γ

′

p

−

90

(lo) = 2

.

675 154 05(30)

×

10

8

s

−

1

T

−

1

[1

.

1

×

10

−

7

]

,

(253)

where

Γ

′

p

−

90

(lo) is related to

γ

′

p

by Eq. (248).

The value of

α

that may be inferred from this result

follows from Eq. (250). Using the 2006 recommended
values for the other relevant quantities, the uncertainties
of which are signiï¬cantly smaller than the uncertainty

of the NIST result (statements that also apply to the
following four similar calculations), we obtain

α

−

1

= 137

.

035 9879(51) [3

.

7

×

10

−

8

]

,

(254)

where the relative uncertainty is about one-third the rel-
ative uncertainty of the NIST value of

Γ

′

p

−

90

(lo) because

of the cube-root dependence of

α

on

Γ

′

p

−

90

(lo).

b. NIM: Low field

The latest low-ï¬eld proton gyromag-

netic ratio experiment carried out by researchers at the
National Institute of Metrology (NIM), Beijing, PRC,
yielded (Liu

et al.

, 1995)

Γ

′

p

−

90

(lo) = 2

.

675 1530(18)

×

10

8

s

−

1

T

−

1

[6

.

6

×

10

−

7

]

.

(255)

Based on Eq. (250), the inferred value of

α

from the

NIM result is

α

−

1

= 137

.

036 006(30) [2

.

2

×

10

−

7

]

.

(256)

c. KRISS/VNIIM: Low field

The determination of

γ

′

h

at

the Korea Research Institute of Standards and Science
(KRISS), Taedok Science Town, Republic of Korea, was
carried out in a collaborative effort with researchers
from the Mendeleyev All-Russian Research Institute for
Metrology (VNIIM), St. Petersburg, Russian Federation
(Kim

et al.

, 1995; Park

et al.

, 1999; Shifrin

et al.

, 1998a,b,

1999). The result of this work can be expressed as

Γ

′

h

−

90

(lo) = 2

.

037 895 37(37)

×

10

8

s

−

1

T

−

1

[1

.

8

×

10

−

7

]

,

(257)

and the value of

α

that may be inferred from it through

Eq. (251) is

α

−

1

= 137

.

035 9852(82) [6

.

0

×

10

−

8

]

.

(258)

2. High-field measurements

a. NIM:high field

The latest high-ï¬eld proton gyromag-

netic ratio experiment at NIM yielded (Liu

et al.

, 1995)

Γ

′

p

−

90

(hi) = 2

.

675 1525(43)

×

10

8

s

−

1

T

−

1

[1

.

6

×

10

−

6

]

,

(259)

where

Γ

′

p

−

90

(hi) is related to

γ

′

p

by Eq. (249). Its correla-

tion coefficient with the NIM low-ï¬eld result in Eq. (255)
is

r

(lo

,

hi) =

−

0

.

014

.

(260)

Based on Eq. (252), the value of

h

that may be inferred

from the NIM high-ï¬eld result is

h

= 6

.

626 071(11)

×

10

−

34

J s

[1

.

6

×

10

−

6

]

.

(261)

background image

41

TABLE XXI Summary of data related to shielded gyromagnetic ratios of the proton and helion, and inferred values of

α

and

h

.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

Γ

′

p

−

90

(lo)

2

.

675 154 05(30)

×

10

8

s

−

1

T

−

1

1

.

1

×

10

−

7

NIST-89

VII.A.1.a (253)

α

−

1

137

.

035 9879(51)

3

.

7

×

10

−

8

VII.A.1.a (254)

Γ

′

p

−

90

(lo)

2

.

675 1530(18)

×

10

8

s

−

1

T

−

1

6

.

6

×

10

−

7

NIM-95

VII.A.1.b (255)

α

−

1

137

.

036 006(30)

2

.

2

×

10

−

7

VII.A.1.b (256)

Γ

′

h

−

90

(lo)

2

.

037 895 37(37)

×

10

8

s

−

1

T

−

1

1

.

8

×

10

−

7

KR/VN-98

VII.A.1.c (257)

α

−

1

137

.

035 9852(82)

6

.

0

×

10

−

8

VII.A.1.c (258)

Γ

′

p

−

90

(hi)

2

.

675 1525(43)

×

10

8

s

−

1

T

−

1

1

.

6

×

10

−

6

NIM-95

VII.A.2.a (259)

h

6

.

626 071(11)

×

10

−

34

J s

1

.

6

×

10

−

6

VII.A.2.a (261)

Γ

′

p

−

90

(hi)

2

.

675 1518(27)

×

10

8

s

−

1

T

−

1

1

.

0

×

10

−

6

NPL-79

VII.A.2.b (262)

h

6

.

626 0729(67)

×

10

−

34

J s

1

.

0

×

10

−

6

VII.A.2.b (263)

b. NPL: High field

The most accurate high-ï¬eld

γ

′

p

ex-

periment was carried out at NPL by Kibble and Hunt
(1979), with the result

Γ

′

p

−

90

(hi) = 2

.

675 1518(27)

×

10

8

s

−

1

T

−

1

[1

.

0

×

10

−

6

]

.

(262)

This leads to the inferred value

h

= 6

.

626 0729(67)

×

10

−

34

J s

[1

.

0

×

10

−

6

]

,

(263)

based on Eq. (252).

B. von Klitzing constant

R

K

and

α

Since the the quantum Hall effect, the von Klitzing

constant

R

K

associated with it, and the available deter-

minations of

R

K

are fully discussed in CODATA-98 and

CODATA-02, we only outline the main points here.

The quantity

R

K

is measured by comparing a quan-

tized Hall resistance

R

H

(

i

) =

R

K

/i

, where

i

is an in-

teger, to a resistance

R

whose value is known in terms

of the SI unit of resistance â„¦. In practice, the latter
quantity, the ratio

R/

Ω, is determined by means of a cal-

culable cross capacitor, a device based on a theorem in
electrostatics discovered in the 1950s (Lampard, 1957;
Thompson and Lampard, 1956). The theorem allows
one to construct a cylindrical capacitor, generally called
a Thompson-Lampard calculable capacitor (Thompson,
1959), whose capacitance, to high accuracy, depends only
on its length.

As indicated in Sec. II, if one assumes the validity of

the relation

R

K

=

h/e

2

, then

R

K

and the ï¬ne-structure

constant

α

are related by

α

=

µ

0

c/

2

R

K

.

(264)

Hence, the relative uncertainty of the value of

α

that may

be inferred from a particular experimental value of

R

K

is

the same as the relative uncertainty of that value.

The values of

R

K

we take as input data in the 2006 ad-

justment and the corresponding inferred values values of

α

are given in the following sections and are summarized

in Table XXII.

1. NIST: Calculable capacitor

The result obtained at NIST is (Jeffery

et al.

, 1997)

[see also Jeffery

et al.

(1998)]

R

K

= 25 812

.

8 [1 + 0

.

322(24)

×

10

−

6

] â„¦

= 25 812

.

808 31(62) â„¦

[2

.

4

×

10

−

8

]

,

(265)

and is viewed as superseding the NIST result reported in
1989 by Cage

et al.

(1989). Work by Jeffery

et al.

(1999)

provides additional support for the uncertainty budget of
the NIST calculable capacitor.

The value of

α

that may be inferred from the NIST

value of

R

K

is, from Eq. (264),

α

−

1

= 137

.

036 0037(33) [2

.

4

×

10

−

8

]

.

(266)

2. NMI: Calculable capacitor

Based on measurements carried out at the National

Metrology Institute (NMI), Lindï¬eld, Australia, from
December 1994 to April 1995 and a complete reassess-
ment of uncertainties associated with their calculable ca-
pacitor and associated apparatus, Small

et al.

(1997) re-

ported the result

R

K

=

R

K

−

90

[1 + 0

.

4(4

.

4)

×

10

−

8

]

= 25 812

.

8071(11) â„¦

[4

.

4

×

10

−

8

]

.

(267)

The value of

α

it implies is

α

−

1

= 137

.

035 9973(61) [4

.

4

×

10

−

8

]

.

(268)

background image

42

TABLE XXII Summary of data related to the von Klitzing constant

R

K

and inferred values of

α

.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

R

K

25 812

.

808 31(62) â„¦

2

.

4

×

10

−

8

NIST-97

VII.B.1 (265)

α

−

1

137

.

036 0037(33)

2

.

4

×

10

−

8

VII.B.1 (266)

R

K

25 812

.

8071(11) â„¦

4

.

4

×

10

−

8

NMI-97

VII.B.2 (267)

α

−

1

137

.

035 9973(61)

4

.

4

×

10

−

8

VII.B.2 (268)

R

K

25 812

.

8092(14) â„¦

5

.

4

×

10

−

8

NPL-88

VII.B.3 (269)

α

−

1

137

.

036 0083(73)

5

.

4

×

10

−

8

VII.B.3 (270)

R

K

25 812

.

8084(34) â„¦

1

.

3

×

10

−

7

NIM-95

VII.B.4 (271)

α

−

1

137

.

036 004(18)

1

.

3

×

10

−

7

VII.B.4 (272)

R

K

25 812

.

8081(14) â„¦

5

.

3

×

10

−

8

LNE-01

VII.B.5 (273)

α

−

1

137

.

036 0023(73)

5

.

3

×

10

−

8

VII.B.5 (274)

Because of problems associated with the 1989 NMI

value of

R

K

, only the result reported in 1997 is used

in the 2006 adjustment, as was the case in the 1998 and
2002 adjustments.

3. NPL: Calculable capacitor

The NPL calculable capacitor is similar in design to

those of NIST and NMI. The result for

R

K

reported by

Hartland

et al.

(1988) is

R

K

= 25 812

.

8 [1 + 0

.

356(54)

×

10

−

6

] â„¦

= 25 812

.

8092(14) â„¦

[5

.

4

×

10

−

8

]

,

(269)

and the value of

α

that one may infer from it is

α

−

1

= 137

.

036 0083(73) [5

.

4

×

10

−

8

]

.

(270)

4. NIM: Calculable capacitor

The NIM calculable cross capacitor differs markedly

from the version used at NIST, NMI, and NPL. The four
bars (electrodes) that comprise the capacitor are horizon-
tal rather than vertical and the length that determines
its known capacitance is ï¬xed rather than variable. The
NIM result for

R

K

, as reported by Zhang

et al.

(1995), is

R

K

= 25 812

.

8084(34) â„¦

[1

.

3

×

10

−

7

]

,

(271)

which implies

α

−

1

= 137

.

036 004(18) [1

.

3

×

10

−

7

]

.

(272)

5. LNE: Calculable capacitor

The value of

R

K

obtained at the Laboratoire National

d’Essais (LNE), Trappes, France, is (Trapon

et al.

, 2003,

2001)

R

K

= 25 812

.

8081(14) â„¦

[5

.

3

×

10

−

8

]

,

(273)

which implies

α

−

1

= 137

.

036 0023(73) [5

.

3

×

10

−

8

]

.

(274)

The LNE Thompson-Lampard calculable capacitor is
unique among all calculable capacitors in that it con-
sists of ï¬ve horizontal bars arranged at the corners of a
regular pentagon.

C. Josephson constant

K

J

and

h

Again, since the Josephson effect, the Josephson con-

stant

K

J

associated with it, and the available determi-

nations of

K

J

are fully discussed in CODATA-98 and

CODATA-02, we only outline the main points here.

The quantity

K

J

is measured by comparing a Joseph-

son voltage

U

J

(

n

) =

nf /K

J

to a high voltage

U

whose

value is known in terms of the SI unit of voltage V. Here,

n

is an integer and

f

is the frequency of the microwave ra-

diation applied to the Josephson device. In practice, the
latter quantity, the ratio

U

/V, is determined by counter-

balancing an electrostatic force arising from the voltage

U

with a known gravitational force.

A measurement of

K

J

can also provide a value of

h

.

If, as discussed in Sec. II, we assume the validity of the
relation

K

J

= 2

e/h

and recall that

α

=

e

2

/

4

Ï€

Ç«

0

¯

h

=

µ

0

ce

2

/

2

h

, we have

h

=

8

α

µ

0

cK

2

J

.

(275)

Since

u

r

of the ï¬ne-structure constant is signiï¬cantly

smaller than

u

r

of the measured values of

K

J

, the

u

r

of

h

derived from Eq. (275) will be essentially twice the

u

r

of

K

J

.

background image

43

The values of

K

J

we take as input data in the 2006 ad-

justment, and the corresponding inferred values of

h

, are

given in the following two sections and are summarized
in Table XXIII. Also summarized in that table are the
measured values of the product

K

2

J

R

K

and the quantity

F

90

related to the Faraday constant

F

, together with

their corresponding inferred values of

h

. These results

are discussed below in Secs. VII.D and VII.E.

1. NMI: Hg electrometer

The determination of

K

J

at NMI, carried out using an

apparatus called a liquid-mercury electrometer, yielded
the result (Clothier

et al.

, 1989)

K

J

= 483 594

1 + 8

.

087(269)

×

10

−

6

GHz

/

V

= 483 597

.

91(13) GHz

/

V

[2

.

7

×

10

−

7

]

.

(276)

Equation (275), the NMI value of

K

J

, and the 2006 rec-

ommended value of

α

, which has a much smaller

u

r

, yields

an inferred value for the Planck constant of

h

= 6

.

626 0684(36)

×

10

−

34

J s

[5

.

4

×

10

−

7

]

.

(277)

2. PTB: Capacitor voltage balance

The determination of

K

J

at PTB was carried out by

using a voltage balance consisting of two coaxial cylindri-
cal electrodes (Funck and Sienknecht, 1991; Sienknecht
and Funck, 1985, 1986). Taking into account the correc-
tion associated with the reference capacitor used in the
PTB experiment as described in CODATA-98, the result
of the PTB determination is

K

J

= 483 597

.

96(15) GHz

/

V

[3

.

1

×

10

−

7

]

,

(278)

from which we infer, using Eq. (275),

h

= 6

.

626 0670(42)

×

10

−

34

J s

[6

.

3

×

10

−

7

]

.

(279)

D. Product

K

2

J

R

K

and

h

A value of the product

K

2

J

R

K

is of importance to the

determination of the Planck constant

h

, because if one

assumes that the relations

K

J

= 2

e/h

and

R

K

=

h/e

2

are valid, then

h

=

4

K

2

J

R

K

.

(280)

The product

K

2

J

R

K

is determined by comparing electrical

power known in terms of a Josephson voltage and quan-
tized Hall resistance to the equivalent mechanical power
known in the SI unit W = m

2

kg s

−

3

. The comparison

is carried out using an apparatus known as a moving-coil
watt balance ï¬rst proposed by Kibble (1975) at NPL. To
date two laboratories, NPL and NIST, have determined

K

2

J

R

K

using this method.

1. NPL: Watt balance

Shortly after Kibble’s original proposal in 1975, Kibble

and Robinson (1977) carried out a feasibility study of
the idea based on experience with the NPL apparatus
that was used to determine

γ

′

p

by the high-ï¬eld method

(Kibble and Hunt, 1979). The work continued and led to
the publication in 1990 by Kibble

et al.

(1990) of a result

with an uncertainty of about 2 parts in 10

7

. This result,

discussed in detail in CODATA-98 and which was taken
as an input datum in the 1998 and 2002 adjustments,
and which we also take as an input datum in the 2006
adjustment, may be expressed as

K

2

J

R

K

=

K

2

J

−

NPL

R

K

−

NPL

[1 + 16

.

14(20)

×

10

−

6

]

= 6

.

036 7625(12)

×

10

33

J

−

1

s

−

1

[2

.

0

×

10

−

7

]

,

(281)

where

K

J

−

NPL

= 483 594 GHz/V and

R

K

−

NPL

=

25 812

.

809 2 â„¦. The value of

h

that may be inferred from

the NPL result is, according to Eq. (280),

h

= 6

.

626 0682(13)

×

10

−

34

J s

[2

.

0

×

10

−

7

]

.

(282)

Based on the experience gained in this experiment,

NPL researchers designed and constructed what is es-
sentially a completely new apparatus, called the NPL
Mark II watt balance, that could possibly achieve a re-
sult for

K

2

J

R

K

with an uncertainty of a few parts in 10

8

(Kibble and Robinson, 2003; Robinson and Kibble, 1997).
Although the balance itself employs the same balance
beam as the previous NPL watt balance, little else from
that experiment is retained in the new experiment.

Over 1000 measurements in vacuum were carried out

with the MK II between January 2000 and November
2001. Many were made in an effort to identify the cause
of an observed fractional change in the value of

K

2

J

R

K

of

about 3

×

10

−

7

that occurred in mid-April 2000 (Robinson

and Kibble, 2002). A change in the alignment of the
apparatus was suspected of contributing to the shift.

Signiï¬cant improvements were subsequently made in

the experiment and very recently, based on measure-
ments carried out from October 2006 to March 2007, the
initial result from MK II,

h

= 6

.

626 070 95(44) J s [6

.

6

×

10

−

8

], was reported by Robinson and Kibble (2007) as-

suming the validity of Eq. (280). Although this result
became available much too late to be considered for the
2006 adjustment, we do note that it lies between the
value of

h

inferred from the 2007 NIST result for

K

2

J

R

K

discussed in Sec. VII.D.2.b, and that inferred from the
measurement of the molar volume of silicon

V

m

(Si) dis-

cussed in Sec. VIII.B. The NPL work is continuing and
a result with a smaller uncertainty is anticipated (Robin-
son and Kibble, 2007).

2. NIST: Watt balance

background image

44

TABLE XXIII Summary of data related to the Josephson constant

K

J

, the product

K

2

J

R

K

, and the Faraday constant

F

, and

inferred values of

h

.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

K

J

483 597

.

91(13) GHz V

−

1

2

.

7

×

10

−

7

NMI-89

VII.C.1 (276)

h

6

.

626 0684(36)

×

10

−

34

J s

5

.

4

×

10

−

7

VII.C.1 (277)

K

J

483 597

.

96(15) GHz V

−

1

3

.

1

×

10

−

7

PTB-91

VII.C.2 (278)

h

6

.

626 0670(42)

×

10

−

34

J s

6

.

3

×

10

−

7

VII.C.2 (279)

K

2

J

R

K

6

.

036 7625(12)

×

10

33

J

−

1

s

−

1

2

.

0

×

10

−

7

NPL-90

VII.D.1 (281)

h

6

.

626 0682(13)

×

10

−

34

J s

2

.

0

×

10

−

7

VII.D.1 (282)

K

2

J

R

K

6

.

036 761 85(53)

×

10

33

J

−

1

s

−

1

8

.

7

×

10

−

8

NIST-98

VII.D.2.a (283)

h

6

.

626 068 91(58)

×

10

−

34

J s

8

.

7

×

10

−

8

VII.D.2.a (284)

K

2

J

R

K

6

.

036 761 85(22)

×

10

33

J

−

1

s

−

1

3

.

6

×

10

−

8

NIST-07

VII.D.2.b (287)

h

6

.

626 068 91(24)

×

10

−

34

J s

3

.

6

×

10

−

8

VII.D.2.b (288)

F

90

96 485

.

39(13) C mol

−

1

1

.

3

×

10

−

6

NIST-80

VII.E.1 (295)

h

6

.

626 0657(88)

×

10

−

34

J s

1

.

3

×

10

−

6

VII.E.1 (296)

a. 1998 measurement

Work on a moving-coil watt bal-

ance at NIST began shortly after Kibble made his 1975
proposal. A ï¬rst result with

u

r

= 1

.

3

×

10

−

6

was re-

ported by NIST researchers in 1989 (Cage

et al.

, 1989).

Signiï¬cant improvements were then made to the appara-
tus and the ï¬nal result from this phase of the NIST effort
was reported in 1998 by Williams

et al.

(1998):

K

2

J

R

K

=

K

2

J

−

90

R

K

−

90

[1

−

8(87)

×

10

−

9

]

= 6

.

036 761 85(53)

×

10

33

J

−

1

s

−

1

[8

.

7

×

10

−

8

]

.

(283)

A lengthy paper giving the details of the NIST 1998 watt
balance experiment was published in 2005 by Steiner

et al.

(2005a). This was the NIST result taken as an input

datum in the 1998 and 2002 adjustments; although the
1989 result was consistent with that of 1998, its uncer-
tainty was about 15 times larger. The value of

h

implied

by the 1998 NIST result for

K

2

J

R

K

is

h

= 6

.

626 068 91(58)

×

10

−

34

J s

[8

.

7

×

10

−

8

]

.

(284)

b. 2007 measurement

Based on the lessons learned in

the decade-long effort with a watt balance operating in
air that led to their 1998 result for

K

2

J

R

K

, the NIST

watt-balance researchers initiated a new program with
the goal of measuring

K

2

J

R

K

with

u

r

≈

10

−

8

. The ex-

periment was completely disassembled and renovations
to the research facility were made to improve vibration
isolation, reduce electromagnetic interference, and incor-
porate a multilayer temperature control system. A new
watt balance with major changes and improvements was
constructed with little remaining of the earlier apparatus
except the superconducting magnet used to generate the

required radial magnetic ï¬‚ux density and the wheel used
as the balance.

The most notable change in the experiment is that in

the new apparatus, the entire balance mechanism and
moving coil are in vacuum, which eliminates the uncer-
tainties of the corrections in the previous experiment for
the index of refraction of air in the laser position mea-
surements (

u

r

= 43

×

10

−

9

) and for the buoyancy force

exerted on the mass standard (

u

r

= 23

×

10

−

9

). Align-

ment uncertainties were reduced by over a factor of four
by (i) incorporating a more comprehensive understand-
ing of all degrees of freedom involving the moving coil;
and (ii) the application of precise alignment techniques
for all degrees of freedom involving the moving coil, the
superconducting magnet, and the velocity measuring in-
terferometers. Hysteresis effects were reduced by a fac-
tor of four by using a diamond-like carbon coated knife
edge and ï¬‚at (Schwarz

et al.

, 2001), employing a hys-

teresis erasure procedure, and reducing the balance de-
flections during mass exchanges with improved control
systems. A programmable Josephson array voltage stan-
dard (Benz

et al.

, 1997) was connected directly to the

experiment, eliminating two voltage transfers required in
the old experiment and reducing the voltage traceability
uncertainty by a factor of 15.

A total of 6023 individual values of

W

90

/W were ob-

tained over the two year period from March 2003 to
February 2005 as part of the effort to develop and im-
prove the new experiment. The results are converted
to the notation used here by the relation

W

90

/

W =

K

2

J

−

90

R

K

−

90

/K

2

J

R

K

discussed in CODATA-98. The ini-

tial result from that work was reported in 2005 by Steiner

background image

45

et al.

(2005b):

K

2

J

R

K

=

K

2

J

−

90

R

K

−

90

[1

−

24(52)

×

10

−

9

]

= 6

.

036 761 75(31)

×

10

33

J

−

1

s

−

1

[5

.

2

×

10

−

8

]

.

(285)

This yields a value for the Planck constant of

h

= 6

.

626 069 01(34)

×

10

−

34

J s

[5

.

2

×

10

−

8

]

.

(286)

This result for

K

2

J

R

K

was obtained from data spanning

the ï¬nal 7 months of the 2 year period. It is based on the
weighted mean of 48

W

90

/W measurement sets using a

Au mass standard and 174 sets using a PtIr mass stan-
dard, where a typical measurement set consists of 12 to
15 individual values of

W

90

/W. The 2005 NIST result is

consistent with the 1998 NIST result but its uncertainty
has been reduced by a factor of 1.7.

Following this initial effort with the new apparatus,

further improvements were made to it in order to re-
duce the uncertainties from various systematic effects,
the most notable reductions being in the determination
of the local acceleration due to gravity

g

(a factor of 2.5),

the effect of balance wheel surface roughness (a factor of
10), and the effect of the magnetic susceptibility of the
mass standard (a factor of 1.6). An improved result was
then obtained based on 2183 values of

W

90

/W recorded

in 134 measurement sets from January 2006 to June 2006.
Due to a wear problem with the gold mass standard, only
a PtIr mass standard was used in these measurements.
The result, ï¬rst reported at a conference in 2006 and sub-
sequently published in the proceedings of the conference
in 2007 by Steiner

et al.

(2007), is

K

2

J

R

K

=

K

2

J

−

90

R

K

−

90

[1

−

8(36)

×

10

−

9

]

= 6

.

036 761 85(22)

×

10

33

J

−

1

s

−

1

[3

.

6

×

10

−

8

]

.

(287)

The value of

h

that may be inferred from this value of

K

2

J

R

K

is

h

= 6

.

626 068 91(24)

×

10

−

34

J s

[3

.

6

×

10

−

8

]

.

(288)

The 2007 NIST result for

K

2

J

R

K

is consistent with and

has an uncertainty smaller by a factor of 1.4 than the
uncertainty of the 2005 NIST result. However, because
the two results are from essentially the same experiment
and hence are highly correlated, we take only the 2007
result as an input datum in the 2006 adjustment.

On the other hand, the experiment on which the NIST

2007 result is based is only slightly dependent on the ex-
periment on which the NIST 1998 result is based, as can
be seen from the above discussions. Thus, in keeping with
our practice in similar cases, most notably the 1982 and
1999 LAMPF measurements of muonium Zeeman transi-
tion frequencies (see Sec. VI.B.2), we also take the NIST
1998 result in Eq. (283) as an input datum in the 2006
adjustment. But to ensure that we do not give undue
weight to the NIST work, an analysis of the uncertainty

budgets of the 1998 and 2007 NIST results was performed
to determine the level of correlation. Of the relative un-
certainty components listed in Table II of Williams

et al.

(1998) and in Table 2 of Steiner

et al.

(2005b) but as

updated in Table 1 of Steiner

et al.

(2007), the largest

common relative uncertainty components were from the
magnetic ï¬‚ux proï¬le ï¬t due to the use of the same anal-
ysis routine (16

×

10

−

9

); leakage resistance and electri-

cal grounding since the same current supply was used
in both experiments (10

×

10

−

9

); and the determination

of the local gravitational acceleration

g

due to the use of

the same absolute gravimeter (7

×

10

−

9

). The correlation

coefficient was thus determined to be

r

(

K

2

J

R

k

-98

, K

2

J

R

k

-07) = 0

.

14

,

(289)

which we take into account in our calculations as appro-
priate.

3. Other values

Although there is no competitive published value of

K

2

J

R

K

other than those from NPL and NIST discussed

above, it is worth noting that at least three additional
laboratories have watt-balance experiments in progress:
the Swiss Federal Office of Metrology and Accreditation
(METAS), Bern-Wabern, Switzerland, the LNE, and the
BIPM. Descriptions of these efforts may be found in the
papers by Beer

et al.

(2003), Genev`es

et al.

(2005), and

Picard

et al.

(2007), respectively.

4. Inferred value of

K

J

It is of interest to note that a value of

K

J

with an un-

certainty signiï¬cantly smaller than those of the directly
measured values discussed in Sec. VII.C can be obtained
from the directly measured watt-balance values of

K

2

J

R

K

,

together with the directly measured calculable-capacitor
values of

R

K

, without assuming the validity of the re-

lations

K

J

= 2

e/h

and

R

K

=

h/e

2

. The relevant ex-

pression is simply

K

J

= [(

K

2

J

R

K

)

W

/

(

R

K

)

C

]

1

/

2

, where

(

K

2

J

R

K

)

W

is from the watt-balance, and (

R

K

)

C

is from

the calculable capacitor.

Using the weighted mean of the three watt-balance re-

sults for

K

2

J

R

K

discussed in this section and the weighted

mean of the ï¬ve calculable-capacitor results for

R

K

dis-

cussed in Sec VII.B, we have

K

J

=

K

J

−

90

[1

−

2

.

8(1

.

9)

×

10

−

8

]

= 483 597

.

8865(94) GHz

/

V

[1

.

9

×

10

−

8

]

,

(290)

which is consistent with the directly measured values but
has an uncertainty that is smaller by more than an order
of magnitude. This result is implicitly included in the
least-squares adjustment, even though the explicit value
for

K

J

obtained here is not used as an input datum.

background image

46

E. Faraday constant

F

and

h

The Faraday constant

F

is equal to the Avogadro con-

stant

N

A

times the elementary charge

e

,

F

=

N

A

e

; its

SI unit is coulomb per mol, C mol

−

1

= A s mol

−

1

. It

determines the amount of substance

n

(

X

) of an entity

X

that is deposited or dissolved during electrolysis by the
passage of a quantity of electricity, or charge,

Q

=

It

,

due to the ï¬‚ow of a current

I

in a time

t

. In particu-

lar, the Faraday constant

F

is related to the molar mass

M

(

X

) and valence

z

of entity

X

by

F

=

ItM

(

X

)

zm

d

(

X

)

,

(291)

where

m

d

(

X

) is the mass of entity

X

dissolved as the

result of transfer of charge

Q

=

It

during the electrolysis.

It follows from the relations

F

=

N

A

e

,

e

2

= 2

αh/µ

0

c

,

m

e

= 2

R

∞

h/cα

2

, and

N

A

=

A

r

(e)

M

u

/m

e

, where

M

u

=

10

−

3

kg mol

−

1

, that

F

=

A

r

(e)

M

u

R

∞

c

2

µ

0

α

5

h

1

/

2

.

(292)

Since, according to Eq. (291),

F

is proportional to the

current

I

, and

I

is inversely proportional to the prod-

uct

K

J

R

K

if the current is determined in terms of the

Josephson and quantum Hall effects, we may write

F

90

=

K

J

R

K

K

J

−

90

R

K

−

90

A

r

(e)

M

u

R

∞

c

2

µ

0

α

5

h

1

/

2

,

(293)

where

F

90

is the experimental value of

F

in SI units that

would result from the Faraday experiment if

K

J

=

K

J

−

90

and

R

K

=

R

K

−

90

. The quantity

F

90

is the input datum

used in the adjustment, but the observational equation
accounts for the fact that

K

J

−

90

6

=

K

J

and

R

K

−

90

6

=

R

K

.

If one assumes the validity of the expressions

K

J

= 2

e/h

and

R

K

=

h/e

2

, then in terms of adjusted constants,

Eq. (293) can be written as

F

90

=

cM

u

K

J

−

90

R

K

−

90

A

r

(e)

α

2

R

∞

h

.

(294)

1. NIST: Ag coulometer

There is one high-accuracy experimental value of

F

90

available, that from NIST (Bower and Davis, 1980). The
NIST experiment used a silver dissolution coulometer
based on the anodic dissolution by electrolysis of silver,
which is monovalent, into a solution of perchloric acid
containing a small amount of silver perchlorate. The ba-
sic chemical reaction is Ag

→

Ag

+

+ e

−

and occurs at

the anode, which in the NIST work was a highly puriï¬ed
silver bar.

As discussed in detail in CODATA-98, the NIST ex-

periment leads to

F

90

= 96 485

.

39(13) C mol

−

1

[1

.

3

×

10

−

6

]

.

(295)

[Note that the new AME2003 values of

A

r

(

107

Ag) and

A

r

(

109

Ag) in Table II have no effect on this result.]

The value of

h

that may be inferred from the NIST

result, Eq. (294), and the 2006 recommended values for
the other quantities is

h

= 6

.

626 0657(88)

×

10

−

34

J s

[1

.

3

×

10

−

6

]

,

(296)

where the uncertainties of the other quantities are negli-
gible compared to the uncertainty of

F

90

.

VIII. MEASUREMENTS INVOLVING SILICON
CRYSTALS

Here we discuss experiments relevant to the 2006 ad-

justment that use highly pure, nearly crystallographically
perfect, single crystals of silicon. However, because one
such experiment determines the quotient

h/m

n

, where

m

n

is the mass of the neutron, for convenience and be-

cause any experiment that determines the ratio of the
Planck constant to the mass of a fundamental particle or
atom provides a value of the ï¬ne-structure constant

α

,

we also discuss in this section two silicon-independent ex-
periments: the 2002 Stanford University, Stanford, USA,
measurement of

h/m

(

133

Cs) and the 2006 Laboratoire

Kastler-Brossel or LKB measurement of

h/m

(

87

Rb).

In this section, W4.2a, NR3, W04 and NR4 are short-

ened forms of the full crystal designations WASO 4.2a,
NRLM3, WASO 04, and NRLM4, respectively, for use in
quantity symbols. No distinction is made between differ-
ent crystals taken from the same ingot. As we use the
current laboratory name to identify a result rather than
the laboratory name at the time the measurement was
carried out, we have replaced IMGC and NRLM with
INRIM and NMIJ—see the glossary in CODATA-98.

A.

{

220

}

lattice spacing of silicon

d

220

A value of the

{

220

}

lattice spacing of a silicon crys-

tal in meters is relevant to the 2006 adjustment not
only because of its role in determining

α

from

h/m

n

(see Sec. VIII.D.1), but also because of its role in de-
termining the relative atomic mass of the neutron

A

r

(n)

(see Sec.VIII.C). Further, together with the measured
value of the molar volume of silicon

V

m

(Si), it can pro-

vide a competitive value of

h

(see Sec. VIII.B).

Various aspects of silicon and its crystal plane spac-

ings of interest here are reviewed in CODATA-98 and
CODATA-02. [See also the reviews of Becker (2003),
Mana (2001), and Becker (2001)]. Some points worth
noting are that silicon is a cubic crystal with

n

= 8

atoms per face-centered cubic unit cell of edge length (or
lattice parameter)

a

= 543 pm with

d

220

=

a/

√

8. The

three naturally occurring isotopes of Si are

28

Si,

29

Si,

and

30

Si, and the amount-of-substance fractions

x

(

28

Si),

x

(

29

Si), and

x

(

30

Si) of natural silicon are approximately

0.92, 0.05, and 0.03, respectively.

background image

47

Although the

{

220

}

lattice spacing of Si is not a funda-

mental constant in the usual sense, for practical purposes
one can consider

a

, and hence

d

220

, of an impurity-free,

crystallographically perfect or â€œideal†silicon crystal un-
der speciï¬ed conditions, principally of temperature, pres-
sure, and isotopic composition, to be an invariant of na-
ture. The reference temperature and pressure currently
adopted are

t

90

= 22

.

5

â—¦

C and

p

= 0 (that is, vacuum),

where

t

90

is Celsius temperature on the International

Temperature Scale of 1990 (ITS-90) (Preston-Thomas,
1990a,b). However, no reference values for

x

(

A

Si) have

yet been adopted, because the variation of

a

due to the

variation of the isotopic composition of the crystals used
in high-accuracy experiments is taken to be negligible
at the current level of experimental uncertainty in

a

. A

much larger effect on

a

is the impurities that the silicon

crystal contains—mainly carbon (C), oxygen (O), and ni-
trogen (N)—and corrections must be applied to convert
the

{

220

}

lattice spacing

d

220

(

X

) of a real crystal

X

to

the

{

220

}

lattice spacing

d

220

of an â€œideal†crystal.

Nevertheless, we account for the possible variation in

the lattice spacing of different samples taken from the
same ingot by including an additional component (or
components) of relative standard uncertainty in the un-
certainty of any measurement result involving a silicon
lattice spacing (or spacings). This additional component
is typically

√

2

×

10

−

8

for each crystal, but it can be

larger, for example, (3

/

2)

√

2

×

10

−

8

in the case of crystal

MO

∗

discussed below, because it is known to contain a

comparatively large amount of carbon; see Secs. III.A.c
and III.I of CODATA-98 for details. For simplicity, we do
not explicitly mention our inclusion of such components
in the following discussion.

Further, because of this component and the use of the

same samples in different experiments, and because of the
existence of other common components of uncertainty in
the uncertainty budgets of different experimental results
involving silicon crystals, many of the input data dis-
cussed in the following sections are correlated. In most
cases we do not explicity give the relevant correlation
coefficients in the text; instead Table XXXI in Sec. XII
provides all the non-negligible correlation coefficients of
the input data listed in Table XXX.

1. X-ray/optical interferometer measurements of

d

220

(

X

)

High accuracy measurements of

d

220

(

X

), where

X

de-

notes any one of various crystals, are carried out using a
combined x-ray and optical interferometer (XROI) fab-
ricated from a single crystal of silicon taken from one of
several well-characterized single crystal ingots or boules.
As discussed in CODATA-98, an XROI is a device that
enables x-ray fringes of unknown period

d

220

(

X

) to be

compared with optical fringes of known period by mov-
ing one of the crystal plates of the XROI, called the ana-
lyzer. Also discussed there are the XROI measurements
of

d

220

(

W4

.

2a

),

d

220

(

MO

∗

), and

d

220

(

NR3

), which were car-

(

d

220

/

fm

−

192 015)

×

10

3

540

550

560

570

580

590

600

610

540

550

560

570

580

590

600

610

10

−

7

d

220

d

220

(

W4

.

2a

) PTB-81

d

220

PTB-81

d

220

(

NR3

) NMIJ-04

d

220

NMIJ-04

d

220

h/m

n

d

220

(

W04

) PTB-99

d

220

(

MO

∗

) INRIM-07

d

220

INRIM-07

d

220

(

W4

.

2a

) INRIM-07

d

220

INRIM-07

d

220

CODATA-02

d

220

CODATA-06

FIG. 1 Inferred values (open circles) of

d

220

from various

measurements (solid circles) of

d

220

(

X

). For comparison, the

2002 and 2006 CODATA recommended values of

d

220

are also

shown.

ried out at the PTB in Germany (Becker

et al.

, 1981),

the Istituto Nazionale di Ricerca Metrologica, Torino,
Italy (INRIM) (Basile

et al.

, 1994), and the National

Metrology Institute of Japan (NMIJ), Tsukuba, Japan
(Nakayama and Fujimoto, 1997), respectively.

For the reasons discussed in CODATA-02 and subse-

quently documented by Cavagnero

et al.

(2004a,b), only

the NMIJ 1997 result was taken as an input datum in
the 2002 adjustment. However, further work, published
in the Erratum to that paper, showed that the results
obtained at INRIM given in the paper were in error. Af-
ter the error was discovered, additional work was carried
out at INRIM to fully understand and correct it. New
results were then reported at a conference in 2006 and
published in the conference proceedings (Becker

et al.

,

2007). Thus, as summarized in Table XXIV and com-
pared in Fig. 1, we take as input data the four absolute

{

220

}

lattice spacing values determined in three different

laboratories, as discussed in the following three sections.
The last value in the table, which is not an XROI result,
is discussed in Sec. VIII.D.1.

We point out that not only do we take the

{

220

}

lat-

tice spacings of the crystals WASO 4.2a, NRLM3, and
MO

∗

as adjusted constants, but also the

{

220

}

lattice

spacings of the crystals N, WASO 17, ILL, WASO 04,
and NRLM4, because they too were involved in various
experiments, including the

d

220

lattice spacing fractional

difference measurements discussed in Sec VIII.A.2.

a. PTB measurement of

d

220

(

W4

.

2a

)

The following value,

identiï¬ed as PTB-81 in Table XXIV and Fig. 1, is the

background image

48

TABLE XXIV Summary of measurements of the absolute

{

220

}

lattice spacing of various silicon crystals and inferred values

of

d

220

.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

d

220

(

W4

.

2a

)

192 015

.

563(12) fm

6

.

2

×

10

−

8

PTB-81

VIII.A.1.a (297)

d

220

192 015

.

565(13) fm

6

.

5

×

10

−

8

d

220

(

NR3

)

192 015

.

5919(76) fm

4

.

0

×

10

−

8

NMIJ-04

VIII.A.1.b (298)

d

220

192 015

.

5973(84) fm

4

.

4

×

10

−

8

d

220

(

W4

.

2a

)

192 015

.

5715(33) fm

1

.

7

×

10

−

8

INRIM-07

VIII.A.1.c (299)

d

220

192 015

.

5732(53) fm

2

.

8

×

10

−

8

d

220

(

MO

∗

)

192 015

.

5498(51) fm

2

.

6

×

10

−

8

INRIM-07

VIII.A.1.c (300)

d

220

192 015

.

5685(67) fm

3

.

5

×

10

−

8

h/m

n

d

220

(

W04

)

2060

.

267 004(84) m s

−

1

4

.

1

×

10

−

8

PTB-99

VIII.D.1 (322)

d

220

192 015

.

5982(79) fm

4

.

1

×

10

−

8

VIII.D.1 (325)

original result obtained at PTB as reported by Becker

et al.

(1981) and discussed in CODATA-98:

d

220

(

W4

.

2a

) = 192 015

.

563(12) fm

[6

.

2

×

10

−

8

]

.

(297)

b. NMIJ measurement of

d

220

(

NR3

)

The following value,

identiï¬ed as NMIJ-04 in Table XXIV and Fig. 1, reflects
the NMIJ efforts in the early and mid-1990s as well as
the work carried out in the early 2000s:

d

220

(

NR3

) = 192 015

.

5919(76) fm

[4

.

0

×

10

−

8

]

.

(298)

This value, reported by Cavagnero

et al.

(2004a,b), is

the weighted mean of the 1997 NIMJ result of Nakayama
and Fujimoto (1997) discussed in CODATA-98 and
CODATA-02, and the result from a new series of mea-
surements performed at NMIJ from December 2002 to
February 2003 with nearly the same apparatus. One of
the principle differences from the earlier experiment was
the much improved temperature control system of the
room in which the NMIJ XROI was located; the new sys-
tem provided a temperature stability of about 1 mK/d
and allowed the temperature of the XROI to be set to
within 20 mK of 22

.

5

â—¦

C.

The result for

d

220

(

NR3

) from the 2002-2003 measure-

ments is based on 61 raw data. In each measurement,
the phases of the x-ray and optical fringes (optical or-
ders) were compared at the 0th, 100th, and 201st optical
orders, and then with the analyzer moving in the reverse
direction, at the 201st, 100th, and 0th orders. The

n/m

ratio was calculated from the phase of the x-ray fringe at
the 0th and 201st orders, where

n

is the number of x-ray

fringes in

m

optical fringes (optical orders) of period

λ/

2,

where

λ

is the wavelength of the laser beam used in the

optical interferometer and

d

220

(

NR3

) = (

λ/

2)

/

(

n/m

).

In the new work, the fractional corrections to

d

220

(

NR3

), in parts in 10

9

, total 181(35), the largest by far

being the correction 173(33) for laser beam diffraction.
The next largest is 5.0(7.1) for laser beam alignment.
The statistical uncertainty is 33 (Type A).

Before calculating the weighted mean of the new and

1997 results for

d

220

(

NR3

), Cavagnero

et al.

(2004a,b) re-

vised the 1997 value based on a reanalysis of the old
experiment, taking into account what was learned in the
new experiment. Not only did the reanalysis result in
a reduction of the statistical uncertainty from (again, in
parts in 10

9

) 50 to 1.8 due to a better understanding of

the undulation of

n/m

values as a function of time, but

also in more reliable estimates of the corrections for laser
beam diffraction and laser beam alignment. Indeed, the
fractional corrections for the revised 1997 NMIJ value
of

d

220

(

NR3

) total 190(38) compared to the original total

of 173(14), and the ï¬nal uncertainty of the revised 1997
value is

u

r

= 3

.

8

×

10

−

9

compared to

u

r

= 4

.

8

×

10

−

9

of

the new value.

For completeness, we note that two possible correc-

tions to the NMIJ result have been discussed in the lit-
erature. In the Erratum to Cavagnero

et al.

(2004a,b), it

is estimated that a fractional correction to the value of

d

220

(

NR3

) in Eq. (298) of

−

1

.

3

×

10

−

8

may be required

to account for the contamination of the NMIJ laser by
a parasitic component of laser radiation as in the case
of the INRIM laser discussed in the next section. How-
ever, it is not applied, because of its comparatively small
size and the fact that no measurements of

d

220

(

NR3

) have

yet been made at NMIJ (or INRIM) with a problem-free
laser that conï¬rm the correction, as has been done at
INRIM for the crystals WASO 4.2a and MO

∗

.

In Fujimoto

et al.

(2007), it is estimated, based on

a Monte Carlo simulation, that the fractional correc-
tion to

d

220

(

NR3

) labeled â€œFresnel diffraction†in Ta-

ble I of Nakayama and Fujimoto (1997) and equal to
16

.

0(8)

×

10

−

8

should be 10(3)

×

10

−

8

. The change arises

from taking into account the misalignment of the inter-
fering beams in the laser interferometer. Because this
additional diffraction effect was present in both the 1997
and 2002-2003 measurements but was not considered in
the reanalysis of the 1997 result nor in the analysis of
the 2002-2003 data, it implies that the weighted mean

background image

49

value for

d

220

(

NR3

) in Eq. (298) should be reduced by this

amount and its

u

r

increased from 4

.

0

×

10

−

8

to 5

.

0

×

10

−

8

.

However, because the data required for the calculation
were not precisely known (they were not logged in the
laboratory notebooks because the experimenters were un-
aware of their importance), the correction is viewed as
somewhat conjectural and thus that applying it would
not be justiï¬ed (Mana and Massa, 2006).

c. INRIM measurement of

d

220

(

W4

.

2a

)

and

d

220

(

MO

∗

)

The

following two new INRIM values, with identiï¬er INRIM-
07, were reported by Becker

et al.

(2007):

d

220

(

W4

.

2a

) = 192 015

.

5715(33) fm

[1

.

7

×

10

−

8

]

(299)

d

220

(

MO

∗

) = 192 015

.

5498(51) fm [2

.

6

×

10

−

8

]

.

(300)

The correlation coefficient of these values is 0.057, based
on the detailed uncertainty budget for

d

220

(

MO

∗

) in Cav-

agnero

et al.

(2004a,b) and the similar uncertainty bud-

get for

d

220

(

W4

.

2a

) provided by Fujimoto

et al.

(2006).

Although the 2007 result for

d

220

(

MO

∗

) of Becker

et al.

(2007) in Eq. (300) agrees with the 1994 INRIM result of
Basile

et al.

(1994), which was used as an input datum

in the 1998 adjustment, because of the many advances
incorporated in the new work, we no longer consider the
old result.

In addition to the determination, described in the

previous section, of the

{

220

}

lattice spacing of crys-

tal NRLM3 carried out at NMIJ in 2002-2003 using the
NMIJ NRLM3 x-ray interferometer and associated NMIJ
apparatus, Cavagnero

et al.

(2004a,b) reported the re-

sults of measurements carried out at INRIM of the

{

220

}

lattice spacings of crystals MO

∗

and NRLM3, where in

the latter case it was an INRIM-NMIJ joint effort that
used the NIMJ NRLM3 x-ray interferometer but the IN-
RIM associated apparatus. But as indicated above, both
results were subsequently found to be in error: the opti-
cal laser beam used to measure the displacement of the
x-ray interferometer’s analyzer crystal was contaminated
by a parasitic component with a frequency that differed
by about 1.1 GHz from the frequency assigned the laser
beam.

After eliminating the error by replacing the prob-

lem laser with a 633 nm He-Ne external-cavity diode
laser locked to a

127

I

2

stabilized laser, the INRIM re-

searchers repeated the measurements they had previously
carried out with the INRIM MO

∗

x-ray interferometer

and with the refurbished PTB WASO 4.2a x-ray inter-
ferometer originally used in the PTB experiment that led
to the 1981 value of

d

220

(

W4

.

2a

) in Eq. (297). The PTB

WASO 4.2a x-ray interferometer was refurbished at PTB
through remachining, but the result for

d

220

(

W4

.

2a

) ob-

tained at INRIM with the contaminated laser was not
included in Cavagnero

et al.

(2004a,b). The values of

d

220

(

W4

.

2a

) and

d

220

(

MO

∗

) in Eqs. 299 and 300 resulted

from the repeated measurements (Becker

et al.

, 2007).

In principle, based on the experimentally observed

shifts in the measured values of

d

220

(

W4

.

2a

) and

d

220

(

MO

∗

)

obtained with the malfunctioning laser and the properly
functioning laser, the value of

d

220

(

NR3

) obtained in the

INRIM-NMIJ joint effort using the malfunctioning laser
mentioned above, and the value of

d

220

(

WS5C

) also ob-

tained with this laser, could be corrected and taken as
input data. WS5C is an XROI manufactured by INRIM
from a WASO 04 sample, but the value of

d

220

(

WS5C

)

obtained using the contaminated laser was also not in-
cluded in Cavagnero

et al.

(2004a,b). However, because

of the somewhat erratic history of silicon lattice spacing
measurements, the Task Group decided to use only data
obtained with a laser known to be functioning properly.

The improvements in the INRIM XROI apparatus

since the 1994

d

220

(

MO

∗

) measurement of Basile

et al.

(1994) include (i) a new two-axis â€œtip-tilt†platform for
the XROI that is electronically controlled to compensate
for parasitic rotations and straightness error of the guid-
ing system that moves the platform; (ii) imaging the x-
ray interference pattern formed by the x-ray beam trans-
mitted through the moving analyzer in such a way that
detailed information concerning lattice distortion and an-
alyzer pitch can be extracted on line from the analysis
of the phases of the x-ray fringes; and (iii) an upgraded
computer-aided system for combined interferometer dis-
placement and control, x-ray and optical fringe scanning,
signal digitization and sampling, environmental monitor-
ing, and data analysis.

The values of

d

220

(

W4

.

2a

) and

d

220

(

MO

∗

) in Eqs. (299)

and (300) are the means of tens of individual values, with
each value being the average of about ten data points
collected in 1 h measurement cycles during which the
analyzer was translated back and forth by 300 optical
orders. For the two crystals, respectively, the statisti-
cal uncertainties in parts in 10

9

are 3.5 and 11.6, and

the various corrections and their uncertainties are laser
beam wavelength,

−

0

.

8(4),

−

0

.

8(4); laser beam diffrac-

tion, 12.0(2.2), 12.0(2.2); laser beam alignment, 2.5(3.5),
2.5(3.5); Abbe error, 0.0(2.8), 0.0(3.7); trajectory er-
ror, 0.0(1.4), 0.0(3.6); analyzer temperature, 1.0(5.2),
1.0(7.9); and abberations, 0.0(5.0), 0.0(2.0). The total
uncertainties are 9.6 and 15.7.

2.

d

220

difference measurements

To relate the lattice spacings of crystals used in various

experiments, highly accurate measurements are made of
the fractional difference [

d

220

(

X

)

−

d

220

(ref)]

/d

220

(ref) of

the

{

220

}

lattice spacing of a sample of a single crystal

ingot

X

and that of a reference crystal â€œrefâ€. Both NIST

and PTB have carried out such measurements, and the
fractional differences from these two laboratories that we
take as input data in the 2006 adjustment are given in
the following two sections and are summarized in Ta-
ble XXV. For details concerning these measurements,
see CODATA-98 and CODATA-02.

background image

50

a. NIST difference measurements

The following fractional

difference involving a crystal denoted simply as â€œN†was
obtained as part of the NIST effort to measure the wave-
lengths in meters of the K

α

1

x-ray lines of Cu, Mo, and

W; see Sec. XI.A.

d

220

(

W17

)

−

d

220

(

N

)

d

220

(

W17

)

= 7(22)

×

10

−

9

.

(301)

The following three fractional differences involving

crystals from the four crystals denoted ILL, WASO 17,
MO*, and NRLM3 were obtained as part of the NIST
effort, discussed in Sec. VIII.C, to determine the relative
atomic mass of the neutron

A

r

(n) (Kessler

et al.

, 1999):

d

220

(

ILL

)

−

d

220

(

W17

)

d

220

(

ILL

)

=

−

8(22)

×

10

−

9

(302)

d

220

(

ILL

)

−

d

220

(

MO

∗

)

d

220

(

ILL

)

= 86(27)

×

10

−

9

(303)

d

220

(

ILL

)

−

d

220

(

NR3

)

d

220

(

ILL

)

= 34(22)

×

10

−

9

.

(304)

The following more recent NIST difference measure-

ments, which we also take as input data in the 2006 ad-
justment, were provided by Kessler (2006) of NIST and
are updates of the results reported by Hanke and Kessler
(2005):

d

220

(

NR3

)

−

d

220

(

W04

)

d

220

(

W04

)

=

−

11(21)

×

10

−

9

(305)

d

220

(

NR4

)

−

d

220

(

W04

)

d

220

(

W04

)

= 25(21)

×

10

−

9

(306)

d

220

(

W17

)

−

d

220

(

W04

)

d

220

(

W04

)

= 11(21)

×

10

−

9

.

(307)

The full designations of the two new crystals involved
in these comparisons are WASO 04 and NRLM4. The
measurements beneï¬ted signiï¬cantly from the relocation
of the NIST lattice comparator to a new laboratory where
the temperature varied by only about 5 mK in several
weeks compared to the previous laboratory where the
temperature varied by about 40 mK in one day (Hanke
and Kessler, 2005).

b. PTB difference measurements

Results for the

{

220

}

lattice-spacing fractional differences of various crystals
that we also take as input data in the 2006 adjustment
have been obtained at the PTB (Martin

et al.

, 1998):

d

220

(

W4

.

2a

)

−

d

220

(

W04

)

d

220

(

W04

)

=

−

1(21)

×

10

−

9

(308)

d

220

(

W17

)

−

d

220

(

W04

)

d

220

(

W04

)

= 22(22)

×

10

−

9

(309)

d

220

(

MO

∗

)

−

d

220

(

W04

)

d

220

(

W04

)

=

−

103(28)

×

10

−

9

(310)

d

220

(

NR3

)

−

d

220

(

W04

)

d

220

(

W04

)

=

−

23(21)

×

10

−

9

.

(311)

To relate

d

220

(

W04

) to the

{

220

}

lattice spacing

d

220

of

an â€œideal†silicon crystal, we take as an input datum

d

220

−

d

220

(

W04

)

d

220

(

W04

)

= 10(11)

×

10

−

9

(312)

given by Becker

et al.

(2003), who obtained it by tak-

ing into account the known carbon, oxygen, and nitro-
gen impurities in WASO 04. However, following what
was done in the 1998 and 2002 adjustments, we have in-
cluded an additional component of uncertainty of 1

×

10

−

8

to account for the possibility that, even after correction
for C, O, and N impurities, the crystal WASO 04, al-
though very well characterized as to its purity and crys-
tallographic perfection, does not meet all of the criteria
for an ideal crystal. Indeed, in general, we prefer to use
experimentally measured fractional lattice spacing differ-
ences rather than differences implied by the C, O, and N
impurity content of the crystals in order to avoid the need
to assume that all crystals of interest meet these criteria.

In order to include this fractional difference in the 2002

adjustment, the quantity

d

220

is also taken as an adjusted

constant.

B. Molar volume of silicon

V

m

(Si)

and the Avogadro

constant

N

A

The deï¬nition of the molar volume of silicon

V

m

(Si)

and its relationship to the Avogadro constant

N

A

and

Planck constant

h

as well as other constants is discussed

in CODATA-98 and summarized in CODATA-02.

In

brief we have

m

(Si) =

Ï

(Si)

a

3

n

,

(313)

V

m

(Si) =

M

(Si)

Ï

(Si)

=

A

r

(Si)

M

u

Ï

(Si)

,

(314)

N

A

=

V

m

(Si)

a

3

/n

=

A

r

(Si)

M

u

√

8

d

3

220

Ï

(Si)

,

(315)

V

m

(Si) =

√

2

cM

u

A

r

(e)

α

2

d

3

220

R

∞

h

,

(316)

which are to be understood in the context of an impurity
free, crystallographically perfect, â€œideal†silicon crystal
at the reference conditions

t

90

= 22

.

5

â—¦

C and

p

= 0, and

of isotopic composition in the range normally observed
for crystals used in high-accuracy experiments. Thus

m

(Si),

V

m

(Si),

M

(Si), and

A

r

(Si) are the mean mass,

mean molar volume, mean molar mass, and mean rela-
tive atomic mass of the silicon atoms in such a crystal,
respectively, and

Ï

(Si) is the crystal’s macroscopic mass

density. Equation (316) is the observational equation for
a measured value of

V

m

(Si).

It follows from Eq. (314) that the experimen-

tal determination of

V

m

(Si) requires (i) measurement

of the amount-of-substance ratios

n

(

29

Si)/

n

(

28

Si) and

n

(

30

Si)/

n

(

28

Si) of a nearly perfect silicon crystal—and

background image

51

TABLE XXV Summary of measurements of the relative

{

220

}

lattice spacings of silicon crystals.

Quantity

Value

Identiï¬cation

Sect. and Eq.

1

−

d

220

(

W17

)

/d

220

(

ILL

)

−

8(22)

×

10

−

9

NIST-99

VIII.A.2.a (302)

1

−

d

220

(

MO

∗

)

/d

220

(

ILL

)

86(27)

×

10

−

9

NIST-99

VIII.A.2.a (303)

1

−

d

220

(

NR3

)

/d

220

(

ILL

)

34(22)

×

10

−

9

NIST-99

VIII.A.2.a (304)

1

−

d

220

(

N

)

/d

220

(

W17

)

7(22)

×

10

−

9

NIST-97

VIII.A.2.a (301)

d

220

(

NR3

)

/d

220

(

W04

)

−

1

−

11(21)

×

10

−

9

NIST-06

VIII.A.2.a (305)

d

220

(

NR4

)

/d

220

(

W04

)

−

1

25(21)

×

10

−

9

NIST-06

VIII.A.2.a (306)

d

220

(

W17

)

/d

220

(

W04

)

−

1

11(21)

×

10

−

9

NIST-06

VIII.A.2.a (307)

d

220

(

W4

.

2a

)

/d

220

(

W04

)

−

1

−

1(21)

×

10

−

9

PTB-98

VIII.A.2.b (308)

d

220

(

W17

)

/d

220

(

W04

)

−

1

22(22)

×

10

−

9

PTB-98

VIII.A.2.b (309)

d

220

(

MO

∗

)

/d

220

(

W04

)

−

1

−

103(28)

×

10

−

9

PTB-98

VIII.A.2.b (310)

d

220

(

NR3

)

/d

220

(

W04

)

−

1

−

23(21)

×

10

−

9

PTB-98

VIII.A.2.b (311)

d

220

/d

220

(

W04

)

−

1

10(11)

×

10

−

9

PTB-03

VIII.A.2.b (312)

hence amount of substance fractions

x

(

A

Si)—and then

calculation of

A

r

(Si) from the well-known values of

A

r

(

A

Si); and (ii) measurement of the macroscopic mass

density

Ï

(Si) of the crystal.

Determining

N

A

from

Eq. (315) by measuring

V

m

(Si) in this way and

d

220

using x rays is called the x-ray-crystal-density (XRCD)
method.

An extensive international effort has been under way

since the early 1990s to determine

N

A

using this tech-

nique with the smallest possible uncertainty. The effort
is being coordinated by the Working Group on the Avo-
gadro Constant (WGAC) of the Consultative Committee
for Mass and Related Quantities (CCM) of the CIPM.
The WGAC, which has representatives from all major
research groups working in areas relevant to the determi-
nation of

N

A

, is currently chaired by P. Becker of PTB.

As discussed at length in CODATA-02, the value of

V

m

(Si) used as an input datum in the 2002 adjustment

was provided to the CODATA Task Group by the WGAC
and was a consensus value based on independent mea-
surements of

Ï

(Si) at NMIJ and PTB using a number

of different silicon crystals, and measurements of their
molar masses

M

(Si) using isotopic mass spectrometry

at the Institute for Reference Materials and Measure-
ments (IRMM), European Commission, Geel, Belgium.
This value, identiï¬ed as N/P/I-03 in recognition of the
work done by researchers at NMIJ, PTB, and IRMM, is

V

m

(Si) = 12

.

058 8257(36)

×

10

−

6

m

3

mol

−

1

[3

.

0

×

10

−

7

].

Since then, the data used to obtain it were reanalyzed by
the WGAC, resulting in the slightly revised value (Fujii

et al.

, 2005)

V

m

(Si) = 12

.

058 8254(34)

×

10

−

6

m

3

mol

−

1

[2

.

8

×

10

−

7

]

,

(317)

which we take as an input datum in the 2006 adjustment
and identify as N/P/I-05. The slight shift in value and

reduction in uncertainty is due to the fact that the ef-
fect of nitrogen impurities in the silicon crystals used in
the NMIJ measurements was taken into account in the
reanalysis (Fujii

et al.

, 2005). Note that the new value of

A

r

(

29

Si) in Table IV has no effect on this result.

Based on Eq. (316) and the 2006 recommended values

of

A

r

(e),

α

,

d

220

, and

R

∞

, the value of

h

implied by this

result is

h

= 6

.

626 0745(19)

×

10

−

34

J s

[2

.

9

×

10

−

7

]

.

(318)

A comparison of this value of

h

with those in Tables XXI

and XXIII shows that it is generally not in good agree-
ment with the most accurate of the other values.

In this regard, two relatively recent publications, the

ï¬rst describing work performed in China (Ding

et al.

,

2005) and the second describing work performed in
Switzerland (Reynolds

et al.

, 2006), reported results

which, if taken at face value, seem to call into question
the uncertainty with which the molar mass of naturally
occurring silicon is currently known. [See also Valkiers

et al.

(2005).] These results highlight the importance

of the current WGAC project to measure

V

m

(Si) using

highly enriched silicon crystals with

x

(

28

Si)

>

0

.

99985

(Becker

et al.

, 2006), which should simplify the determi-

nation of the molar mass of such crystals.

C. Gamma-ray determination of the neutron relative
atomic mass

A

r

(n)

Although the value of

A

r

(n) listed in Table II is a re-

sult of AME2003, it is not used in the 2006 adjustment.
Instead,

A

r

(n) is obtained as discussed in this section in

order to ensure that its recommended value is consistent
with the best current information on the

{

220

}

lattice

spacing of silicon.

background image

52

The value of

A

r

(n) can be obtained by measuring the

wavelength of the 2.2 MeV

γ

ray in the reaction n + p

→

d +

γ

in terms of the

d

220

lattice spacing of a particular

silicon crystal corrected to the commonly used reference
conditions

t

90

= 22

.

5

â—¦

C and

p

= 0. The result for the

wavelength-to-lattice spacing ratio, obtained from Bragg-
angle measurements carried out in 1995 and 1998 using
a ï¬‚at crystal spectrometer of the GAMS4 diffraction fa-
cility at the high-flux reactor of the Institut Max von
Laue-Paul Langevin (ILL), Grenoble, France, in a NIST
and ILL collaboration, is (Kessler

et al.

, 1999)

λ

meas

d

220

(

ILL

)

= 0

.

002 904 302 46(50)

[1

.

7

×

10

−

7

]

,

(319)

where

d

220

(

ILL

) is the

{

220

}

lattice spacing of the silicon

crystals of the ILL GAMS4 spectrometer at

t

90

= 22

.

5

â—¦

C

and

p

= 0. Relativistic kinematics of the reaction yields

the equation

λ

meas

d

220

(

ILL

)

=

α

2

A

r

(e)

R

∞

d

220

(

ILL

)

A

r

(n) +

A

r

(p)

[

A

r

(n) +

A

r

(p)]

2

−

A

2

r

(d)

,

(320)

where all seven quantities on the right-hand side are ad-
justed constants.

Recently, Dewey

et al.

(2006); Rainville

et al.

(2005) re-

ported determinations of the wavelengths of the gamma
rays emitted in the cascade from the neutron capture
state to the ground state in the reactions n +

28

Si

→

29

Si

+ 2

γ

, n +

32

S

→

33

Si + 3

γ

, and n +

35

Cl

→

36

Cl + 2

γ

.

The gamma-ray energies are 3.5 MeV and 4.9 MeV for
the Si reaction, 5.4 MeV, 2.4 MeV, and 0.8 MeV for the S
reaction, and 6.1 MeV, 0.5 MeV, and 2.0 MeV for the Cl
reaction. While these data together with the relevant rel-
ative atomic masses are potentially an additional source
of information on the neutron relative atomic mass, the
uncertainties are too large for this purpose; the inferred
value of

A

r

(n) has an uncertainty nearly an order of mag-

nitude larger than that obtained from Eq. (320). Instead,
this work is viewed as the most accurate test of

E

=

mc

2

to date (Rainville

et al.

, 2005).

D. Quotient of Planck constant and particle mass

h/m

(

X

)

and

α

The relation

R

∞

=

α

2

m

e

c/

2

h

leads to

α

=

2

R

∞

c

A

r

(

X

)

A

r

(e)

h

m

(

X

)

1

/

2

,

(321)

where

A

r

(

X

) is the relative atomic mass of particle

X

with mass

m

(

X

) and

A

r

(e) is the relative atomic mass of

the electron. Because

c

is exactly known,

u

r

of

R

∞

and

A

r

(e) are less than 7

×

10

−

12

and 5

×

10

−

10

, respectively,

and

u

r

of

A

r

(

X

) for many particles and atoms is less

than that of

A

r

(e), Eq. (321) can provide a value of

α

with a competitive uncertainty if

h/m

(

X

) is determined

with a sufficiently small uncertainty. Here, we discuss the
determination of

h/m

(

X

) for the neutron n, the

133

Cs

atom, and the

87

Rb atom. The results, including the

inferred values of

α

, are summarized in Table XXVI.

1. Quotient

h/m

n

The PTB determination of

h/m

n

was carried out at

the ILL high-flux reactor. The de Broglie relation

p

=

m

n

v

=

h/λ

was used to determine

h/m

n

=

λv

for the

neutron by measuring both its de Broglie wavelength

λ

and corresponding velocity

v

. More speciï¬cally, the de

Broglie wavelength,

λ

≈

0

.

25 nm, of slow neutrons was

determined using back reflection from a silicon crystal,
and the velocity,

v

≈

1600 m/s, of the neutrons was

determined by a special time-of-flight method. The ï¬nal
result of the experiment is (Kr¨

uger

et al.

, 1999)

h

m

n

d

220

(

W04

)

= 2060

.

267 004(84) m s

−

1

[4

.

1

×

10

−

8

]

,

(322)

where as before,

d

220

(

W04

) is the

{

220

}

lattice spacing

of the crystal WASO 04 at

t

90

= 22

.

5

â—¦

C in vacuum.

This result is correlated with the PTB fractional lattice-
spacing differences given in Eqs. (308) to (311)—the cor-
relation coefficients are about 0.2.

The equation for the PTB result, which follows from

Eq. (321), is

h

m

n

d

220

(

W04

)

=

A

r

(e)

A

r

(n)

cα

2

2

R

∞

d

220

(

W04

)

.

(323)

The value of

α

that can be inferred from this relation

and the PTB value of

h/m

n

d

220

(

W04

), the 2006 recom-

mended values of

R

∞

,

A

r

(e), and

A

r

(n), the NIST and

PTB fractional lattice-spacing-differences in Table XXV,
and the four XROI values of

d

220

(

X

) in Table XXIV for

crystals WASO 4.2a, NRLM3, and MO

∗

, is

α

−

1

= 137

.

036 0077(28) [2

.

1

×

10

−

8

]

.

(324)

This value is included in Table XXVI as the ï¬rst entry;
it disagrees with the

α

values from the two other

h/m

results.

It is also of interest to calculate the value of

d

220

implied by the PTB result for

h/m

n

d

220

(

W04

). Based

on Eq. (323), the 2006 recommended values of

R

∞

,

A

r

(e),

A

r

(p),

A

r

(d),

α

, the NIST and PTB fractional

lattice-spacing-differences in Table XXV, and the value
of

λ

meas

/d

220

(

ILL

) given in Eq. (319), we ï¬nd

d

220

= 192 015

.

5982(79) fm [4

.

1

×

10

−

8

]

.

(325)

This result is included in Table XXIV as the last entry; it
agrees with the NMIJ value, but disagrees with the PTB
and INRIM values.

background image

53

TABLE XXVI Summary of data related to the quotients

h/m

n

d

220

(

W04

),

h/m

(Cs), and

h/m

(Rb), together with inferred values

of

α

.

Quantity

Value

Relative standard

Identiï¬cation

Sect. and Eq.

uncertainty

u

r

h/m

n

d

220

(

W04

)

2060

.

267 004(84) m s

−

1

4

.

1

×

10

−

8

PTB-99

VIII.D.1 (322)

α

−

1

137

.

036 0077(28)

2

.

1

×

10

−

8

VIII.D.1 (324)

h/m

(Cs)

3

.

002 369 432(46)

×

10

−

9

m

2

s

−

1

1

.

5

×

10

−

8

StanfU-02

VIII.D.2 (329)

α

−

1

137

.

036 0000(11)

7

.

7

×

10

−

9

VIII.D.2 (331)

h/m

(Rb)

4

.

591 359 287(61)

×

10

−

9

m

2

s

−

1

1

.

3

×

10

−

8

LKB-06

VIII.D.2 (332)

α

−

1

137

.

035 998 83(91)

6

.

7

×

10

−

9

VIII.D.2 (334)

2. Quotient

h/m

(

133

Cs)

The Stanford University atom interferometry exper-

iment to measure the atomic recoil frequency shift of
photons absorbed and emitted by

133

Cs atoms, âˆ†

ν

Cs

, in

order to determine the quotient

h/m

(

133

Cs) is described

in CODATA-02. As discussed there, the expression ap-
plicable to the Stanford experiment is

h

m

(

133

Cs)

=

c

2

∆

ν

Cs

2

ν

2

eff

,

(326)

where the frequency

ν

eff

corresponds to the sum of the en-

ergy difference between the ground-state hyperï¬ne level
with

F

= 3 and the 6P

1

/

2

state

F

= 3 hyperï¬ne level and

the energy difference between the ground-state hyperï¬ne
level with

F

= 4 and the same 6P

1

/

2

hyperï¬ne level.

The result for âˆ†

ν

Cs

/

2 reported in 2002 by the Stanford

researchers is (Wicht

et al.

, 2002)

∆

ν

Cs

2

= 15 006

.

276 88(23) Hz

[1

.

5

×

10

−

8

]

.

(327)

The Stanford effort included an extensive study of cor-

rections due to possible systematic effects. The largest
component of uncertainty by far contributing to the un-
certainty of the ï¬nal result for âˆ†

ν

Cs

,

u

r

= 14

×

10

−

9

(Type B), arises from the possible deviation from 1 of the
index of refraction of the dilute background gas of cold ce-
sium atoms that move with the signal atoms. This com-
ponent, estimated experimentally, places a lower limit on
the relative uncertainty of the inferred value of

α

from

Eq. (321) of

u

r

= 7

×

10

−

9

. Without it,

u

r

of

α

would be

about 3 to 4 parts in 10

9

.

In

the

2002

adjustment,

the

value

ν

eff

=

670 231 933 044(81) kHz [1

.

2

×

10

−

10

], based on the

measured frequencies of

133

Cs D

1

-line transitions re-

ported by Udem

et al.

(1999), was used to obtain the

ratio

h/m

(

133

Cs) from the Stanford value of âˆ†

ν

Cs

/

2.

Recently, using a femtosecond laser frequency comb
and a narrow-linewidth diode laser, and eliminating
Doppler shift by orienting the laser beam perpendicular
to the

133

Cs atomic beam to within 5

µ

rad, Gerginov

et al.

(2006) remeasured the frequencies of the required

transitions and obtained a value of

ν

eff

that agrees with

the value used in 2002 but which has a

u

r

15 times

smaller:

ν

eff

= 670 231 932 889

.

9(4

.

8) kHz

[7

.

2

×

10

−

12

]

.

(328)

Evaluation of Eq. (326) with this result for

ν

eff

and the

value of âˆ†

ν

Cs

/

2 in Eq. (327) yields

h

m

(

133

Cs)

= 3

.

002 369 432(46)

×

10

−

9

m

2

s

−

1

[1

.

5

×

10

−

8

]

,

(329)

which we take as an input datum in the 2006 adjust-
ment. The observational equation for this datum is, from
Eq. (321),

h

m

(

133

Cs)

=

A

r

(e)

A

r

(

133

Cs)

c Î±

2

2

R

∞

.

(330)

The value of

α

that may be inferred from this expres-

sion, the Stanford result for

h/m

(

133

Cs) in Eq. (329),

the 2006 recommended values of

R

∞

and

A

r

(e), and the

ASME2003 value of

A

r

(

133

Cs) in Table II, the uncertain-

ties of which are inconsequential in this application, is

α

−

1

= 137

.

036 0000(11)

[7

.

7

×

10

−

9

]

,

(331)

where the dominant component of uncertainty arises
from the measured value of the recoil frequency shift, in
particular, the component of uncertainty due to a possi-
ble index of refraction effect.

In this regard, we note that Campbell

et al.

(2005)

have experimentally demonstrated the reality of one as-
pect of such an effect with a two-pulse light grating inter-
ferometer and have shown that it can have a signiï¬cant
impact on precision measurements with atom interferom-
eters. However, theoretical calculations based on simu-
lations of the Stanford interferometer by Sarajlic

et al.

(2006), although incomplete, suggest that the experi-
mentally based uncertainty component

u

r

= 14

×

10

−

9

assigned by Wicht

et al.

(2002) to account for this ef-

fect is reasonable. We also note that Wicht

et al.

(2005)

have developed an improved theory of momentum trans-
fer when localized atoms and localized optical ï¬elds in-
teract. The details of such interactions are relevant to

background image

54

precision atom interferometry. When Wicht

et al.

(2005)

applied the theory to the Stanford experiment to evaluate
possible systematic errors arising from wave-front curva-
ture and distortion, as well as the Gouy phase shift of
gaussian beams, they found that such errors do not limit
the uncertainty of the value of

α

that can be obtained

from the experiment at the level of a few parts in 10

9

,

but will play an important role in future precision atom-
interferometer photon-recoil experiments to measure

α

with

u

r

≈

5

×

10

−

10

, such as is currently underway at

Stanford (M¨

uller

et al.

, 2006).

3. Quotient

h/m

(

87

Rb)

In the LKB experiment (Clad´e

et al.

, 2006a,b), the

quotient

h/m

(

87

Rb), and hence

α

, is determined by ac-

curately measuring the rubidium recoil velocity

v

r

=

¯

hk/m

(

87

Rb) when a rubidium atom absorbs or emits a

photon of wave vector

k

= 2

Ï€

/λ

, where

λ

is the wave-

length of the photon and

ν

=

c/λ

is its frequency. The

measurements are based on Bloch oscillations in a verti-
cal accelerated optical lattice.

The basic principle of the experiment is to precisely

measure the variation of the atomic velocity induced by
an accelerated standing wave using velocity selective Ra-
man transitions between two ground-state hyperï¬ne lev-
els. A Raman

Ï€

pulse of two counter-propagating laser

beams selects an initial narrow atomic velocity class. Af-
ter the acceleration process, the ï¬nal atomic velocity dis-
tribution is probed using a second Raman

Ï€

pulse of two

counter-propagating laser beams.

The coherent acceleration of the rubidium atoms arises

from a succession of stimulated two photon transitions
also using two counter-propagating laser beams. Each
transition modiï¬es the atomic velocity by 2

v

r

leaving the

internal state unchanged. The Doppler shift is compen-
sated by linearly sweeping the frequency difference of the
two lasers. This acceleration can conveniently be inter-
preted in terms of Bloch oscillations in the fundamental
energy band of an optical lattice created by the stand-
ing wave, because the interference of the two laser beams
leads to a periodic light shift of the atomic energy levels
and hence to the atoms experiencing a periodic potential
(Ben Dahan

et al.

, 1996; Peik

et al.

, 1997).

An atom’s momentum evolves by steps of 2¯

hk

, each

one corresponding to a Bloch oscillation. After

N

oscilla-

tions, the optical lattice is adiabatically released and the
ï¬nal velocity distribution, which is the initial distribution
shifted by 2

N v

r

, is measured. Due to the high efficiency

of Bloch oscillations, for an acceleration of 2000 m s

−

2

,

900 recoil momenta can be transferred to a rubidium
atom in 3 ms with an efficiency of 99.97 % per recoil.

The atoms are alternately accelerated upwards and

downwards by reversing the direction of the Bloch ac-
celeration laser beams, keeping the same delay between
the selection and the measurement Raman

Ï€

pulses. The

resulting differential measurement is independent of grav-

ity. In addition, the contribution of some systematic
effects changes sign when the direction of the selection
and measuring Raman beams is exchanged. Hence, for
each up and down trajectory, the selection and measur-
ing Raman beams are reversed and two velocity spectra
are taken. The mean value of these two measurements is
free from systematic errors to ï¬rst order. Thus each de-
termination of

h/m

(

87

Rb) is obtained from four velocity

spectra, each requiring 5 minutes of integration time, two
from reversing the Raman beams when the acceleration
is in the up direction and two when in the down direction.
The Raman and Bloch lasers are stabilized by means of
an ultrastable Fabry-P´erot cavity and the frequency of
the cavity is checked several times during the 20 minute
measurement against a well-known two-photon transition
in

85

Rb.

Taking into account a (

−

9

.

2

±

4)

×

10

−

10

correction to

h/m

(

87

Rb) not included in the value reported by Clad´e

et al.

(2006a) due to a nonzero force gradient arising from

a difference in the radius of curvature of the up and down
accelerating beams, the result derived from 72 measure-
ments of

h/m

(

87

Rb) acquired over 4 days, which we take

as an input datum in the 2006 adjustment, is (Clad´e

et al.

, 2006b)

h

m

(

87

Rb)

= 4

.

591 359 287(61)

×

10

−

9

m

2

s

−

1

[1

.

3

×

10

−

8

]

,

(332)

where the quoted

u

r

contains a statistical component

from the 72 measurements of 8

.

8

×

10

−

9

.

Clad´e

et al.

(2006b) examined many possible sources of

systematic error, both theoretically and experimentally,
in this rather complex, sophisticated experiment in order
to ensure that their result was correct. These include
light shifts, index of refraction effects, and the effect of a
gravity gradient, for which the corrections and their un-
certainties are in fact comparatively small. More signiï¬-
cant are the fractional corrections of (16

.

8

±

8)

×

10

−

9

for

wave front curvature and Guoy phase, (

−

13

.

2

±

4)

×

10

−

9

for second order Zeeman effect, and 4(4)

×

10

−

9

for the

alignment of the Raman and Bloch beams. The total of
all corrections is given as 10

.

98(10

.

0)

×

10

−

9

.

From Eq. (321), the observational equation for the

LKB value of

h/m

(

87

Rb) in Eq (332) is

h

m

(

87

Rb)

=

A

r

(e)

A

r

(

87

Rb)

c Î±

2

2

R

∞

.

(333)

Evaluation of this expression with the LKB result and
the 2006 recommended values of

R

∞

and

A

r

(e), and the

value of

A

r

(

87

Rb) resulting from the ï¬nal least-squares

adjustment on which the 2006 recommended values are
based, all of whose uncertainties are negligible in this
context, yields

α

−

1

= 137

.

035 998 83(91)

[6

.

7

×

10

−

9

]

,

(334)

which is included in Table XXVI. The uncertainty of
this value of

α

−

1

is smaller than the uncertainty of any

background image

55

other value except those in Table XIV deduced from the
measurement of

a

e

, exceeding the smallest uncertainty of

the two values of

α

−

1

[

a

e

] in that table by a factor of ten.

IX. THERMAL PHYSICAL QUANTITIES

The following sections discuss the molar gas constant,

Boltzmann constant, and Stefan-Boltzmann constant—
constants associated with phenomena in the ï¬elds of ther-
modynamics and/or statistical mechanics.

A. Molar gas constant

R

The square of the speed of sound

c

2

a

(

p, T

) of a real gas

at pressure

p

and thermodynamic temperature

T

can be

written as (Colclough, 1973)

c

2

a

(

p, T

) =

A

0

(

T

) +

A

1

(

T

)

p

+

A

2

(

T

)

p

2

+

A

3

(

T

)

p

3

+

· Â· Â·

,

(335)

where

A

1

(

T

) is the ï¬rst acoustic virial coefficient,

A

2

(

T

)

is the second,

etc.

In the limit

p

→

0, Eq. (335) yields

c

2

a

(0

, T

) =

A

0

(

T

) =

γ

0

R T

A

r

(

X

)

M

u

,

(336)

where the expression on the right-hand side is the square
of the speed of sound for an unbounded ideal gas, and
where

γ

0

=

c

p

/c

V

is the ratio of the speciï¬c heat capac-

ity of the gas at constant pressure to that at constant
volume,

A

r

(

X

) is the relative atomic mass of the atoms

or molecules of the gas, and

M

u

= 10

−

3

kg mol

−

1

. For a

monatomic ideal gas,

γ

0

= 5

/

3.

The 2006 recommended value of

R

, like the 2002 and

1998 values, is based on measurements of the speed of
sound in argon carried out in two independent exper-
iments, one done in the 1970s at NPL and the other
done in the 1980s at NIST. Values of

c

2

a

(

p, T

TPW

), where

T

TPW

= 273

.

16 K is the triple point of water, were ob-

tained at various pressures and extrapolated to

p

= 0 in

order to determine

A

0

(

T

TPW

) =

c

2

a

(0

, T

TPW

), and hence

R

, from the relation

R

=

c

2

a

(0

, T

TPW

)

A

r

(Ar)

M

u

γ

0

T

TPW

,

(337)

which follows from Eq. (336).

Because the work of both NIST and NPL is reviewed in

CODATA-98 and CODATA-02 and nothing has occurred
in the last 4 years that would change the values of

R

implied by their reported values of

c

2

a

(0

, T

TPW

), we give

only a brief summary here. Changes in these values due
to the new values of

A

r

(

A

Ar) resulting from the 2003

atomic mass evaluation as given in Table II, or the new
IUPAC compilation of atomic weights of the elements
given by Wieser (2006), are negligible.

Since

R

cannot be expressed as a function of any other

of the 2006 adjusted constants,

R

itself is taken as an

adjusted constant for the NIST and NPL measurements.

1. NIST: speed of sound in argon

In the NIST experiment of Moldover

et al.

(1988), a

spherical acoustic resonator at a temperature

T

=

T

TPW

ï¬lled with argon was used to determine

c

2

a

(

p, T

TPW

). The

ï¬nal NIST result for the molar gas constant is

R

= 8

.

314 471(15) J mol

−

1

K

−

1

[1

.

8

×

10

−

6

]

.

(338)

The mercury employed to determine the volume of the

spherical resonator was traceable to the mercury whose
density was measured by Cook (1961) [see also Cook and
Stone (1957)]. The mercury employed in the NMI Hg
electrometer determination of

K

J

(see VII.C.1) was also

traceable to the same mercury. Consequently, the NIST
value of

R

and the NMI value of

K

J

are correlated with

the non-negligible correlation coefficient 0.068.

2. NPL: speed of sound in argon

In contrast to the dimensionally ï¬xed resonator used in

the NIST experiment, the NPL experiment employed a
variable path length ï¬xed-frequency cylindrical acoustic
interferometer to measure

c

2

a

(

p, T

TPW

). The ï¬nal NPL

result for the molar gas constant is (Colclough

et al.

,

1979)

R

= 8

.

314 504(70) J mol

−

1

K

−

1

[8

.

4

×

10

−

6

]

.

(339)

Although both the NIST and NPL values of

R

are

based on the same values of

A

r

(

40

Ar),

A

r

(

38

Ar), and

A

r

(

36

Ar), the uncertainties of these relative atomic

masses are sufficiently small that the covariance of the
two values of

R

is negligible.

3. Other values

The most important of the historical values of

R

have

been reviewed by Colclough (1984) [see also (Quinn

et al.

,

1976) and CODATA-98]. However, because of the large
uncertainties of these early values, they were not consid-
ered for use in either the 1986, 1998, or 2002 CODATA
adjustments, and we do not consider them for the 2006
adjustment as well.

Also because of its non-competitive uncertainty (

u

r

=

36

×

10

−

6

), we exclude from consideration in the 2006

adjustment, as in the 2002 adjustment, the value of

R

obtained from measurements of the speed of sound in
argon reported by He and Liu (2002) at the Xi´an Jiaotong
University, Xi´

an, China (People’s Republic of).

B. Boltzmann constant

k

The Boltzmann constant is related to the molar gas

constant

R

and other adjusted constants by

k

=

2

R

∞

h

cA

r

(e)

M

u

α

2

R

=

R

N

A

.

(340)

background image

56

No competitive directly measured value of

k

was avail-

able for the 1998 or 2002 adjustments, and the situation
remains unchanged for the present adjustment. Thus,
the 2006 recommended value with

u

r

= 1

.

7

×

10

−

6

is

obtained from this relation, as were the 1998 and 2002
recommended values. However, a number of experiments
are currently underway that might lead to competitive
values of

k

(or

R

) in the future; see Fellmuth

et al.

(2006)

for a recent review.

Indeed, one such experiment underway at the PTB

based on dielectric constant gas thermometry (DCGT)
was discussed in both CODATA-98 and CODATA-02,
but no experimental result for

A

Ç«

/R

, where

A

Ç«

is the

molar polarizability of the

4

He atom, other than that

considered in these two reports, has been published by
the PTB group [see also Fellmuth

et al.

(2006) and Luther

et al.

(1996)]. However, the relative uncertainty of the

theoretical value of the static electric dipole polarizability
of the ground state of the

4

He atom, which is required to

calculate

k

from

A

Ç«

/R

, has been lowered by more than

a factor of ten to below 2

×

10

−

7

( Lach

et al.

, 2004).

Nevertheless, the change in its value is negligible at the
level of uncertainty of the PTB result for

A

Ç«

/R

; hence,

the value

k

= 1

.

380 65(4)

×

10

−

23

J K

−

1

[30

×

10

−

6

] from

the PTB experiment given in CODATA-02 is unchanged.

In addition, preliminary results from two other ongo-

ing experiments, the ï¬rst being carried out at NIST by
Schmidt

et al.

(2007) and the second at the University

of Paris by Daussy

et al.

(2007), have recently been pub-

lished.

Schmidt

et al.

(2007) report

R

= 8

.

314 487(76) J mol

K

−

1

[9

.

1

×

10

−

6

], obtained from measurements of the in-

dex of refraction

n

(

p, T

) of

4

He gas as a function of

p

and

T

by measuring the difference in the resonant fre-

quencies of a quasispherical microwave resonator when
ï¬lled with

4

He at a given pressure and when evacuated

(that is, at

p

= 0). This experiment has some similari-

ties to the PTB DCGT experiment in that it determines
the quantity

A

Ç«

/R

and hence

k

. However, in DCGT

one measures the difference in capacitance of a capacitor
when ï¬lled with

4

He at a given pressure and at

p

= 0,

and hence one determines the dielectric constant of the

4

He gas rather than its index of refraction. Because

4

He

is slightly diamagnetic, this means that to obtain

A

Ç«

/R

in the NIST experiment, a value for

A

µ

/R

is required,

where

A

µ

= 4

Ï€

χ

0

/

3 and

χ

0

is the diamagnetic suscepti-

bility of a

4

He atom.

Daussy

et al.

(2007) report

k

= 1

.

380 65(26)

×

10

−

23

J

K

−

1

[190

×

10

−

6

], obtained from measurements as a func-

tion of pressure of the Doppler proï¬le at

T

= 273

.

15 K

(the ice point) of a well-isolated rovibrational line in the

ν

2

band of the ammonium molecule,

14

NH

3

, and extrap-

olation to

p

= 0. The experiment actually measures

R

=

kN

A

, because the mass of the ammonium molecule

in kilograms is required but can only be obtained with
the requisite accuracy from the molar masses of

14

N and

1

H, thereby introducing

N

A

.

It is encouraging that the preliminary values of

k

and

G/

(10

−

11

m

3

kg

−

1

s

−

2

)

6.670

6.672

6.674

6.676

6.678

6.670

6.672

6.674

6.676

6.678

10

−

4

G

UWup-02

HUST-05

LANL-97

TR&D-96

BIPM-01

MSL-03

UZur-06

UWash-00

CODATA-02

CODATA-06

FIG. 2 Values of the Newtonian constant of gravitation

G

.

R

resulting from these three experiments are consistent

with the 2006 recommended values.

C. Stefan-Boltzmann constant

σ

The Stefan-Boltzmann constant is related to

c

,

h

, and

the Boltzmann constant

k

by

σ

=

2

Ï€

5

k

4

15

h

3

c

2

,

(341)

which, with the aid of Eq. (340), can be expressed in
terms of the molar gas constant and other adjusted con-
stants as

σ

=

32

Ï€

5

h

15

c

6

R

∞

R

A

r

(e)

M

u

α

2

4

.

(342)

No competitive directly measured value of

σ

was avail-

able for the 1998 or 2002 adjustments, and the situa-
tion remains unchanged for the 2006 adjustment. Thus,
the 2006 recommended value with

u

r

= 7

.

0

×

10

−

6

is

obtained from this relation, as were the 1998 and 2002
recommended values. For a concise summary of exper-
iments that might provide a competiive value of

σ

, see

the review by Fellmuth

et al.

(2006).

X. NEWTONIAN CONSTANT OF GRAVITATION

G

Because there is no known quantitative theoretical re-

lationship between the Newtonian constant of gravitation

G

and other fundamental constants, and because the cur-

rently available experimental values of

G

are independent

of all of the other data relevant to the 2006 adjustment,

background image

57

TABLE XXVII Summary of the results of measurements of the Newtonian constant of gravitation relevant to the 2006
adjustment together with the 2002 and 2006 CODATA recommended values.

Item Source

Identiï¬cation

a

Method

10

11

G

Rel. stand.

m

3

kg

−

1

s

−

2

uncert

u

r

2002 CODATA Adjustment

CODATA-02

6

.

6742(10)

1

.

5

×

10

−

4

a.

(Karagioz and Izmailov, 1996)

TR&D-96

Fiber torsion balance,

6

.

672 9(5)

7

.

5

×

10

−

5

dynamic mode

b.

(Bagley and Luther, 1997)

LANL-97

Fiber torsion balance,

6

.

674 0(7)

1

.

0

×

10

−

4

dynamic mode

c.

(Gundlach and Merkowitz, 2000, 2002) UWash-00

Fiber torsion balance,

6

.

674 255(92) 1

.

4

×

10

−

5

dynamic compensation

d.

(Quinn

et al.

, 2001)

BIPM-01

Strip torsion balance,

6

.

675 59(27) 4

.

0

×

10

−

5

compensation mode, static deflection

e.

(Kleinevoß, 2002; Kleinvoß

et al.

, 2002) UWup-02

Suspended body,

6

.

674 22(98) 1

.

5

×

10

−

4

displacement

f.

(Armstrong and Fitzgerald, 2003)

MSL-03

Strip torsion balance,

6

.

673 87(27) 4

.

0

×

10

−

5

compensation mode

g.

(Hu

et al.

, 2005)

HUST-05

Fiber torsion balance,

6

.

672 3(9)

1

.

3

×

10

−

4

dynamic mode

h.

(Schlamminger

et al.

, 2006)

UZur-06

Stationary body,

6

.

674 25(12) 1

.

9

×

10

−

5

weight change

2006 CODATA Adjustment

CODATA-06

6

.

674 28(67) 1

.

0

×

10

−

4

a

TR&D: Tribotech Research and Development Company, Moscow, Russian Federation; LANL: Los Alamos National Laboratory, Los

Alamos, New Mexico, USA; UWash: University of Washington, Seattle, Washington, USA; BIPM: International Bureau of Weights and
Measures, S`

evres, France; UWup: University of Wuppertal, Wuppertal, Germany; MSL: Measurement Standards Laboratory, Lower Hutt,

New Zealand; HUST: Huazhong University of Science and Technology, Wuhan, PRC; UZur: University of Zurich, Zurich, Switzerland.

these experimental values contribute only to the deter-
mination of the 2006 recommended value of

G

and can

be considered independently from the other data.

The historic difficulty of determining

G

, as demon-

strated by the inconsistencies among different measure-
ments, is described in detail in CODATA-86, CODATA-
98, and CODATA-02. Although no new competitive in-
dependent result for

G

has become available in the last

4 years, adjustments to two existing results considered
in 2002 have been made by researchers involved in the
original work. One of the two results that has changed is
from the Huazhong University of Science and Technology
(HUST) and is now identiï¬ed as HUST-05; the other is
from the University of Zurich (UZur) and is now identi-
ï¬ed as UZur-06. These revised results are discussed in
some detail below.

Table XXVII summarizes the various values of

G

con-

sidered here, which are the same as in 2002 with the ex-
ception of these two revised results, and Fig. 2 compares
them graphically. For reference purposes, both the table
and ï¬gure include the 2002 and 2006 CODATA recom-
mended values. The result now identiï¬ed as TR&D-96
was previously identiï¬ed as TR&D-98. The change is
because a 1996 reference, (Karagioz and Izmailov, 1996),
was found that reports the same result as does the 1998
reference (Karagioz

et al.

, 1998).

For simplicity, in the following text, we write

G

as a

numerical factor multiplying

G

0

, where

G

0

= 10

−

11

m

3

kg

−

1

s

−

2

.

(343)

A. Updated values

1. Huazhong University of Science and Technology

The HUST group, which determines

G

by the time-

of-swing method using a high-

Q

torsion pendulum with

two horizontal, 6.25 kg stainless steel cylindrical source
masses labeled A and B positioned on either side of
the test mass, has reported a fractional correction of
+360

×

10

−

6

to their original result given by Luo

et al.

(1999). It arises in part from recently discovered density
inhomogeneities in the source masses, the result of which
is a displacement of the center of mass of each source
mass from its geometrical center (Hu

et al.

, 2005). Using

a â€œweighbridge†with a commercial electronic balance—a
method developed by Davis (1995) to locate the center
of mass of a test object with micrometers precision—Hu

et al.

(2005) found that the axial eccentricities

e

A

and

e

B

of the two source masses were (10

.

3

±

2

.

6)

µ

m and

(6

.

3

±

3

.

7)

µ

m, with the result that the equivalent dis-

placements between the test mass and the source masses
are larger than the values used by (Luo

et al.

, 1999). As-

suming a linear axial density distribution, the calculated

background image

58

fractional correction to the previous result is +210

×

10

−

6

with an additional component of relative standard un-
certainty of 78

×

10

−

6

due to the uncertainties of the

eccentricities.

The remaining 150

×

10

−

6

portion of the 360

×

10

−

6

fractional correction is also discussed by Hu

et al.

(2005)

and arises as follows. In the HUST experiment,

G

is

determined by comparing the period of the torsion pen-
dulum with and without the source masses. When the
source masses are removed, they are replaced by air.
Since the masses of the source masses used by Luo

et al.

(1999) are the vacuum masses, a correction for the air,
ï¬rst suggested by R. S. Davis and T. J. Quinn of the
BIPM, is required. This correction was privately com-
municated to the Task Group by the HUST researchers
in 2003 and included in the HUST value of

G

used in the

2002 adjustment.

The HUST revised value of

G

, including the additional

component of uncertainty due to the measurement of the
eccentricities

e

A

and

e

B

, is item

g

in Table XXVII.

2. University of Zurich

The University of Zurich result for

G

discussed in

CODATA-02 and used in the 2002 adjustment,

G

=

6

.

674 07(22)

G

0

[3

.

3

×

10

−

5

], was reported by Schlam-

minger

et al.

(2002). It was based on the weighted mean

of three highly consistent values obtained from three se-
ries of measurements carried out at the Paul Scherrer In-
stitute (PSI), Villigen, Switzerland, in 2001 and 2002 and
denoted Cu, Ta I, and Ta II. The designation Cu means
that the test masses were gold plated copper, and the
designation Ta means that they were tantalum. Follow-
ing the publication of Schlamminger

et al.

(2002), an ex-

tensive reanalysis of the original data was carried out by
these authors together with other University of Zurich re-
searchers, the result being the value of

G

in Table XXVII,

item

h

, as given in the detailed ï¬nal report on the exper-

iment (Schlamminger

et al.

, 2006).

In the University of Zurich approach to determining

G

, a modiï¬ed commercial single-pan balance is used to

measure the change in the difference in weight of two
cylindrical test masses when the relative position of two
source masses is changed. The quantity measured is the
800

µ

g difference signal obtained at many different work-

ing points in the balance calibration range using two sets
of 16 individual wire weights, allowing an

in situ

mea-

surement of the balance non-linearity over the entire 0.2 g
balance calibration interval. A more rigorous analysis us-
ing a ï¬tting method with Legendre polynomials has now
allowed the relative standard uncertainty contribution to

G

from balance nonlinearity to be reduced from 18

×

10

−

6

to 6

.

1

×

10

−

6

based on the Cu test-mass data. Various

problems with the mass handler for the wire weights that
did not allow the application of the Legendre polynomial
ï¬tting procedure occurred during the Ta test-mass mea-
surements, resulting in large systematic errors. There-

fore, the researchers decided to include only the Cu data
in their ï¬nal analysis (Schlamminger

et al.

, 2006).

Each source mass consisted of a cylindrical tank ï¬lled

with 7

.

5

×

10

3

kg of mercury. Since the mercury repre-

sented approximately 94 % of the total mass, special care
was taken in determining its mass and density. These
measurements were further used to obtain more accurate
values for the key tank dimensions and Hg mass. This
was done by minimizing a

χ

2

function that depended

on the tank dimensions and the Hg mass and density,
and using the dependence of the density on these dimen-
sions and the Hg mass as a constraint. Calculation of the
mass integration constant with these improved values re-
duced the

u

r

of this critical quantity from 20

.

6

×

10

−

6

to

6

.

7

×

10

−

6

.

Although the analysis of Schlamminger

et al.

(2002) as-

sumed a linear temporal drift of the balance zero point, a
careful examination by Schlamminger

et al.

(2006) found

that the drift was signiï¬cantly nonlinear and was influ-
enced by the previous load history of the balance. A
series of Legendre polynomials and a sawtooth function,
respectively, were therefore used to describe the slow and
rapid variations of the observed balance zero-point with
time.

The 2002 value of

G

obtained from the Cu data was

6.674 03

G

0

, consistent with the Ta I, and Ta II values of

6.674 09

G

0

and 6.674 10

G

0

(Schlamminger

et al.

, 2002),

whereas the value from the present Cu data analysis is
6

.

674 25(12)

G

0

, with the 3

.

3

×

10

−

5

fractional increase

being due primarily to the application of the nonlinear
zero point drift correction. A minor contributor to the
difference is the inclusion of the very ï¬rst Cu data set that
was omitted in the 2002 analysis due to a large start-up
zero-point drift that is now correctable with the new Leg-
endre polynomial-sawtooth function analysis technique,
and the exclusion of a data set that had a temperature
stabilization system failure that went undetected by the
old data analysis method (Schlamminger, 2007).

B. Determination of 2006 recommended value of

G

The overall agreement of the eight values of

G

in

Table XXVII (items

a

to

h

) has improved somewhat

since the 2002 adjustment, but the situation is still
far from satisfactory.

Their weighted mean is

G

=

6

.

674 275(68)

G

0

with

χ

2

= 38

.

6 for degrees of freedom

ν

=

N

−

M

= 8

−

1 = 7 , Birge ratio

R

B

=

p

χ

2

/ν

= 2

.

35,

and normalized residuals

r

i

of

−

2

.

75,

−

0

.

39,

−

0

.

22, 4

.

87,

−

0

.

56,

−

1

.

50,

−

2

.

19, and

−

0

.

19, respectively (see Ap-

pendix E of CODATA-98). The BIPM-01 value with

r

i

= 4

.

87 is clearly the most problematic. For compari-

son, the 2002 weighted mean was

G

= 6

.

674 232(75)

G

0

with

χ

2

= 57

.

7 for

ν

= 7 and

R

B

= 2

.

87.

If the BIPM value is deleted, the weighted mean

is reduced by 1.3 standard uncertainties to

G

=

6

.

674 187(70)

G

0

, and

χ

2

= 13

.

3,

ν

= 6, and

R

B

= 1

.

49.

In this case, the two remaining data with signiï¬cant nor-

background image

59

malized residuals are the the TR&D-96 and the HUST-05
results with

r

i

=

−

2

.

57 and

−

2

.

10, respectively. If these

two data, which agree with each other, are deleted, the
weighted mean is

G

= 6

.

674 225(71)

G

0

with

χ

2

= 2

.

0,

ν

= 4,

R

B

= 0

.

70, and with all normalized residuals

less than one except

r

i

=

−

1

.

31 for datum MSL-03. Fi-

nally, if the UWash-00 and UZur-06 data, which have the
smallest assigned uncertainties of the initial eight values
and which are in excellent agreement with each other, are
deleted from the initial group of eight data, the weighted
mean of the remaining six data is

G

= 6

.

674 384(167)

G

0

with

χ

2

= 38

.

1,

ν

= 6, and

R

B

= 2

.

76. The normalized

residuals for these six data, TR&D-96, LANL-97, BIPM-
01, UWup-02, MSL-03, and HUST-05, are

−

2

.

97,

−

0

.

55,

4.46,

−

0

.

17,

−

1

.

91 and

−

2

.

32, respectively.

Finally, if the uncertainties of each of the eight values of

G

are multiplied by the Birge ratio associated with their

weighted mean,

R

B

= 2

.

35, so that

χ

2

of their weighted

mean becomes equal to its expected value of

ν

= 7 and

R

B

= 1, the normalized residual of the datum BIPM-01

would still be larger than two.

Based on the results of the above calculations, the his-

torical difficulty of determining

G

, the fact that all eight

values of

G

in Table XXVII are credible, and that the

two results with the smallest uncertainties, UWash-00
and UZur-06, are highly consistent with one another, the
Task Group decided to take as the 2006 CODATA recom-
mended value of

G

the weighted mean of all of the data,

but with an uncertainty of 0.000 67

G

0

, corresponding to

u

r

= 1

.

0

×

10

−

4

:

G

= 6

.

674 28(67)

×

10

−

11

m

3

kg

−

1

s

−

2

.

[1

.

0

×

10

−

4

]

(344)

This value exceeds the 2002 recommended value by the
fractional amount 1

.

2

×

10

−

5

, which is less than one tenth

of the uncertainty

u

r

= 1

.

5

×

10

−

4

of the 2002 value.

Further, the uncertainty of the 2006 value,

u

r

= 1

.

0

×

10

−

4

, is two thirds that of the 2002 value.

In assigning this uncertainty to the 2006 recommended

value of

G

, the Task Group recognized that if the un-

certainty was smaller than really justiï¬ed by the data,
taking into account the history of measurements of

G

, it

might discourage the initiation of new research efforts to
determine

G

, if not the continuation of some of the re-

search efforts already underway. Such efforts need to be
encouraged in order to provide a more solid and redun-
dant data set upon which to base future recommended
values. On the other hand, if the uncertainty was too
large, for example, if the uncertainty of the 2002 recom-
mended value had been retained for the 2006 value, then
the recommended value would not have reflected the fact
that we now have two data that are in excellent agree-
ment, have

u

r

less than 2

×

10

−

5

, and are the two most

accurate values available.

C. Prospective values

New techniques to measure

G

using atom interferom-

etry are currently under development in at least two
laboratories—the Universit`

a de Firenze in Italy and

Stanford University in the United States. This comes
as no surprise since atom interferometry is also being de-
veloped to measure the local acceleration due to gravity

g

(see the last paragraph of Sec. II). Recent proof of

principle experiments combine two vertically separated
atomic clouds forming an atom-interferometer-gravity-
gradiometer that measures the change in the gravity
gradient when a well characterized source mass is dis-
placed. Measuring the change in the gravity gradient
allows the rejection of many possible systematic errors.
Bertoldi

et al.

(2006) at the Universit`

a de Firenze used

a Rb fountain and a fast launch juggling sequence of two
atomic clouds to measure

G

to 1 %, obtaining the value

6

.

64(6)

G

0

; they hope to reach a ï¬nal uncertainty of 1

part in 10

4

. Fixler

et al.

(2007) at Stanford used two

separate Cs atom interferometer gravimeters to measure

G

and obtained the value 6

.

693(34)

G

0

. The two largest

uncertainties from systematic effects were the determi-
nation of the initial atom velocity and the initial atom
position. The Stanford researchers also hope to achieve
a ï¬nal uncertainty of 1 part in 10

4

. Although neither of

these results is signiï¬cant for the current analysis of

G

,

future results could be of considerable interest.

XI. X-RAY AND ELECTROWEAK QUANTITIES

A. X-ray units

Historically, units that have been used to express the

wavelengths of x-ray lines are the copper K

α

1

x unit,

symbol xu(CuK

α

1

), the molybdenum K

α

1

x unit, symbol

xu(MoK

α

1

), and the Ëš

angstrom star, symbol Ëš

A

∗

. They

are deï¬ned by assigning an exact, conventional value to
the wavelength of the CuK

α

1

, MoK

α

1

, and WK

α

1

x-ray

lines when each is expressed in its corresponding unit:

λ

(CuK

α

1

) = 1 537

.

400 xu(CuK

α

1

)

(345)

λ

(MoK

α

1

) = 707

.

831 xu(MoK

α

1

)

(346)

λ

(WK

α

1

) = 0

.

209 010 0 Ëš

A

∗

.

(347)

The experimental work that determines the best values

of these three units was reviewed in CODATA-98, and the
relevant data may be summarized as follows:

λ

(CuK

α

1

)

d

220

(

W4

.

2a

)

= 0

.

802 327 11(24) [3

.

0

×

10

−

7

]

(348)

λ

(WK

α

1

)

d

220

(

N

)

= 0

.

108 852 175(98) [9

.

0

×

10

−

7

] (349)

λ

(MoK

α

1

)

d

220

(

N

)

= 0

.

369 406 04(19) [5

.

3

×

10

−

7

]

(350)

λ

(CuK

α

1

)

d

220

(

N

)

= 0

.

802 328 04(77) [9

.

6

×

10

−

7

]

,

(351)

background image

60

where

d

220

(

W4

.

2a

) and

d

220

(

N

) denote the

{

220

}

lattice

spacings, at the standard reference conditions

p

= 0 and

t

90

= 22

.

5

â—¦

C, of particular silicon crystals used in the

measurements. The result in Eq. (348) is from a collab-
oration between researchers from Friedrich-Schiller Uni-
versity (FSU), Jena, Germany and the PTB (H¨artwig

et al.

, 1991). The lattice spacing

d

220

(

N

) is related to

crystals of known lattice spacing through Eq. (301).

In order to obtain best values in the least-squares sense

for xu(CuK

α

1

), xu(MoK

α

1

), and Ëš

A

∗

, we take these units

to be adjusted constants. Thus, the observational equa-
tions for the data of Eqs. (348) to (351) are

λ

(CuK

α

1

)

d

220

(

W4

.

2a

)

=

1 537

.

400 xu(CuK

α

1

)

d

220

(

W4

.

2a

)

(352)

λ

(WK

α

1

)

d

220

(

N

)

=

0

.

209 010 0 Ëš

A

∗

d

220

(

N

)

(353)

λ

(MoK

α

1

)

d

220

(

N

)

=

707

.

831 xu(MoK

α

1

)

d

220

(

N

)

(354)

λ

(CuK

α

1

)

d

220

(

N

)

=

1 537

.

400 xu(CuK

α

1

)

d

220

(

N

)

,

(355)

where

d

220

(

N

) is taken to be an adjusted constant and

d

220

(

W17

) and

d

220

(

W4

.

2a

) are adjusted constants as well.

B. Particle Data Group input

There are a few cases in the 2006 adjustment where

an inexact constant that is used in the analysis of input
data is not treated as an adjusted quantity, because the
adjustment has a negligible effect on its value. Three
such constants, used in the calculation of the theoretical
expressions for the electron and muon magnetic moment
anomalies

a

e

and

a

µ

, are the mass of the tau lepton

m

Ï„

,

the Fermi coupling constant

G

F

, and sine squared of the

weak mixing angle sin

2

θ

W

, and are obtained from the

most recent report of the Particle Data Group (Yao

et al.

,

2006):

m

Ï„

c

2

= 1776

.

99(29) MeV

[1

.

6

×

10

−

4

]

(356)

G

F

(¯

hc

)

3

= 1

.

166 37(1)

×

10

−

5

GeV

−

2

[8

.

6

×

10

−

6

]

(357)

sin

2

θ

W

= 0

.

222 55(56)

[2

.

5

×

10

−

3

]

.

(358)

To facilitate the calculations, the uncertainty of

m

Ï„

c

2

is symmetrized and taken to be 0.29 MeV rather than
+0

.

29 MeV,

−

0

.

26 MeV. We use the deï¬nition sin

2

θ

W

=

1

−

(

m

W

/m

Z

)

2

, where

m

W

and

m

Z

are, respectively,

the masses of the W

±

and Z

0

bosons, because it is em-

ployed in the calculation of the electroweak contributions
to

a

e

and

a

µ

(Czarnecki

et al.

, 1996). The Particle Data

Group’s recommended value for the mass ratio of these
bosons is

m

W

/m

Z

= 0

.

881 73(32), which leads to the

value of sin

2

θ

W

given above.

XII. ANALYSIS OF DATA

The previously discussed input data are examined in

this section for their mutual compatibility and their po-
tential role in determining the 2006 recommended values
of the constants. Based on this analysis, the data are se-
lected for the ï¬nal least-squares adjustment from which
the recommended values are obtained. Because the data
on the Newtonian constant of gravitation

G

are indepen-

dent of the other data and are analyzed in Sec. X, they
are not examined further. The consistency of the input
data is evaluated by directly comparing different mea-
surements of the same quantity, and by directly compar-
ing the values of a single fundamental constant inferred
from measurements of different quantities. As noted in
the outline section of this paper, the inferred value is for
comparison purposes only; the datum from which it is
obtained, not the inferred value, is the input datum in
the adjustment. The potential role of a particular input
datum is gauged by carrying out a least-squares adjust-
ment using all of the initially considered data. A partic-
ular measurement of a quantity is included in the ï¬nal
adjustment if its uncertainty is not more than about ten
times the uncertainty of the value of that quantity pro-
vided by other data in the adjustment. The measure we
use is the â€œself sensitivity coefficient†of an input datum

S

c

(see CODATA-98), which must be greater than 0.01

in order for the datum to be included.

The input data are given in Tables XXVIII, XXX, and

XXXII and their covariances are given as correlation co-
efficients in Tables XXIX, XXXI, and XXXIII. The

δ

s

given in Tables XXVIII, XXX, and XXXII are quan-
tities added to corresponding theoretical expressions to
account for the uncertainties of those expressions, as pre-
viously discussed (see, for example, Sec. IV.A.1.l). Note
that the value of the Rydberg constant

R

∞

depends only

weakly on changes, at the level of the uncertainties, of the
data in Tables XXX and XXXII.

background image

61

TABLE XXVIII Summary of principal input data for the determination of the 2006 recommended value of the Rydberg
constant

R

∞

. [The notation for the additive corrections

δ

X

(

n

L

j

) in this table has the same meaning as the notation

δ

X

n

L

j

in

Sec. IV.A.1.l.]

Item

Input datum

Value

Relative standard

Identiï¬cation

Sec.

number

uncertainty

a

u

r

A

1

δ

H

(1S

1

/

2

)

0

.

0(3

.

7) kHz

[1

.

1

×

10

−

12

]

theory

IV.A.1.l

A

2

δ

H

(2S

1

/

2

)

0

.

00(46) kHz

[5

.

6

×

10

−

13

]

theory

IV.A.1.l

A

3

δ

H

(3S

1

/

2

)

0

.

00(14) kHz

[3

.

7

×

10

−

13

]

theory

IV.A.1.l

A

4

δ

H

(4S

1

/

2

)

0

.

000(58) kHz

[2

.

8

×

10

−

13

]

theory

IV.A.1.l

A

5

δ

H

(6S

1

/

2

)

0

.

000(20) kHz

[2

.

1

×

10

−

13

]

theory

IV.A.1.l

A

6

δ

H

(8S

1

/

2

)

0

.

0000(82) kHz

[1

.

6

×

10

−

13

]

theory

IV.A.1.l

A

7

δ

H

(2P

1

/

2

)

0

.

000(69) kHz

[8

.

4

×

10

−

14

]

theory

IV.A.1.l

A

8

δ

H

(4P

1

/

2

)

0

.

0000(87) kHz

[4

.

2

×

10

−

14

]

theory

IV.A.1.l

A

9

δ

H

(2P

3

/

2

)

0

.

000(69) kHz

[8

.

4

×

10

−

14

]

theory

IV.A.1.l

A

10

δ

H

(4P

3

/

2

)

0

.

0000(87) kHz

[4

.

2

×

10

−

14

]

theory

IV.A.1.l

A

11

δ

H

(8D

3

/

2

)

0

.

000 00(48) kHz

[9

.

3

×

10

−

15

]

theory

IV.A.1.l

A

12

δ

H

(12D

3

/

2

)

0

.

000 00(15) kHz

[6

.

6

×

10

−

15

]

theory

IV.A.1.l

A

13

δ

H

(4D

5

/

2

)

0

.

0000(38) kHz

[1

.

9

×

10

−

14

]

theory

IV.A.1.l

A

14

δ

H

(6D

5

/

2

)

0

.

0000(11) kHz

[1

.

2

×

10

−

14

]

theory

IV.A.1.l

A

15

δ

H

(8D

5

/

2

)

0

.

000 00(48) kHz

[9

.

3

×

10

−

15

]

theory

IV.A.1.l

A

16

δ

H

(12D

5

/

2

)

0

.

000 00(16) kHz

[7

.

0

×

10

−

15

]

theory

IV.A.1.l

A

17

δ

D

(1S

1

/

2

)

0

.

0(3

.

6) kHz

[1

.

1

×

10

−

12

]

theory

IV.A.1.l

A

18

δ

D

(2S

1

/

2

)

0

.

00(45) kHz

[5

.

4

×

10

−

13

]

theory

IV.A.1.l

A

19

δ

D

(4S

1

/

2

)

0

.

000(56) kHz

[2

.

7

×

10

−

13

]

theory

IV.A.1.l

A

20

δ

D

(8S

1

/

2

)

0

.

0000(80) kHz

[1

.

6

×

10

−

13

]

theory

IV.A.1.l

A

21

δ

D

(8D

3

/

2

)

0

.

000 00(48) kHz

[9

.

3

×

10

−

15

]

theory

IV.A.1.l

A

22

δ

D

(12D

3

/

2

)

0

.

000 00(15) kHz

[6

.

6

×

10

−

15

]

theory

IV.A.1.l

A

23

δ

D

(4D

5

/

2

)

0

.

0000(38) kHz

[1

.

9

×

10

−

14

]

theory

IV.A.1.l

A

24

δ

D

(8D

5

/

2

)

0

.

000 00(48) kHz

[9

.

3

×

10

−

15

]

theory

IV.A.1.l

A

25

δ

D

(12D

5

/

2

)

0

.

000 00(16) kHz

[7

.

0

×

10

−

15

]

theory

IV.A.1.l

A

26

ν

H

(1S

1

/

2

−

2S

1

/

2

)

2 466 061 413 187

.

074(34) kHz

1

.

4

×

10

−

14

MPQ-04

IV.A.2

A

27

ν

H

(2S

1

/

2

−

8S

1

/

2

)

770 649 350 012

.

0(8

.

6) kHz

1

.

1

×

10

−

11

LK/SY-97

IV.A.2

A

28

ν

H

(2S

1

/

2

−

8D

3

/

2

)

770 649 504 450

.

0(8

.

3) kHz

1

.

1

×

10

−

11

LK/SY-97

IV.A.2

A

29

ν

H

(2S

1

/

2

−

8D

5

/

2

)

770 649 561 584

.

2(6

.

4) kHz

8

.

3

×

10

−

12

LK/SY-97

IV.A.2

A

30

ν

H

(2S

1

/

2

−

12D

3

/

2

)

799 191 710 472

.

7(9

.

4) kHz

1

.

2

×

10

−

11

LK/SY-98

IV.A.2

A

31

ν

H

(2S

1

/

2

−

12D

5

/

2

)

799 191 727 403

.

7(7

.

0) kHz

8

.

7

×

10

−

12

LK/SY-98

IV.A.2

A

32

ν

H

(2S

1

/

2

−

4S

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

)

4 797 338(10) kHz

2

.

1

×

10

−

6

MPQ-95

IV.A.2

A

33

ν

H

(2S

1

/

2

−

4D

5

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

)

6 490 144(24) kHz

3

.

7

×

10

−

6

MPQ-95

IV.A.2

A

34

ν

H

(2S

1

/

2

−

6S

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

3S

1

/

2

)

4 197 604(21) kHz

4

.

9

×

10

−

6

LKB-96

IV.A.2

A

35

ν

H

(2S

1

/

2

−

6D

5

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

3S

1

/

2

)

4 699 099(10) kHz

2

.

2

×

10

−

6

LKB-96

IV.A.2

A

36

ν

H

(2S

1

/

2

−

4P

1

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

)

4 664 269(15) kHz

3

.

2

×

10

−

6

YaleU-95

IV.A.2

A

37

ν

H

(2S

1

/

2

−

4P

3

/

2

)

−

1
4

ν

H

(1S

1

/

2

−

2S

1

/

2

)

6 035 373(10) kHz

1

.

7

×

10

−

6

YaleU-95

IV.A.2

A

38

ν

H

(2S

1

/

2

−

2P

3

/

2

)

9 911 200(12) kHz

1

.

2

×

10

−

6

HarvU-94

IV.A.2

A

39

.

1

ν

H

(2P

1

/

2

−

2S

1

/

2

)

1 057 845

.

0(9

.

0) kHz

8

.

5

×

10

−

6

HarvU-86

IV.A.2

A

39

.

2

ν

H

(2P

1

/

2

−

2S

1

/

2

)

1 057 862(20) kHz

1

.

9

×

10

−

5

USus-79

IV.A.2

A

40

ν

D

(2S

1

/

2

−

8S

1

/

2

)

770 859 041 245

.

7(6

.

9) kHz

8

.

9

×

10

−

12

LK/SY-97

IV.A.2

A

41

ν

D

(2S

1

/

2

−

8D

3

/

2

)

770 859 195 701

.

8(6

.

3) kHz

8

.

2

×

10

−

12

LK/SY-97

IV.A.2

A

42

ν

D

(2S

1

/

2

−

8D

5

/

2

)

770 859 252 849

.

5(5

.

9) kHz

7

.

7

×

10

−

12

LK/SY-97

IV.A.2

A

43

ν

D

(2S

1

/

2

−

12D

3

/

2

)

799 409 168 038

.

0(8

.

6) kHz

1

.

1

×

10

−

11

LK/SY-98

IV.A.2

A

44

ν

D

(2S

1

/

2

−

12D

5

/

2

)

799 409 184 966

.

8(6

.

8) kHz

8

.

5

×

10

−

12

LK/SY-98

IV.A.2

A

45

ν

D

(2S

1

/

2

−

4S

1

/

2

)

−

1
4

ν

D

(1S

1

/

2

−

2S

1

/

2

)

4 801 693(20) kHz

4

.

2

×

10

−

6

MPQ-95

IV.A.2

A

46

ν

D

(2S

1

/

2

−

4D

5

/

2

)

−

1
4

ν

D

(1S

1

/

2

−

2S

1

/

2

)

6 494 841(41) kHz

6

.

3

×

10

−

6

MPQ-95

IV.A.2

A

47

ν

D

(1S

1

/

2

−

2S

1

/

2

)

−

ν

H

(1S

1

/

2

−

2S

1

/

2

)

670 994 334

.

64(15) kHz

2

.

2

×

10

−

10

MPQ-98

IV.A.2

A

48

R

p

0

.

895(18) fm

2

.

0

×

10

−

2

Rp-03

IV.A.3

A

49

R

d

2

.

130(10) fm

4

.

7

×

10

−

3

Rd-98

IV.A.3

a

The values in brackets are relative to the frequency equivalent of the binding energy of the indicated level.

background image

62

TABLE XXIX Correlation coefficients

r

(

x

i

, x

j

)

≥

0

.

0001 of the input data related to

R

∞

in Table XXVIII. For simplicity, the

two items of data to which a particular correlation coefficient corresponds are identiï¬ed by their item numbers in Table XXVIII.

r

(

A

1,

A

2) = 0

.

9958

r

(

A

6,

A

19) = 0

.

8599

r

(

A

27,

A

28) = 0

.

3478

r

(

A

30,

A

44) = 0

.

1136

r

(

A

1,

A

3) = 0

.

9955

r

(

A

6,

A

20) = 0

.

9913

r

(

A

27,

A

29) = 0

.

4532

r

(

A

31,

A

34) = 0

.

0278

r

(

A

1,

A

4) = 0

.

9943

r

(

A

7,

A

8) = 0

.

0043

r

(

A

27,

A

30) = 0

.

0899

r

(

A

31,

A

35) = 0

.

0553

r

(

A

1,

A

5) = 0

.

8720

r

(

A

9,

A

10) = 0

.

0043

r

(

A

27,

A

31) = 0

.

1206

r

(

A

31,

A

40) = 0

.

1512

r

(

A

1,

A

6) = 0

.

8711

r

(

A

11,

A

12) = 0

.

0005

r

(

A

27,

A

34) = 0

.

0225

r

(

A

31,

A

41) = 0

.

1647

r

(

A

1,

A

17) = 0

.

9887

r

(

A

11,

A

21) = 0

.

9999

r

(

A

27,

A

35) = 0

.

0448

r

(

A

31,

A

42) = 0

.

1750

r

(

A

1,

A

18) = 0

.

9846

r

(

A

11,

A

22) = 0

.

0003

r

(

A

27,

A

40) = 0

.

1225

r

(

A

31,

A

43) = 0

.

1209

r

(

A

1,

A

19) = 0

.

9830

r

(

A

12,

A

21) = 0

.

0003

r

(

A

27,

A

41) = 0

.

1335

r

(

A

31,

A

44) = 0

.

1524

r

(

A

1,

A

20) = 0

.

8544

r

(

A

12,

A

22) = 0

.

9999

r

(

A

27,

A

42) = 0

.

1419

r

(

A

32,

A

33) = 0

.

1049

r

(

A

2,

A

3) = 0

.

9954

r

(

A

13,

A

14) = 0

.

0005

r

(

A

27,

A

43) = 0

.

0980

r

(

A

32,

A

45) = 0

.

2095

r

(

A

2,

A

4) = 0

.

9942

r

(

A

13,

A

15) = 0

.

0005

r

(

A

27,

A

44) = 0

.

1235

r

(

A

32,

A

46) = 0

.

0404

r

(

A

2,

A

5) = 0

.

8719

r

(

A

13,

A

16) = 0

.

0004

r

(

A

28,

A

29) = 0

.

4696

r

(

A

33,

A

45) = 0

.

0271

r

(

A

2,

A

6) = 0

.

8710

r

(

A

13,

A

23) = 0

.

9999

r

(

A

28,

A

30) = 0

.

0934

r

(

A

33,

A

46) = 0

.

0467

r

(

A

2,

A

17) = 0

.

9846

r

(

A

13,

A

24) = 0

.

0002

r

(

A

28,

A

31) = 0

.

1253

r

(

A

34,

A

35) = 0

.

1412

r

(

A

2,

A

18) = 0

.

9887

r

(

A

13,

A

25) = 0

.

0002

r

(

A

28,

A

34) = 0

.

0234

r

(

A

34,

A

40) = 0

.

0282

r

(

A

2,

A

19) = 0

.

9829

r

(

A

14,

A

15) = 0

.

0005

r

(

A

28,

A

35) = 0

.

0466

r

(

A

34,

A

41) = 0

.

0307

r

(

A

2,

A

20) = 0

.

8543

r

(

A

14,

A

16) = 0

.

0005

r

(

A

28,

A

40) = 0

.

1273

r

(

A

34,

A

42) = 0

.

0327

r

(

A

3,

A

4) = 0

.

9939

r

(

A

14,

A

23) = 0

.

0002

r

(

A

28,

A

41) = 0

.

1387

r

(

A

34,

A

43) = 0

.

0226

r

(

A

3,

A

5) = 0

.

8717

r

(

A

14,

A

24) = 0

.

0003

r

(

A

28,

A

42) = 0

.

1475

r

(

A

34,

A

44) = 0

.

0284

r

(

A

3,

A

6) = 0

.

8708

r

(

A

14,

A

25) = 0

.

0002

r

(

A

28,

A

43) = 0

.

1019

r

(

A

35,

A

40) = 0

.

0561

r

(

A

3,

A

17) = 0

.

9843

r

(

A

15,

A

16) = 0

.

0005

r

(

A

28,

A

44) = 0

.

1284

r

(

A

35,

A

41) = 0

.

0612

r

(

A

3,

A

18) = 0

.

9842

r

(

A

15,

A

23) = 0

.

0002

r

(

A

29,

A

30) = 0

.

1209

r

(

A

35,

A

42) = 0

.

0650

r

(

A

3,

A

19) = 0

.

9827

r

(

A

15,

A

24) = 0

.

9999

r

(

A

29,

A

31) = 0

.

1622

r

(

A

35,

A

43) = 0

.

0449

r

(

A

3,

A

20) = 0

.

8541

r

(

A

15,

A

25) = 0

.

0002

r

(

A

29,

A

34) = 0

.

0303

r

(

A

35,

A

44) = 0

.

0566

r

(

A

4,

A

5) = 0

.

8706

r

(

A

16,

A

23) = 0

.

0002

r

(

A

29,

A

35) = 0

.

0602

r

(

A

36,

A

37) = 0

.

0834

r

(

A

4,

A

6) = 0

.

8698

r

(

A

16,

A

24) = 0

.

0002

r

(

A

29,

A

40) = 0

.

1648

r

(

A

40,

A

41) = 0

.

5699

r

(

A

4,

A

17) = 0

.

9831

r

(

A

16,

A

25) = 0

.

9999

r

(

A

29,

A

41) = 0

.

1795

r

(

A

40,

A

42) = 0

.

6117

r

(

A

4,

A

18) = 0

.

9830

r

(

A

17,

A

18) = 0

.

9958

r

(

A

29,

A

42) = 0

.

1908

r

(

A

40,

A

43) = 0

.

1229

r

(

A

4,

A

19) = 0

.

9888

r

(

A

17,

A

19) = 0

.

9942

r

(

A

29,

A

43) = 0

.

1319

r

(

A

40,

A

44) = 0

.

1548

r

(

A

4,

A

20) = 0

.

8530

r

(

A

17,

A

20) = 0

.

8641

r

(

A

29,

A

44) = 0

.

1662

r

(

A

41,

A

42) = 0

.

6667

r

(

A

5,

A

6) = 0

.

7628

r

(

A

18,

A

19) = 0

.

9941

r

(

A

30,

A

31) = 0

.

4750

r

(

A

41,

A

43) = 0

.

1339

r

(

A

5,

A

17) = 0

.

8622

r

(

A

18,

A

20) = 0

.

8640

r

(

A

30,

A

34) = 0

.

0207

r

(

A

41,

A

44) = 0

.

1687

r

(

A

5,

A

18) = 0

.

8621

r

(

A

19,

A

20) = 0

.

8627

r

(

A

30,

A

35) = 0

.

0412

r

(

A

42,

A

43) = 0

.

1423

r

(

A

5,

A

19) = 0

.

8607

r

(

A

21,

A

22) = 0

.

0001

r

(

A

30,

A

40) = 0

.

1127

r

(

A

42,

A

44) = 0

.

1793

r

(

A

5,

A

20) = 0

.

7481

r

(

A

23,

A

24) = 0

.

0001

r

(

A

30,

A

41) = 0

.

1228

r

(

A

43,

A

44) = 0

.

5224

r

(

A

6,

A

17) = 0

.

8613

r

(

A

23,

A

25) = 0

.

0001

r

(

A

30,

A

42) = 0

.

1305

r

(

A

45,

A

46) = 0

.

0110

r

(

A

6,

A

18) = 0

.

8612

r

(

A

24,

A

25) = 0

.

0001

r

(

A

30,

A

43) = 0

.

0901

background image

63

TABLE XXX: Summary of principal input data for the determination
of the 2006 recommended values of the fundamental constants (

R

∞

and

G

excepted).

Item

Input datum

Value

Relative standard Identiï¬cation Sec. and Eq.

number

uncertainty

a

u

r

B

1

A

r

(

1

H)

1

.

007 825 032 07(10)

1

.

0

×

10

−

10

AMDC-03

III.A

B

2

.

1

A

r

(

2

H)

2

.

014 101 777 85(36)

1

.

8

×

10

−

10

AMDC-03

III.A

B

2

.

2

A

r

(

2

H)

2

.

014 101 778 040(80)

4

.

0

×

10

−

11

UWash-06

III.A

B

3

A

r

(

3

H)

3

.

016 049 2787(25)

4

.

0

×

10

−

11

MSL-06

III.A

B

4

A

r

(

3

He)

3

.

016 029 3217(26)

8

.

6

×

10

−

10

MSL-06

III.A

B

5

A

r

(

4

He)

4

.

002 603 254 131(62)

1

.

5

×

10

−

11

UWash-06

III.A

B

6

A

r

(

16

O)

15

.

994 914 619 57(18)

1

.

1

×

10

−

11

UWash-06

III.A

B

7

A

r

(

87

Rb)

86

.

909 180 526(12)

1

.

4

×

10

−

10

AMDC-03

III.A

B

8

b

A

r

(

133

Cs)

132

.

905 451 932(24)

1

.

8

×

10

−

10

AMDC-03

III.A

B

9

A

r

(e)

0

.

000 548 579 9111(12)

2

.

1

×

10

−

9

UWash-95

III.C (5)

B

10

δ

e

0

.

00(27)

×

10

−

12

[2

.

4

×

10

−

10

]

theory

V.A.1 (101)

B

11

.

1

a

e

1

.

159 652 1883(42)

×

10

−

3

3

.

7

×

10

−

9

UWash-87

V.A.2.a (102)

B

11

.

2

a

e

1

.

159 652 180 85(76)

×

10

−

3

6

.

6

×

10

−

10

HarvU-06

V.A.2.b (103)

B

12

δ

µ

0

.

0(2

.

1)

×

10

−

9

[1

.

8

×

10

−

6

]

theory

V.B.1 (126)

B

13

R

0

.

003 707 2064(20)

5

.

4

×

10

−

7

BNL-06

V.B.2 (128)

B

14

δ

C

0

.

00(27)

×

10

−

10

[1

.

4

×

10

−

11

]

theory

V.C.1 (169)

B

15

δ

O

0

.

0(1

.

1)

×

10

−

10

[5

.

3

×

10

−

11

]

theory

V.C.1 (172)

B

16

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

)

4376

.

210 4989(23)

5

.

2

×

10

−

10

GSI-02

V.C.2.a (175)

B

17

f

s

(

16

O

7+

)

/f

c

(

16

O

7+

)

4164

.

376 1837(32)

7

.

6

×

10

−

10

GSI-02

V.C.2.b (178)

B

18

µ

e

−

(H)

/µ

p

(H)

−

658

.

210 7058(66)

1

.

0

×

10

−

8

MIT-72

VI.A.2.a (195)

B

19

µ

d

(D)

/µ

e

−

(D)

−

4

.

664 345 392(50)

×

10

−

4

1

.

1

×

10

−

8

MIT-84

VI.A.2.b (197)

B

20

µ

p

(HD)

/µ

d

(HD)

3

.

257 199 531(29)

8

.

9

×

10

−

9

StPtrsb-03

VI.A.2.c (201)

B

21

σ

dp

15(2)

×

10

−

9

StPtrsb-03

VI.A.2.c (203)

B

22

µ

t

(HT)

/µ

p

(HT)

1

.

066 639 887(10)

9

.

4

×

10

−

9

StPtrsb-03

VI.A.2.c (202)

B

23

σ

tp

20(3)

×

10

−

9

StPtrsb-03

VI.A.2.c (204)

B

24

µ

e

−

(H)

/µ

′

p

−

658

.

215 9430(72)

1

.

1

×

10

−

8

MIT-77

VI.A.2.d (209)

B

25

µ

′

h

/µ

′

p

−

0

.

761 786 1313(33)

4

.

3

×

10

−

9

NPL-93

VI.A.2.e (211)

B

26

µ

n

/µ

′

p

−

0

.

684 996 94(16)

2

.

4

×

10

−

7

ILL-79

VI.A.2.f (212)

B

27

δ

Mu

0(101) Hz

[2

.

3

×

10

−

8

]

theory

VI.B.1 (234)

B

28

.

1

∆

ν

Mu

4 463 302

.

88(16) kHz

3

.

6

×

10

−

8

LAMPF-82

VI.B.2.a (236)

B

28

.

2

∆

ν

Mu

4 463 302 765(53) Hz

1

.

2

×

10

−

8

LAMPF-99

VI.B.2.b (239)

B

29

ν

(58 MHz)

627 994

.

77(14) kHz

2

.

2

×

10

−

7

LAMPF-82

VI.B.2.a (237)

B

30

ν

(72 MHz)

668 223 166(57) Hz

8

.

6

×

10

−

8

LAMPF-99

VI.B.2.b (240)

B

31

.

1

b

Γ

′

p

−

90

(lo)

2

.

675 154 05(30)

×

10

8

s

−

1

T

−

1

1

.

1

×

10

−

7

NIST-89

VII.A.1.a (253)

B

31

.

2

b

Γ

′

p

−

90

(lo)

2

.

675 1530(18)

×

10

8

s

−

1

T

−

1

6

.

6

×

10

−

7

NIM-95

VII.A.1.b (255)

B

32

b

Γ

′

h

−

90

(lo)

2

.

037 895 37(37)

×

10

8

s

−

1

T

−

1

1

.

8

×

10

−

7

KR/VN-98

VII.A.1.c (257)

B

33

.

1

b

Γ

′

p

−

90

(hi)

2

.

675 1525(43)

×

10

8

s

−

1

T

−

1

1

.

6

×

10

−

6

NIM-95

VII.A.2.a (259)

B

33

.

2

b

Γ

′

p

−

90

(hi)

2

.

675 1518(27)

×

10

8

s

−

1

T

−

1

1

.

0

×

10

−

6

NPL-79

VII.A.2.b (262)

B

34

.

1

b

R

K

25 812

.

808 31(62) â„¦

2

.

4

×

10

−

8

NIST-97

VII.B.1 (265)

B

34

.

2

b

R

K

25 812

.

8071(11) â„¦

4

.

4

×

10

−

8

NMI-97

VII.B.2 (267)

B

34

.

3

b

R

K

25 812

.

8092(14) â„¦

5

.

4

×

10

−

8

NPL-88

VII.B.3 (269)

B

34

.

4

b

R

K

25 812

.

8084(34) â„¦

1

.

3

×

10

−

7

NIM-95

VII.B.4 (271)

B

34

.

5

b

R

K

25 812

.

8081(14) â„¦

5

.

3

×

10

−

8

LNE-01

VII.B.5 (273)

B

35

.

1

b

K

J

483 597

.

91(13) GHz V

−

1

2

.

7

×

10

−

7

NMI-89

VII.C.1 (276)

B

35

.

2

b

K

J

483 597

.

96(15) GHz V

−

1

3

.

1

×

10

−

7

PTB-91

VII.C.2 (278)

B

36

.

1

c

K

2

J

R

K

6

.

036 7625(12)

×

10

33

J

−

1

s

−

1

2

.

0

×

10

−

7

NPL-90

VII.D.1 (281)

B

36

.

2

c

K

2

J

R

K

6

.

036 761 85(53)

×

10

33

J

−

1

s

−

1

8

.

7

×

10

−

8

NIST-98

VII.D.2.a (283)

B

36

.

3

c

K

2

J

R

K

6

.

036 761 85(22)

×

10

33

J

−

1

s

−

1

3

.

6

×

10

−

8

NIST-07

VII.D.2.b (287)

B

37

b

F

90

96 485

.

39(13) C mol

−

1

1

.

3

×

10

−

6

NIST-80

VII.E.1 (295)

background image

64

TABLE XXX:

(Continued).

Summary of principal input data for the

determination of the 2006 recommended values of the fundamental con-
stants (

R

∞

and

G

excepted).

Item

Input datum

Value

Relative standard Identiï¬cation Sec. and Eq.

number

uncertainty

a

u

r

B

38

.

1

c

d

220

(

W4

.

2a

)

192 015

.

563(12) fm

6

.

2

×

10

−

8

PTB-81

VIII.A.1.a (297)

B

38

.

2

c

d

220

(

W4

.

2a

)

192 015

.

5715(33) fm

1

.

7

×

10

−

8

INRIM-07

VIII.A.1.c (299)

B

39

c

d

220

(

NR3

)

192 015

.

5919(76) fm

4

.

0

×

10

−

8

NMIJ-04

VIII.A.1.b (298)

B

40

c

d

220

(

MO

∗

)

192 015

.

5498(51) fm

2

.

6

×

10

−

8

INRIM-07

VIII.A.1.c (300)

B

41

1

−

d

220

(

N

)

/d

220

(

W17

)

7(22)

×

10

−

9

NIST-97

VIII.A.2.a (301)

B

42

1

−

d

220

(

W17

)

/d

220

(

ILL

)

−

8(22)

×

10

−

9

NIST-99

VIII.A.2.a (302)

B

43

1

−

d

220

(

MO

∗

)

/d

220

(

ILL

)

86(27)

×

10

−

9

NIST-99

VIII.A.2.a (303)

B

44

1

−

d

220

(

NR3

)

/d

220

(

ILL

)

34(22)

×

10

−

9

NIST-99

VIII.A.2.a (304)

B

45

d

220

(

NR3

)

/d

220

(

W04

)

−

1

−

11(21)

×

10

−

9

NIST-06

VIII.A.2.a (305)

B

46

d

220

(

NR4

)

/d

220

(

W04

)

−

1

25(21)

×

10

−

9

NIST-06

VIII.A.2.a (306)

B

47

d

220

(

W17

)

/d

220

(

W04

)

−

1

11(21)

×

10

−

9

NIST-06

VIII.A.2.a (307)

B

48

d

220

(

W4

.

2a

)

/d

220

(

W04

)

−

1

−

1(21)

×

10

−

9

PTB-98

VIII.A.2.b (308)

B

49

d

220

(

W17

)

/d

220

(

W04

)

−

1

22(22)

×

10

−

9

PTB-98

VIII.A.2.b (309)

B

50

d

220

(

MO

∗

)

/d

220

(

W04

)

−

1

−

103(28)

×

10

−

9

PTB-98

VIII.A.2.b (310)

B

51

d

220

(

NR3

)

/d

220

(

W04

)

−

1

−

23(21)

×

10

−

9

PTB-98

VIII.A.2.b (311)

B

52

d

220

/d

220

(

W04

)

−

1

10(11)

×

10

−

9

PTB-03

VIII.A.2.b (312)

B

53

c

V

m

(Si)

12

.

058 8254(34)

×

10

−

6

m

3

mol

−

1

2

.

8

×

10

−

7

N/P/I-05

VIII.B (317)

B

54

λ

meas

/d

220

(

ILL

)

0

.

002 904 302 46(50) m s

−

1

1

.

7

×

10

−

7

NIST-99

VIII.C (319)

B

55

c

h/m

n

d

220

(

W04

)

2060

.

267 004(84) m s

−

1

4

.

1

×

10

−

8

PTB-99

VIII.D.1 (322)

B

56

b

h/m

(

133

Cs)

3

.

002 369 432(46)

×

10

−

9

m

2

s

−

1

1

.

5

×

10

−

8

StanfU-02

VIII.D.2 (329)

B

57

h/m

(

87

Rb)

4

.

591 359 287(61)

×

10

−

9

m

2

s

−

1

1

.

3

×

10

−

8

LKB-06

VIII.D.3 (332)

B

58

.

1

R

8

.

314 471(15) J mol

−

1

K

−

1

1

.

8

×

10

−

6

NIST-88

IX.A.1 (338)

B

58

.

2

R

8

.

314 504(70) J mol

−

1

K

−

1

8

.

4

×

10

−

6

NPL-79

IX.A.2 (339)

B

59

λ

(CuK

α

1

)

/d

220

(

W4

.

2a

)

0

.

802 327 11(24)

3

.

0

×

10

−

7

FSU/PTB-91 XI.A (348)

B

60

λ

(WK

α

1

)

/d

220

(

N

)

0

.

108 852 175(98)

9

.

0

×

10

−

7

NIST-79

XI.A (349)

B

61

λ

(MoK

α

1

)

/d

220

(

N

)

0

.

369 406 04(19)

5

.

3

×

10

−

7

NIST-73

XI.A (350)

B

62

λ

(CuK

α

1

)

/d

220

(

N

)

0

.

802 328 04(77)

9

.

6

×

10

−

7

NIST-73

XI.A (351)

a

The values in brackets are relative to the quantities

a

e

,

a

µ

,

g

e

−

(

12

C

5+

),

g

e

−

(

16

O

7+

), or âˆ†

ν

Mu

as appropriate.

b

Datum not included in the final least-squares adjustment that provides the recommended values of the constants.

c

Datum included in the final least-squares adjustment with an expanded uncertainty.

A. Comparison of data

The classic Lamb shift is the only quantity among the

Rydberg constant data with more than one measured
value, but there are ten different quantities with more
than one measured value among the other data. The
item numbers given in Tables XXVIII and XXX for the
members of such groups of data (

A

39,

B

2,

B

11,

B

28,

B

31,

B

33-

B

36,

B

38, and

B

58) have a decimal point with

an additional digit to label each member.

In fact, all of the data for which there is more than one

measurement were directly compared in either the 1998
or 2002 adjustments except the following new data: the
University of Washington result for

A

r

(

2

H), item

B

2

.

2,

the Harvard University result for

a

e

, item

B

11

.

2, the

NIST watt-balance result for

K

2

J

R

K

item

B

36

.

3, and the

INRIM result for

d

220

(

W4

.

2a

), item

B

38

.

2. The two val-

ues of

A

r

(

2

H) agree well—they differ by only 0.5

u

diff

; the

two values of

a

e

are in acceptable agreement—they differ

by 1.7

u

diff

; the two values of

d

220

(

W4

.

2a

) also agree well–

they differ by 0.7

u

diff

; and the three values of

K

2

J

R

K

are

highly consistent—their mean and implied value of

h

are

K

2

J

R

K

= 6

.

036 761 87(21)

×

10

33

J

−

1

s

−

1

(359)

h

= 6

.

626 068 89(23)

×

10

−

34

J s

(360)

with

χ

2

= 0

.

27 for

ν

=

N

−

M

= 2 degrees of free-

dom, where

N

is the number of measurements and

M

is the number of unknowns, and with Birge ratio

R

B

=

p

χ

2

/ν

= 0

.

37 (see Appendix E of CODATA-98). The

normalized residuals for the three values are 0

.

52,

−

0

.

04,

and

−

0

.

09, and their weights in the calculation of the

weighted mean are 0.03, 0.10, and 0.87.

Data for quantities with more than one directly mea-

sured value used in earlier adjustments are consis-
tent, with the exception of the VNIIM 1989 result for

Γ

′

h

−

90

(lo), which is not included in the present adjust-

ment (see Sec. VII). We also note that none of these
data has a weight of less than 0.02 in the weighted mean
of measurements of the same quantity.

background image

65

TABLE XXXI Non-negligible correlation coefficients

r

(

x

i

, x

j

) of the input data in Table XXX. For simplicity, the two items

of data to which a particular correlation coefficient corresponds are identiï¬ed by their item numbers in Table XXX.

r

(

B

1,

B

2

.

1) = 0

.

073

r

(

B

38

.

1,

B

38

.

2) = 0

.

191

r

(

B

42,

B

46) = 0

.

065

r

(

B

46,

B

47) = 0

.

509

r

(

B

2

.

2,

B

5) = 0

.

127

r

(

B

38

.

2,

B

40) = 0

.

057

r

(

B

42,

B

47) =

−

0

.

367

r

(

B

48,

B

49) = 0

.

469

r

(

B

2

.

2,

B

6) = 0

.

089

r

(

B

41,

B

42) =

−

0

.

288

r

(

B

43,

B

44) = 0

.

421

r

(

B

48,

B

50) = 0

.

372

r

(

B

5,

B

6) = 0

.

181

r

(

B

41,

B

43) = 0

.

096

r

(

B

43,

B

45) = 0

.

053

r

(

B

48,

B

51) = 0

.

502

r

(

B

14,

B

15) = 0

.

919

r

(

B

41,

B

44) = 0

.

117

r

(

B

43,

B

46) = 0

.

053

r

(

B

48,

B

55) = 0

.

258

r

(

B

16,

B

17) = 0

.

082

r

(

B

41,

B

45) = 0

.

066

r

(

B

43,

B

47) = 0

.

053

r

(

B

49,

B

50) = 0

.

347

r

(

B

28

.

1,

B

29) = 0

.

227

r

(

B

41,

B

46) = 0

.

066

r

(

B

44,

B

45) =

−

0

.

367

r

(

B

49,

B

51) = 0

.

469

r

(

B

28

.

2,

B

30) = 0

.

195

r

(

B

41,

B

47) = 0

.

504

r

(

B

44,

B

46) = 0

.

065

r

(

B

49,

B

55) = 0

.

241

r

(

B

31

.

2,

B

33

.

1) =

−

0

.

014

r

(

B

42,

B

43) = 0

.

421

r

(

B

44,

B

47) = 0

.

065

r

(

B

50,

B

51) = 0

.

372

r

(

B

35

.

1,

B

58

.

1) = 0

.

068

r

(

B

42,

B

44) = 0

.

516

r

(

B

45,

B

46) = 0

.

509

r

(

B

50,

B

55) = 0

.

192

r

(

B

36

.

2,

B

36

.

3) = 0

.

140

r

(

B

42,

B

45) = 0

.

065

r

(

B

45,

B

47) = 0

.

509

r

(

B

51,

B

55) = 0

.

258

TABLE XXXII Summary of principal input data for the determination of the relative atomic mass of the electron from
antiprotonic helium transitions. The numbers in parentheses (

n, l

:

n

′

, l

′

) denote the transition (

n, l

)

→

(

n

′

, l

′

).

Item

Input Datum

Value

Relative standard

Identiï¬cation

Sec.

number

uncertainty

a

u

r

C

1

δ

¯

p

4

He

+

(32

,

31 : 31

,

30)

0

.

00(82) MHz

[7

.

3

×

10

−

10

]

JINR-06

IV.B

C

2

δ

¯

p

4

He

+

(35

,

33 : 34

,

32)

0

.

0(1

.

0) MHz

[1

.

3

×

10

−

9

]

JINR-06

IV.B

C

3

δ

¯

p

4

He

+

(36

,

34 : 35

,

33)

0

.

0(1

.

2) MHz

[1

.

6

×

10

−

9

]

JINR-06

IV.B

C

4

δ

¯

p

4

He

+

(39

,

35 : 38

,

34)

0

.

0(1

.

1) MHz

[1

.

8

×

10

−

9

]

JINR-06

IV.B

C

5

δ

¯

p

4

He

+

(40

,

35 : 39

,

34)

0

.

0(1

.

2) MHz

[2

.

4

×

10

−

9

]

JINR-06

IV.B

C

6

δ

¯

p

4

He

+

(32

,

31 : 31

,

30)

0

.

0(1

.

3) MHz

[2

.

9

×

10

−

9

]

JINR-06

IV.B

C

7

δ

¯

p

4

He

+

(37

,

35 : 38

,

34)

0

.

0(1

.

8) MHz

[4

.

4

×

10

−

9

]

JINR-06

IV.B

C

8

δ

¯

p

3

He

+

(32

,

31 : 31

,

30)

0

.

00(91) MHz

[8

.

7

×

10

−

10

]

JINR-06

IV.B

C

9

δ

¯

p

3

He

+

(34

,

32 : 33

,

31)

0

.

0(1

.

1) MHz

[1

.

4

×

10

−

9

]

JINR-06

IV.B

C

10

δ

¯

p

3

He

+

(36

,

33 : 35

,

32)

0

.

0(1

.

2) MHz

[1

.

8

×

10

−

9

]

JINR-06

IV.B

C

11

δ

¯

p

3

He

+

(38

,

34 : 37

,

33)

0

.

0(1

.

1) MHz

[2

.

3

×

10

−

9

]

JINR-06

IV.B

C

12

δ

¯

p

3

He

+

(36

,

34 : 37

,

33)

0

.

0(1

.

8) MHz

[4

.

4

×

10

−

9

]

JINR-06

IV.B

C

13

ν

¯

p

4

He

+

(32

,

31 : 31

,

30)

1 132 609 209(15) MHz

1

.

4

×

10

−

8

CERN-06

IV.B

C

14

ν

¯

p

4

He

+

(35

,

33 : 34

,

32)

804 633 059

.

0(8

.

2) MHz

1

.

0

×

10

−

8

CERN-06

IV.B

C

15

ν

¯

p

4

He

+

(36

,

34 : 35

,

33)

717 474 004(10) MHz

1

.

4

×

10

−

8

CERN-06

IV.B

C

16

ν

¯

p

4

He

+

(39

,

35 : 38

,

34)

636 878 139

.

4(7

.

7) MHz

1

.

2

×

10

−

8

CERN-06

IV.B

C

17

ν

¯

p

4

He

+

(40

,

35 : 39

,

34)

501 948 751

.

6(4

.

4) MHz

8

.

8

×

10

−

9

CERN-06

IV.B

C

18

ν

¯

p

4

He

+

(32

,

31 : 31

,

30)

445 608 557

.

6(6

.

3) MHz

1

.

4

×

10

−

8

CERN-06

IV.B

C

19

ν

¯

p

4

He

+

(37

,

35 : 38

,

34)

412 885 132

.

2(3

.

9) MHz

9

.

4

×

10

−

9

CERN-06

IV.B

C

20

ν

¯

p

3

He

+

(32

,

31 : 31

,

30)

1 043 128 608(13) MHz

1

.

3

×

10

−

8

CERN-06

IV.B

C

21

ν

¯

p

3

He

+

(34

,

32 : 33

,

31)

822 809 190(12) MHz

1

.

5

×

10

−

8

CERN-06

IV.B

C

22

ν

¯

p

3

He

+

(36

,

33 : 34

,

32)

646 180 434(12) MHz

1

.

9

×

10

−

8

CERN-06

IV.B

C

23

ν

¯

p

3

He

+

(38

,

34 : 37

,

33)

505 222 295

.

7(8

.

2) MHz

1

.

6

×

10

−

8

CERN-06

IV.B

C

24

ν

¯

p

3

He

+

(36

,

34 : 37

,

33)

414 147 507

.

8(4

.

0) MHz

9

.

7

×

10

−

9

CERN-06

IV.B

a

The values in brackets are relative to the corresponding transition frequency.

The consistency of measurements of various quantities

of different types is shown mainly by comparing the val-
ues of the ï¬ne-structure constant

α

or the Planck con-

stant

h

inferred from the measured values of the quanti-

ties. Such inferred values of

α

and

h

are given throughout

the data review sections, and the results are summarized
and discussed further here.

The consistency of a signiï¬cant fraction of the data of

Tables XXVIII and XXX is indicated in Table XXXIV
and Figs. 3, 4, and 5, which give and graphically compare
the values of

α

inferred from that data. Figures 3 and 4

compare the data that yield values of

α

with

u

r

<

10

−

7

and

u

r

<

10

−

8

, respectively; Fig. 5 also compares the

data that yield values of

α

with

u

r

<

10

−

7

, but does

so through combined values of

α

obtained from similar

experiments. Most of the values of

α

are in reasonable

agreement, implying that most of the data from which
they are obtained are reasonably consistent. There are,
however, two important exceptions.

The value of

α

inferred from the PTB measurement of

h/m

n

d

220

(

W04

), item

B

55, is based on the mean value

d

220

of

d

220

(

W04

) implied by the four direct

{

220

}

XROI

background image

66

TABLE XXXIII Non-negligible correlation coefficients

r

(

x

i

, x

j

) of the input data in Table XXXII. For simplicity, the two

items of data to which a particular correlation coefficient corresponds are identiï¬ed by their item numbers in Table XXXII.

r

(

C

1,

C

2) = 0

.

929

r

(

C

9,

C

10) = 0

.

925

r

(

C

14,

C

23) = 0

.

132

r

(

C

17,

C

24) = 0

.

287

r

(

C

1,

C

3) = 0

.

912

r

(

C

9,

C

11) = 0

.

949

r

(

C

14,

C

24) = 0

.

271

r

(

C

18,

C

19) = 0

.

235

r

(

C

1,

C

4) = 0

.

936

r

(

C

9,

C

12) = 0

.

978

r

(

C

15,

C

16) = 0

.

223

r

(

C

18,

C

20) = 0

.

107

r

(

C

1,

C

5) = 0

.

883

r

(

C

10,

C

11) = 0

.

907

r

(

C

15,

C

17) = 0

.

198

r

(

C

18,

C

21) = 0

.

118

r

(

C

1,

C

6) = 0

.

758

r

(

C

10,

C

12) = 0

.

934

r

(

C

15,

C

18) = 0

.

140

r

(

C

18,

C

22) = 0

.

122

r

(

C

1,

C

7) = 0

.

957

r

(

C

11,

C

12) = 0

.

959

r

(

C

15,

C

19) = 0

.

223

r

(

C

18,

C

23) = 0

.

112

r

(

C

2,

C

3) = 0

.

900

r

(

C

13,

C

14) = 0

.

210

r

(

C

15,

C

20) = 0

.

128

r

(

C

18,

C

24) = 0

.

229

r

(

C

2,

C

4) = 0

.

924

r

(

C

13,

C

15) = 0

.

167

r

(

C

15,

C

21) = 0

.

142

r

(

C

19,

C

20) = 0

.

170

r

(

C

2,

C

5) = 0

.

872

r

(

C

13,

C

16) = 0

.

224

r

(

C

15,

C

22) = 0

.

141

r

(

C

19,

C

21) = 0

.

188

r

(

C

2,

C

6) = 0

.

748

r

(

C

13,

C

17) = 0

.

197

r

(

C

15,

C

23) = 0

.

106

r

(

C

19,

C

22) = 0

.

191

r

(

C

2,

C

7) = 0

.

945

r

(

C

13,

C

18) = 0

.

138

r

(

C

15,

C

24) = 0

.

217

r

(

C

19,

C

23) = 0

.

158

r

(

C

3,

C

4) = 0

.

907

r

(

C

13,

C

19) = 0

.

222

r

(

C

16,

C

17) = 0

.

268

r

(

C

19,

C

24) = 0

.

324

r

(

C

3,

C

5) = 0

.

856

r

(

C

13,

C

20) = 0

.

129

r

(

C

16,

C

18) = 0

.

193

r

(

C

20,

C

21) = 0

.

109

r

(

C

3,

C

6) = 0

.

734

r

(

C

13,

C

21) = 0

.

142

r

(

C

16,

C

19) = 0

.

302

r

(

C

20,

C

22) = 0

.

108

r

(

C

3,

C

7) = 0

.

927

r

(

C

13,

C

22) = 0

.

141

r

(

C

16,

C

20) = 0

.

172

r

(

C

20,

C

23) = 0

.

081

r

(

C

4,

C

5) = 0

.

878

r

(

C

13,

C

23) = 0

.

106

r

(

C

16,

C

21) = 0

.

190

r

(

C

20,

C

24) = 0

.

166

r

(

C

4,

C

6) = 0

.

753

r

(

C

13,

C

24) = 0

.

216

r

(

C

16,

C

22) = 0

.

189

r

(

C

21,

C

22) = 0

.

120

r

(

C

4,

C

7) = 0

.

952

r

(

C

14,

C

15) = 0

.

209

r

(

C

16,

C

23) = 0

.

144

r

(

C

21,

C

23) = 0

.

090

r

(

C

5,

C

6) = 0

.

711

r

(

C

14,

C

16) = 0

.

280

r

(

C

16,

C

24) = 0

.

294

r

(

C

21,

C

24) = 0

.

184

r

(

C

5,

C

7) = 0

.

898

r

(

C

14,

C

17) = 0

.

247

r

(

C

17,

C

18) = 0

.

210

r

(

C

22,

C

23) = 0

.

091

r

(

C

6,

C

7) = 0

.

770

r

(

C

14,

C

18) = 0

.

174

r

(

C

17,

C

19) = 0

.

295

r

(

C

22,

C

24) = 0

.

186

r

(

C

8,

C

9) = 0

.

978

r

(

C

14,

C

19) = 0

.

278

r

(

C

17,

C

20) = 0

.

152

r

(

C

23,

C

24) = 0

.

154

r

(

C

8,

C

10) = 0

.

934

r

(

C

14,

C

20) = 0

.

161

r

(

C

17,

C

21) = 0

.

167

r

(

C

8,

C

11) = 0

.

959

r

(

C

14,

C

21) = 0

.

178

r

(

C

17,

C

22) = 0

.

169

r

(

C

8,

C

12) = 0

.

988

r

(

C

14,

C

22) = 0

.

177

r

(

C

17,

C

23) = 0

.

141

(

α

−

1

−

137

.

03)

×

10

5

597

598

599

600

601

602

603

604

597

598

599

600

601

602

603

604

10

−

8

α

Γ

′

h

−

90

(lo) KR/VN-98

∆

ν

Mu

LAMPF

R

K

NPL-88

R

K

LNE-01

R

K

NMI-97

Γ

′

p

−

90

(lo) NIST-89

R

K

NIST-97

h/m

n

d

220

PTB-mean

h/m

(Cs) Stanford-02

h/m

(Rb) LKB-06

a

e

U Washington-87

a

e

Harvard-06

CODATA-02

CODATA-06

FIG. 3 Values of the ï¬ne-structure constant

α

with

u

r

<

10

−

7

implied by the input data in Table XXX, in order of decreas-
ing uncertainty from top to bottom, and the 2002 and 2006
CODATA recommended values of

α

. (See Table XXXIV.)

Here â€œmean†indicates the PTB-99 result for

h/m

n

d

220

(

W04

)

using the value of

d

220

(

W04

) implied by the four XROI lattice-

spacing measurements.

(

α

−

1

−

137

.

03)

×

10

5

599.8

600.0

600.2

600.4

599.8

600.0

600.2

600.4

10

−

8

α

h/m

(Cs) Stanford-02

h/m

(Rb) LKB-06

a

e

U Washington-87

a

e

Harvard-06

CODATA-02

CODATA-06

FIG. 4 Values of the ï¬ne-structure constant

α

with

u

r

<

10

−

8

implied by the input data in Table XXX, in order of decreas-
ing uncertainty from top to bottom. (See Table XXXIV.)

lattice spacing measurements, items

B

38

.

1-

B

40. It dis-

agrees by about 2.8

u

diff

with the value of

α

with the

smallest uncertainty, that inferred from the Harvard Uni-
versity measurement of

a

e

. Also, the value of

α

inferred

background image

67

TABLE XXXIV Comparison of the input data in Table XXX through inferred values of the ï¬ne-structure constant

α

in order

of increasing standard uncertainty.

Primary

Item

Identiï¬cation

Sec. and Eq.

α

−

1

Relative standard

source

number

uncertainty

u

r

a

e

B

11

.

2

HarvU-06

V.A.3 (105)

137

.

035 999 711(96)

7

.

0

×

10

−

10

a

e

B

11

.

1

UWash-87

V.A.3 (104)

137

.

035 998 83(50)

3

.

7

×

10

−

9

h/m

(Rb)

B

57

LKB-06

VIII.D.3 (334)

137

.

035 998 83(91)

6

.

7

×

10

−

9

h/m

(Cs)

B

56

StanfU-02

VIII.D.2 (331)

137

.

036 0000(11)

7

.

7

×

10

−

9

h/m

n

d

220

(

W04

)

B

55

PTB-99

d

220

B

38

.

1-

B

40

Mean

VIII.D.1 (324)

137

.

036 0077(28)

2

.

1

×

10

−

8

R

K

B

34

.

1

NIST-97

VII.B.1 (266)

137

.

036 0037(33)

2

.

4

×

10

−

8

Γ

′

p

−

90

(lo)

B

31

.

1

NIST-89

VII.A.1.a (254)

137

.

035 9879(51)

3

.

7

×

10

−

8

R

K

B

34

.

2

NMI-97

VII.B.2 (268)

137

.

035 9973(61)

4

.

4

×

10

−

8

R

K

B

34

.

5

LNE-01

VII.B.5 (274)

137

.

036 0023(73)

5

.

3

×

10

−

8

R

K

B

34

.

3

NPL-88

VII.B.3 (270)

137

.

036 0083(73)

5

.

4

×

10

−

8

∆

ν

Mu

B

28

.

1,

B

28

.

2

LAMPF

VI.B.2.c (244)

137

.

036 0017(80)

5

.

8

×

10

−

8

Γ

′

h

−

90

(lo)

B

32

KR/VN-98

VII.A.1.c (258)

137

.

035 9852(82)

6

.

0

×

10

−

8

R

K

B

34

.

4

NIM-95

VII.B.4 (272)

137

.

036 004(18)

1

.

3

×

10

−

7

Γ

′

p

−

90

(lo)

B

31

.

2

NIM-95

VII.A.1.b (256)

137

.

036 006(30)

2

.

2

×

10

−

7

ν

H

, Î½

D

A

26-

A

47

Various

IV.A.1.m (65)

137

.

036 002(48)

3

.

5

×

10

−

7

R

B

13

BNL-02

V.B.2.a (132)

137

.

035 67(26)

1

.

9

×

10

−

6

(

α

−

1

−

137

.

03)

×

10

5

598

599

600

601

602

598

599

600

601

602

10

−

8

α

∆

ν

Mu

Γ

′

p

,

h

−

90

(lo)

h/m

n

d

220

R

K

h/m

a

e

CODATA-02

CODATA-06

FIG. 5 Values of the ï¬ne-structure constant

α

with

u

r

<

10

−

7

implied by the input data in Table XXX, taken as a weighted
mean when more than one measurement of a given type is
considered [see Eqs. (361) to (366)], in order of decreasing
uncertainty from top to bottom.

from the NIST measurement of

Γ

′

p

−

90

(lo) disagrees with

the latter by about 2.3

u

diff

. But it is also worth noting

that the value

α

−

1

= 137

.

036 0000(38) [2

.

8

×

10

−

8

] im-

plied by

h/m

n

d

220

(

W04

) together with item

B

39 alone,

the NMIJ XROI measurement of

d

220

(

NR3

), agrees well

with the Harvard

a

e

value of

α

. If instead one uses the

three other direct XROI lattice spacing measurements,
items

B

38

.

1,

B

38

.

2, and

B

40, which agree among them-

selves, one ï¬nds

α

−

1

= 137

.

036 0092(28) [2

.

1

×

10

−

8

].

This value disagrees with

α

from the Harvard

a

e

by

3.3

u

diff

.

The values of

α

compared in Fig. 5 follow from Ta-

ble XXXIV and are, again in order of increasing uncer-
tainty,

α

−

1

[

a

e

] = 137

.

035 999 683(94)

[6

.

9

×

10

−

10

]

(361)

α

−

1

[

h/m

] = 137

.

035 999 35(69)

[5

.

0

×

10

−

9

]

(362)

α

−

1

[

R

K

] = 137

.

036 0030(25)

[1

.

8

×

10

−

8

]

(363)

α

−

1

[

h/m

n

d

220

] = 137

.

036 0077(28)

[2

.

1

×

10

−

8

]

(364)

α

−

1

[

Γ

′

p

,

h

−

90

(lo)] = 137

.

035 9875(43)

[3

.

1

×

10

−

8

]

(365)

α

−

1

[∆

ν

Mu

] = 137

.

036 0017(80)

[5

.

8

×

10

−

8

]

.

(366)

Here

α

−

1

[

a

e

] is the weighted mean of the two

a

e

values

of

α

;

α

−

1

[

h/m

] is the weighted mean of the

h/m

(

87

Rb)

and

h/m

(

133

Cs) values;

α

−

1

[

R

K

] is the weighted mean

of the ï¬ve quantum Hall effect-calculable capacitor val-
ues;

α

−

1

[

h/m

n

d

220

] is the value as given in Table XXXIV

background image

68

and is based on the measurement of

h/m

n

d

220

(

W04

) and

the value of

d

220

(

W04

) inferred from the four XROI de-

terminations of the

{

220

}

lattice spacing of three dif-

ferent silicon crystals;

α

−

1

[

Γ

′

p

,

h

−

90

(lo)] is the weighted

mean of the two values of

α

−

1

[

Γ

′

p

−

90

(lo)] and one value

of

α

−

1

[

Γ

′

h

−

90

(lo)]; and

α

−

1

[∆

ν

Mu

] is the value as given

in Table XXXIV and is based on the 1982 and 1999 mea-
surements at LAMPF on muonium.

Figures 3, 4, and 5 show that even if all of the data of

Table XXX were retained, the 2006 recommended value
of

α

would be determined to a great extent by

a

e

, and in

particular, the Harvard University determination of

a

e

.

The consistency of a signiï¬cant fraction of the data

of Table XXX is indicated in Table XXXV and Figs. 6
and 7, which give and graphically compare the values of

h

inferred from those data. Figure 6 compares the data

by showing each inferred value of

h

in the table, while

Fig. 7 compares the data through combined values of

h

from similar experiments. The values of

h

are in good

agreement, implying that the data from which they are
obtained are consistent, with one important exception.
The value of

h

inferred from

V

m

(Si), item

B

53, disagrees

by 2.9

u

diff

with the value of

h

from the weighted mean

of the three watt-balance values of

K

2

J

R

K

[uncertainty

u

r

= 3

.

4

×

10

−

8

—see Eq. (360)].

In this regard, it is worth noting that a value of

d

220

of an ideal silicon crystal is required to obtain a value
of

h

from

V

m

(Si) [see Eq. (316)], and the value used to

obtain the inferred value of

h

given in Eq. (318) and Ta-

ble XXXV is based on all four XROI lattice spacing mea-
surements, items

B

38

.

1-

B

40, plus the indirect value from

h/m

n

d

220

(

W04

) (see Table XXIV and Fig. 1). However,

the NMIJ measurement of

d

220

(

NR3

), item

B

39, and the

indirect value of

d

220

from

h/m

n

d

220

(

W04

), yield values

of

h

from

V

m

(Si) that are less consistent with the watt-

balance mean value than the three other direct XROI
lattice spacing measurements, items

B

38

.

1,

B

38

.

2, and

B

40, which agree among themselves (a disagreement of

about 3.8

u

diff

compared to 2.5

u

diff

). In contrast, the

NMIJ measurement of

d

220

(

NR3

) yields a value of

α

from

h/m

n

d

220

(

W04

) that is in excellent agreement with the

Harvard University value from

a

e

, while the three other

lattice spacing measurements yield a value of

α

in poor

agreement with alpha from

a

e

(3.3

u

diff

).

The values of

h

compared in Fig. 7 follow from Ta-

ble XXXV and are, again in order of increasing uncer-

[

h/

(10

−

34

J s)

−

6

.

6260]

×

10

5

5

6

7

8

9

10

5

6

7

8

9

10

10

−

6

h

Γ

′

p

−

90

(hi)

NIM-95

F

90

NIST-80

Γ

′

p

−

90

(hi)

NPL-79

K

J

PTB-91

K

J

NMI-89

V

m

(Si)

N/P/I-05

K

2

J

R

K

NPL-90

K

2

J

R

K

NIST-98

K

2

J

R

K

NIST-07

CODATA-02

CODATA-06

FIG. 6 Values of the Planck constant

h

implied by the input

data in Table XXX, in order of decreasing uncertainty from
top to bottom. (See Table XXXV.)

[

h/

(10

−

34

J s)

−

6

.

6260]

×

10

5

5

6

7

8

9

10

5

6

7

8

9

10

10

−

6

h

F

90

NIST-80

Γ

′

p

−

90

(hi)

K

J

V

m

(Si)

K

2

J

R

K

CODATA-02

CODATA-06

FIG. 7 Values of the Planck constant

h

implied by the input

data in Table XXX, taken as a weighted mean when more than
one measurement of a given type is considered [see Eqs. (367)
to (371)], in order of decreasing uncertainty from top to bot-
tom.

background image

69

TABLE XXXV Comparison of the input data in Table XXX through inferred values of the Planck constant

h

in order of

increasing standard uncertainty.

Primary

Item

Identiï¬cation

Sec. and Eq.

h/

(J s)

Relative standard

source

number

uncertainty

u

r

K

2

J

R

K

B

36

.

3

NIST-07

VII.D.2.b (288)

6

.

626 068 91(24)

×

10

−

34

3

.

6

×

10

−

8

K

2

J

R

K

B

36

.

2

NIST-98

VII.D.2.a (284)

6

.

626 068 91(58)

×

10

−

34

8

.

7

×

10

−

8

K

2

J

R

K

B

36

.

1

NPL-90

VII.D.1 (282)

6

.

626 0682(13)

×

10

−

34

2

.

0

×

10

−

7

V

m

(Si)

B

53

N/P/I-05

VIII.B (318)

6

.

626 0745(19)

×

10

−

34

2

.

9

×

10

−

7

K

J

B

35

.

1

NMI-89

VII.C.1 (277)

6

.

626 0684(36)

×

10

−

34

5

.

4

×

10

−

7

K

J

B

35

.

2

PTB-91

VII.C.2 (279)

6

.

626 0670(42)

×

10

−

34

6

.

3

×

10

−

7

Γ

′

p

−

90

(hi)

B

33

.

2

NPL-79

VII.A.2.b (263)

6

.

626 0729(67)

×

10

−

34

1

.

0

×

10

−

6

F

90

B

37

NIST-80

VII.E.1 (296)

6

.

626 0657(88)

×

10

−

34

1

.

3

×

10

−

6

Γ

′

p

−

90

(hi)

B

33

.

1

NIM-95

VII.A.2.a (261)

6

.

626 071(11)

×

10

−

34

1

.

6

×

10

−

6

tainty,

h

[

K

2

J

R

K

] = 6

.

626 068 89(23)

×

10

−

34

[3

.

4

×

10

−

8

] (367)

h

[

V

m

(Si)] = 6

.

626 0745(19)

×

10

−

34

[2

.

9

×

10

−

7

] (368)

h

[

K

J

] = 6

.

626 0678(27)

×

10

−

34

[4

.

1

×

10

−

7

] (369)

h

[

Γ

′

p

−

90

(hi)] = 6

.

626 0724(57)

×

10

−

34

[8

.

6

×

10

−

7

] (370)

h

[

F

90

] = 6

.

626 0657(88)

×

10

−

34

[1

.

3

×

10

−

6

]

.

(371)

Here

h

[

K

2

J

R

K

] is the weighted mean of the three val-

ues of

h

from the three watt-balance measurements of

K

2

J

R

K

;

h

[

V

m

(Si)] is the value as given in Table XXXV

and is based on all four XROI

d

220

lattice spacing mea-

surements plus the indirect lattice spacing value from

h/m

n

d

220

(

W04

);

h

[

K

J

] is the weighted mean of the two

direct Josephson effect measurements of

K

J

;

h

[

Γ

p

−

90

(hi)]

is the weighted mean of the two values of

h

from the two

measurements of

Γ

p

−

90

(hi); and

h

[

F

90

] is the value as

given in Table XXXV and comes from the silver coulome-
ter measurement of

F

90

. Figures 6 and 7 show that even

if all of the data of Table XXX were retained, the 2006
recommended value of

h

would be determined to a large

extent by

K

2

J

R

K

, and in particular, the NIST 2007 de-

termination of this quantity.

We conclude our data comparisons by listing in Ta-

ble XXXVI the four available values of

A

r

(e).

The

reasonable agreement of these values shows that the
corresponding input data are consistent.

The most

important of these data are the University of Wash-
ington value of

A

r

(e),

δ

C

,

δ

O

,

f

s

(

12

C

5+

)

/f

c

(

12

C

5+

),

f

s

(

12

O

7+

)

/f

c

(

12

O

7+

), and the antiprotonic helium data,

items

B

9,

B

14-

B

17, and

C

1-

C

24.

In summary, the data comparisons of this section

of the paper have identiï¬ed the following potential
problems: (i) the measurement of

V

m

(Si), item

B

53,

is inconsistent with the watt-balance measurements of

K

2

J

R

K

, items

B

36

.

1-

B

36

.

3, and somewhat inconsistent

with the mercury-electrometer and voltage-balance mea-
surements of

K

J

; (ii) the three XROI

{

220

}

lattice

spacing values

d

220

(

W4

.

2a

),

d

220

(

W4

.

2a

), and

d

220

(

MO

∗

),

items

B

38

.

1,

B

38

.

2, and

B

40, are inconsistent with the

value of

d

220

(

NR3

), item

B

39, and the measurement of

h/m

n

d

220

(

W04

), item

B

55; (iii) the NIST-89 measure-

ment of

Γ

′

p

−

90

(lo), item

B

33

.

1, is inconsistent with the

most accurate data that also determine the value of the
ï¬ne-structure constant; (iv) although not a problem in
the sense of (i)-(iii), there are a number of input data
with uncertainties so large that they are unlikely to make
a contribution to the determination of the 2006 CODATA
recommended values.

Furthermore, we note that some of the inferred values

of

α

in Table XXXIV and most of the inferred values of

h

in Table XXXV depend on either one or both of the

relations

K

J

= 2

e/h

and

R

K

=

h/e

2

. The question of

whether relaxing the assumption that these relations are
exact would reduce or possibly even eliminate some of
the observed inconsistencies, considered in Appendix F
of CODATA-02, is addressed in the section following the
next section. This study indeed conï¬rms the Josephson
and quantum Hall effect relations.

B. Multivariate analysis of data

The multivariate analysis of the data is based on the

fact that measured quantities can be expressed as theo-
retical functions of fundamental constants. These expres-
sions, or observational equations, are written in terms of
a particular independent subset of the constants whose
members are here called

adjusted constants

. The goal of

the analysis is to ï¬nd the values of the adjusted constants
that predict values for the measured data that best agree
with the data themselves in the least-squares sense (see
Appendix E of CODATA-98).

The symbol

.

= is used to indicate that an observed

value of an input datum of the particular type shown on
the left-hand side is ideally given by the function of the
adjusted constants on the right-hand side; however, the

background image

70

two sides are not necessarily equal, because the equation
is one of an overdetermined set relating the data to the
adjusted constants. The best estimate of a quantity is
given by its observational equation evaluated with the
least-squares estimated values of the adjusted constants
on which it depends.

In essence, we follow the least-squares approach of

Aitken (1934) [see also Sheppard (1912)], who treated
the case where the input data are correlated. The 150
input data of Tables XXVIII, XXX, and XXXII are of
135 distinct types and are expressed as functions of the
79 adjusted constants listed in Tables XXXVII, XXXIX,
and XLI. The observational equations that relate the
input data to the adjusted constants are given in Ta-
bles XXXVIII, XL, and XLII.

Note that the various binding energies

E

b

(

X

)

/m

u

c

2

in Table XL, such as in the equation for item

B

1, are

treated as ï¬xed quantities with negligible uncertainties.
Similarly, the bound-state

g

-factor ratios in this table,

such as in the equation for item

B

18, are treated in the

same way. Further, the frequency

f

p

is not an adjusted

constant but is included in the equation for items

B

29

and

B

30 to indicate that they are functions of

f

p

. Finally,

the observational equation for items

B

29 and

B

30, based

on Eqs. (215), (216), and (217) of Sec. VI.B, includes the
functions

a

e

(

α, Î´

e

) and

a

µ

(

α, Î´

µ

) as well as the theoretical

expression for input data of type

B

28, âˆ†

ν

Mu

. The latter

expression is discussed in Sec. VI.B.1 and is a function
of

R

∞

, Î±, m

e

/m

µ

, a

µ

(

α, Î´

µ

), and

δ

Mu

.

1. Summary of adjustments

A number of adjustments were carried out to gauge

the compatibility of the input data in Tables XXVIII,
XXX, and XXXII (together with their covariances in
Tables XXIX, XXXI, and XXXIII) and to assess their
influence on the values of the adjusted constants. The
results of 11 of these are given in Tables XLIII to XLV
and are discussed in the following paragraphs. Because
the adjusted value of the Rydberg constant

R

∞

is es-

sentially the same for all six adjustments summarized in
Table XLIII and equal to that of adjustment 4 of Ta-
ble XLV, the value of

R

∞

is not listed in Table XLIII. It

should also be noted that adjustment 4 of all three tables
is the same adjustment.

Adjustment 1

. This initial adjustment includes all of

the input data, four of which have normalized residuals

r

i

with absolute magnitudes signiï¬cantly greater than

2; the values of

r

i

for these four data resulting from

adjustments 1-6 are given in Table XLIV. Consistent
with the previous discussion, the four most inconsis-
tent items are the molar volume of silicon

V

m

(Si), the

quotient

h/m

n

d

220

(

W04

), the XROI measurement of the

{

220

}

lattice spacing

d

220

(

NR3

), and the NIST-89 value of

Γ

′

p

−

90

(lo). All other input data have values of

r

i

consid-

erably less than 2, except those for

ν

¯

p

3

He

(32

,

31 : 31

,

30)

and

ν

¯

p

3

He

(36

,

33 : 34

,

32), items

C

20 and

C

22, for which

r

20

= 2

.

09 and

r

22

= 2

.

06. However, the self sensitiv-

ity coefficients

S

c

for these input data are considerably

less than 0.01; hence, because their contribution to the
adjustment is small, their marginally large normalized
residuals are of little concern. In this regard, we see from
Table XLIV that three of the four inconsistent data have
values of

S

c

considerably larger than 0.01; the exception

is

Γ

′

p

−

90

(lo) with

S

c

= 0

.

0099, which is rounded to 0.010

in the table.

Adjustment 2

. Since the four direct lattice spacing

measurements, items

B

38

.

1-

B

40, are credible, as is the

measurement of

h/m

n

d

220

(

W04

), item

B

55, after due con-

sideration the CODATA Task Group on Fundamental
Constants decided that all ï¬ve of these input data should
be considered for retention, but that each of their

a priori

assigned uncertainties should be weighted by the multi-
plicative factor 1.5 to reduce

|

r

i

|

of

h/m

n

d

220

(

W04

) and of

d

220

(

NR3

) to a more acceptable level, that is, to about 2,

while maintaining their relative weights. This has been
done in adjustment 2. As can be seen from Table XLIII,
this increase of uncertainties has an inconsequential im-
pact on the value of

α

, and no impact on the value of

h

.

It does reduce

R

B

, as would be expected.

Adjustment 3

.

Again, since the measurement of

V

m

(Si), item

B

53, as well as the three measurements of

K

2

J

R

K

, items

B

36

.

1-

B

36

.

3, and the two measurements

of

K

J

, items

B

35

.

1 and

B

35

.

2, are credible, the Task

Group decided that all six should be considered for re-
tention, but that each of their

a priori

assigned uncer-

tainties should be weighted by the multiplicative factor
1.5 to reduce

|

r

i

|

of

V

m

(Si) to about 2, while maintaining

their relative weights. This has been done in adjustment
3. Note that this also reduces

|

r

i

|

of

h/m

n

d

220

(

W04

) from

2

.

03 in adjustment 2 to 1

.

89 in adjustment 3. We see from

Table XLIII that this increase in uncertainty has negligi-
ble consequences for the value of

α

, but it does increase

the uncertainty of

h

by about the same factor, as would

be expected. Also as would be expected,

R

B

is further

reduced.

It may be recalled that faced with a similar situation

in the 2002 adjustment, the Task Group decided to use a
multiplicative weighting factor of 2.325 in order to reduce

|

r

i

|

of

V

m

(Si) to 1.50. The reduced weighting factor of

1.5 in the 2006 adjustment recognizes the new value of

K

2

J

R

K

now available and the excellent agreement with

the two earlier values.

Adjustment 4

. In adjustment 3, a number of input

data, as measured by their self-sensitivity coefficients

S

c

,

do not contribute in a signiï¬cant way to the determina-
tion of the adjusted constants. We therefore omit in ad-
justment 4 those input data with

S

c

<

0

.

01 in adjustment

3 unless they are a subset of the data of an experiment
that provides other input data with

S

c

>

0

.

01. The 14

input data deleted in adjustment 4 for this reason are

B

31

.

1-

B

35

.

2,

B

37, and

B

56, which are the ï¬ve low- and

high-ï¬eld proton and helion gyromagnetic ratio results;
the ï¬ve calculable capacitor values of

R

K

; both values of

K

J

as obtained using a Hg electrometer and a voltage

background image

71

balance; the Ag coulometer result for the Faraday con-
stant; and the recoil/atom interferometry result for the
quotient of the Planck constant and mass of the cesium-
133 atom. The respective values of

S

c

for these data in

adjustment 3 are in the range 0.0000 to 0.0099. Deleting
such marginal data is in keeping with the practice fol-
lowed in the 1998 and 2002 adjustments; see Sec. I.D of
CODATA-98.

Because

h/m

(

133

Cs), item

B

56, has been deleted as an

input datum due to its low weight,

A

r

(

133

Cs), item

B

8,

which is not coupled to any other input datum, has also
been omitted as an input datum and as an adjusted con-
stant from adjustment 4. This brings the total number
of omitted items to 15. Table XLIII shows that deleting
these 15 data has virtually no impact on the values of

α

and

h

.

Adjustment 4 is the adjustment on which the 2006

CODATA recommended values are based, and as such
it is referred to as the â€œï¬nal adjustment.â€

Adjustments 5 and 6

. These adjustments are intended

to check the robustness of adjustment 4, the ï¬nal ad-
justment, while adjustments 7-11, which are summarized
in Table XLV, probe various aspects of the

R

∞

data in

Table XXVIII.

Adjustment 5 only differs from adjustment 3 in that

it does not include the input data that lead to the four
most accurate values of

α

: the two measurements of

a

e

,

items

B

11

.

1 and

B

11

.

2, the measurement of

h/m

(

133

Cs),

item

B

56, and the measurement of

h/m

(

87

Rb), item

B

57.

The

u

r

of the inferred values of

α

from these data are

7

.

0

×

10

−

10

, 3

.

7

×

10

−

9

, 7

.

7

×

10

−

9

, and 6

.

7

×

10

−

9

. We

see from Table XLIII that the value of

α

from adjustment

5 is consistent with the 2006 recommended value from ad-
justment 4 (the difference is 0.8

u

diff

), but its uncertainty

is about 20 times larger. Moreover, the resulting value
of

h

is the same as the recommended value.

Adjustment 6 only differs from adjustment 3 in that

it does not include the input data that yield the three
most accurate values of

h

, namely, the watt-balance mea-

surements of

K

2

J

R

K

, items

B

36

.

1-

B

36

.

3. The

u

r

of the

inferred values of

h

from these data, as they are used

in adjustment 3 (that is, after their uncertainties are
multiplied by the weighting factor 1.5), are 5

.

4

×

10

−

8

,

1

.

3

×

10

−

7

, and 3

.

0

×

10

−

7

. From Table XLIII, we see

that the value of

h

from adjustment 6 is consistent with

the 2006 recommended value from adjustment 4 (the dif-
ference is 1.4

u

diff

), but its uncertainty is well over 6 times

larger. Furthermore, the resulting value of

α

is the same

as the recommended value. Therefore adjustments 5 and
6 suggest that the less accurate input data are consistent
with the more accurate data, thereby providing a con-
sistency check on the 2006 recommended values of the
constants.

Adjustments 7-11

. These adjustments differ from ad-

justment 4, the ï¬nal adjustment, in the following ways.
In adjustment 7, the scattering-data input values for both

R

p

and

R

d

, items

A

48 and

A

49, are omitted; in adjust-

ment 8, only

R

p

is omitted, and in adjustment 9, only

R

d

is omitted; adjustment 10 includes only the hydro-

gen data, and adjustment 11 includes only the deuterium
data, but for both, the H-D isotope shift, item

A

47, is

omitted. Although a somewhat improved value of the
1S

1

/

2

-2S

1

/

2

hydrogen transition frequency and improve-

ments in the theory of H and D energy levels have become
available since the completion of the 2002 adjustment,
the value of

R

∞

, which is determined almost entirely by

these data, has changed very little. The values of

R

p

and

R

d

, which are also determined mainly by these data,

have changed by less than one third of their uncertainties.
The experimental and theoretical H and D data remain
highly consistent.

2. Test of the Josephson and quantum Hall effect relations

Investigation of the exactness of the relations

K

J

=

2

e/h

and

R

K

=

h/e

2

is carried out, as in CODATA-02,

by writing

K

J

=

2

e

h

(1 +

ε

J

) =

8

α

µ

0

ch

1

/

2

(1 +

ε

J

)

(372)

R

K

=

h

e

2

(1 +

ε

K

) =

µ

0

c

2

α

(1 +

ε

K

)

,

(373)

where

ε

J

and

ε

K

are unknown correction factors taken

to be additional adjusted constants determined by least-
squares calculations. Replacing the relations

K

J

= 2

e/h

and

R

K

=

h/e

2

with the generalizations in Eqs. (372)

and (373) in the analysis leading to the observational
equations in Table XL leads to the modiï¬ed observational
equations given in Table XLVI.

The results of seven different adjustments are pre-

sented in Table XLVII. In addition to the adjusted values
of

α

,

h

,

ε

J

, and

ε

K

, we also give the normalized residuals

r

i

of the four input data with the largest values of

|

r

i

|

:

V

m

(Si), item

B

53,

h/m

n

d

220

(

W04

), item

B

55,

d

220

(

NR3

),

item

B

39, and the NIST-89 value for

Γ

′

p

−

90

(lo), item

B

31

.

1. The residuals are included as additional indica-

tors of whether relaxing the assumption

K

J

= 2

e/h

and

R

K

=

h/e

2

reduces the disagreements among the data.

The adjusted value of

R

∞

is not included in Ta-

ble XLVII, because it remains essentially unchanged from
one adjustment to the next and equal to the 2006 recom-
mended value. An entry of 0 in the

ε

K

column means

that it is assumed that

R

K

=

h/e

2

in the correspond-

ing adjustment; similarly, an entry of 0 in the

ε

J

column

means that it is assumed that

K

J

= 2

e/h

in the corre-

sponding adjustment. The following comments apply to
the adjustments of Table XLVII.

Adjustment (i) is identical to adjustment 1 of Ta-

bles XLIII and XLIV in the previous section and is in-
cluded here simply for reference; all of the input data are
included and multiplicative weighting factors have not
been applied to any uncertainties. For this adjustment,

N

= 150,

M

= 79,

ν

= 71, and

χ

2

= 92

.

1.

The next three adjustments differ from adjustment (i)

in that in adjustment (ii) the relation

K

J

= 2

e/h

is re-

background image

72

laxed, in adjustment (iii) the relation

R

K

=

h/e

2

is re-

laxed, and in adjustment (iv) both of the relations are
relaxed. For these three adjustments,

N

= 150,

M

= 80,

ν

= 70, and

χ

2

= 91

.

5;

N

= 150,

M

= 80,

ν

= 70, and

χ

2

= 91

.

3; and

N

= 150,

M

= 81,

ν

= 69, and

χ

2

= 90

.

4,

respectively.

It is clear from Table XLVII that there is no evidence

for the inexactness of either of the relations

K

J

= 2

e/h

or

R

K

=

h/e

2

. This conclusion is also true if instead of

taking adjustment 1 of Table XLIII as our starting point,
we had taken adjustment 2 in which the uncertainties of
the ï¬ve x-ray related data are multiplied by the factor
1.5. That is, none of the numbers in Table XLVII would
change signiï¬cantly, except

R

B

would be reduced from

1.14 to about 1.08. The reason adjustments (iii)-(vii)
summarized in Table XLVII give values of

Ç«

K

consistent

with zero within about 2 parts in 10

8

is mainly because

the value of alpha inferred from the mean of the ï¬ve
measured values of

R

K

under the assumption

R

K

=

h/e

2

,

which has

u

r

= 1

.

8

×

10

−

8

, agrees with the value of

α

with

u

r

= 7

.

0

×

10

−

10

inferred from the Harvard University

measured value of

a

e

.

Table XLVI and the uncertainties of the 2006 input

data indicate that the values of

Ç«

J

from adjustments (ii)

and (iv) are determined mainly by the input data for
the quantities

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo) with observational

equations that depend on

Ç«

J

but not on

h

; and by the

input data for the quantities

Γ

′

p

−

90

(hi),

K

J

,

K

2

J

R

K

, and

F

90

, with observational equations that depend on both

Ç«

J

and

h

. Because the value of

h

in these least-squares

calculations arises primarily from the measured value of
the molar volume of silicon,

V

m

(Si), the values of

Ç«

J

in

adjustments (ii) and (iv) arise mainly from a combination
of individual values of

Ç«

J

that either depend on

V

m

(Si)

or on

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo). It is therefore of interest

to repeat adjustment (iv), ï¬rst with

V

m

(Si) deleted but

with the

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo) data included, and then

with the latter deleted but with

V

m

(Si) included. These

are, in fact, adjustments (v) and (vi) of Table XLVII.

In each of these adjustments, the absolute values of

Ç«

J

are comparable and signiï¬cantly larger than the un-

certainties, which are also comparable, but the values
have different signs. Consequently, when

V

m

(Si) and the

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo) data are included at the same

time as in adjustment (iv), the result for

Ç«

J

is consistent

with zero.

The values of

Ç«

J

from adjustments (v) and (vi) reflect

some of the inconsistencies among the data: the disagree-
ment of the values of

h

implied by

V

m

(Si) and

K

2

J

R

K

when it is assumed that the relations

K

J

= 2

e/h

and

R

K

=

h/e

2

are exact; and the disagreement of the values

of

α

implied by the electron magnetic moment anomaly

a

e

and by

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo) under the same as-

sumption.

In adjustment (vii), the problematic input data for

V

m

(Si),

Γ

′

p

−

90

(lo), and

Γ

′

h

−

90

(lo) are simultaneously

deleted from the calculation. Then the value of

Ç«

J

arises

mainly from the input data for

Γ

′

p

−

90

(hi),

K

J

,

K

2

J

R

K

,

and

F

90

. Like adjustment (iv), adjustment (vii) shows

that

Ç«

J

is consistent with zero, although not within 8

parts in 10

8

but within 7 parts in 10

7

. However, adjust-

ment (vii) has the advantage of being based on consistent
data.

The comparatively narrow range of values of alpha in

Table XLVII is due to the fact that the input data that
mainly determine alpha do not depend on the Josephson
or quantum Hall effects. This is not the case for the input
data that primarily determine

h

, hence the values of

h

vary over a wide range.

background image

73

TABLE XXXVI Values of

A

r

(e) implied by the input data in Table XXX in order of increasing standard uncertainty.

Primary

Item

Identiï¬cation

Sec. and Eq.

A

r

(e)

Relative standard

source

number

uncertainty

u

r

f

s

(C)

/f

c

(C)

B

16

GSI-02

V.C.2.a (177)

0

.

000 548 579 909 32(29)

5

.

2

×

10

−

10

f

s

(O)

/f

c

(O)

B

17

GSI-02

V.C.2.b (181)

0

.

000 548 579 909 58(42)

7

.

6

×

10

−

10

∆

ν

¯

p He

+

C

1

−

C

24

JINR/CERN-06

IV.B.3 (74)

0

.

000 548 579 908 81(91)

1

.

7

×

10

−

9

A

r

(e)

B

9

UWash-95

III.C (5)

0

.

000 548 579 9111(12)

2

.

1

×

10

−

9

background image

74

TABLE XXXVII The 28 adjusted constants (variables) used
in the least-squares multivariate analysis of the Rydberg-
constant data given in Table XXVIII. These adjusted con-
stants appear as arguments of the functions on the right-hand
side of the observational equations of Table XXXVIII. The
notation for hydrogenic energy levels

E

X

(

n

L

j

) and for addi-

tive corrections

δ

X

(

n

L

j

) in this table have the same meaning

as the notations

E

X

n

L

j

and

δ

X

n

L

j

in Sec. IV.A.1.l.

Adjusted constant

Symbol

Rydberg constant

R

∞

bound-state proton rms charge radius

R

p

bound-state deuteron rms charge radius

R

d

additive correction to

E

H

(1S

1

/

2

)

/h

δ

H

(1S

1

/

2

)

additive correction to

E

H

(2S

1

/

2

)

/h

δ

H

(2S

1

/

2

)

additive correction to

E

H

(3S

1

/

2

)

/h

δ

H

(3S

1

/

2

)

additive correction to

E

H

(4S

1

/

2

)

/h

δ

H

(4S

1

/

2

)

additive correction to

E

H

(6S

1

/

2

)

/h

δ

H

(6S

1

/

2

)

additive correction to

E

H

(8S

1

/

2

)

/h

δ

H

(8S

1

/

2

)

additive correction to

E

H

(2P

1

/

2

)

/h

δ

H

(2P

1

/

2

)

additive correction to

E

H

(4P

1

/

2

)

/h

δ

H

(4P

1

/

2

)

additive correction to

E

H

(2P

3

/

2

)

/h

δ

H

(2P

3

/

2

)

additive correction to

E

H

(4P

3

/

2

)

/h

δ

H

(4P

3

/

2

)

additive correction to

E

H

(8D

3

/

2

)

/h

δ

H

(8D

3

/

2

)

additive correction to

E

H

(12D

3

/

2

)

/h

δ

H

(12D

3

/

2

)

additive correction to

E

H

(4D

5

/

2

)

/h

δ

H

(4D

5

/

2

)

additive correction to

E

H

(6D

5

/

2

)

/h

δ

H

(6D

5

/

2

)

additive correction to

E

H

(8D

5

/

2

)

/h

δ

H

(8D

5

/

2

)

additive correction to

E

H

(12D

5

/

2

)

/h

δ

H

(12D

5

/

2

)

additive correction to

E

D

(1S

1

/

2

)

/h

δ

D

(1S

1

/

2

)

additive correction to

E

D

(2S

1

/

2

)

/h

δ

D

(2S

1

/

2

)

additive correction to

E

D

(4S

1

/

2

)

/h

δ

D

(4S

1

/

2

)

additive correction to

E

D

(8S

1

/

2

)

/h

δ

D

(8S

1

/

2

)

additive correction to

E

D

(8D

3

/

2

)

/h

δ

D

(8D

3

/

2

)

additive correction to

E

D

(12D

3

/

2

)

/h

δ

D

(12D

3

/

2

)

additive correction to

E

D

(4D

5

/

2

)

/h

δ

D

(4D

5

/

2

)

additive correction to

E

D

(8D

5

/

2

)

/h

δ

D

(8D

5

/

2

)

additive correction to

E

D

(12D

5

/

2

)

/h

δ

D

(12D

5

/

2

)

background image

75

TABLE XXXVIII Observational equations that express the input data related to

R

∞

in Table XXVIII as functions of the

adjusted constants in Table XXXVII. The numbers in the ï¬rst column correspond to the numbers in the ï¬rst column of
Table XXVIII. The expressions for the energy levels of hydrogenic atoms are discussed in Sec. IV.A.1. As pointed out in
Sec. IV.A.1.l,

E

X

(

n

L

j

)

/h

is in fact proportional to

cR

∞

and independent of

h

, hence

h

is not an adjusted constant in these

equations. The notation for hydrogenic energy levels

E

X

(

n

L

j

) and for additive corrections

δ

X

(

n

L

j

) in this table have the same

meaning as the notations

E

X

n

L

j

and

δ

X

n

L

j

in Sec. IV.A.1.l. See Sec. XII.B for an explanation of the symbol

.

=.

Type of input

Observational equation

datum

A

1–

A

16

δ

H

(

n

L

j

)

.

=

δ

H

(

n

L

j

)

A

17–

A

25

δ

D

(

n

L

j

)

.

=

δ

D

(

n

L

j

)

A

26–

A

31

ν

H

(

n

1

L

1

j

1

−

n

2

L

2

j

2

)

.

=

ˆ

E

H

`

n

2

L

2

j

2

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

2

L

2

j

2

)

´

A

38

, A

39

−

E

H

`

n

1

L

1

j

1

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

1

L

1

j

1

)

´˜

/h

A

32–

A

37

ν

H

(

n

1

L

1

j

1

−

n

2

L

2

j

2

)

−

1
4

ν

H

(

n

3

L

3

j

3

−

n

4

L

4

j

4

)

.

=

n

E

H

`

n

2

L

2

j

2

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

2

L

2

j

2

)

´

−

E

H

`

n

1

L

1

j

1

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

1

L

1

j

1

)

´

−

1
4

ˆ

E

H

`

n

4

L

4

j

4

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

4

L

4

j

4

)

´

−

E

H

`

n

3

L

3

j

3

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(

n

3

L

3

j

3

)

´˜

o

/h

A

40–

A

44

ν

D

(

n

1

L

1

j

1

−

n

2

L

2

j

2

)

.

=

ˆ

E

D

`

n

2

L

2

j

2

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

2

L

2

j

2

)

´

−

E

D

`

n

1

L

1

j

1

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

1

L

1

j

1

)

´˜

/h

A

45–

A

46

ν

D

(

n

1

L

1

j

1

−

n

2

L

2

j

2

)

−

1
4

ν

D

(

n

3

L

3

j

3

−

n

4

L

4

j

4

)

.

=

n

E

D

`

n

2

L

2

j

2

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

2

L

2

j

2

)

´

−

E

D

`

n

1

L

1

j

1

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

1

L

1

j

1

)

´

−

1
4

ˆ

E

D

`

n

4

L

4

j

4

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

4

L

4

j

4

)

´

−

E

D

`

n

3

L

3

j

3

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(

n

3

L

3

j

3

)

´˜

o

/h

A

47

ν

D

(1S

1

/

2

−

2S

1

/

2

)

−

ν

H

(1S

1

/

2

−

2S

1

/

2

)

.

=

n

E

D

`

2S

1

/

2

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(2S

1

/

2

)

´

−

E

D

`

1S

1

/

2

;

R

∞

, Î±, A

r

(e)

, A

r

(d)

, R

d

, Î´

D

(1S

1

/

2

)

´

−

ˆ

E

H

`

2S

1

/

2

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(2S

1

/

2

)

´

−

E

H

`

1S

1

/

2

;

R

∞

, Î±, A

r

(e)

, A

r

(p)

, R

p

, Î´

H

(1S

1

/

2

)

´˜

o

/h

A

48

R

p

.

=

R

p

A

49

R

d

.

=

R

d

background image

76

TABLE XXXIX The 39 adjusted constants (variables) used
in the least-squares multivariate analysis of the input data in
Table XXX. These adjusted constants appear as arguments
of the functions on the right-hand side of the observational
equations of Table XL.

Adjusted constant

Symbol

electron relative atomic mass

A

r

(e)

proton relative atomic mass

A

r

(p)

neutron relative atomic mass

A

r

(n)

deuteron relative atomic mass

A

r

(d)

triton relative atomic mass

A

r

(t)

helion relative atomic mass

A

r

(h)

alpha particle relative atomic mass

A

r

(

α

)

16

O

7+

relative atomic mass

A

r

(

16

O

7+

)

87

Rb relative atomic mass

A

r

(

87

Rb)

133

Cs relative atomic mass

A

r

(

133

Cs)

ï¬ne-structure constant

α

additive correction to

a

e

(th)

δ

e

additive correction to

a

µ

(th)

δ

µ

additive correction to

g

C

(th)

δ

C

additive correction to

g

O

(th)

δ

O

electron-proton magnetic moment ratio

µ

e

−

/µ

p

deuteron-electron magnetic moment ratio

µ

d

/µ

e

−

triton-proton magnetic moment ratio

µ

t

/µ

p

shielding difference of d and p in HD

σ

dp

shielding difference of t and p in HT

σ

tp

electron to shielded proton

magnetic moment ratio

µ

e

−

/µ

′

p

shielded helion to shielded proton

magnetic moment ratio

µ

′

h

/µ

′

p

neutron to shielded proton

magnetic moment ratio

µ

n

/µ

′

p

electron-muon mass ratio

m

e

/m

µ

additive correction to âˆ†

ν

Mu

(th)

δ

Mu

Planck constant

h

molar gas constant

R

copper K

α

1

x unit

xu(CuK

α

1

)

molybdenum K

α

1

x unit

xu(MoK

α

1

)

Ëš

angstrom star

Ëš

A

∗

d

220

of Si crystal ILL

d

220

(

ILL

)

d

220

of Si crystal N

d

220

(

N

)

d

220

of Si crystal WASO 17

d

220

(

W17

)

d

220

of Si crystal WASO 04

d

220

(

W04

)

d

220

of Si crystal WASO 4.2a

d

220

(

W4

.

2a

)

d

220

of Si crystal MO

∗

d

220

(

MO

∗

)

d

220

of Si crystal NR3

d

220

(

NR3

)

d

220

of Si crystal NR4

d

220

(

NR4

)

d

220

of an ideal Si crystal

d

220

background image

77

TABLE XL Observational equations that express the input data in Table XXX as functions of the adjusted constants in
Table XXXIX. The numbers in the ï¬rst column correspond to the numbers in the ï¬rst column of Table XXX. For simplicity,
the lengthier functions are not explicitly given. See Sec. XII.B for an explanation of the symbol

.

=.

Type of input

Observational equation

datum

Sec.

B

1

A

r

(

1

H)

.

=

A

r

(p) +

A

r

(e)

−

E

b

(

1

H)

/m

u

c

2

III.B

B

2

A

r

(

2

H)

.

=

A

r

(d) +

A

r

(e)

−

E

b

(

2

H)

/m

u

c

2

III.B

B

3

A

r

(

3

H)

.

=

A

r

(t) +

A

r

(e)

−

E

b

(

3

H)

/m

u

c

2

III.B

B

4

A

r

(

3

He)

.

=

A

r

(h) + 2

A

r

(e)

−

E

b

(

3

He)

/m

u

c

2

III.B

B

5

A

r

(

4

He)

.

=

A

r

(

α

) + 2

A

r

(e)

−

E

b

(

4

He)

/m

u

c

2

III.B

B

6

A

r

(

16

O)

.

=

A

r

(

16

O

7+

) + 7

A

r

(e)

−

ˆ

E

b

(

16

O)

−

E

b

(

16

O

7+

)

˜

/m

u

c

2

V.C.2.b

B

7

A

r

(

87

Rb)

.

=

A

r

(

87

Rb)

B

8

A

r

(

133

Cs)

.

=

A

r

(

133

Cs)

B

9

A

r

(e)

.

=

A

r

(e)

B

10

δ

e

.

=

δ

e

B

11

a

e

.

=

a

e

(

α, Î´

e

)

V.A.1

B

12

δ

µ

.

=

δ

µ

B

13

R

.

=

−

a

µ

(

α, Î´

µ

)

1 +

a

e

(

α, Î´

e

)

m

e

m

µ

µ

e

−

µ

p

V.B.2

B

14

δ

C

.

=

δ

C

B

15

δ

O

.

=

δ

O

B

16

f

s

`

12

C

5+

´

f

c

`

12

C

5+

´

.

=

−

g

C

(

α, Î´

C

)

10

A

r

(e)

"

12

−

5

A

r

(e) +

E

b

`

12

C

´

−

E

b

`

12

C

5+

´

m

u

c

2

#

V.C.2.a

B

17

f

s

`

16

O

7+

´

f

c

`

16

O

7+

´

.

=

−

g

O

(

α, Î´

O

)

14

A

r

(e)

A

r

(

16

O

7+

)

V.C.2.b

B

18

µ

e

−

(H)

µ

p

(H)

.

=

g

e

−

(H)

g

e

−

„

g

p

(H)

g

p

«

−

1

µ

e

−

µ

p

VI.A.2.a

B

19

µ

d

(D)

µ

e

−

(D)

.

=

g

d

(D)

g

d

„

g

e

−

(D)

g

e

−

«

−

1

µ

d

µ

e

−

VI.A.2.b

B

20

µ

p

(HD)

µ

d

(HD)

.

= [1 +

σ

dp

]

µ

p

µ

e

−

µ

e

−

µ

d

VI.A.2.c

B

21

σ

dp

.

=

σ

dp

B

22

µ

t

(HT)

µ

p

(HT)

.

= [1

−

σ

tp

]

µ

t

µ

p

VI.A.2.c

B

23

σ

tp

.

=

σ

tp

B

24

µ

e

−

(H)

µ

′

p

.

=

g

e

−

(H)

g

e

−

µ

e

−

µ

′

p

VI.A.2.d

B

25

µ

′

h

µ

′

p

.

=

µ

′

h

µ

′

p

B

26

µ

n

µ

′

p

.

=

µ

n

µ

′

p

background image

78

TABLE XL

(Continued).

Observational equations that express the input data in Table XXX as functions of the adjusted

constants in Table XXXIX. The numbers in the ï¬rst column correspond to the numbers in the ï¬rst column of Table XXX. For
simplicity, the lengthier functions are not explicitly given. See Sec. XII.B for an explanation of the symbol

.

=.

Type of input

Observational equation

datum

Sec.

B

27

δ

Mu

.

=

δ

Mu

B

28

∆

ν

Mu

.

= âˆ†

ν

Mu

 

R

∞

, Î±, m

e

m

µ

, Î´

µ

, Î´

Mu

!

VI.B.1

B

29

, B

30

ν

(

f

p

)

.

=

ν

 

f

p

;

R

∞

, Î±, m

e

m

µ

,

µ

e

−

µ

p

, Î´

e

, Î´

µ

, Î´

Mu

!

VI.B

B

31

Γ

′

p

−

90

(lo)

.

=

−

K

J

−

90

R

K

−

90

[1 +

a

e

(

α, Î´

e

)]

α

3

2

µ

0

R

∞

 

µ

e

−

µ

′

p

!

−

1

VII.A.1

B

32

Γ

′

h

−

90

(lo)

.

=

K

J

−

90

R

K

−

90

[1 +

a

e

(

α, Î´

e

)]

α

3

2

µ

0

R

∞

 

µ

e

−

µ

′

p

!

−

1

µ

′

h

µ

′

p

VII.A.1

B

33

Γ

′

p

−

90

(hi)

.

=

−

c

[1 +

a

e

(

α, Î´

e

)]

α

2

K

J

−

90

R

K

−

90

R

∞

h

 

µ

e

−

µ

′

p

!

−

1

VII.A.2

B

34

R

K

.

=

µ

0

c

2

α

VII.B

B

35

K

J

.

=

„

8

α

µ

0

ch

«

1

/

2

VII.C

B

36

K

2

J

R

K

.

=

4

h

VII.D

B

37

F

90

.

=

cM

u

A

r

(e)

α

2

K

J

−

90

R

K

−

90

R

∞

h

VII.E

B

38-

B

40

d

220

(

X

)

.

=

d

220

(

X

)

B

41-

B

52

d

220

(

X

)

d

220

(

Y

)

−

1

.

=

d

220

(

X

)

d

220

(

Y

)

−

1

B

53

V

m

(Si)

.

=

√

2

cM

u

A

r

(e)

α

2

d

3

220

R

∞

h

VIII.B

B

54

λ

meas

d

220

(

ILL

)

.

=

α

2

A

r

(e)

R

∞

d

220

(

ILL

)

A

r

(n) +

A

r

(p)

[

A

r

(n) +

A

r

(p)]

2

−

A

2

r

(d)

VIII.C

B

55

h

m

n

d

220

(

W04

)

.

=

A

r

(e)

A

r

(n)

cα

2

2

R

∞

d

220

(

W04

)

VIII.D.1

B

56

, B

57

h

m

(

X

)

.

=

A

r

(e)

A

r

(

X

)

cα

2

2

R

∞

VIII.D

B

58

R

.

=

R

B

59

, B

62

λ

(CuK

α

1

)

d

220

(

X

)

.

=

1 537

.

400 xu(CuK

α

1

)

d

220

(

X

)

XI.A

B

60

λ

(WK

α

1

)

d

220

(

N

)

.

=

0

.

209 010 0 Ëš

A

∗

d

220

(

N

)

XI.A

B

61

λ

(MoK

α

1

)

d

220

(

N

)

.

=

707

.

831 xu(MoK

α

1

)

d

220

(

N

)

XI.A

background image

79

TABLE XLI The 12 adjusted constants (variables) relevant
to the antiprotonic helium data given in Table XXXII. These
adjusted constants appear as arguments of the theoretical ex-
pressions on the right-hand side of the observational equations
of Table XLII.

Transition

Adjusted constant

¯

p

4

He

+

: (32

,

31)

→

(31

,

30)

δ

¯

p

4

He

+

(32

,

31: 31

,

30)

¯

p

4

He

+

: (35

,

33)

→

(34

,

32)

δ

¯

p

4

He

+

(35

,

33: 34

,

32)

¯

p

4

He

+

: (36

,

34)

→

(35

,

33)

δ

¯

p

4

He

+

(36

,

34: 35

,

33)

¯

p

4

He

+

: (37

,

34)

→

(36

,

33)

δ

¯

p

4

He

+

(37

,

34: 36

,

33)

¯

p

4

He

+

: (39

,

35)

→

(38

,

34)

δ

¯

p

4

He

+

(39

,

35: 38

,

34)

¯

p

4

He

+

: (40

,

35)

→

(39

,

34)

δ

¯

p

4

He

+

(40

,

35: 39

,

34)

¯

p

4

He

+

: (37

,

35)

→

(38

,

34)

δ

¯

p

4

He

+

(37

,

35: 38

,

34)

¯

p

3

He

+

: (32

,

31)

→

(31

,

30)

δ

¯

p

3

He

+

(32

,

31: 31

,

30)

¯

p

3

He

+

: (34

,

32)

→

(33

,

31)

δ

¯

p

3

He

+

(34

,

32: 33

,

31)

¯

p

3

He

+

: (36

,

33)

→

(35

,

32)

δ

¯

p

3

He

+

(36

,

33: 35

,

32)

¯

p

3

He

+

: (38

,

34)

→

(37

,

33)

δ

¯

p

3

He

+

(38

,

34: 37

,

33)

¯

p

3

He

+

: (36

,

34)

→

(37

,

33)

δ

¯

p

3

He

+

(36

,

34: 37

,

33)

background image

80

TABLE XLII Observational equations that express the input data related to antiprotonic helium in Table XXXII as functions
of adjusted constants in Tables XXXIX and XLI. The numbers in the ï¬rst column correspond to the numbers in the ï¬rst
column of Table XXXII. Deï¬nitions of the symbols and values of the parameters in these equations are given in Sec. IV.B. See
Sec. XII.B for an explanation of the symbol

.

=.

Type of input

Observational equation

datum

C

1–

C

7

δ

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

.

=

δ

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

C

8–

C

12

δ

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

.

=

δ

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

C

13–

C

19

ν

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

.

=

ν

(0)

¯

p

4

He

+

(

n, l

:

n

′

, l

′

) +

a

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

"

„

A

r

(e)

A

r

(p)

«

(0)

„

A

r

(p)

A

r

(e)

«

−

1

#

+

b

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

"

„

A

r

(e)

A

r

(

α

)

«

(0)

„

A

r

(

α

)

A

r

(e)

«

−

1

#

+

δ

¯

p

4

He

+

(

n, l

:

n

′

, l

′

)

C

20–

C

24

ν

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

.

=

ν

(0)

¯

p

3

He

+

(

n, l

:

n

′

, l

′

) +

a

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

"

„

A

r

(e)

A

r

(p)

«

(0)

„

A

r

(p)

A

r

(e)

«

−

1

#

+

b

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

"

„

A

r

(e)

A

r

(h)

«

(0)

„

A

r

(h)

A

r

(e)

«

−

1

#

+

δ

¯

p

3

He

+

(

n, l

:

n

′

, l

′

)

TABLE XLIII Summary of the results of some of the least-squares adjustments used to analyze all of the input data given in
Tables XXVIII, XXIX, XXX, and XXXI. The values of

α

and

h

are those obtained in the adjustment,

N

is the number of

input data,

M

is the number of adjusted constants,

ν

=

N

−

M

is the degrees of freedom, and

R

B

=

p

χ

2

/ν

is the Birge ratio.

See the text for an explanation and discussion of each adjustment, but in brief, 1 is all the data; 2 is 1 with the uncertainties
of the key x-ray/silicon data multiplied by 1.5; 3 is 2 with the uncertainties of the key electrical data also multiplied by 1.5; 4
is the ï¬nal adjustment from which the 2006 recommended values are obtained and is 3 with the input data with low weights
deleted; 5 is 3 with the four data that provide the most accurate values of

α

deleted; and 6 is 3 with the three data that provide

the most accurate values of

h

deleted.

Adj.

N

M

ν

χ

2

R

B

α

−

1

u

r

(

α

−

1

)

h

/(J s)

u

r

(

h

)

1 150

79

71

92.1

1.14

137

.

035 999 687(93)

6

.

8

×

10

−

10

6

.

626 068 96(22)

×

10

−

34

3

.

4

×

10

−

8

2 150

79

71

82.0

1.07

137

.

035 999 682(93)

6

.

8

×

10

−

10

6

.

626 068 96(22)

×

10

−

34

3

.

4

×

10

−

8

3 150

79

71

77.5

1.04

137

.

035 999 681(93)

6

.

8

×

10

−

10

6

.

626 068 96(33)

×

10

−

34

5

.

0

×

10

−

8

4 135

78

57

65.0

1.07

137

.

035 999 679(94)

6

.

8

×

10

−

10

6

.

626 068 96(33)

×

10

−

34

5

.

0

×

10

−

8

5 144

77

67

72.9

1.04

137

.

036 0012(19)

1

.

4

×

10

−

8

6

.

626 068 96(33)

×

10

−

34

5

.

0

×

10

−

8

6 147

79

68

75.4

1.05

137

.

035 999 680(93)

6

.

8

×

10

−

10

6

.

626 0719(21)

×

10

−

34

3

.

2

×

10

−

7

TABLE XLIV Normalized residuals

r

i

and self-sensitivity coefficients

S

c

that result from the six least-squares adjustments

summarized in Table XLIII for the four input data whose absolute values of

r

i

in Adj. 1 exceed 1.50.

S

c

is a measure of how

the least-squares estimated value of a given type of input datum depends on a particular measured or calculated value of that
type of datum; see Appendix E of CODATA-98. See the text for an explanation and discussion of each adjustment; brief
explanations are given at the end of the caption to the previous table.

Item

Input

Identiï¬cation

Adj. 1

Adj. 2

Adj. 3

Adj. 4

Adj. 5

Adj. 6

number

quantity

r

i

S

c

r

i

S

c

r

i

S

c

r

i

S

c

r

i

S

c

r

i

S

c

B

53

V

m

(Si)

N/P/I-05

−

2

.

82 0

.

065

−

2

.

68 0

.

085

−

1

.

86 0

.

046

−

1

.

86 0

.

047

−

1

.

79 0

.

053

−

0

.

86 0

.

556

B

55

h/m

n

d

220

(

W04

)

PTB-99

−

2

.

71 0

.

155

−

2

.

03 0

.

118

−

1

.

89 0

.

121

−

1

.

89 0

.

121

−

1

.

57 0

.

288

−

1

.

82 0

.

123

B

39

d

220

(

NR3

)

NMIJ-04

2

.

37 0

.

199

1

.

86 0

.

145

1

.

74 0

.

148

1

.

74 0

.

148

1

.

78 0

.

151

−

1

.

00 0

.

353

B

31

.

1

Γ

′

p

−

90

(lo)

NIST-89

2

.

31 0

.

010

2

.

30 0

.

010

2

.

30 0

.

010

deleted

2

.

60 0

.

143

2

.

30 0

.

010

background image

81

TABLE XLV Summary of the results of some of the least-squares adjustments used to analyze the input data related to

R

∞

.

The values of

R

∞

,

R

p

, and

R

d

are those obtained in the indicated adjustment,

N

is the number of input data,

M

is the

number of adjusted constants,

ν

=

N

−

M

is the degrees of freedom, and

R

B

=

p

χ

2

/ν

is the Birge ratio. See the text for an

explanation and discussion of each adjustment, but in brief, 4 is the ï¬nal adjustment; 7 is 4 with the input data for

R

p

and

R

d

deleted; 8 is 4 with just the

R

p

datum deleted; 9 is 4 with just the

R

d

datum deleted; 10 is 4 but with only the hydrogen

data included; and 11 is 4 but with only the deuterium data included.

Adj.

N

M

ν

χ

2

R

B

R

∞

/

m

−

1

u

r

(

R

∞

)

R

p

/fm

R

d

/fm

4

135

78

57

65.0

1.07

10 973 731

.

568 527(73)

6

.

6

×

10

−

12

0

.

8768(69)

2

.

1402(28)

7

133

78

55

63.0

1.07

10 973 731

.

568 518(82)

7

.

5

×

10

−

12

0

.

8760(78)

2

.

1398(32)

8

134

78

56

63.8

1.07

10 973 731

.

568 495(78)

7

.

1

×

10

−

12

0

.

8737(75)

2

.

1389(30)

9

134

78

56

63.9

1.07

10 973 731

.

568 549(76)

6

.

9

×

10

−

12

0

.

8790(71)

2

.

1411(29)

10

117

68

49

60.8

1.11

10 973 731

.

568 562(85)

7

.

8

×

10

−

12

0

.

8802(80)

11

102

61

41

54.7

1.16

10 973 731

.

568 39(13)

1

.

1

×

10

−

11

2

.

1286(93)

TABLE XLVI Generalized observational equations that express input data

B

31-

B

37 in Table XXX as functions of the adjusted

constants in Tables XXXIX and XXXVII with the additional adjusted constants

ε

J

and

ε

K

as given in Eqs. (372) and (373).

The numbers in the ï¬rst column correspond to the numbers in the ï¬rst column of Table XXX. For simplicity, the lengthier
functions are not explicitly given. See Sec. XII.B for an explanation of the symbol

.

=.

Type of input

Generalized observational equation

datum

B

31

∗

Γ

′

p

−

90

(lo)

.

=

−

K

J

−

90

R

K

−

90

[1 +

a

e

(

α, Î´

e

)]

α

3

2

µ

0

R

∞

(1 +

ε

J

)(1 +

ε

K

)

 

µ

e

−

µ

′

p

!

−

1

B

32

∗

Γ

′

h

−

90

(lo)

.

=

K

J

−

90

R

K

−

90

[1 +

a

e

(

α, Î´

e

)]

α

3

2

µ

0

R

∞

(1 +

ε

J

)(1 +

ε

K

)

 

µ

e

−

µ

′

p

!

−

1

µ

′

h

µ

′

p

B

33

∗

Γ

′

p

−

90

(hi)

.

=

−

c

[1 +

a

e

(

α, Î´

e

)]

α

2

K

J

−

90

R

K

−

90

R

∞

h

(1 +

ε

J

)(1 +

ε

K

)

 

µ

e

−

µ

′

p

!

−

1

B

34

∗

R

K

.

=

µ

0

c

2

α

(1 +

ε

K

)

B

35

∗

K

J

.

=

„

8

α

µ

0

ch

«

1

/

2

(1 +

ε

J

)

B

36

∗

K

2

J

R

K

.

=

4

h

(1 +

ε

J

)

2

(1 +

ε

K

)

B

37

∗

F

90

.

=

cM

u

A

r

(e)

α

2

K

J

−

90

R

K

−

90

R

∞

h

(1 +

ε

J

)(1 +

ε

K

)

B

62

∗

ε

J

.

=

ε

J

B

63

∗

ε

K

.

=

ε

K

background image

82

TABLE XLVII Summary of the results of several least-squares adjustments carried out to investigate the effect of assuming
the relations for

K

J

and

R

K

given in Eqs. (372) and (373). The values of

α

,

h

,

ε

K

, and

ε

J

are those obtained in the indicated

adjustments. The quantity

R

B

=

p

χ

2

/ν

is the Birge ratio and

r

i

is the normalized residual of the indicated input datum (see

Table XXX). These four data have the largest

|

r

i

|

of all the input data and are the only data in Adj. (i) with

|

r

i

|

>

1

.

50. See

the text for an explanation and discussion of each adjustment, but in brief, (i) assumes

K

J

= 2

e/h

and

R

K

=

h/e

2

and uses all

the data; (ii) is (i) with the relation

K

J

= 2

e/h

relaxed; (iii) is (i) with the relation

R

K

=

h/e

2

relaxed; (iv) is (i) with both

relations relaxed; (v) is (iv) with the

V

m

(Si) datum deleted; (vi) is (iv) with the

Γ

′

p

−

90

(lo) and

Γ

′

h

−

90

(lo) data deleted; and (vii)

is (iv) with the

V

m

(Si),

Γ

′

p

−

90

(lo), and

Γ

′

h

−

90

(lo) data deleted.

Adj.

R

B

α

−

1

h

/(J s)

ε

K

ε

J

r

B

53

r

B

55

r

B

39

r

B

31

.

1

(i)

1.14

137

.

035 999 687(93)

6

.

626 068 96(22)

×

10

−

34

0

0

−

2

.

82

−

2

.

71 2

.

37

2

.

31

(ii)

1.14

137

.

035 999 688(93)

6

.

626 0682(10)

×

10

−

34

0

−

61(79)

×

10

−

9

−

3

.

22

−

2

.

75 2

.

39

1

.

77

(iii)

1.14

137

.

035 999 683(93)

6

.

626 069 06(25)

×

10

−

34

16(18)

×

10

−

9

0

−

2

.

77

−

2

.

71 2

.

36

2

.

45

(iv)

1.14

137

.

035 999 685(93)

6

.

626 0681(11)

×

10

−

34

20(18)

×

10

−

9

−

77(80)

×

10

−

9

−

3

.

27

−

2

.

75 2

.

39

1

.

79

(v)

1.05

137

.

035 999 686(93)

6

.

626 0653(13)

×

10

−

34

23(18)

×

10

−

9

−

281(95)

×

10

−

9

deleted

−

2

.

45 2

.

19

0

.

01

(vi)

1.05

137

.

035 999 686(93)

6

.

626 0744(19)

×

10

−

34

24(18)

×

10

−

9

407(143)

×

10

−

9

−

0

.

05

−

2

.

45 2

.

19 deleted

(vii) 1.06

137

.

035 999 686(93)

6

.

626 0722(95)

×

10

−

34

24(18)

×

10

−

9

238(720)

×

10

−

9

deleted

−

2

.

45 2

.

19 deleted

background image

83

XIII. THE 2006 CODATA RECOMMENDED VALUES

A. Calculational details

As indicated in Sec. XII.B, the 2006 recommended

values of the constants are based on adjustment 4 of
Tables XLIII to XLV. This adjustment is obtained by
(i) deleting 15 items from the originally considered 150
items of input data of Tables XXVIII, XXX, and XXXII,
namely, items

B

8,

B

31

.

1-

B

35

.

2,

B

37, and

B

56, because

of their low weight (self sensitivity coefficient

S

c

<

0

.

01);

and (ii) weighting the uncertainties of the nine input data

B

36

.

1-

B

36

.

3,

B

38

.

1-

B

40,

B

53, and

B

55 by the multi-

plicative factor 1.5 in order to reduce the absolute values
of their normalized residuals

|

r

i

|

to less than 2. The cor-

relation coefficients of the data, as given in Tables XXIX,
XXXI, and XXXIII, are also taken into account. The
135 ï¬nal input data are expressed in terms of the 78 ad-
justed constants of Tables XXXVII, XXXIX, and XLI,
corresponding to

N

−

M

=

ν

= 57 degrees of freedom.

Because

h/m

(

133

Cs), item

B

56, has been deleted as an

input datum due to its low weight,

A

r

(

133

Cs), item

B

8,

has also been deleted as an input datum and as an ad-
justed constant.

For the ï¬nal adjustment,

χ

2

= 65

.

0,

p

χ

2

/ν

=

R

B

=

1

.

04, and

Q

(65

.

0

|

57) = 0

.

22, where

Q

(

χ

2

|

ν

) is the proba-

bility that the observed value of

χ

2

for degrees of freedom

ν

would have exceeded that observed value (see Appendix

E of CODATA-98). Each input datum in the ï¬nal ad-
justment has

S

c

>

0

.

01, or is a subset of the data of

an experiment that provides an input datum or input
data with

S

c

>

0

.

01. Not counting such input data with

S

c

<

0

.

01, the six input data with the largest

|

r

i

|

are

B

55,

B

53,

B

39,

C

18,

B

11

.

1, and

B

9; their values of

r

i

are

−

1

.

89,

−

1

.

86, 1

.

74,

−

1

.

73, 1

.

69, and 1

.

45, respec-

tively. The next largest

r

i

are 1

.

22 and 1

.

11.

The output of the ï¬nal adjustment is the set of best

estimated values, in the least-squares sense, of the 78
adjusted constants and their variances and covariances.
Together with (i) those constants that have exact val-
ues such as

µ

0

and

c

; (ii) the value of

G

obtained in

Sec. X; and (iii) the values of

m

Ï„

,

G

F

, and sin

2

θ

W

given

in Sec. XI.B, all of the 2006 recommended values, includ-
ing their uncertainties, are obtained from the 78 adjusted
constants. How this is done can be found in Sec. V.B of
CODATA-98.

B. Tables of values

The 2006 CODATA recommended values of the basic

constants and conversion factors of physics and chemistry
and related quantities are given in Tables XLIX to LVI.
These tables are very similar in form to their 2002 coun-
terparts; the principal difference is that a number of new
recommended values have been included in the 2006 list,
in particular, in Table L. These are

m

P

c

2

in GeV, where

m

P

is the Planck mass; the

g

-factor of the deuteron

g

d

;

b

′

=

ν

max

/T

, the Wien displacement law-constant for fre-

quency; and for the ï¬rst time, 14 recommended values of
a number of constants that characterize the triton, in-
cluding its mass

m

t

, magnetic moment

µ

t

,

g

-factor

g

t

,

and the magnetic moment ratios

µ

t

/µ

e

and

µ

t

/µ

p

. The

addition of the triton-related constants is a direct con-
sequence of the improved measurement of

A

r

(

3

H) (item

B

3 in Table XXX) and the new NMR measurements on,

and re-examined shielding correction differences for, the
HT molecule (items

B

22 and

B

23 in Table XXX).

Table XLIX is a highly abbreviated list containing the

values of the constants and conversion factors most com-
monly used. Table L is a much more extensive list of
values categorized as follows: UNIVERSAL; ELECTRO-
MAGNETIC; ATOMIC AND NUCLEAR; and PHYSIC-
OCHEMICAL. The ATOMIC AND NUCLEAR cate-
gory is subdivided into 11 subcategories: General; Elec-
troweak; Electron, e

−

; Muon,

µ

−

; Tau,

Ï„

−

; Proton, p;

Neutron, n; Deuteron, d; Triton, t; Helion, h; and Al-
pha particle,

α

. Table LI gives the variances, covari-

ances, and correlation coefficients of a selected group of
constants. (Application of the covariance matrix is dis-
cussed in Appendix E of CODATA-98.) Table LII gives
the internationally adopted values of various quantities;
Table LIII lists the values of a number of x-ray related
quantities; Table LIV lists the values of various non-SI
units; and Tables LV and LVI give the values of various
energy equivalents.

All of the values given in Tables XLIX to LVI are

available on the Web pages of the Fundamental Con-
stants Data Center of the NIST Physics Laboratory at
physics.nist.gov/constants. This electronic version of the
2006 CODATA recommended values of the constants also
includes a much more extensive correlation coefficient
matrix. Indeed, the correlation coefficient of any two con-
stants listed in the tables is accessible on the Web site,
as well as the automatic conversion of the value of an
energy-related quantity expressed in one unit to the cor-
responding value expressed in another unit (in essence,
an automated version of Tables LV and LVI).

As discussed in Sec. V, well after the 31 December 2006

closing date of the 2006 adjustment and the 29 March
2007 distribution date of the 2006 recommended values
on the Web, Aoyama

et al.

(2007) reported their discov-

ery of an error in the coefficient

A

(8)
1

in the theoretical

expression for the electron magnetic moment anomaly

a

e

.

Use of the new coefficient would lead to an increase in
the 2006 recommended value of

α

by 6.8 times its un-

certainty, and an increase of its uncertainty by a factor
of 1.02. The recommended values and uncertainties of
constants that depend solely on

α

, or on

α

in combina-

tion with other constants with

u

r

no larger than a few

parts in 10

10

, would change in the same way. However,

the changes in the recommended values of the vast ma-
jority of the constants listed in the tables would lie in the
range 0 to 0

.

5 times their 2006 uncertainties, and their

uncertainties would remain essentially unchanged.

background image

84

XIV. SUMMARY AND CONCLUSION

We conclude this report by (i) comparing the 2006 and

2002 CODATA recommended values of the constants and
identifying those new results that have contributed most
to the changes from the 2002 values; (ii) presenting some
of the conclusions that can be drawn from the 2006 rec-
ommended values and analysis of the 2006 input data;
and (iii) looking to the future and identifying experimen-
tal and theoretical work that can advance our knowledge
of the values of the constants.

A. Comparison of 2006 and 2002 CODATA recommended
values

The 2006 and 2002 recommended values of a represen-

tative group of constants are compared in Table XLVIII.
Regularities in the numbers in columns 2-4 arise because
many constants are obtained from expressions propor-
tional to

α

,

h

, or

R

raised to various powers. Thus, the

ï¬rst six quantities in the table are calculated from ex-
pressions proportional to

α

a

, where

|

a

|

= 1, 2, 3, or 6.

The next 15 quantities,

h

through

µ

p

, are calculated from

expressions containing the factor

h

a

, where

|

a

|

= 1 or

1
2

.

And the ï¬ve quantities

R

through

σ

are proportional to

R

a

, where

|

a

|

= 1 or 4.

Further comments on the entries in Table XLVIII are

as follows.

(i) The uncertainty of the 2002 recommended value

of

α

has been reduced by nearly a factor of ï¬ve by the

measurement of

a

e

at Harvard University and the im-

proved theoretical expression for

a

e

(th). The difference

between the Harvard result and the earlier University of
Washington result, which played a major role in the de-
termination of

α

in the 2002 adjustment, accounts for

most of the change in the recommended value of

α

from

2002 to 2006.

(ii) The uncertainty of the 2002 recommended value

of

h

has been reduced by over a factor of three due to

the new NIST watt-balance result for

K

2

J

R

K

and because

the factor used to increase the uncertainties of the data
related to

h

(applied to reduce the inconsistencies among

the data), was reduced from 2.325 in the 2002 adjust-
ment to 1.5 in the 2006 adjustment. That the change in
value from 2002 to 2006 is small is due to the excellent
agreement between the new value of

K

2

J

R

K

and the ear-

lier NIST and NPL values, which played a major role in
the determination of

h

in the 2002 adjustment.

(iii) The updating of two measurements that con-

tributed to the determination of the 2002 recommended
value of

G

reduced the spread in the values and rein-

forced the most accurate result, that from the University
of Washington. On this basis, the Task Group reduced
the assigned uncertainty from

u

r

= 1

.

5

×

10

−

5

in 2002

to

u

r

= 1

.

0

×

10

−

5

in 2006. This uncertainty reflects the

historical difficulty of measuring

G

. Although the recom-

mended value is the weighted mean of the eight available

TABLE XLVIII Comparison of the 2006 and 2002 CODATA
adjustments of the values of the constants by the comparison
of the corresponding recommended values of a representative
group of constants. Here

D

r

is the 2006 value minus the 2002

value divided by the standard uncertainty

u

of the 2002 value

(

i.e.,

D

r

is the change in the value of the constant from 2002

to 2006 relative to its 2002 standard uncertainty).

Quantity

2006 rel. std.

Ratio 2002

u

r

D

r

uncert.

u

r

to 2006

u

r

α

6

.

8

×

10

−

10

4

.

9

−

1

.

3

R

K

6

.

8

×

10

−

10

4

.

9

1

.

3

a

0

6

.

8

×

10

−

10

4

.

9

−

1

.

3

λ

C

1

.

4

×

10

−

9

4

.

9

−

1

.

3

r

e

2

.

1

×

10

−

9

4

.

9

−

1

.

3

σ

e

4

.

1

×

10

−

9

4

.

9

−

1

.

3

h

5

.

0

×

10

−

8

3

.

4

−

0

.

3

m

e

5

.

0

×

10

−

8

3

.

4

−

0

.

3

m

h

5

.

0

×

10

−

8

3

.

4

−

0

.

3

m

α

5

.

0

×

10

−

8

3

.

4

−

0

.

3

N

A

5

.

0

×

10

−

8

3

.

4

0

.

3

E

h

5

.

0

×

10

−

8

3

.

4

−

0

.

3

c

1

5

.

0

×

10

−

8

3

.

4

−

0

.

3

e

2

.

5

×

10

−

8

3

.

4

−

0

.

3

K

J

2

.

5

×

10

−

8

3

.

4

0

.

3

F

2

.

5

×

10

−

8

3

.

4

0

.

2

γ

′

p

2

.

7

×

10

−

8

3

.

2

0

.

2

µ

B

2

.

5

×

10

−

8

3

.

4

−

0

.

4

µ

N

2

.

5

×

10

−

8

3

.

4

−

0

.

4

µ

e

2

.

5

×

10

−

8

3

.

4

0

.

4

µ

p

2

.

6

×

10

−

8

3

.

3

−

0

.

4

R

1

.

7

×

10

−

6

1

.

0

0

.

0

k

1

.

7

×

10

−

6

1

.

0

0

.

0

V

m

1

.

7

×

10

−

6

1

.

0

0

.

0

c

2

1

.

7

×

10

−

6

1

.

0

0

.

0

σ

7

.

0

×

10

−

6

1

.

0

0

.

0

G

1

.

0

×

10

−

4

1

.

5

0

.

1

R

∞

6

.

6

×

10

−

12

1

.

0

0

.

0

m

e

/m

p

4

.

3

×

10

−

10

1

.

1

0

.

2

m

e

/m

µ

2

.

5

×

10

−

8

1

.

0

0

.

3

A

r

(e)

4

.

2

×

10

−

10

1

.

0

−

0

.

1

A

r

(p)

1

.

0

×

10

−

10

1

.

3

−

0

.

9

A

r

(n)

4

.

3

×

10

−

10

1

.

3

0

.

7

A

r

(d)

3

.

9

×

10

−

11

4

.

5

0

.

1

A

r

(h)

8

.

6

×

10

−

10

2

.

3

0

.

7

A

r

(

α

)

1

.

5

×

10

−

11

0

.

9

−

0

.

4

d

220

2

.

6

×

10

−

8

1

.

4

−

2

.

9

g

e

7

.

4

×

10

−

13

5

.

0

1

.

3

g

µ

6

.

0

×

10

−

10

1

.

0

−

1

.

4

µ

p

/µ

B

8

.

1

×

10

−

9

1

.

2

0

.

2

µ

p

/µ

N

8

.

2

×

10

−

9

1

.

2

0

.

2

µ

n

/µ

N

2

.

4

×

10

−

7

1

.

0

0

.

0

µ

d

/µ

N

8

.

4

×

10

−

9

1

.

3

−

0

.

2

µ

e

/µ

p

8

.

1

×

10

−

9

1

.

2

0

.

2

µ

n

/µ

p

2

.

4

×

10

−

7

1

.

0

0

.

0

µ

d

/µ

p

7

.

7

×

10

−

9

1

.

9

−

0

.

3

background image

85

values, the assigned uncertainty is still over four times the
uncertainty of the mean multiplied by the corresponding
Birge ratio

R

B

.

(iv) The large shift in the recommended value of

d

220

from 2002 to 2006 is due to the fact that in the 2002
adjustment only the NMIJ result for

d

220

(

NR3

) was in-

cluded, while in the 2006 adjustment this result (but up-
dated by more recent NMIJ measurements) was included
together with the PTB result for

d

220

(

W4

.

2a

) and the new

INRIM results for

d

220

(

W4

.

2a

) and

d

220

(

MO

∗

). Moreover,

the NMIJ value of

d

220

inferred from

d

220

(

NR3

) strongly

disagrees with the values of

d

220

inferred from the other

three results.

(v) The marginally signiï¬cant shift in the recom-

mended value of

g

µ

from 2002 to 2006 is mainly due

to the following: In the 2002 adjustment, the principal
hadronic contribution to the theoretical expression for

a

µ

was based on both a calculation that included only e

+

e

−

annihilation data and a calculation that used data from
hadronic decays of the

Ï„

in place of some of the e

+

e

−

annihilation data. In the 2006 adjustment, the principal
hadronic contribution was based on a calculation that
used only annihilation data because of various concerns
that subsequently arose about the reliability of incorpo-
rating the

Ï„

data in the calculation; the calculation based

on both e

+

e

−

annihilation data and

Ï„

decay data was only

used to estimate the uncertainty of the hadronic contri-
bution. Because the results from the two calculations are
in signiï¬cant disagreement, the uncertainty of

a

µ

(th) is

comparatively large:

u

r

= 1

.

8

×

10

−

6

.

(vi) The reduction of the uncertainties of the mag-

netic moment ratios

µ

p

/µ

B

,

µ

p

/µ

N

,

µ

d

/µ

N

,

µ

e

/µ

p

,

and

µ

d

/µ

p

are due to the new NMR measurement of

µ

p

(HD)

/µ

d

(HD) and careful re-examination of the cal-

culation of the D-H shielding correction difference

σ

dp

.

Because the value of the product (

µ

p

/µ

e

)(

µ

e

/µ

d

) implied

by the new measurement is highly consistent with the
same product implied by the individual measurements of

µ

e

(H)

/µ

p

(H) and

µ

d

(D)

/µ

e

(D), the changes in the values

of the ratios are small.

In summary, the most important differences between

the 2006 and 2002 adjustments are that the 2006 ad-
justment had available new experimental and theoretical
results for

a

e

, which provided a dramatically improved

value of

α

, and a new result for

K

2

J

R

K

, which provided

a signiï¬cantly improved value of

h

. These two advances

from 2002 to 2006 have resulted in major reductions in
the uncertainties of many of the 2006 recommended val-
ues compared with their 2002 counterparts.

B. Some implications of the 2006 CODATA recommended
values and adjustment for physics and metrology

A number of conclusions that can be drawn from the

2006 adjustment concerning metrology and the basic the-
ories and experimental methods of physics are presented
here, where the focus is on those conclusions that are new

or are different from those drawn from the 2002 and 1998
adjustments.

Conventional electric units

.

One can interpret

the adoption of the conventional values

K

J

−

90

=

483 597

.

9 GHz/V and

R

K

−

90

= 25 812

.

807 â„¦ for the

Josephson and von Klitzing constants as establishing con-
ventional, practical units of voltage and resistance,

V

90

and

Ω

90

, given by

V

90

= (

K

J

−

90

/K

J

) V and

Ω

90

=

(

R

K

/R

K

−

90

) â„¦. Other conventional electric units fol-

low from

V

90

and

Ω

90

, for example,

A

90

=

V

90

/

Ω

90

,

C

90

=

A

90

s,

W

90

=

A

90

V

90

,

F

90

=

C

90

/V

90

, and

H

90

=

Ω

90

s, which are the conventional, practical units

of current, charge, power, capacitance, and inductance,
respectively (Taylor and Mohr, 2001). For the relations
between

K

J

and

K

J

−

90

, and

R

K

and

R

K

−

90

, the 2006

adjustment gives

K

J

=

K

J

−

90

[1

−

1

.

9(2

.

5)

×

10

−

8

]

(374)

R

K

=

R

K

−

90

[1 + 2

.

159(68)

×

10

−

8

]

,

(375)

which lead to

V

90

= [1 + 1

.

9(2

.

5)

×

10

−

8

] V

(376)

Ω

90

= [1 + 2

.

159(68)

×

10

−

8

] â„¦

(377)

A

90

= [1

−

0

.

3(2

.

5)

×

10

−

8

] A

(378)

C

90

= [1

−

0

.

3(2

.

5)

×

10

−

8

] C

(379)

W

90

= [1 + 1

.

6(5

.

0)

×

10

−

8

] W

(380)

F

90

= [1

−

2

.

159(68)

×

10

−

8

] F

(381)

H

90

= [1 + 2

.

159(68)

×

10

−

8

] H

.

(382)

Equations (376) and (377) show that

V

90

exceeds V and

Ω

90

exceeds â„¦ by 1

.

9(2

.

5)

×

10

−

8

and 2

.

159(68)

×

10

−

8

,

respectively. This means that measured voltages and re-
sistances traceable to the Josephson effect and

K

J

−

90

and

the quantum Hall effect and

R

K

−

90

, respectively, are too

small relative to the SI by these same fractional amounts.
However, these differences are well within the 40

×

10

−

8

uncertainty assigned to

V

90

/

V and the 10

×

10

−

8

uncer-

tainty assigned to

Ω

90

/

Ω by the Consultative Commit-

tee for Electricity and Magnetism (CCEM) of the CIPM
(Quinn, 1989, 2001).

Josephson and quantum Hall effects

. The study in

Sec. XII.B.2 provides no statistically signiï¬cant evidence
that the fundamental Josephson and quantum Hall ef-
fect relations

K

J

= 2

e/h

and

R

K

=

h/e

2

are not exact.

The theories of two of the most important phenomena of
condensed-matter physics are thereby further supported.

Antiprotonic helium

. The good agreement between the

value of

A

r

(e) obtained from the measured values and

theoretical expressions for a number of transition fre-
quencies in antiprotonic

4

He and

3

He with three other

values obtained by entirely different methods indicates
that these rather complex atoms are reasonably well un-
derstood both experimentally and theoretically.

Newtonian constant of gravitation

. Although the in-

consistencies among the values of

G

have been reduced

somewhat as a result of modiï¬cations to two of the eight

background image

86

results available in 2002, the situation remains problem-
atic; there is no evidence that the historic difficulty of
measuring

G

has been overcome.

Tests of QED

. The good agreement of the highly

accurate values of

α

inferred from

h/m

(

133

Cs) and

h/m

(

87

Rb), which are only weakly dependent on QED

theory, with the values of

α

inferred from

a

e

, muonium

transition frequencies, and H and D transition frequen-
cies, provide support for the QED theory of

a

e

as well

as the bound-state QED theory of muonium and H and
D. In particular, the weighted mean of the two values
of

α

inferred from

h/m

(

133

Cs) and

h/m

(

87

Rb),

α

−

1

=

137

.

035 999 34(69) [5

.

0

×

10

−

9

], and the weighted mean

of the two values of

α

inferred from the two experimen-

tal values of

a

e

,

α

−

1

= 137

.

035 999 680(94) [6

.

9

×

10

−

10

],

differ by only 0.5

u

diff

, with

u

diff

= 5

.

1

×

10

−

9

. This is a

truly impressive conï¬rmation of QED theory.

Physics beyond the Standard Model

.

If the princi-

pal hadronic contribution to

a

µ

(th) obtained from the

e

+

e

−

annihilation-data plus

Ï„

hadronic-decay-data cal-

culation (see previous section) is completely ignored, and
the value based on the annihilation-data-only calcula-
tion with its uncertainty of 45

×

10

−

11

is used in

a

µ

(th),

then the value of

α

inferred from the BNL experimen-

tally determined value of

a

µ

(exp),

α

−

1

= 137

.

035 670(91)

[6

.

6

×

10

−

7

], differs from the

h/m

(

133

Cs)-

h/m

(

87

Rb)

mean value of

α

by 3

.

6

u

diff

. Although such a large dis-

crepancy may suggest â€œNew Physics,†the consensus is
that such a view is premature (Davier, 2006).

Electrical and silicon crystal-related measurements

.

The previously discussed inconsistencies involving the
watt-balance determinations of

K

2

J

R

K

, the mercury elec-

trometer and voltage balance measurements of

K

J

, the

XROI determinations of the

{

220

}

lattice spacing of var-

ious silicon crystals, the measurement of

h/m

n

d

220

(

W04

),

and the measurement of

V

m

(Si) hint at possible problems

with one or more of these these rather complex experi-
ments. This suggests that some of the many different
measurement techniques required for their execution may
not be as well understood as is currently believed.

Redefinition of the kilogram

. There has been consider-

able discussion of late about the possibility of the 24th
General Conference on Weights and Measures (CGPM),
which convenes in 2011, redeï¬ning the kilogram, ampere,
kelvin, and mole by linking these SI base units to ï¬xed
values of

h

,

e

,

k

, and

N

A

, respectively (Mills

et al.

, 2006;

Stock and Witt, 2006), in much the same way that the
current deï¬nition of the meter is linked to a ï¬xed value of

c

(BIPM, 2006). Before such a deï¬nition of the kilogram

can be accepted,

h

should be known with a

u

r

of a few

parts in 10

−

8

. It is therefore noteworthy that the 2006

CODATA recommended value of

h

has

u

r

= 5

.

0

×

10

−

8

and the most accurate measured value of

h

(the 2007

NIST watt-balance result) has

u

r

= 3

.

6

×

10

−

8

.

C. Outlook and suggestions for future work

Because there is little redundancy among some of the

key input data, the 2006 CODATA set of recommended
values, like its 2002 and 1998 predecessors, does not rest
on as solid a foundation as one might wish. The constants

α

,

h

, and

R

play a critical role in determining many other

constants, yet the recommended value of each is deter-
mined by a severely limited number of input data. More-
over, some input data for the same quantity have uncer-
tainties of considerably different magnitudes and hence
these data contribute to the ï¬nal adjustment with con-
siderably different weights.

The input datum that primarily determines

α

is the

2006 experimental result for

a

e

from Harvard University

with

u

r

= 6

.

5

×

10

−

10

; the uncertainty

u

r

= 37

×

10

−

10

of

the next most accurate experimental result for

a

e

, that

reported by the University of Washington in 1987, is 5.7
times larger. Furthermore, there is only a single value of
the eighth-order coefficient

A

(8)
1

, that due to Kinoshita

and Nio; it plays a critical role in the theoretical expres-
sion for

a

e

from which

α

is obtained and requires lengthy

QED calculations.

The 2007 NIST watt-balance result for

K

2

J

R

K

with

u

r

= 3

.

6

×

10

−

8

is the primary input datum that deter-

mines

h

, since the uncertainty of the next most accurate

value of

K

2

J

R

K

, the NIST 1998 result, is 2.4 times larger.

Further, the 2005 consensus value of

V

m

(Si) disagrees

with all three high accuracy measurements of

K

2

J

R

K

cur-

rently available.

For

R

, the key input datum is the 1998 NIST value

based on speed-of-sound measurements in argon using a
spherical acoustic resonator with

u

r

= 1

.

7

×

10

−

6

. The

uncertainty of the next most accurate value, the 1979
NPL result, also obtained from speed of sound measure-
ments in argon but using an acoustic interferometer, is
4.7 times larger.

Lack of redundancy is, of course, not the only difficulty

with the 2006 adjustment. An equally important but
not fully independent issue is the several inconsistencies
involving some of the electrical and silicon crystal-related
input data as already discussed, including the recently
reported preliminary result for

K

2

J

R

K

from the NPL watt

balance given in Sec VII.D.1. There is also the issue of
the recently corrected (but still tentative) value for the
coefficient

A

(8)
1

in the theoretical expression for

a

e

given

in Sec V, which would directly effect the recommended
value of

α

.

With these problems in mind, some of which impact

the possible redeï¬nition of the kilogram, ampere, kelvin,
and mole in terms of exact values of

h

,

e

,

k

, and

N

A

in 2011, we offer the following â€œwish list†for new work.
If these needs, some of which appeared in our similar
2002 list, are successfully met, the key issues facing the
precision measurement-fundamental constants and fun-
damental metrology ï¬elds should be resolved. As a conse-
quence, our knowledge of the values of the constants, to-
gether with the International System of Units (SI), would

background image

87

be signiï¬cantly advanced.

(i) A watt-balance determination of

K

2

J

R

K

from a lab-

oratory other than NIST or NPL with a

u

r

fully compet-

itive with

u

r

= 3

.

6

×

10

−

8

, the uncertainty of the most

accurate value currently available from NIST.

(ii) A timely completion of the current international ef-

fort to determine

N

A

with a

u

r

of a few parts in 10

8

using

highly enriched silicon crystals with

x

(

28

Si)

>

0

.

999 85

(Becker

et al.

, 2006). This will require major advances

in determining the

{

220

}

lattice spacing, density, and

molar mass of silicon.

(iii) A determination of

R

(or Boltzmann constant

k

=

R/N

A

) with a

u

r

fully competitive with

u

r

= 1

.

7

×

10

−

6

,

the uncertainty of the most accurate value of

R

currently

available, preferably using a method other than measur-
ing the velocity of sound in argon.

(iv) An independent calculation of the eighth order

coefficient

A

(8)
1

in the QED theoretical expression for

a

e

.

(v) A determination of

α

that is only weakly dependent

on QED theory with a value of

u

r

fully competitive with

u

r

= 7

.

0

×

10

−

10

, the uncertainty of the most accurate

value currently available as obtained from

a

e

(exp) and

a

e

(th).

(vi) A determination of the Newtonian constant of

gravitation

G

with a

u

r

fully competitive with

u

r

=

1

.

4

×

10

−

5

, the uncertainty of the most accurate value

of

G

currently available.

(vii) A measurement of a transition frequency in hy-

drogen or deuterium, other than the already well-known
hydrogen 1S

1

/

2

−

2S

1

/

2

frequency, with an uncertainty

within an order of magnitude of the current uncertainty
of that frequency,

u

r

= 1

.

4

×

10

−

14

, thereby providing an

improved value of the Rydberg constant

R

∞

.

(viii) Improved theory of the principal hadronic con-

tribution to the theoretical expression for the muon mag-
netic moment anomaly

a

µ

(th) and improvements in the

experimental data underlying the calculation of this con-
tribution so that the origin of the current disagreement
between

a

µ

(th) and

a

µ

(exp) can be better understood.

(ix) Although there is no experimental or theoretical

evidence that the relations

K

J

= 2

e/h

and

R

K

=

h/e

2

are not exact, improved calculable-capacitor measure-
ments of

R

K

and low-ï¬eld measurements of the gyro-

magnetic ratios of the shielded proton and shielded he-
lion, which could provide further tests of the exactness of
these relations, would not be unwelcome, nor would high
accuracy results (

u

r

≈

10

−

8

) from experiments to close

the â€œquantum electrical triangle†(Drake and Grigorescu,
2005; Piquemal

et al.

, 2007).

It will be most interesting to see what portion, if any,

of this very ambitious program of work is completed by
the 31 December 2010 closing date of the next CODATA
adjustment of the values of the constants. Indeed, the
progress made, especially in meeting needs (i)-(iii), may
very likely determine whether the 24th CGPM, which
convenes in October 2011, will approve new deï¬nitions
of the kilogram, ampere, kelvin, and mole as discussed in
the previous section. If such new deï¬nitions are adopted,

h

,

e

,

k

, and

N

A

as well as a number of other fundamen-

tal constants, for example,

K

J

,

R

K

(assuming

K

J

= 2

e/h

and

R

K

=

h/e

2

),

R

, and

σ

, would be exactly known, and

many others would have signiï¬cantly reduced uncertain-
ties. The result would be a signiï¬cant advance in our
knowledge of the values of the constants.

XV. ACKNOWLEDGMENTS

We gratefully acknowledge the help of our many col-

leagues who provided us results prior to formal publica-
tion and for promptly and patiently answering our many
questions about their work.

References

Abramowitz, M., and I. A. Stegun, 1965,

Handbook of math-

ematical functions

(Dover Publications, Inc., New York,

NY).

Adkins, G. S., R. N. Fell, and P. M. Mitrikov, 2002, Phys.

Rev. A

65

, 042103.

Aitken, A. C., 1934, Proc. R. Soc. Edinburgh

55

, 42.

AMDC, 2003, http://amdc.in2p3.fr/masstables/Ame2003/

a0p4sqza.cov03.

AMDC, 2006, http://amdc.in2p3.fr.
Angeli, I., 2004, At. Data. Nucl. Data Tables

87

(2), 185.

Aoyama, T., M. Hayakawa, T. Kinoshita, and M. Nio, 2007,

Phys. Rev. Lett.

99

, 110406.

Armstrong, T. R., and M. P. Fitzgerald, 2003, Phys. Rev.

Lett.

91

, 201101.

Audi, G., A. H. Wapstra, and C. Thibault, 2003, Nucl. Phys.

A

729

(1), 337.

Bagley, C. H., and G. G. Luther, 1997, Phys. Rev. Lett.

78

(16), 3047.

Baikov, P. A., and D. J. Broadhurst, 1995, in

New Computing

Techniques in Physics Research IV. International Work-
shop on Software Engineering and Artificial Intelligence for
High Energy and Nuclear Physics

, edited by B. Denby and

D. Perret-Gallix (World Scientiï¬c, Singapore), pp. 167–172.

Bailey, J., K. Borer, F. Combley, H. Drumm, C. Eck, F. J. M.

Farley, J. H. Field, W. Flegel, P. M. Hattersley, F. Krienen,
F. Lange, G. Leb´ee,

et al.

, 1979, Nucl. Phys.

B150

(1), 1.

Barker, W. A., and F. N. Glover, 1955, Phys. Rev.

99

(1), 317.

Basile, G., A. Bergamin, G. Cavagnero, G. Mana, E. Vittone,

and G. Zosi, 1994, Phys. Rev. Lett.

72

(20), 3133.

de Beauvoir, B., F. Nez, L. Julien, B. Cagnac, F. Biraben,

D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy,
1997, Phys. Rev. Lett.

78

(3), 440.

Becker, P., 2001, Rep. Prog. Phys.

64

(12), 1945.

Becker, P., 2003, Metrologia

40

(6), 366.

Becker, P., H. Bettin, H.-U. Danzebrink, M. Gl¨

aser, U. Kuet-

gens, A. Nicolaus, D. Schiel, P. De Bi`evre, S. Valkiers, and
P. Taylor, 2003, Metrologia

40

(5), 271.

Becker, P., G. Cavagnero, U. Kuetgens, G. Mana, and

E. Massa, 2007, IEEE Trans. Instrum. Meas.

56

(2), 230.

Becker, P., K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas,

R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and
H. Siegert, 1981, Phys. Rev. Lett.

46

(23), 1540.

Becker, P., D. Schiel, H.-J. Pohl, A. K. Kaliteevski, O. N.

Godisov, M. F. Churbanov, G. G. Devyatykh, A. V. Gu-

background image

88

sev, A. D. Bulanov, S. A. Adamchik, V. A. Gavva, I. D.
Kovalev,

et al.

, 2006, Meas. Sci. Technol.

17

(7), 1854.

Beer, W., A. L. Eichenberger, B. Jeanneret, B. Jeckelmann,

A. R. Pourzand, P. Richard, and J. P. Schwarz, 2003, IEEE
Trans. Instrum. Meas.

52

(2), 626.

Beier, T., 2000, Phys. Rep.

339

(2,3), 79.

Beier, T., H. H¨

affner, N. Hermanspahn, S. G. Karshenboim,

H.-J. Kluge, W. Quint, S. Stahl, J. Verd´

u, and G. Werth,

2002, Phys. Rev. Lett.

88

, 011603.

Beier, T., I. Lindgren, H. Persson, S. Salomonson, P. Sunner-

gren, H. H¨

affner, and N. Hermanspahn, 2000, Phys. Rev.

A

62

, 032510.

Ben Dahan, M., E. Peik, J. Reichel, Y. Castin, and C. Sa-

lomon, 1996, Phys. Rev. Lett.

76

(24), 4508.

Bennett, G. W., B. Bousquet, H. N. Brown, G. Bunce, R. M.

Carey, P. Cushman, G. T. Danby, P. T. Debevec, M. Deile,
H. Deng, W. Deninger, S. K. Dhawan,

et al.

, 2006, Phys.

Rev. D

73

, 072003.

Benz, S. P., C. A. Hamilton, C. J. Burroughs, T. E. Harvey,

and L. A. Christian, 1997, Appl. Phys. Lett.

71

(13), 1866.

Berkeland, D. J., E. A. Hinds, and M. G. Boshier, 1995, Phys.

Rev. Lett.

75

(13), 2470.

Bertoldi, A., G. Lamporesi, L. Cacciapuoti, M. de Angelis,

M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler,
and G. M. Tino, 2006, Eur. Phys. J. D

40

(2), 271.

Bijnens, J., and J. Prades, 2007, Mod. Phys. Lett. A

22

(11),

767.

BIPM, 2006,

International System of Units (SI)

(Bureau in-

ternational des poids et mesures, S`evres, France), 8th edi-
tion.

Blundell, S. A., K. T. Cheng, and J. Sapirstein, 1997, Phys.

Rev. Lett.

78

(26), 4914.

Borisoglebsky, L. A., and E. E. Troï¬menko, 1979, Phys. Lett.

B

81

(2), 175.

Bourzeix, S., B. de Beauvoir, F. Nez, M. D. Plimmer,

F. de Tomasi, L. Julien, F. Biraben, and D. N. Stacey,
1996, Phys. Rev. Lett.

76

(3), 384.

Bower, V. E., and R. S. Davis, 1980, J. Res. Natl. Bur. Stand.

85

(3), 175.

Breit, G., 1928, Nature (London)

122

(3078), 649.

Brown, L. S., and G. Gabrielse, 1986, Rev. Mod. Phys.

58

(1),

233.

Cage, M. E., R. F. Dziuba, R. E. Elmquist, B. F. Field, G. R.

Jones, Jr., P. T. Olsen, W. D. Phillips, J. Q. Shields, R. L.
Steiner, B. N. Taylor, and E. R. Williams, 1989, IEEE
Trans. Instrum. Meas.

38

(2), 284.

Campbell, G. K., A. E. Leanhardt, J. Mun, M. Boyd, E. W.

Streed, W. Ketterle, and D. E. Pritchard, 2005, Phys. Rev.
Lett.

94

, 170403.

Carlson, C. E., 2007, Can. J. Phys.

85

(5), 429.

Cavagnero,

G.,

H. Fujimoto,

G. Mana,

E. Massa,

K. Nakayama, and G. Zosi, 2004a, Metrologia

41

(6), 445.

Cavagnero,

G.,

H. Fujimoto,

G. Mana,

E. Massa,

K. Nakayama, and G. Zosi, 2004b, Metrologia

41

(1), 56.

Clad´e, P., S. Guellati-Kh´elifa, C. Schwob, F. Nez, L. Julien,

and F. Biraben, 2005, Europhys. Lett.

71

(5), 730.

Clad´e, P., E. de Mirandes, M. Cadoret, S. Guellati-Kh´elifa,

C. Schwob, F. Nez, L. Julien, and F. Biraben, 2006a, Phys.
Rev. Lett.

96

, 033001.

Clad´e, P., E. de Mirandes, M. Cadoret, S. Guellati-Kh´elifa,

C. Schwob, F. Nez, L. Julien, and F. Biraben, 2006b, Phys.
Rev. A

74

, 052109.

Close, F. E., and H. Osborn, 1971, Phys. Lett. B

34

(5), 400.

Clothier, W. K., G. J. Sloggett, H. Bairnsfather, M. F. Currey,

and D. J. Benjamin, 1989, Metrologia

26

(1), 9.

Colclough, A. R., 1973, Metrologia

9

(2), 75.

Colclough, A. R., 1984, in

Precision Measurement and Fun-

damental Constants II

, edited by B. N. Taylor and W. D.

Phillips (NBS Spec. Pub. 617, US Government Printing
Office, Washington, DC), pp. 263–275.

Colclough, A. R., T. J. Quinn, and T. R. D. Chandler, 1979,

Proc. R. Soc. London, Ser. A

368

(1732), 125.

Cook, A. H., 1961, Philos. Trans. R. Soc. London, Ser. A

254

(1038), 125.

Cook, A. H., and N. W. B. Stone, 1957, Philos. Trans. R. Soc.

London, Ser. A

250

(978), 279.

Czarnecki, A., U. D. Jentschura, and K. Pachucki, 2005, Phys.

Rev. Lett.

95

, 180404.

Czarnecki, A., B. Krause, and W. J. Marciano, 1996, Phys.

Rev. Lett.

76

(18), 3267.

Czarnecki, A., W. J. Marciano, and A. Vainshtein, 2003,

Phys. Rev. D

67

, 073006.

Czarnecki, A., W. J. Marciano, and A. Vainshtein, 2006,

Phys. Rev. D

73

, 073006.

Czarnecki, A., and K. Melnikov, 2001, Phys. Rev. Lett.

87

,

013001.

Czarnecki, A., K. Melnikov, and A. Yelkhovsky, 2001, Phys.

Rev. A

63

, 012509.

D’Agostino, G., A. Germak, S. Desogus, C. Origlia, and

G. Barbato, 2005, Metrologia

42

(4), 233.

Daussy, C., M. Guinet, A. Amy-Klein, K. Djerroud, Y. Her-

mier, S. Briaudeau, C. J. Bord´e, and C. Chardonnet, 2007,
Phys. Rev. Lett.

98

, 250801.

Davier, M., 2006, private communication.
Davier, M., 2007, Nucl. Phys. B (Proc. Suppl.)

169

, 288.

Davier, M., S. Eidelman, A. H¨

ocker, and Z. Zhang, 2003, Eur.

Phys. J. C

31

(4), 503.

Davier, M., and A. H¨

ocker, 1998, Phys. Lett. B

435

(3-4), 427.

Davier, M., A. H¨

ocker, and Z. Zhang, 2006, Rev. Mod. Phys.

78

(4), 1043.

Davier, M., and W. J. Marciano, 2004, Annu. Rev. Nucl. Part.

Sci.

54

, 115.

Davis, R. S., 1995, Meas. Sci. Technol.

6

, 227.

Dewey, M. S., E. G. Kessler Jr., R. D. Deslattes, H. G. B¨

orner,

M. Jentschel, C. Doll, and P. Mutti, 2006, Phys. Rev. C

73

,

044303.

Ding, T., D. Wan, R. Bai, Z. Zhang, Y. Shen, and R. Meng,

2005, Geochim. Cosmochim. Acta

69

(23), 5487.

Drake, G. W. F., 2002, Can. J. Phys.

80

(11), 1195.

Drake, G. W. F., and M. Grigorescu, 2005, J. Phys. B

38

(18),

3377.

Drake, G. W. F., and R. A. Swainson, 1990, Phys. Rev. A

41

(3), 1243.

Eidelman, S., and M. Passera, 2007, Mod. Phys. Lett. A

22

(3), 159.

Eidelman, S. I., S. G. Karshenboim, and V. A. Shelyuto, 2002,

Can. J. Phys.

80

(11), 1297.

Eides, M., 2002, private communication.
Eides, M. I., 1996, Phys. Rev. A

53

(5), 2953.

Eides, M. I., and H. Grotch, 1995a, Phys. Rev. A

52

(4), 3360.

Eides, M. I., and H. Grotch, 1995b, Phys. Rev. A

52

(2), 1757.

Eides, M. I., and H. Grotch, 1997a, Ann. Phys. (N.Y.)

260

(1),

191.

Eides, M. I., and H. Grotch, 1997b, Phys. Rev. A

56

(4),

R2507.

Eides, M. I., and H. Grotch, 1997c, Phys. Rev. A

55

(5), 3351.

Eides, M. I., H. Grotch, and V. A. Shelyuto, 1997, Phys. Rev.

A

55

(3), 2447.

background image

89

Eides, M. I., H. Grotch, and V. A. Shelyuto, 2001a, Phys.

Rev. A

63

, 052509.

Eides, M. I., H. Grotch, and V. A. Shelyuto, 2001b, Phys.

Rep.

342

(2-3), 63.

Eides, M. I., H. Grotch, and V. A. Shelyuto, 2002, Phys. Rev.

D

65

, 013003.

Eides, M. I., H. Grotch, and V. A. Shelyuto, 2003, Phys. Rev.

D

67

, 113003.

Eides, M. I., H. Grotch, and V. A. Shelyuto, 2004, Phys. Rev.

D

70

, 073005.

Eides, M. I., and V. A. Shelyuto, 1995, Phys. Rev. A

52

(2),

954.

Eides, M. I., and V. A. Shelyuto, 2003, Phys. Rev. A

68

,

042106.

Eides, M. I., and V. A. Shelyuto, 2004, Phys. Rev. A

70

,

022506.

Eides, M. I., and V. A. Shelyuto, 2007, Can. J. Phys.

85

(5),

509.

Elkhovski˘ı, A. S., 1996, Zh. Eksp. Teor. Fiz.

110

(2), 431.

Erickson, G. W., 1977, J. Phys. Chem. Ref. Data

6

(3), 831.

Erickson, G. W., and D. R. Yennie, 1965, Ann. Phys. (N.Y.)

35

(1), 271.

Erler, J., and G. T. S´

anchez, 2006, Phys. Rev. Lett.

97

,

161801.

Farnham, D. L., R. S. Van Dyck, Jr., and P. B. Schwinberg,

1995, Phys. Rev. Lett.

75

(20), 3598.

Faustov, R., 1970, Phys. Lett. B

33

(6), 422.

Fellmuth, B., C. Gaiser, and J. Fischer, 2006, Meas. Sci. Tech-

nol.

17

(10), R145.

Fischer, M., N. Kolachevsky, M. Zimmermann, R. Holzwarth,

T. Udem, T. W. H¨

ansch, M. Abgrall, J. Gr¨

unert, I. Mak-

simovic, S. Bize, H. Marion, F. P. Dos Santos,

et al.

, 2004,

Phys. Rev. Lett.

92

, 230802.

Fixler, J. B., G. T. Foster, J. M. McGuirk, and M. A. Kase-

vich, 2007, Science

315

(5808), 74.

Flowers, J. L., B. W. Petley, and M. G. Richards, 1993,

Metrologia

30

(2), 75.

Fortier, T. M., N. Ashby, J. C. Bergquist, M. J. Delaney, S. A.

Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R.
Jefferts, K. Kim, F. Levi, L. Lorini,

et al.

, 2007, Phys. Rev.

Lett.

98

, 070801.

Friar, J. L., 1979a, Z. Phys. A

292

(1), 1.

Friar, J. L., 1979b, Ann. Phys. (N.Y.)

122

(1), 151.

Friar, J. L., 1981, Z. Phys. A

303

(1), 84.

Friar, J. L., J. Martorell, and D. W. L. Sprung, 1999, Phys.

Rev. A

59

(5), 4061.

Friar, J. L., and G. L. Payne, 1997a, Phys. Rev. C

56

(2), 619.

Friar, J. L., and G. L. Payne, 1997b, Phys. Rev. A

56

(6),

5173.

Fujii, K., A. Waseda, N. Kuramoto, S. Mizushima, P. Becker,

H. Bettin, A. Nicolaus, U. Kuetgens, S. Valkiers, P. Taylor,
P. De Bi`evre, G. Mana,

et al.

, 2005, IEEE Trans. Instrum.

Meas.

54

(2), 854.

Fujimoto, H., G. Mana, and K. Nakayama, 2006, private com-

munication.

Fujimoto, H., G. Mana, and K. Nakayama, 2007, IEEE Trans.

Instrum. Meas.

56

(2), 351.

Funck, T., and V. Sienknecht, 1991, IEEE Trans. Instrum.

Meas.

40

(2), 158.

Gabrielse, G., 2006, Int. J. Mass Spectrom.

251

(2-3), 273.

Gabrielse, G., D. Hanneke, T. Kinoshita, M. Nio, and

B. Odom, 2006, Phys. Rev. Lett.

97

, 030802.

Gabrielse, G., D. Hanneke, T. Kinoshita, M. Nio, and

B. Odom, 2007, Phys. Rev. Lett.

99

, 030802.

Genev`es, G., P. Gournay, A. Gosset, M. Lecollinet, F. Villar,

P. Pinot, P. Juncar, A. Clairon, A. Landragin, D. Holleville,
F. Pereira Dos Santos, J. David,

et al.

, 2005, IEEE Trans.

Instrum. Meas.

54

(2), 850.

George, M. C., L. D. Lombardi, and E. A. Hessels, 2001, Phys.

Rev. Lett.

87

, 173002.

Gerginov, V., K. Calkins, C. E. Tanner, J. J. Mcferran, S. Did-

dams, A. Bartels, and L. Hollberg, 2006, Phys. Rev. A

73

,

032504.

Giusfredi, G., P. C. Pastor, P. D. Natale, D. Mazzotti, C. D.

Mauro, L. Fallani, G. Hagel, V. Krachmalnicoff, and M. In-
guscio, 2005, Can. J. Phys.

83

(4), 301.

Glazov, D. A., and V. M. Shabaev, 2002, Phys. Lett. A

297

(5-

6), 408.

Golosov, E. A., A. S. Elkhovski˘ı, A. I. Mil’shte˘ın, and I. B.

Khriplovich, 1995, Zh. Eksp. Teor. Fiz.

107

(2), 393.

Gorshkov, M. V., Y. I. Neronov, E. N. Nikolaev, Y. V. Tar-

beev, and V. L. Tal’roze, 1989, Dokl. Akad. Nauk SSSR

305

, 1362.

Greene, G. L., N. F. Ramsey, W. Mampe, J. M. Pendlebury,

K. Smith, W. B. Dress, P. D. Miller, and P. Perrin, 1979,
Phys. Rev. D

20

(9), 2139.

Greene, G. L., N. F. Ramsey, W. Mampe, J. M. Pendlebury,

K. Smith, W. D. Dress, P. D. Miller, and P. Perrin, 1977,
Phys. Lett. B

71

(2), 297.

Grotch, H., 1970, Phys. Rev. Lett.

24

(2), 39.

Gundlach, J. H., and S. M. Merkowitz, 2000, Phys. Rev. Lett.

85

(14), 2869.

Gundlach, J. H., and S. M. Merkowitz, 2002, private commu-

nication.

H¨

affner, H., T. Beier, S. Djeki´c, N. Hermanspahn, H.-J.

Kluge, W. Quint, S. Stahl, J. Verd´

u, T. Valenzuela, and

G. Werth, 2003, Eur. Phys. J. D

22

(2), 163.

Hagiwara, K., A. D. Martin, D. Nomura, and T. Teubner,

2004, Phys. Rev. D

69

, 093003.

Hagiwara, K., A. D. Martin, D. Nomura, and T. Teubner,

2007, Phys. Lett. B

649

(2-3), 173.

Hagley, E. W., and F. M. Pipkin, 1994, Phys. Rev. Lett.

72

(8), 1172.

Hanke, M., and E. G. Kessler, 2005, J. Phys. D

38

(10A),

A117.

H¨

ansch, T., J. Alnis, P. Fendel, M. Fischer, C. Gohle, M. Her-

rmann, R. Holzwarth, N. Kolachevsky, T. Udem, and
M. Zimmermann, 2005, Philos. Trans. R. Soc. London, Ser.
A

363

(1834), 2155.

Hartland, A., R. G. Jones, and D. J. Legg, 1988, Document

CCE/88-9 submitted to the 18th meeting of the Comit´e
Consultatif d’´

Electricit´e of the CIPM.

H¨

artwig, J., S. Grosswig, P. Becker, and D. Windisch, 1991,

Phys. Status Solidi A

125

(1), 79.

Hayano, R. S., 2007, Can. J. Phys.

85

(5), 453.

He, M.-G., and Z.-G. Liu, 2002, Acta Phys. Sin.-Ch. Ed.

51

(5), 1004.

Hertzog, D. W., 2007, Nucl. Phys. B (Proc. Suppl.)

169

, 255.

Hori, M., 2006, private communication.
Hori, M., A. Dax, J. Eades, K. Gomikawa, R. Hayano, N. Ono,

W. Pirkl, E. Widmann, H. A. Torii, B. Juh´

asz, D. Barna,

and D. Horv´

ath, 2006, Phys. Rev. Lett.

96

, 243401.

Hori, M., J. Eades, R. S. Hayano, T. Ishikawa, W. Pirkl,

E. Widmann, H. Yamaguchi, H. A. Torii, B. Juh´

asz,

D. Horv´

ath, and T. Yamazaki, 2003, Phys. Rev. Lett.

91

,

123401.

Hori, M., J. Eades, R. S. Hayano, T. Ishikawa, J. Sak-

background image

90

aguchi, E. Widmann, H. Yamaguchi, H. A. Torii, B. Juh´

asz,

D. Horv´

ath, and T. Yamazaki, 2001, Phys. Rev. Lett.

87

,

093401.

Hu, Z.-K., J.-Q. Guo, and J. Luo, 2005, Phys. Rev. D

71

,

127505.

Huber, A., T. Udem, B. Gross, J. Reichert, M. Kourogi,

K. Pachucki, M. Weitz, and T. W. H¨

ansch, 1998, Phys.

Rev. Lett.

80

(3), 468.

Hylton, D. J., 1985, Phys. Rev. A

32

(3), 1303.

Jeffery, A., R. E. Elmquist, J. Q. Shields, L. H. Lee, M. E.

Cage, S. H. Shields, and R. F. Dziuba, 1998, Metrologia

35

(2), 83.

Jeffery, A.-M., R. E. Elmquist, L. H. Lee, J. Q. Shields, and

R. F. Dziuba, 1997, IEEE Trans. Instrum. Meas.

46

(2),

264.

Jeffery, A.-M., L. H. Lee, and J. Q. Shields, 1999, IEEE Trans.

Instrum. Meas.

48

(2), 356.

Jegerlehner, F., 2007, Acta Phys. Pol. B

38

(9), 3021.

Jentschura, U., and K. Pachucki, 1996, Phys. Rev. A

54

(3),

1853.

Jentschura, U. D., 2003, J. Phys. A

36

, L229.

Jentschura, U. D., 2004, Phys. Rev. A

70

, 052108.

Jentschura, U. D., A. Czarnecki, and K. Pachucki, 2005a,

Phys. Rev. A

72

, 062102.

Jentschura, U. D., A. Czarnecki, K. Pachucki, and V. A.

Yerokhin, 2006, Int. J. Mass Spectrom.

251

(2-3), 102.

Jentschura, U. D., and P. J. Mohr, 2004, Phys. Rev. A

69

,

064103.

Jentschura, U. D., and P. J. Mohr, 2005, Phys. Rev. A

72

,

014103.

Jentschura, U. D., P. J. Mohr, and G. Soff, 1999, Phys. Rev.

Lett.

82

(1), 53.

Jentschura, U. D., P. J. Mohr, and G. Soff, 2001, Phys. Rev.

A

63

, 042512.

Jentschura, U. D., and I. N´

andori, 2002, Phys. Rev. A

66

,

022114.

Jentschura,

U. J.,

S. Kotochigova,

E. O. Le Bigot,

and P. J. Mohr, 2005b, NIST Technical Note 1469,
http://physics.nist.gov/hdel.

Karagioz, O. V., and V. P. Izmailov, 1996, Izmer. Tekh.

39

(10), 3.

Karagioz, O. V., V. P. Izmaylov, and G. T. Gillies, 1998,

Grav. Cosmol.

4

(3), 239.

Karshenboim, S. G., 1993, Zh. Eksp. Teor. Fiz.

103

(4), 1105.

Karshenboim, S. G., 1995, J. Phys. B

28

(4), L77.

Karshenboim, S. G., 1996, J. Phys. B

29

(2), L29.

Karshenboim, S. G., 1997, Z. Phys. D

39

(2), 109.

Karshenboim, S. G., 2000, Phys. Lett. A

266

(4,5,6), 380.

Karshenboim, S. G., and V. G. Ivanov, 2002, Can. J. Phys.

80

(11), 1305.

Karshenboim, S. G., V. G. Ivanov, Y. I. Neronov, B. P. Niko-

laev, and Y. N. Tolparov, 2005, Can. J. Phys.

83

(4), 405.

Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 1999,

Phys. Scr.

T80

, 491.

Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2000,

Zh. Eksp. Teor. Fiz.

117

(1), 67.

Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2001a,

Can. J. Phys.

79

(1), 81.

Karshenboim, S. G., V. G. Ivanov, and V. M. Shabaev, 2001b,

Zh. Eksp. Teor. Fiz.

120

(3), 546.

Karshenboim, S. G., and A. I. Milstein, 2002, Phys. Lett. B

549

(3-4), 321.

Kataev, A. L., 2006, Phys. Rev. D

74

, 073011.

Kessler, E., 2006, private communication.

Kessler, E. G., Jr., M. S. Dewey, R. D. Deslattes, A. Henins,

H. G. B¨

orner, M. Jentschel, C. Doll, and H. Lehmann, 1999,

Phys. Lett. A

255

(4-6), 221.

Khriplovich, I. B., and R. A. Sen’kov, 1998, Phys. Lett. A

249

(5-6), 474.

Khriplovich, I. B., and R. A. Sen’kov, 2000, Phys. Lett. B

481

(2,3,4), 447.

Kibble, B. P., 1975, in

Atomic Masses and Fundamental

Constants 5

, edited by J. H. Sanders and A. H. Wapstra

(Plenum Press, New York), pp. 545–551.

Kibble, B. P., and G. J. Hunt, 1979, Metrologia

15

(1), 5.

Kibble, B. P., and I. Robinson, 1977,

Feasibility study for a

moving coil apparatus to relate the electrical and mechan-
ical SI units

(National Physical Laboratory, Teddington,

Middlesex, UK), [NPL Report DES 40].

Kibble, B. P., and I. A. Robinson, 2003, Meas. Sci. Technol.

14

(8), 1243.

Kibble, B. P., I. A. Robinson, and J. H. Belliss, 1990, Metrolo-

gia

27

(4), 173.

Kim, C. G., B. C. Woo, P. G. Park, K. S. Ryu, and C. S.

Kim, 1995, IEEE Trans. Instrum. Meas.

44

(2), 484.

Kino, Y., H. Kudo, and M. Kamimura, 2003, Mod. Phys.

Lett. A

18

(2-6), 388.

Kinoshita, T., T. Aoyama, M. Hayakawa, and M. Nio, 2006,

Nucl. Phys. B (Proc. Suppl.)

160

, 235.

Kinoshita, T., and M. Nio, 2004, Phys. Rev. D

70

, 113001.

Kinoshita, T., and M. Nio, 2006a, Phys. Rev. D

73

, 013003.

Kinoshita, T., and M. Nio, 2006b, Phys. Rev. D

73

, 053007.

Kinoshita, T., B. Nizic, and Y. Okamoto, 1990, Phys. Rev. D

41

(2), 593.

Kleinevoß, U., 2002,

Bestimmung der Newtonschen Gravita-

tionskonstanten

G

, Ph.D. thesis, University of Wuppertal.

Kleinvoß, U., H. Meyer, H. Piel, and S. Hartmann, 2002, pri-

vate communication and to be published.

Kleppner, D., 1997, private communication.
Kolachevsky, N., M. Fischer, S. G. Karshenboim, and T. W.

H¨

ansch, 2004, Phys. Rev. Lett.

92

, 033003.

Korobov, V. I., 2003, Phys. Rev. A

67

, 062501.

Korobov, V. I., 2005, in

Proceedings of the EXA05 Inter-

national Conference on Exotic Atoms and Related Topics

,

edited by A. Hirtl, J. Marton, E. Widmann, and J. Zmeskal
(Austrian Academy of Sciences Press, Vienna), pp. 391–
400.

Korobov, V. I., 2006, private communication.
Kotochigova, S., 2006, private communication.
Kotochigova, S., and P. J. Mohr, 2006, private communica-

tion.

Kotochigova, S., P. J. Mohr, and B. N. Taylor, 2002, Can. J.

Phys.

80

(11), 1373.

Krause, B., 1997, Phys. Lett. B

390

(1-4), 392.

Kr¨

uger, E., W. Nistler, and W. Weirauch, 1999, Metrologia

36

(2), 147.

 Lach, G., B. Jeziorski, and K. Szalewicz, 2004, Phys. Rev.

Lett.

92

, 233001.

Lampard, D. G., 1957, Pr. Inst. Electr. Elect.

104C

, 271.

Laporta, S., 2001, Phys. Lett. B

523

(1-2), 95.

Laporta, S., P. Mastrolia, and E. Remiddi, 2004, Nucl. Phys.

B

688

(1-2), 165.

Laporta, S., and E. Remiddi, 1993, Phys. Lett. B

301

(4), 440.

Laporta, S., and E. Remiddi, 1996, Phys. Lett. B

379

(1-4),

283.

Laporta, S., and E. Remiddi, 2006, private communication.
Lea, S. N., 2007, Rep. Prog. Phys.

70

(9), 1473.

Lee, R. N., A. I. Milstein, I. S. Terekhov, and S. G. Karshen-

background image

91

boim, 2005, Phys. Rev. A

71

, 052501.

Li, G., M. A. Samuel, and M. I. Eides, 1993, Phys. Rev. A

47

(2), 876.

Liu, R., H. Liu, T. Jin, Z. Lu, X. Du, S. Xue, J. Kong, B. Yu,

X. Zhou, T. Liu, and W. Zhang, 1995, Acta Metrol. Sin.

16

(3), 161.

Liu, W., M. G. Boshier, S. Dhawan, O. van Dyck, P. Egan,

X. Fei, M. G. Perdekamp, V. W. Hughes, M. Janousch,
K. Jungmann, D. Kawall, F. G. Mariam,

et al.

, 1999, Phys.

Rev. Lett.

82

(4), 711.

Lundeen, S. R., and F. M. Pipkin, 1986, Metrologia

22

(1), 9.

Luo, J., Z.-K. Hu, X.-H. Fu, S.-H. Fan, and M.-X. Tang, 1999,

Phys. Rev. D

59

, 042001.

Luther, H., K. Grohmann, and B. Fellmuth, 1996, Metrologia

33

(4), 341.

Mana, G., 2001, in

Proceedings of the International School of

Physics â€œEnrico Fermi,†Course CXLVI, Recent Advances
in Metrology and Fundamental Constants

, edited by T. J.

Quinn, S. Leschiutta, and P. Tavella (IOS Press, Amster-
dam), pp. 177–193.

Mana, G., and E. Massa, 2006, private communication.
Manohar, A. V., and I. W. Stewart, 2000, Phys. Rev. Lett.

85

(11), 2248.

Mariam, F. G., 1981,

High Precision Measurement of the

Muonium Ground State Hyperfine Interval and the Muon
Magnetic Moment

, Ph.D. thesis, Yale University.

Mariam, F. G., W. Beer, P. R. Bolton, P. O. Egan, C. J.

Gardner, V. W. Hughes, D. C. Lu, P. A. Souder, H. Orth,
J. Vetter, U. Moser, and G. zu Putlitz, 1982, Phys. Rev.
Lett.

49

(14), 993.

Martin, J., U. Kuetgens, J. St¨

umpel, and P. Becker, 1998,

Metrologia

35

(6), 811.

Martynenko, A. P., and R. N. Faustov, 2001, Zh. Eksp. Teor.

Fiz.

120

(3), 539.

Martynenko, A. P., and R. N. Faustov, 2002, Yad. Fiz.

65

(2),

297.

Mastrolia, P., and E. Remiddi, 2001, in

The Hydrogen Atom:

Precision Physics of Simple Atomic Systems

, edited by

S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. In-
guscio, and T. W. H¨

ansch (Springer, Berlin), pp. 776–783.

McGuirk, J. M., G. T. Foster, J. B. Fixler, M. J. Snadden,

and M. A. Kasevich, 2002, Phys. Rev. A

65

, 033608.

Melnikov, K., and T. van Ritbergen, 2000, Phys. Rev. Lett.

84

(8), 1673.

Melnikov, K., and A. Vainshtein, 2004, Phys. Rev. D

70

,

113006.

Melnikov, K., and A. Vainshtein, 2006,

Theory of the Muon

Anomalous Magnetic Moment

(Springer Tracts in Modern

Physics 216, Springer, Berlin).

Melnikov, K., and A. Yelkhovsky, 1999, Phys. Lett. B

458

(1),

143.

Miller, J. P., E. de Rafael, and B. Lee Roberts, 2007, Rep.

Prog. Phys.

70

(5), 795.

Mills, I. M., P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R.

Williams, 2006, Metrologia

43

(3), 227.

Milstein, A. I., O. P. Sushkov, and I. S. Terekhov, 2002, Phys.

Rev. Lett.

89

, 283003.

Milstein, A. I., O. P. Sushkov, and I. S. Terekhov, 2003a,

Phys. Rev. A

67

, 062103.

Milstein, A. I., O. P. Sushkov, and I. S. Terekhov, 2003b,

Phys. Rev. A

67

, 062111.

Mohr, P. J., 1975, in

Beam-Foil Spectroscopy

, edited by I. A.

Sellin and D. J. Pegg (Plenum Press, New York), volume 1,
pp. 89–96.

Mohr, P. J., 1982, Phys. Rev. A

26

(5), 2338.

Mohr, P. J., 1983, At. Data. Nucl. Data Tables

29

(3), 453.

Mohr, P. J., and B. N. Taylor, 2000, Rev. Mod. Phys.

72

(2),

351.

Mohr, P. J., and B. N. Taylor, 2005, Rev. Mod. Phys.

77

(1),

1.

Mohr, P. J., B. N. Taylor, and D. B. Newell, 2007,

http://physics.nist.gov/constants.

Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl,

and R. S. Davis, 1988, J. Res. Natl. Bur. Stand.

93

(2), 85.

M¨

uller, H., S.-W. Chiow, Q. Long, C. Vo, and S. Chu, 2006,

Appl. Phys. B

84

, 633.

Nagy, S., T. Fritioff, M. Bj¨

orkhage, I. Bergstr¨

om, and

R. Schuch, 2006, Europhys. Lett.

74

(3), 404.

Nakayama, K., and H. Fujimoto, 1997, IEEE Trans. Instrum.

Meas.

46

(2), 580.

Nebel, T., F. D. Amaro, A. Antognini, F. Biraben, J. M. R.

Cardoso, C. A. N. Conde, A. Dax, S. Dhawan, L. M. P.
Fernandes, A. Giesen, T. W. H¨

ansch, P. Indelicato,

et al.

,

2007, Can. J. Phys.

85

(5), 469.

Neronov, Y. I., and A. E. Barzakh, 1977, Zh. Eksp. Teor. Fiz.

72

(5), 1659.

Neronov, Y. I., A. E. Barzakh, and K. Mukhamadiev, 1975,

Zh. Eksp. Teor. Fiz.

69

, 1872.

Neronov, Y. I., and S. G. Karshenboim, 2003, Phys. Lett. A

318

(1-2), 126.

Newton, G., D. A. Andrews, and P. J. Unsworth, 1979, Philos.

Trans. R. Soc. London, Ser. A

290

(1373), 373.

Niering, M., R. Holzwarth, J. Reichert, P. Pokasov, T. Udem,

M. Weitz, T. W. H¨

ansch, P. Lemonde, G. Santarelli, M. Ab-

grall, P. Laurent, C. Salomon,

et al.

, 2000, Phys. Rev. Lett.

84

(24), 5496.

Nio, M., 2001, in

Quantum Electrodynamics and Physics of

the Vacuum

, edited by G. Cantatore (AIP Conference Pro-

ceedings 564, American Institute of Physics, Melville, NY),
pp. 178–185.

Nio, M., 2002, private communication.
Odom, B., D. Hanneke, B. D’Urso, and G. Gabrielse, 2006,

Phys. Rev. Lett.

97

, 030801.

Pachucki, K., 1993a, Phys. Rev. A

48

(4), 2609.

Pachucki, K., 1993b, Phys. Rev. A

48

(1), 120.

Pachucki, K., 1994, Phys. Rev. Lett.

72

(20), 3154.

Pachucki, K., 1995, Phys. Rev. A

52

(2), 1079.

Pachucki, K., 2001, Phys. Rev. A

63

, 042503.

Pachucki, K., 2006, Phys. Rev. Lett.

97

, 013002.

Pachucki, K., 2007, Phys. Rev. A

76

, 022508.

Pachucki, K., A. Czarnecki, U. D. Jentschura, and V. A.

Yerokhin, 2005a, Phys. Rev. A

72

, 022108.

Pachucki, K., and H. Grotch, 1995, Phys. Rev. A

51

(3), 1854.

Pachucki, K., and U. D. Jentschura, 2003, Phys. Rev. Lett.

91

, 113005.

Pachucki, K., U. D. Jentschura, and V. A. Yerokhin, 2004,

Phys. Rev. Lett.

93

, 150401.

Pachucki, K., U. D. Jentschura, and V. A. Yerokhin, 2005b,

Phys. Rev. Lett.

94

, 150401.

Pachucki, K., and S. G. Karshenboim, 1999, Phys. Rev. A

60

(4), 2792.

Palomar, J. E., 2003, Nucl. Phys. B (Proc. Suppl.)

121

, 183.

Park, P. G., C. H. Choi, C. S. Kim, V. Y. Shifrin, and V. N.

Khorev, 1999, J. Korean Phys. Soc.

34

(4), 327.

Passera, M., 2005, J. Phys. G

31

(5), R75.

Passera, M., 2007, Phys. Rev. D

75

, 013002.

Peik, E., M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Sa-

lomon, 1997, Phys. Rev. A

55

(4), 2989.

background image

92

Penin, A. A., 2004, Int. J. Mod. Phys. A

19

(23), 3897.

Peters, A., K. Y. Chung, and S. Chu, 2001, Metrologia

38

(1),

25.

Petley, B. W., and R. W. Donaldson, 1984, Metrologia

20

(3),

81.

Phillips, W. D., W. E. Cooke, and D. Kleppner, 1977,

Metrologia

13

(4), 179.

Phillips, W. D., D. Kleppner, and F. G. Walther, 1984, private

communication.

Picard, A., M. Stock, H. Fang, T. J. Witt, and D. Reymann,

2007, IEEE Trans. Instrum. Meas.

56

(2), 538.

Piquemal, F., L. Devoille, N. Feltin, and B. Steck, 2007,

in

Metrology and Fundamental Constants, Vol. 166 of

International School of Physics â€œEnrico Fermiâ€, Course
CLXVI

, edited by T. W. H¨

ansch, S. Leschiutta, A. J. Wal-

lard, and M. L. Rastello (IOS Press, Amsterdam), pp. 181–
210.

Poirier, W., A. Bounouh, F. Piquemal, and J. P. Andr´e, 2004,

Metrologia

41

(4), 285.

Preston-Thomas, H., 1990a, Metrologia

27

, 107.

Preston-Thomas, H., 1990b, Metrologia

27

(1), 3.

Quinn, T. J., 1989, Metrologia

26

(1), 69.

Quinn, T. J., 2001, Metrologia

38

(1), 89.

Quinn, T. J., A. R. Colclough, and T. R. D. Chandler, 1976,

Philos. Trans. R. Soc. London, Ser. A

283

(1314), 367.

Quinn, T. J., C. C. Speake, S. J. Richman, R. S. Davis, and

A. Picard, 2001, Phys. Rev. Lett.

87

, 111101.

Rainville, S., J. K. Thompson, E. G. Myers, J. M. Brown,

M. S. Dewey, E. G. Kessler Jr, R. D. Deslattes, H. G.
B¨

orner, M. Jentschel, P. Mutti, and D. E. Pritchard, 2005,

Nature (London)

438

(7071), 1096.

Ramsey, N. F., 1990, in

Quantum Electrodynamics

, edited by

T. Kinoshita (World Scientiï¬c, Singapore), chapter 13, pp.
673–695.

Reynolds, B. C., R. B. Georg, F. Oberli, U. Wiechert, and

A. N. Halliday, 2006, J. Anal. At. Spectrom.

21

(3), 266.

Ritter, M. W., P. O. Egan, V. W. Hughes, and K. A. Woodle,

1984, Phys. Rev. A

30

(3), 1331.

Robinson, I. A., and B. P. Kibble, 1997, IEEE Trans. Instrum.

Meas.

46

(2), 596.

Robinson, I. A., and B. P. Kibble, 2002, in

2002 Conference

on Precision Electromagnetic Measurements Digest

, edited

by T. McComb (IEEE, Piscataway, NJ), pp. 574–575, iEEE
Catalog Number 02CH37279.

Robinson, I. A., and B. P. Kibble, 2007, Metrologia

44

(6),

427.

Sapirstein, J. R., and D. R. Yennie, 1990, in

Quantum Elec-

trodynamics

, edited by T. Kinoshita (World Scientiï¬c, Sin-

gapore), chapter 12, pp. 560–672.

Sarajlic, E., S. Chu, and A. Wicht, 2006, private communica-

tion.

Schlamminger, S., 2007, private communication.
Schlamminger, S., E. Holzschuh, and W. K¨

undig, 2002, Phys.

Rev. Lett.

89

, 161102.

Schlamminger, S., E. Holzschuh, W. K¨

undig, F. Nolting, R. E.

Pixley, J. Schurr, and U. Staumann, 2006, Phys. Rev. D

74

,

082001.

Schmidt, J. W., R. M. Gavioso, E. F. May, and M. R.

Moldover, 2007, Phys. Rev. Lett.

98

, 254504.

Schwarz, J. P., R. Liu, D. B. Newell, R. L. Steiner, E. R.

Williams, D. Smith, A. Erdemir, and J. Woodford, 2001,
J. Res. Natl. Inst. Stand. Technol.

106

(4), 627.

Schwob, C., L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez,

L. Julien, F. Biraben, O. Acef, and A. Clairon, 1999, Phys.

Rev. Lett.

82

(25), 4960.

Schwob, C., L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez,

L. Julien, F. Biraben, O. Acef, and A. Clairon, 2001, Phys.
Rev. Lett.

86

(18), 4193.

Shabaev, V. M., A. N. Artemyev, T. Beier, and G. Soff, 1998,

J. Phys. B

31

(8), L337.

Sheppard, W. F., 1912, in

Proceedings of the Fifth Interna-

tional Congress of Mathematicians

, edited by E. W. Hob-

son and A. E. H. Love (Cambridge University Press, Cam-
bridge), volume ii, pp. 348–384.

Shifrin, V. Y., V. N. Khorev, P. G. Park, C. H. Choi, and

C. S. Kim, 1998a, Izmer. Tekh.

1998

(4), 68.

Shifrin, V. Y., P. G. Park, V. N. Khorev, C. H. Choi, and

C. S. Kim, 1998b, IEEE Trans. Instrum. Meas.

47

(3), 638.

Shifrin, V. Y., P. G. Park, V. N. Khorev, C. H. Choi, and

S. Lee, 1999, IEEE Trans. Instrum. Meas.

48

(2), 196.

Sick, I., 2003, Phys. Lett. B

576

(1-2), 62.

Sick, I., 2007a, private communication.
Sick, I., 2007b, Can. J. Phys.

85

(5), 409.

Sick, I., and D. Trautmann, 1998, Nucl. Phys.

A637

(4), 559.

Sienknecht, V., and T. Funck, 1985, IEEE Trans. Instrum.

Meas.

IM-34

(2), 195.

Sienknecht, V., and T. Funck, 1986, Metrologia

22

(3), 209.

Small, G. W., B. W. Ricketts, P. C. Coogan, B. J. Pritchard,

and M. M. R. Sovierzoski, 1997, Metrologia

34

(3), 241.

Steiner, R., D. Newell, and E. Williams, 2005a, J. Res. Natl.

Inst. Stand. Technol.

110

(1), 1.

Steiner, R. L., E. R. Williams, R. Liu, and D. B. Newell, 2007,

IEEE Trans. Instrum. Meas.

56

(2), 592.

Steiner, R. L., E. R. Williams, D. B. Newell, and R. Liu,

2005b, Metrologia

42

(5), 431.

Stock, M., and T. J. Witt, 2006, Metrologia

43

(6), 583.

St¨

ockinger, D., 2007, J. Phys. G

34

(2), R45.

Tarbeev, Y. V., V. Y. Shifrin, V. N. Khorev, and N. V. Stu-

dentsov, 1989, Izmer. Tekh.

32

(4), 3.

Taylor, B. N., and P. J. Mohr, 2001, IEEE Trans. Instrum.

Meas.

50

(2), 563.

Thompson, A. M., 1959, Pr. Inst. Electr. Elect.

106B

, 307.

Thompson, A. M., and D. G. Lampard, 1956, Nature (Lon-

don)

177

, 888.

Tomaselli, M., T. K¨

uhl, W. N¨

ortersh¨

auser, S. Borneis,

A. Dax, D. Marx, H. Wang, and S. Fritzsche, 2002, Phys.
Rev. A

65

, 022502.

Trapon, G., O. Th´evenot, J. C. Lacueille, and W. Poirier,

2003, Metrologia

40

(4), 159.

Trapon, G., O. Th´evenot, J.-C. Lacueille, W. Poirier,

H. Fhima, and G. Genev`es, 2001, IEEE Trans. Instrum.
Meas.

50

(2), 572.

Troc´

oniz, J. F. d., and F. J. Yndur´

ain, 2005, Phys. Rev. D

71

, 073008.

Udem, T., 2006, private communication.
Udem, T., J. Reichert, R. Holzwarth, and T. W. H¨

ansch,

1999, Phys. Rev. Lett.

82

(18), 3568.

Valkiers, S., K. Ruße, P. Taylor, T. Ding, and M. Inkret, 2005,

Int. J. Mass Spectrom.

242

(2-3), 321.

Van Dyck, R. S., Jr., 2006, private communication.
Van Dyck, R. S., Jr., D. B. Pinegar, S. V. Liew, and S. L.

Zafonte, 2006, Int. J. Mass Spectrom.

251

(2-3), 231.

Van Dyck, R. S., Jr., P. B. Schwinberg, and H. G. Dehmelt,

1987, Phys. Rev. Lett.

59

(1), 26.

Verd´

u, J., 2006, private communication.

Verd´

u, J., T. Beier, S. Djeki´c, H. H¨

affner, H.-J. Kluge,

W. Quint, T. Valenzuela, M. Vogel, and G. Werth, 2003,
J. Phys. B

36

(3), 655.

background image

93

Verd´

u, J. L., T. Beier, S. Djekic, H. H¨

affner, H.-J. Kluge,

W. Quint, T. Valenzuela, and G. Werth, 2002, Can. J.
Phys.

80

(11), 1233.

Vitushkin

et al.

, L., 2005,

The Seventh International Com-

parison of Absolute Gravimeters ICAG-2005 at the BIPM.
Organization and Preliminary Results

, to be published.

Wapstra, A. H., G. Audi, and C. Thibault, 2003, Nucl. Phys.

A

729

(1), 129.

Weitz, M., A. Huber, F. Schmidt-Kaler, D. Leibfried,

W. Vassen, C. Zimmermann, K. Pachucki, T. W. H¨

ansch,

L. Julien, and F. Biraben, 1995, Phys. Rev. A

52

(4), 2664.

Werth, G., 2003, private communication.
Werth, G., J. Alonso, T. Beier, K. Blaum, S. Djekic,

H. H¨

affner, N. Hermanspahn, W. Quint, S. Stahl, J. Verd´

u,

T. Valenzuela, and M. Vogel, 2006, Int. J. Mass Spectrom.

251

(2-3), 152.

Wichmann, E. H., and N. M. Kroll, 1956, Phys. Rev.

101

(2),

843.

Wicht, A., J. M. Hensley, E. Sarajlic, and S. Chu, 2002, Phys.

Scr.

T102

, 82.

Wicht, A., E. Sarajlic, J. M. Hensley, and S. Chu, 2005, Phys.

Rev. A

72

, 023602.

Wieser, M. E., 2006, Pure Appl. Chem.

78

(11), 2051.

Williams, E. R., G. R. Jones, Jr., S. Ye, R. Liu, H. Sasaki,

P. T. Olsen, W. D. Phillips, and H. P. Layer, 1989, IEEE
Trans. Instrum. Meas.

38

(2), 233.

Williams, E. R., R. L. Steiner, D. B. Newell, and P. T. Olsen,

1998, Phys. Rev. Lett.

81

(12), 2404.

Wimett, T. F., 1953, Phys. Rev.

91

(2), 499.

Winkler, P. F., D. Kleppner, T. Myint, and F. G. Walther,

1972, Phys. Rev. A

5

(1), 83.

Yamazaki, T., N. Morita, R. S. Hayano, E. Widmann, and

J. Eades, 2002, Phys. Rep.

366

(4-5), 183.

Yao, W.-M., C. Amsler, D. Asner, R. M. Barnett, J. Beringer,

P. R. Burchat, C. D. Carone, C. Caso, O. Dahl,
G. D’Ambrosio, A. De Gouvea, M. Doser,

et al.

, 2006, J.

Phys. G

33

(1), 1.

Yerokhin, V. A., 2000, Phys. Rev. A

62

, 012508.

Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2002,

Phys. Rev. Lett.

89

, 143001.

Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2003,

Phys. Rev. Lett.

91

, 073001.

Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2005a,

Phys. Rev. A

71

, 040101.

Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2005b,

Zh. Eksp. Teor. Fiz.

128

(2), 322.

Yerokhin, V. A., P. Indelicato, and V. M. Shabaev, 2007, Can.

J. Phys.

85

(5), 521.

Yerokhin, V. A., and V. M. Shabaev, 2001, Phys. Rev. A

64

,

012506.

Zelevinsky, T., D. Farkas, and G. Gabrielse, 2005, Phys. Rev.

Lett.

95

, 203001.

Zhang, Z., X. Wang, D. Wang, X. Li, Q. He, and Y. Ruan,

1995, Acta Metrol. Sin.

16

(1), 1.

background image

94

TABLE XLIX An abbreviated list of the CODATA recommended values of the fundamental constants of physics and chemistry
based on the 2006 adjustment.

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

speed of light in vacuum

c, c

0

299 792 458

m s

−

1

(exact)

magnetic constant

µ

0

4

Ï€

×

10

−

7

N A

−

2

= 12

.

566 370 614

...

×

10

−

7

N A

−

2

(exact)

electric constant 1/

µ

0

c

2

Ç«

0

8

.

854 187 817

...

×

10

−

12

F m

−

1

(exact)

Newtonian constant

of gravitation

G

6

.

674 28(67)

×

10

−

11

m

3

kg

−

1

s

−

2

1

.

0

×

10

−

4

Planck constant

h

6

.

626 068 96(33)

×

10

−

34

J s

5

.

0

×

10

−

8

h/

2

Ï€

¯

h

1

.

054 571 628(53)

×

10

−

34

J s

5

.

0

×

10

−

8

elementary charge

e

1

.

602 176 487(40)

×

10

−

19

C

2

.

5

×

10

−

8

magnetic ï¬‚ux quantum

h

/2

e

Φ

0

2

.

067 833 667(52)

×

10

−

15

Wb

2

.

5

×

10

−

8

conductance quantum 2

e

2

/h

G

0

7

.

748 091 7004(53)

×

10

−

5

S

6

.

8

×

10

−

10

electron mass

m

e

9

.

109 382 15(45)

×

10

−

31

kg

5

.

0

×

10

−

8

proton mass

m

p

1

.

672 621 637(83)

×

10

−

27

kg

5

.

0

×

10

−

8

proton-electron mass ratio

m

p

/

m

e

1836

.

152 672 47(80)

4

.

3

×

10

−

10

ï¬ne-structure constant

e

2

/

4

Ï€

Ç«

0

¯

hc Î±

7

.

297 352 5376(50)

×

10

−

3

6

.

8

×

10

−

10

inverse ï¬ne-structure constant

α

−

1

137

.

035 999 679(94)

6

.

8

×

10

−

10

Rydberg constant

α

2

m

e

c/

2

h

R

∞

10 973 731

.

568 527(73)

m

−

1

6

.

6

×

10

−

12

Avogadro constant

N

A

, L

6

.

022 141 79(30)

×

10

23

mol

−

1

5

.

0

×

10

−

8

Faraday constant

N

A

e

F

96 485

.

3399(24)

C mol

−

1

2

.

5

×

10

−

8

molar gas constant

R

8

.

314 472(15)

J mol

−

1

K

−

1

1

.

7

×

10

−

6

Boltzmann constant

R

/

N

A

k

1

.

380 6504(24)

×

10

−

23

J K

−

1

1

.

7

×

10

−

6

Stefan-Boltzmann constant

(

Ï€

2

/60)

k

4

/

¯

h

3

c

2

σ

5

.

670 400(40)

×

10

−

8

W m

−

2

K

−

4

7

.

0

×

10

−

6

Non-SI units accepted for use with the SI

electron volt: (

e

/C) J

eV

1

.

602 176 487(40)

×

10

−

19

J

2

.

5

×

10

−

8

(uniï¬ed) atomic mass unit

1 u =

m

u

=

1

12

m

(

12

C)

u

1

.

660 538 782(83)

×

10

−

27

kg

5

.

0

×

10

−

8

= 10

−

3

kg mol

−

1

/N

A

background image

95

TABLE L: The CODATA recommended values of the fundamental con-
stants of physics and chemistry based on the 2006 adjustment.

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

UNIVERSAL

speed of light in vacuum

c, c

0

299 792 458

m s

−

1

(exact)

magnetic constant

µ

0

4

Ï€

×

10

−

7

N A

−

2

= 12

.

566 370 614

...

×

10

−

7

N A

−

2

(exact)

electric constant 1/

µ

0

c

2

Ç«

0

8

.

854 187 817

...

×

10

−

12

F m

−

1

(exact)

characteristic impedance

of vacuum

p

µ

0

/Ç«

0

=

µ

0

c

Z

0

376

.

730 313 461

...

Ω

(exact)

Newtonian constant

of gravitation

G

6

.

674 28(67)

×

10

−

11

m

3

kg

−

1

s

−

2

1

.

0

×

10

−

4

G/

¯

hc

6

.

708 81(67)

×

10

−

39

(GeV

/c

2

)

−

2

1

.

0

×

10

−

4

Planck constant

h

6

.

626 068 96(33)

×

10

−

34

J s

5

.

0

×

10

−

8

in eV s

4

.

135 667 33(10)

×

10

−

15

eV s

2

.

5

×

10

−

8

h/

2

Ï€

¯

h

1

.

054 571 628(53)

×

10

−

34

J s

5

.

0

×

10

−

8

in eV s

6

.

582 118 99(16)

×

10

−

16

eV s

2

.

5

×

10

−

8

¯

hc

in MeV fm

197

.

326 9631(49)

MeV fm

2

.

5

×

10

−

8

Planck mass (¯

hc/G

)

1

/

2

m

P

2

.

176 44(11)

×

10

−

8

kg

5

.

0

×

10

−

5

energy equivalent in GeV

m

P

c

2

1

.

220 892(61)

×

10

19

GeV

5

.

0

×

10

−

5

Planck temperature (¯

hc

5

/G

)

1

/

2

/k

T

P

1

.

416 785(71)

×

10

32

K

5

.

0

×

10

−

5

Planck length Â¯

h/m

P

c

= (¯

hG/c

3

)

1

/

2

l

P

1

.

616 252(81)

×

10

−

35

m

5

.

0

×

10

−

5

Planck time

l

P

/c

= (¯

hG/c

5

)

1

/

2

t

P

5

.

391 24(27)

×

10

−

44

s

5

.

0

×

10

−

5

ELECTROMAGNETIC

elementary charge

e

1

.

602 176 487(40)

×

10

−

19

C

2

.

5

×

10

−

8

e/h

2

.

417 989 454(60)

×

10

14

A J

−

1

2

.

5

×

10

−

8

magnetic ï¬‚ux quantum

h/

2

e

Φ

0

2

.

067 833 667(52)

×

10

−

15

Wb

2

.

5

×

10

−

8

conductance quantum 2

e

2

/h

G

0

7

.

748 091 7004(53)

×

10

−

5

S

6

.

8

×

10

−

10

inverse of conductance quantum

G

−

1

0

12 906

.

403 7787(88)

Ω

6

.

8

×

10

−

10

Josephson constant

a

2

e/h

K

J

483 597

.

891(12)

×

10

9

Hz V

−

1

2

.

5

×

10

−

8

von Klitzing constant

b

h/e

2

=

µ

0

c/

2

α

R

K

25 812

.

807 557(18)

Ω

6

.

8

×

10

−

10

Bohr magneton

e

¯

h/

2

m

e

µ

B

927

.

400 915(23)

×

10

−

26

J T

−

1

2

.

5

×

10

−

8

in eV T

−

1

5

.

788 381 7555(79)

×

10

−

5

eV T

−

1

1

.

4

×

10

−

9

µ

B

/h

13

.

996 246 04(35)

×

10

9

Hz T

−

1

2

.

5

×

10

−

8

µ

B

/hc

46

.

686 4515(12)

m

−

1

T

−

1

2

.

5

×

10

−

8

µ

B

/k

0

.

671 7131(12)

K T

−

1

1

.

7

×

10

−

6

nuclear magneton

e

¯

h/

2

m

p

µ

N

5

.

050 783 24(13)

×

10

−

27

J T

−

1

2

.

5

×

10

−

8

in eV T

−

1

3

.

152 451 2326(45)

×

10

−

8

eV T

−

1

1

.

4

×

10

−

9

µ

N

/h

7

.

622 593 84(19)

MHz T

−

1

2

.

5

×

10

−

8

µ

N

/hc

2

.

542 623 616(64)

×

10

−

2

m

−

1

T

−

1

2

.

5

×

10

−

8

µ

N

/k

3

.

658 2637(64)

×

10

−

4

K T

−

1

1

.

7

×

10

−

6

ATOMIC AND NUCLEAR

General

ï¬ne-structure constant

e

2

/

4

Ï€

Ç«

0

¯

hc

α

7

.

297 352 5376(50)

×

10

−

3

6

.

8

×

10

−

10

inverse ï¬ne-structure constant

α

−

1

137

.

035 999 679(94)

6

.

8

×

10

−

10

Rydberg constant

α

2

m

e

c/

2

h

R

∞

10 973 731

.

568 527(73)

m

−

1

6

.

6

×

10

−

12

a

See Table LII for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

b

See Table LII for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

background image

96

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

R

∞

c

3

.

289 841 960 361(22)

×

10

15

Hz

6

.

6

×

10

−

12

R

∞

hc

2

.

179 871 97(11)

×

10

−

18

J

5

.

0

×

10

−

8

R

∞

hc

in eV

13

.

605 691 93(34)

eV

2

.

5

×

10

−

8

Bohr radius

α/

4

Ï€

R

∞

= 4

Ï€

Ç«

0

¯

h

2

/m

e

e

2

a

0

0

.

529 177 208 59(36)

×

10

−

10

m

6

.

8

×

10

−

10

Hartree energy

e

2

/

4

Ï€

Ç«

0

a

0

= 2

R

∞

hc

=

α

2

m

e

c

2

E

h

4

.

359 743 94(22)

×

10

−

18

J

5

.

0

×

10

−

8

in eV

27

.

211 383 86(68)

eV

2

.

5

×

10

−

8

quantum of circulation

h/

2

m

e

3

.

636 947 5199(50)

×

10

−

4

m

2

s

−

1

1

.

4

×

10

−

9

h/m

e

7

.

273 895 040(10)

×

10

−

4

m

2

s

−

1

1

.

4

×

10

−

9

Electroweak

Fermi coupling constant

c

G

F

/

(¯

hc

)

3

1

.

166 37(1)

×

10

−

5

GeV

−

2

8

.

6

×

10

−

6

weak mixing angle

d

θ

W

(on-shell scheme)

sin

2

θ

W

=

s

2

W

≡

1

−

(

m

W

/m

Z

)

2

sin

2

θ

W

0

.

222 55(56)

2

.

5

×

10

−

3

Electron, e

−

electron mass

m

e

9

.

109 382 15(45)

×

10

−

31

kg

5

.

0

×

10

−

8

in u,

m

e

=

A

r

(e) u (electron

relative atomic mass times u)

5

.

485 799 0943(23)

×

10

−

4

u

4

.

2

×

10

−

10

energy equivalent

m

e

c

2

8

.

187 104 38(41)

×

10

−

14

J

5

.

0

×

10

−

8

in MeV

0

.

510 998 910(13)

MeV

2

.

5

×

10

−

8

electron-muon mass ratio

m

e

/m

µ

4

.

836 331 71(12)

×

10

−

3

2

.

5

×

10

−

8

electron-tau mass ratio

m

e

/m

Ï„

2

.

875 64(47)

×

10

−

4

1

.

6

×

10

−

4

electron-proton mass ratio

m

e

/m

p

5

.

446 170 2177(24)

×

10

−

4

4

.

3

×

10

−

10

electron-neutron mass ratio

m

e

/m

n

5

.

438 673 4459(33)

×

10

−

4

6

.

0

×

10

−

10

electron-deuteron mass ratio

m

e

/m

d

2

.

724 437 1093(12)

×

10

−

4

4

.

3

×

10

−

10

electron to alpha particle mass ratio

m

e

/m

α

1

.

370 933 555 70(58)

×

10

−

4

4

.

2

×

10

−

10

electron charge to mass quotient

−

e/m

e

−

1

.

758 820 150(44)

×

10

11

C kg

−

1

2

.

5

×

10

−

8

electron molar mass

N

A

m

e

M

(e)

, M

e

5

.

485 799 0943(23)

×

10

−

7

kg mol

−

1

4

.

2

×

10

−

10

Compton wavelength

h/m

e

c

λ

C

2

.

426 310 2175(33)

×

10

−

12

m

1

.

4

×

10

−

9

λ

C

/

2

Ï€

=

αa

0

=

α

2

/

4

Ï€

R

∞

λ

C

386

.

159 264 59(53)

×

10

−

15

m

1

.

4

×

10

−

9

classical electron radius

α

2

a

0

r

e

2

.

817 940 2894(58)

×

10

−

15

m

2

.

1

×

10

−

9

Thomson cross section (8

Ï€

/

3)

r

2

e

σ

e

0

.

665 245 8558(27)

×

10

−

28

m

2

4

.

1

×

10

−

9

electron magnetic moment

µ

e

−

928

.

476 377(23)

×

10

−

26

J T

−

1

2

.

5

×

10

−

8

to Bohr magneton ratio

µ

e

/µ

B

−

1

.

001 159 652 181 11(74)

7

.

4

×

10

−

13

to nuclear magneton ratio

µ

e

/µ

N

−

1838

.

281 970 92(80)

4

.

3

×

10

−

10

electron magnetic moment

anomaly

|

µ

e

|

/µ

B

−

1

a

e

1

.

159 652 181 11(74)

×

10

−

3

6

.

4

×

10

−

10

electron

g

-factor

−

2(1 +

a

e

)

g

e

−

2

.

002 319 304 3622(15)

7

.

4

×

10

−

13

electron-muon

magnetic moment ratio

µ

e

/µ

µ

206

.

766 9877(52)

2

.

5

×

10

−

8

electron-proton

magnetic moment ratio

µ

e

/µ

p

−

658

.

210 6848(54)

8

.

1

×

10

−

9

electron to shielded proton

magnetic moment ratio

µ

e

/µ

′

p

−

658

.

227 5971(72)

1

.

1

×

10

−

8

(H

2

O, sphere, 25

â—¦

C)

c

Value recommended by the Particle Data Group (Yao

et al.

, 2006).

d

Based on the ratio of the masses of the W and Z bosons

m

W

/m

Z

recommended by the Particle Data Group (Yao

et al.

, 2006).

The value for sin

2

θ

W

they recommend, which is based on a particular variant of the modified minimal subtraction (

MS

) scheme, is

sin

2

ˆ

θ

W

(

M

Z

) = 0

.

231 22(15).

background image

97

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

electron-neutron

magnetic moment ratio

µ

e

/µ

n

960

.

920 50(23)

2

.

4

×

10

−

7

electron-deuteron

magnetic moment ratio

µ

e

/µ

d

−

2143

.

923 498(18)

8

.

4

×

10

−

9

electron to shielded helion

magnetic moment ratio

µ

e

/µ

′

h

864

.

058 257(10)

1

.

2

×

10

−

8

(gas, sphere, 25

â—¦

C)

electron gyromagnetic ratio 2

|

µ

e

|

/

¯

h

γ

e

1

.

760 859 770(44)

×

10

11

s

−

1

T

−

1

2

.

5

×

10

−

8

γ

e

/

2

Ï€

28 024

.

953 64(70)

MHz T

−

1

2

.

5

×

10

−

8

Muon,

µ

−

muon mass

m

µ

1

.

883 531 30(11)

×

10

−

28

kg

5

.

6

×

10

−

8

in u,

m

µ

=

A

r

(

µ

) u (muon

relative atomic mass times u)

0

.

113 428 9256(29)

u

2

.

5

×

10

−

8

energy equivalent

m

µ

c

2

1

.

692 833 510(95)

×

10

−

11

J

5

.

6

×

10

−

8

in MeV

105

.

658 3668(38)

MeV

3

.

6

×

10

−

8

muon-electron mass ratio

m

µ

/m

e

206

.

768 2823(52)

2

.

5

×

10

−

8

muon-tau mass ratio

m

µ

/m

Ï„

5

.

945 92(97)

×

10

−

2

1

.

6

×

10

−

4

muon-proton mass ratio

m

µ

/m

p

0

.

112 609 5261(29)

2

.

5

×

10

−

8

muon-neutron mass ratio

m

µ

/m

n

0

.

112 454 5167(29)

2

.

5

×

10

−

8

muon molar mass

N

A

m

µ

M

(

µ

)

, M

µ

0

.

113 428 9256(29)

×

10

−

3

kg mol

−

1

2

.

5

×

10

−

8

muon Compton wavelength

h/m

µ

c

λ

C

,

µ

11

.

734 441 04(30)

×

10

−

15

m

2

.

5

×

10

−

8

λ

C

,

µ

/

2

Ï€

λ

C

,

µ

1

.

867 594 295(47)

×

10

−

15

m

2

.

5

×

10

−

8

muon magnetic moment

µ

µ

−

4

.

490 447 86(16)

×

10

−

26

J T

−

1

3

.

6

×

10

−

8

to Bohr magneton ratio

µ

µ

/µ

B

−

4

.

841 970 49(12)

×

10

−

3

2

.

5

×

10

−

8

to nuclear magneton ratio

µ

µ

/µ

N

−

8

.

890 597 05(23)

2

.

5

×

10

−

8

muon magnetic moment anomaly

|

µ

µ

|

/

(

e

¯

h/

2

m

µ

)

−

1

a

µ

1

.

165 920 69(60)

×

10

−

3

5

.

2

×

10

−

7

muon

g

-factor

−

2(1 +

a

µ

)

g

µ

−

2

.

002 331 8414(12)

6

.

0

×

10

−

10

muon-proton

magnetic moment ratio

µ

µ

/µ

p

−

3

.

183 345 137(85)

2

.

7

×

10

−

8

Tau,

Ï„

−

tau mass

e

m

Ï„

3

.

167 77(52)

×

10

−

27

kg

1

.

6

×

10

−

4

in u,

m

Ï„

=

A

r

(

Ï„

) u (tau

relative atomic mass times u)

1

.

907 68(31)

u

1

.

6

×

10

−

4

energy equivalent

m

Ï„

c

2

2

.

847 05(46)

×

10

−

10

J

1

.

6

×

10

−

4

in MeV

1776

.

99(29)

MeV

1

.

6

×

10

−

4

tau-electron mass ratio

m

Ï„

/m

e

3477

.

48(57)

1

.

6

×

10

−

4

tau-muon mass ratio

m

Ï„

/m

µ

16

.

8183(27)

1

.

6

×

10

−

4

tau-proton mass ratio

m

Ï„

/m

p

1

.

893 90(31)

1

.

6

×

10

−

4

tau-neutron mass ratio

m

Ï„

/m

n

1

.

891 29(31)

1

.

6

×

10

−

4

tau molar mass

N

A

m

Ï„

M

(

Ï„

)

, M

Ï„

1

.

907 68(31)

×

10

−

3

kg mol

−

1

1

.

6

×

10

−

4

tau Compton wavelength

h/m

Ï„

c

λ

C

,

Ï„

0

.

697 72(11)

×

10

−

15

m

1

.

6

×

10

−

4

λ

C

,

Ï„

/

2

Ï€

λ

C

,

Ï„

0

.

111 046(18)

×

10

−

15

m

1

.

6

×

10

−

4

Proton, p

proton mass

m

p

1

.

672 621 637(83)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

p

=

A

r

(p) u (proton

e

This and all other values involving

m

Ï„

are based on the value of

m

Ï„

c

2

in MeV recommended by the Particle Data Group (Yao

et al.

,

2006), but with a standard uncertainty of 0

.

29 MeV rather than the quoted uncertainty of

−

0

.

26 MeV, +0

.

29 MeV.

background image

98

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

relative atomic mass times u)

1

.

007 276 466 77(10)

u

1

.

0

×

10

−

10

energy equivalent

m

p

c

2

1

.

503 277 359(75)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

938

.

272 013(23)

MeV

2

.

5

×

10

−

8

proton-electron mass ratio

m

p

/m

e

1836

.

152 672 47(80)

4

.

3

×

10

−

10

proton-muon mass ratio

m

p

/m

µ

8

.

880 243 39(23)

2

.

5

×

10

−

8

proton-tau mass ratio

m

p

/m

Ï„

0

.

528 012(86)

1

.

6

×

10

−

4

proton-neutron mass ratio

m

p

/m

n

0

.

998 623 478 24(46)

4

.

6

×

10

−

10

proton charge to mass quotient

e/m

p

9

.

578 833 92(24)

×

10

7

C kg

−

1

2

.

5

×

10

−

8

proton molar mass

N

A

m

p

M

(p),

M

p

1

.

007 276 466 77(10)

×

10

−

3

kg mol

−

1

1

.

0

×

10

−

10

proton Compton wavelength

h/m

p

c

λ

C

,

p

1

.

321 409 8446(19)

×

10

−

15

m

1

.

4

×

10

−

9

λ

C

,

p

/

2

Ï€

λ

C

,

p

0

.

210 308 908 61(30)

×

10

−

15

m

1

.

4

×

10

−

9

proton rms charge radius

R

p

0

.

8768(69)

×

10

−

15

m

7

.

8

×

10

−

3

proton magnetic moment

µ

p

1

.

410 606 662(37)

×

10

−

26

J T

−

1

2

.

6

×

10

−

8

to Bohr magneton ratio

µ

p

/µ

B

1

.

521 032 209(12)

×

10

−

3

8

.

1

×

10

−

9

to nuclear magneton ratio

µ

p

/µ

N

2

.

792 847 356(23)

8

.

2

×

10

−

9

proton

g

-factor 2

µ

p

/µ

N

g

p

5

.

585 694 713(46)

8

.

2

×

10

−

9

proton-neutron

magnetic moment ratio

µ

p

/µ

n

−

1

.

459 898 06(34)

2

.

4

×

10

−

7

shielded proton magnetic moment

µ

′

p

1

.

410 570 419(38)

×

10

−

26

J T

−

1

2

.

7

×

10

−

8

(H

2

O, sphere, 25

â—¦

C)

to Bohr magneton ratio

µ

′

p

/µ

B

1

.

520 993 128(17)

×

10

−

3

1

.

1

×

10

−

8

to nuclear magneton ratio

µ

′

p

/µ

N

2

.

792 775 598(30)

1

.

1

×

10

−

8

proton magnetic shielding

correction 1

−

µ

′

p

/µ

p

σ

′

p

25

.

694(14)

×

10

−

6

5

.

3

×

10

−

4

(H

2

O, sphere, 25

â—¦

C)

proton gyromagnetic ratio 2

µ

p

/

¯

h

γ

p

2

.

675 222 099(70)

×

10

8

s

−

1

T

−

1

2

.

6

×

10

−

8

γ

p

/

2

Ï€

42

.

577 4821(11)

MHz T

−

1

2

.

6

×

10

−

8

shielded proton gyromagnetic

ratio 2

µ

′

p

/

¯

h

γ

′

p

2

.

675 153 362(73)

×

10

8

s

−

1

T

−

1

2

.

7

×

10

−

8

(H

2

O, sphere, 25

â—¦

C)

γ

′

p

/

2

Ï€

42

.

576 3881(12)

MHz T

−

1

2

.

7

×

10

−

8

Neutron, n

neutron mass

m

n

1

.

674 927 211(84)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

n

=

A

r

(n) u (neutron

relative atomic mass times u)

1

.

008 664 915 97(43)

u

4

.

3

×

10

−

10

energy equivalent

m

n

c

2

1

.

505 349 505(75)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

939

.

565 346(23)

MeV

2

.

5

×

10

−

8

neutron-electron mass ratio

m

n

/m

e

1838

.

683 6605(11)

6

.

0

×

10

−

10

neutron-muon mass ratio

m

n

/m

µ

8

.

892 484 09(23)

2

.

5

×

10

−

8

neutron-tau mass ratio

m

n

/m

Ï„

0

.

528 740(86)

1

.

6

×

10

−

4

neutron-proton mass ratio

m

n

/m

p

1

.

001 378 419 18(46)

4

.

6

×

10

−

10

neutron molar mass

N

A

m

n

M

(n)

, M

n

1

.

008 664 915 97(43)

×

10

−

3

kg mol

−

1

4

.

3

×

10

−

10

neutron Compton wavelength

h/m

n

c

λ

C

,

n

1

.

319 590 8951(20)

×

10

−

15

m

1

.

5

×

10

−

9

λ

C

,

n

/

2

Ï€

λ

C

,

n

0

.

210 019 413 82(31)

×

10

−

15

m

1

.

5

×

10

−

9

neutron magnetic moment

µ

n

−

0

.

966 236 41(23)

×

10

−

26

J T

−

1

2

.

4

×

10

−

7

to Bohr magneton ratio

µ

n

/µ

B

−

1

.

041 875 63(25)

×

10

−

3

2

.

4

×

10

−

7

to nuclear magneton ratio

µ

n

/µ

N

−

1

.

913 042 73(45)

2

.

4

×

10

−

7

neutron

g

-factor 2

µ

n

/µ

N

g

n

−

3

.

826 085 45(90)

2

.

4

×

10

−

7

neutron-electron

magnetic moment ratio

µ

n

/µ

e

1

.

040 668 82(25)

×

10

−

3

2

.

4

×

10

−

7

background image

99

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

neutron-proton

magnetic moment ratio

µ

n

/µ

p

−

0

.

684 979 34(16)

2

.

4

×

10

−

7

neutron to shielded proton

magnetic moment ratio

µ

n

/µ

′

p

−

0

.

684 996 94(16)

2

.

4

×

10

−

7

(H

2

O, sphere, 25

â—¦

C)

neutron gyromagnetic ratio 2

|

µ

n

|

/

¯

h

γ

n

1

.

832 471 85(43)

×

10

8

s

−

1

T

−

1

2

.

4

×

10

−

7

γ

n

/

2

Ï€

29

.

164 6954(69)

MHz T

−

1

2

.

4

×

10

−

7

Deuteron, d

deuteron mass

m

d

3

.

343 583 20(17)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

d

=

A

r

(d) u (deuteron

relative atomic mass times u)

2

.

013 553 212 724(78)

u

3

.

9

×

10

−

11

energy equivalent

m

d

c

2

3

.

005 062 72(15)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

1875

.

612 793(47)

MeV

2

.

5

×

10

−

8

deuteron-electron mass ratio

m

d

/m

e

3670

.

482 9654(16)

4

.

3

×

10

−

10

deuteron-proton mass ratio

m

d

/m

p

1

.

999 007 501 08(22)

1

.

1

×

10

−

10

deuteron molar mass

N

A

m

d

M

(d)

, M

d

2

.

013 553 212 724(78)

×

10

−

3

kg mol

−

1

3

.

9

×

10

−

11

deuteron rms charge radius

R

d

2

.

1402(28)

×

10

−

15

m

1

.

3

×

10

−

3

deuteron magnetic moment

µ

d

0

.

433 073 465(11)

×

10

−

26

J T

−

1

2

.

6

×

10

−

8

to Bohr magneton ratio

µ

d

/µ

B

0

.

466 975 4556(39)

×

10

−

3

8

.

4

×

10

−

9

to nuclear magneton ratio

µ

d

/µ

N

0

.

857 438 2308(72)

8

.

4

×

10

−

9

deuteron

g

-factor

µ

d

/µ

N

g

d

0

.

857 438 2308(72)

8

.

4

×

10

−

9

deuteron-electron

magnetic moment ratio

µ

d

/µ

e

−

4

.

664 345 537(39)

×

10

−

4

8

.

4

×

10

−

9

deuteron-proton

magnetic moment ratio

µ

d

/µ

p

0

.

307 012 2070(24)

7

.

7

×

10

−

9

deuteron-neutron

magnetic moment ratio

µ

d

/µ

n

−

0

.

448 206 52(11)

2

.

4

×

10

−

7

Triton, t

triton mass

m

t

5

.

007 355 88(25)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

t

=

A

r

(t) u (triton

relative atomic mass times u)

3

.

015 500 7134(25)

u

8

.

3

×

10

−

10

energy equivalent

m

t

c

2

4

.

500 387 03(22)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

2808

.

920 906(70)

MeV

2

.

5

×

10

−

8

triton-electron mass ratio

m

t

/m

e

5496

.

921 5269(51)

9

.

3

×

10

−

10

triton-proton mass ratio

m

t

/m

p

2

.

993 717 0309(25)

8

.

4

×

10

−

10

triton molar mass

N

A

m

t

M

(t)

, M

t

3

.

015 500 7134(25)

×

10

−

3

kg mol

−

1

8

.

3

×

10

−

10

triton magnetic moment

µ

t

1

.

504 609 361(42)

×

10

−

26

J T

−

1

2

.

8

×

10

−

8

to Bohr magneton ratio

µ

t

/µ

B

1

.

622 393 657(21)

×

10

−

3

1

.

3

×

10

−

8

to nuclear magneton ratio

µ

t

/µ

N

2

.

978 962 448(38)

1

.

3

×

10

−

8

triton

g

-factor 2

µ

t

/µ

N

g

t

5

.

957 924 896(76)

1

.

3

×

10

−

8

triton-electron

magnetic moment ratio

µ

t

/µ

e

−

1

.

620 514 423(21)

×

10

−

3

1

.

3

×

10

−

8

triton-proton

magnetic moment ratio

µ

t

/µ

p

1

.

066 639 908(10)

9

.

8

×

10

−

9

triton-neutron

magnetic moment ratio

µ

t

/µ

n

−

1

.

557 185 53(37)

2

.

4

×

10

−

7

Helion, h

helion mass

e

m

h

5

.

006 411 92(25)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

h

=

A

r

(h) u (helion

relative atomic mass times u)

3

.

014 932 2473(26)

u

8

.

6

×

10

−

10

background image

100

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

energy equivalent

m

h

c

2

4

.

499 538 64(22)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

2808

.

391 383(70)

MeV

2

.

5

×

10

−

8

helion-electron mass ratio

m

h

/m

e

5495

.

885 2765(52)

9

.

5

×

10

−

10

helion-proton mass ratio

m

h

/m

p

2

.

993 152 6713(26)

8

.

7

×

10

−

10

helion molar mass

N

A

m

h

M

(h)

, M

h

3

.

014 932 2473(26)

×

10

−

3

kg mol

−

1

8

.

6

×

10

−

10

shielded helion magnetic moment

µ

′

h

−

1

.

074 552 982(30)

×

10

−

26

J T

−

1

2

.

8

×

10

−

8

(gas, sphere, 25

â—¦

C)

to Bohr magneton ratio

µ

′

h

/µ

B

−

1

.

158 671 471(14)

×

10

−

3

1

.

2

×

10

−

8

to nuclear magneton ratio

µ

′

h

/µ

N

−

2

.

127 497 718(25)

1

.

2

×

10

−

8

shielded helion to proton

magnetic moment ratio

µ

′

h

/µ

p

−

0

.

761 766 558(11)

1

.

4

×

10

−

8

(gas, sphere, 25

â—¦

C)

shielded helion to shielded proton

magnetic moment ratio

µ

′

h

/µ

′

p

−

0

.

761 786 1313(33)

4

.

3

×

10

−

9

(gas/H

2

O, spheres, 25

â—¦

C)

shielded helion gyromagnetic

ratio 2

|

µ

′

h

|

/

¯

h

γ

′

h

2

.

037 894 730(56)

×

10

8

s

−

1

T

−

1

2

.

8

×

10

−

8

(gas, sphere, 25

â—¦

C)

γ

′

h

/

2

Ï€

32

.

434 101 98(90)

MHz T

−

1

2

.

8

×

10

−

8

Alpha particle,

α

alpha particle mass

m

α

6

.

644 656 20(33)

×

10

−

27

kg

5

.

0

×

10

−

8

in u,

m

α

=

A

r

(

α

) u (alpha particle

relative atomic mass times u)

4

.

001 506 179 127(62)

u

1

.

5

×

10

−

11

energy equivalent

m

α

c

2

5

.

971 919 17(30)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

3727

.

379 109(93)

MeV

2

.

5

×

10

−

8

alpha particle to electron mass ratio

m

α

/m

e

7294

.

299 5365(31)

4

.

2

×

10

−

10

alpha particle to proton mass ratio

m

α

/m

p

3

.

972 599 689 51(41)

1

.

0

×

10

−

10

alpha particle molar mass

N

A

m

α

M

(

α

)

, M

α

4

.

001 506 179 127(62)

×

10

−

3

kg mol

−

1

1

.

5

×

10

−

11

PHYSICOCHEMICAL

Avogadro constant

N

A

, L

6

.

022 141 79(30)

×

10

23

mol

−

1

5

.

0

×

10

−

8

atomic mass constant

m

u

=

1

12

m

(

12

C) = 1 u

m

u

1

.

660 538 782(83)

×

10

−

27

kg

5

.

0

×

10

−

8

= 10

−

3

kg mol

−

1

/N

A

energy equivalent

m

u

c

2

1

.

492 417 830(74)

×

10

−

10

J

5

.

0

×

10

−

8

in MeV

931

.

494 028(23)

MeV

2

.

5

×

10

−

8

Faraday constant

f

N

A

e

F

96 485

.

3399(24)

C mol

−

1

2

.

5

×

10

−

8

molar Planck constant

N

A

h

3

.

990 312 6821(57)

×

10

−

10

J s mol

−

1

1

.

4

×

10

−

9

N

A

hc

0

.

119 626 564 72(17)

J m mol

−

1

1

.

4

×

10

−

9

molar gas constant

R

8

.

314 472(15)

J mol

−

1

K

−

1

1

.

7

×

10

−

6

Boltzmann constant

R/N

A

k

1

.

380 6504(24)

×

10

−

23

J K

−

1

1

.

7

×

10

−

6

in eV K

−

1

8

.

617 343(15)

×

10

−

5

eV K

−

1

1

.

7

×

10

−

6

k/h

2

.

083 6644(36)

×

10

10

Hz K

−

1

1

.

7

×

10

−

6

k/hc

69

.

503 56(12)

m

−

1

K

−

1

1

.

7

×

10

−

6

molar volume of ideal gas

RT /p

T

= 273

.

15 K

, p

= 101

.

325 kPa

V

m

22

.

413 996(39)

×

10

−

3

m

3

mol

−

1

1

.

7

×

10

−

6

f

The numerical value of

F

to be used in coulometric chemical measurements is 96 485

.

3401(48) [5

.

0

×

10

−

8

] when the relevant current

is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally
adopted conventional values of the Josephson and von Klitzing constants

K

J

−

90

and

R

K

−

90

given in Table LII.

background image

TABLE L:

(Continued).

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

Loschmidt constant

N

A

/V

m

n

0

2

.

686 7774(47)

×

10

25

m

−

3

1

.

7

×

10

−

6

T

= 273

.

15 K

, p

= 100 kPa

V

m

22

.

710 981(40)

×

10

−

3

m

3

mol

−

1

1

.

7

×

10

−

6

Sackur-Tetrode constant

(absolute entropy constant)

g

5
2

+ ln[(2

Ï€

m

u

kT

1

/h

2

)

3

/

2

kT

1

/p

0

]

T

1

= 1 K

, p

0

= 100 kPa

S

0

/R

−

1

.

151 7047(44)

3

.

8

×

10

−

6

T

1

= 1 K

, p

0

= 101

.

325 kPa

−

1

.

164 8677(44)

3

.

8

×

10

−

6

Stefan-Boltzmann constant

(

Ï€

2

/

60)

k

4

/

¯

h

3

c

2

σ

5

.

670 400(40)

×

10

−

8

W m

−

2

K

−

4

7

.

0

×

10

−

6

ï¬rst radiation constant 2

Ï€

hc

2

c

1

3

.

741 771 18(19)

×

10

−

16

W m

2

5

.

0

×

10

−

8

ï¬rst radiation constant for spectral radiance 2

hc

2

c

1L

1

.

191 042 759(59)

×

10

−

16

W m

2

sr

−

1

5

.

0

×

10

−

8

second radiation constant

hc/k

c

2

1

.

438 7752(25)

×

10

−

2

m K

1

.

7

×

10

−

6

Wien displacement law constants

b

=

λ

max

T

=

c

2

/

4

.

965 114 231

...

b

2

.

897 7685(51)

×

10

−

3

m K

1

.

7

×

10

−

6

b

′

=

ν

max

/T

= 2

.

821 439 372

... c/c

2

b

′

5

.

878 933(10)

×

10

10

Hz K

−

1

1

.

7

×

10

−

6

g

The entropy of an ideal monoatomic gas of relative atomic mass

A

r

is given by

S

=

S

0

+

3
2

R

ln

A

r

−

R

ln(

p/p

0

) +

5
2

R

ln(

T /

K)

.

background image

102

TABLE LI The variances, covariances, and correlation coefficients of the values of a selected group of constants based on the
2006 CODATA adjustment. The numbers in bold above the main diagonal are 10

16

times the numerical values of the relative

covariances; the numbers in bold on the main diagonal are 10

16

times the numerical values of the relative variances; and the

numbers in italics below the main diagonal are the correlation coefficients.

a

α

h

e

m

e

N

A

m

e

/m

µ

F

α

0

.

0047

0

.

0002

0

.

0024

−

0

.

0092

0

.

0092

−

0

.

0092

0

.

0116

h

0

.

0005

24

.

8614

12

.

4308

24

.

8611

−

24

.

8610

−

0

.

0003

−

12

.

4302

e

0

.

0142

0

.

9999

6

.

2166

12

.

4259

−

12

.

4259

−

0

.

0048

−

6

.

2093

m

e

−

0

.

0269

0

.

9996

0

.

9992

24

.

8795

−

24

.

8794

0

.

0180

−

12

.

4535

N

A

0

.

0269

−

0

.

9996

−

0

.

9991

−

1

.

0000

24

.

8811

−

0

.

0180

12

.

4552

m

e

/m

µ

−

0

.

0528

0

.

0000

−

0

.

0008

0

.

0014

−

0

.

0014

6

.

4296

−

0

.

0227

F

0

.

0679

−

0

.

9975

−

0

.

9965

−

0

.

9990

0

.

9991

−

0

.

0036

6

.

2459

a

The relative covariance is

u

r

(

x

i

, x

j

) =

u

(

x

i

, x

j

)

/

(

x

i

x

j

), where

u

(

x

i

, x

j

) is the covariance of

x

i

and

x

j

; the relative variance is

u

2

r

(

x

i

) =

u

r

(

x

i

, x

i

): and the correlation coefficient is

r

(

x

i

, x

j

) =

u

(

x

i

, x

j

)

/

[

u

(

x

i

)

u

(

x

j

)].

TABLE LII Internationally adopted values of various quantities.

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

relative atomic mass

a

of

12

C

A

r

(

12

C)

12

(exact)

molar mass constant

M

u

1

×

10

−

3

kg mol

−

1

(exact)

molar mass of

12

C

M

(

12

C)

12

×

10

−

3

kg mol

−

1

(exact)

conventional value of Josephson constant

b

K

J

−

90

483 597.9

GHz V

−

1

(exact)

conventional value of von Klitzing constant

c

R

K

−

90

25 812.807

Ω

(exact)

standard atmosphere

101 325

Pa

(exact)

a

The relative atomic mass

A

r

(

X

) of particle

X

with mass

m

(

X

) is defined by

A

r

(

X

) =

m

(

X

)

/m

u

, where

m

u

=

m

(

12

C)

/

12 =

M

u

/N

A

=

1 u is the atomic mass constant,

M

u

is the molar mass constant,

N

A

is the Avogadro constant, and u is the unified atomic mass unit.

Thus the mass of particle

X

is

m

(

X

) =

A

r

(

X

) u and the molar mass of

X

is

M

(

X

) =

A

r

(

X

)

M

u

.

b

This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

c

This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

TABLE LIII Values of some x-ray-related quantities based on the 2006 CODATA adjustment of the values of the constants.

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

Cu x unit:

λ

(CuK

α

1

)

/

1 537

.

400

xu(CuK

α

1

)

1

.

002 076 99(28)

×

10

−

13

m

2

.

8

×

10

−

7

Mo x unit:

λ

(MoK

α

1

)

/

707

.

831

xu(MoK

α

1

)

1

.

002 099 55(53)

×

10

−

13

m

5

.

3

×

10

−

7

Ëš

angstrom star:

λ

(WK

α

1

)

/

0

.

209 010 0

Ëš

A

∗

1

.

000 014 98(90)

×

10

−

10

m

9

.

0

×

10

−

7

lattice parameter

a

of Si

a

543

.

102 064(14)

×

10

−

12

m

2

.

6

×

10

−

8

(in vacuum, 22.5

â—¦

C)

{

220

}

lattice spacing of Si

a/

√

8

d

220

192

.

015 5762(50)

×

10

−

12

m

2

.

6

×

10

−

8

(in vacuum, 22.5

â—¦

C)

molar volume of Si

M

(Si)

(Si) =

N

A

a

3

/

8

V

m

(Si)

12

.

058 8349(11)

×

10

−

6

m

3

mol

−

1

9

.

1

×

10

−

8

(in vacuum, 22.5

â—¦

C)

a

This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections,

and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.

background image

103

TABLE LIV The values in SI units of some non-SI units based on the 2006 CODATA adjustment of the values of the constants.

Relative std.

Quantity

Symbol

Numerical value

Unit

uncert.

u

r

Non-SI units accepted for use with the SI

electron volt: (

e/

C) J

eV

1

.

602 176 487(40)

×

10

−

19

J

2

.

5

×

10

−

8

(uniï¬ed) atomic mass unit:

1 u =

m

u

=

1

12

m

(

12

C)

u

1

.

660 538 782(83)

×

10

−

27

kg

5

.

0

×

10

−

8

= 10

−

3

kg mol

−

1

/N

A

Natural units (n.u.)

n.u. of velocity:

speed of light in vacuum

c, c

0

299 792 458

m s

−

1

(exact)

n.u. of action:

reduced Planck constant (

h/

2

Ï€

)

¯

h

1

.

054 571 628(53)

×

10

−

34

J s

5

.

0

×

10

−

8

in eV s

6

.

582 118 99(16)

×

10

−

16

eV s

2

.

5

×

10

−

8

in MeV fm

¯

hc

197

.

326 9631(49)

MeV fm

2

.

5

×

10

−

8

n.u. of mass:

electron mass

m

e

9

.

109 382 15(45)

×

10

−

31

kg

5

.

0

×

10

−

8

n.u. of energy

m

e

c

2

8

.

187 104 38(41)

×

10

−

14

J

5

.

0

×

10

−

8

in MeV

0

.

510 998 910(13)

MeV

2

.

5

×

10

−

8

n.u. of momentum

m

e

c

2

.

730 924 06(14)

×

10

−

22

kg m s

−

1

5

.

0

×

10

−

8

in MeV/

c

0

.

510 998 910(13)

MeV/

c

2

.

5

×

10

−

8

n.u. of length (¯

h/m

e

c

)

λ

C

386

.

159 264 59(53)

×

10

−

15

m

1

.

4

×

10

−

9

n.u. of time

¯

h/m

e

c

2

1

.

288 088 6570(18)

×

10

−

21

s

1

.

4

×

10

−

9

Atomic units (a.u.)

a.u. of charge:

elementary charge

e

1

.

602 176 487(40)

×

10

−

19

C

2

.

5

×

10

−

8

a.u. of mass:

electron mass

m

e

9

.

109 382 15(45)

×

10

−

31

kg

5

.

0

×

10

−

8

a.u. of action:

reduced Planck constant (

h/

2

Ï€

)

¯

h

1

.

054 571 628(53)

×

10

−

34

J s

5

.

0

×

10

−

8

a.u. of length:

Bohr radius (bohr) (

α/

4

Ï€

R

∞

)

a

0

0

.

529 177 208 59(36)

×

10

−

10

m

6

.

8

×

10

−

10

a.u. of energy:

Hartree energy (hartree)

E

h

4

.

359 743 94(22)

×

10

−

18

J

5

.

0

×

10

−

8

(

e

2

/

4

Ï€

Ç«

0

a

0

= 2

R

∞

hc

=

α

2

m

e

c

2

)

a.u. of time

¯

h/E

h

2

.

418 884 326 505(16)

×

10

−

17

s

6

.

6

×

10

−

12

a.u. of force

E

h

/a

0

8

.

238 722 06(41)

×

10

−

8

N

5

.

0

×

10

−

8

a.u. of velocity (

αc

)

a

0

E

h

/

¯

h

2

.

187 691 2541(15)

×

10

6

m s

−

1

6

.

8

×

10

−

10

a.u. of momentum

¯

h/a

0

1

.

992 851 565(99)

×

10

−

24

kg m s

−

1

5

.

0

×

10

−

8

a.u. of current

eE

h

/

¯

h

6

.

623 617 63(17)

×

10

−

3

A

2

.

5

×

10

−

8

a.u. of charge density

e/a

3

0

1

.

081 202 300(27)

×

10

12

C m

−

3

2

.

5

×

10

−

8

a.u. of electric potential

E

h

/e

27

.

211 383 86(68)

V

2

.

5

×

10

−

8

a.u. of electric ï¬eld

E

h

/ea

0

5

.

142 206 32(13)

×

10

11

V m

−

1

2

.

5

×

10

−

8

a.u. of electric ï¬eld gradient

E

h

/ea

2

0

9

.

717 361 66(24)

×

10

21

V m

−

2

2

.

5

×

10

−

8

a.u. of electric dipole moment

ea

0

8

.

478 352 81(21)

×

10

−

30

C m

2

.

5

×

10

−

8

a.u. of electric quadrupole moment

ea

2

0

4

.

486 551 07(11)

×

10

−

40

C m

2

2

.

5

×

10

−

8

a.u. of electric polarizability

e

2

a

2

0

/E

h

1

.

648 777 2536(34)

×

10

−

41

C

2

m

2

J

−

1

2

.

1

×

10

−

9

a.u. of 1

st

hyperpolarizability

e

3

a

3

0

/E

2

h

3

.

206 361 533(81)

×

10

−

53

C

3

m

3

J

−

2

2

.

5

×

10

−

8

a.u. of 2

nd

hyperpolarizability

e

4

a

4

0

/E

3

h

6

.

235 380 95(31)

×

10

−

65

C

4

m

4

J

−

3

5

.

0

×

10

−

8

a.u. of magnetic ï¬‚ux density

¯

h/ea

2

0

2

.

350 517 382(59)

×

10

5

T

2

.

5

×

10

−

8

a.u. of magnetic

dipole moment (2

µ

B

)

¯

he/m

e

1

.

854 801 830(46)

×

10

−

23

J T

−

1

2

.

5

×

10

−

8

a.u. of magnetizability

e

2

a

2

0

/m

e

7

.

891 036 433(27)

×

10

−

29

J T

−

2

3

.

4

×

10

−

9

a.u. of permittivity (10

7

/c

2

)

e

2

/a

0

E

h

1

.

112 650 056

. . .

×

10

−

10

F m

−

1

(exact)

background image

104

TABLE LV The values of some energy equivalents derived from the relations

E

=

mc

2

=

hc/λ

=

hν

=

kT

, and based on the

2006 CODATA adjustment of the values of the constants; 1 eV = (

e/

C) J, 1 u =

m

u

=

1

12

m

(

12

C) = 10

−

3

kg mol

−

1

/N

A

, and

E

h

= 2

R

∞

hc

=

α

2

m

e

c

2

is the Hartree energy (hartree).

Relevant unit

J

kg

m

−

1

Hz

1 J

(1 J) =

(1 J)/

c

2

=

(1 J)/

hc

=

(1 J)/

h

=

1 J

1

.

112 650 056

. . .

×

10

−

17

kg 5

.

034 117 47(25)

×

10

24

m

−

1

1

.

509 190 450(75)

×

10

33

Hz

1 kg

(1 kg)

c

2

=

(1 kg) =

(1 kg)

c/h

=

(1 kg)

c

2

/h

=

8

.

987 551 787

. . .

×

10

16

J

1 kg

4

.

524 439 15(23)

×

10

41

m

−

1

1

.

356 392 733(68)

×

10

50

Hz

1 m

−

1

(1 m

−

1

)

hc

=

(1 m

−

1

)

h/c

=

(1 m

−

1

) =

(1 m

−

1

)

c

=

1

.

986 445 501(99)

×

10

−

25

J 2

.

210 218 70(11)

×

10

−

42

kg 1 m

−

1

299 792 458 Hz

1 Hz

(1 Hz)

h

=

(1 Hz)

h/c

2

=

(1 Hz)/

c

=

(1 Hz) =

6

.

626 068 96(33)

×

10

−

34

J 7

.

372 496 00(37)

×

10

−

51

kg 3

.

335 640 951

. . .

×

10

−

9

m

−

1

1 Hz

1 K

(1 K)

k

=

(1 K)

k/c

2

=

(1 K)

k/hc

=

(1 K)

k/h

=

1

.

380 6504(24)

×

10

−

23

J

1

.

536 1807(27)

×

10

−

40

kg

69

.

503 56(12) m

−

1

2

.

083 6644(36)

×

10

10

Hz

1 eV

(1 eV) =

(1 eV)

/c

2

=

(1 eV)

/hc

=

(1 eV)

/h

=

1

.

602 176 487(40)

×

10

−

19

J 1

.

782 661 758(44)

×

10

−

36

kg 8

.

065 544 65(20)

×

10

5

m

−

1

2

.

417 989 454(60)

×

10

14

Hz

1 u

(1 u)

c

2

=

(1 u) =

(1 u)

c/h

=

(1 u)

c

2

/h

=

1

.

492 417 830(74)

×

10

−

10

J 1

.

660 538 782(83)

×

10

−

27

kg 7

.

513 006 671(11)

×

10

14

m

−

1

2

.

252 342 7369(32)

×

10

23

Hz

1

E

h

(1

E

h

) =

(1

E

h

)

/c

2

=

(1

E

h

)

/hc

=

(1

E

h

)

/h

=

4

.

359 743 94(22)

×

10

−

18

J 4

.

850 869 34(24)

×

10

−

35

kg 2

.

194 746 313 705(15)

×

10

7

m

−

1

6

.

579 683 920 722(44)

×

10

15

Hz

background image

105

TABLE LVI The values of some energy equivalents derived from the relations

E

=

mc

2

=

hc/λ

=

hν

=

kT

, and based on the

2006 CODATA adjustment of the values of the constants; 1 eV = (

e/

C) J, 1 u =

m

u

=

1

12

m

(

12

C) = 10

−

3

kg mol

−

1

/N

A

, and

E

h

= 2

R

∞

hc

=

α

2

m

e

c

2

is the Hartree energy (hartree).

Relevant unit

K

eV

u

E

h

1 J

(1 J)/

k

=

(1 J) =

(1 J)/

c

2

=

(1 J) =

7

.

242 963(13)

×

10

22

K

6

.

241 509 65(16)

×

10

18

eV

6

.

700 536 41(33)

×

10

9

u

2

.

293 712 69(11)

×

10

17

E

h

1 kg

(1 kg)

c

2

/k

=

(1 kg)

c

2

=

(1 kg) =

(1 kg)

c

2

=

6

.

509 651(11)

×

10

39

K

5

.

609 589 12(14)

×

10

35

eV

6

.

022 141 79(30)

×

10

26

u

2

.

061 486 16(10)

×

10

34

E

h

1 m

−

1

(1 m

−

1

)

hc/k

=

(1 m

−

1

)

hc

=

(1 m

−

1

)

h/c

=

(1 m

−

1

)

hc

=

1

.

438 7752(25)

×

10

−

2

K 1

.

239 841 875(31)

×

10

−

6

eV 1

.

331 025 0394(19)

×

10

−

15

u 4

.

556 335 252 760(30)

×

10

−

8

E

h

1 Hz

(1 Hz)

h/k

=

(1 Hz)

h

=

(1 Hz)

h/c

2

=

(1 Hz)

h

=

4

.

799 2374(84)

×

10

−

11

K 4

.

135 667 33(10)

×

10

−

15

eV 4

.

439 821 6294(64)

×

10

−

24

u 1

.

519 829 846 006(10)

×

10

−

16

E

h

1 K

(1 K) =

(1 K)

k

=

(1 K)

k/c

2

=

(1 K)

k

=

1 K

8

.

617 343(15)

×

10

−

5

eV

9

.

251 098(16)

×

10

−

14

u

3

.

166 8153(55)

×

10

−

6

E

h

1 eV

(1 eV)/

k

=

(1 eV) =

(1 eV)

/c

2

=

(1 eV) =

1

.

160 4505(20)

×

10

4

K

1 eV

1

.

073 544 188(27)

×

10

−

9

u

3

.

674 932 540(92)

×

10

−

2

E

h

1 u

(1 u)

c

2

/k

=

(1 u)

c

2

=

(1 u) =

(1 u)

c

2

=

1

.

080 9527(19)

×

10

13

K

931

.

494 028(23)

×

10

6

eV

1 u

3

.

423 177 7149(49)

×

10

7

E

h

1

E

h

(1

E

h

)

/k

=

(1

E

h

) =

(1

E

h

)

/c

2

=

(1

E

h

) =

3

.

157 7465(55)

×

10

5

K

27

.

211 383 86(68) eV

2

.

921 262 2986(42)

×

10

−

8

u 1

E

h