background image

Introduction to SAXS at SSRL

John A Pople

Stanford Synchrotron Radiation Laboratory,
Stanford Linear Accelerator Center, Stanford CA 94309

Everything You Ever Wanted to Know About 

But Were Afraid to Ask

SAXS

background image

Scattering or Microscopy?

• Local detail

• Surface detail

• Faithfully represents 
local complexities

Microscopy good for:

E.g. if objective is to 
monitor the degree to 
which Mickey’s nose(s) 
and ears hold to a circular 
micromorphology… use 
microscopy not scattering

background image

Scattering or Microscopy?

• Global parameters, 
distributions; 1

st

order

• Different sample states

• Non destructive sample 
preparation

• In-situ transitional studies

Scattering good for:

Solid

Melted & Sheared

Recrystallized

background image

Ag-Au dealloyed in 70% HNO

0.01

0.10

1.00

10.00

100.00

1000.00

0.01

0.1

1

Log Q

Log I

n

t

1 min
5 min
15 min
60 min
720 min

Forming a bi-continuous 
porous network with 
ligament width on the 
nanoscale by removing 
the less noble element 
from a binary alloy, in this 
case Ag-Au (multiple 
films for trans scattering)

200 nm

5 mins
in conc
HNO

3

60 mins

Complementary Scattering and Microscopy

background image

Scattering: Neutrons or Photons?

X-rays

Neutrons

Neutron scattering: Deuteration allows species selection

X-ray scattering:
Relatively small sample quantities required
Relatively fast data acquisition times - allows time resolved 
effects to be characterized

Sensitive to nuclear 
scattering length contrast

Sensitive to electron density 
contrast

background image

Scattering: Neutrons or Photons?

Neutrons: Deuteration
allows species selection

Atom

Scattering length Incoherent scattering

(x 10

12 

cm

2

)

(x  10

24 

cm

2

)

1

H

-0.374

80

2

D

0.667

2

This essentially permits a dramatic 
alteration to the ‘visibility’ of the tagged 
elements in terms of their contribution to 
the reciprocal space scattering pattern

background image

Scattering: Neutrons or Photons?

λ

= 0%

λ

= 300%

SANS patterns

Photos of deformation

background image

X-rays:

Order of magnitude better spatial resolution 
Fast data acquisition times for time resolved data

Scattering: Neutrons or Photons?

Oscillatory Shearing of lyotropic HPC – a liquid crystal polymer

background image

X-ray Scattering: Transmission or Reflection?

Transmission geometry appropriate 
for:

•

Extracting bulk parameters, 

especially in deformation

•

Weakly scattering samples: 

can vary path length

Need to be conscious of:

Constituent elements, i.e. absorption cutoffs
Multiple scattering
Area of interest: surface effect or bulk effect

background image

X-ray Scattering: Transmission or Reflection?

Reflection geometry appropriate for:

•

Films on a substrate (whether opaque or not)

•

Probing surface interactions

background image

linear eicosanol (C

20

H

42

O, MW = 298)

Study phase transitions of Langmuir 
monolayers of mixed fatty alcohols in 
terms of molecular branching and 
surface tension

branched eicosanol (C

20

H

42

O, MW = 298)

00

00

00

00

00

00

13

14

15

16

increasing surface pressure: 0 to 40 mN/m

q (/nm)

Linear Eicosanol

Langmuir 
trough

Gold mirror

x-ray path

Surface 
tension 
sensor

Rheology of Straight and Branched Fatty Alcohols

background image

X-ray Scattering: SAXS or WAXS?

No fundamental difference in physics: a consequence of chemistry

WAXS patterns contain data 
concerning correlations on an intra-
molecular, inter-atomic level

SAXS patterns contain data concerning 
correlations on an inter-molecular level: 
necessarily samples where there is 
macromolecular or aggregate order

As synthesis design/control improves, 
SAXS becomes more relevant than 
ever before

background image

X-ray Scattering: SAXS or WAXS?

Experimental consequences

WAXS: Detector close to sample, consider:

• Distortion of reciprocal space mapping
• Thermal effects when heating sample
• No ion chamber for absorption

SAXS: Detector far from sample, consider:

• Absorption from intermediate space
• Interception of appropriate q range

background image

Recognizing Reciprocal Space Patterns: Indexing

Face centered cubic pattern from diblock copolymer gel

background image

Face centered cubic

Recognizing Reciprocal Space Patterns: Indexing

Real 

space 

packing

Reciprocal 

space 

image

(unoriented

domains)

Body centered cubic

Hexagonal

Normalized
peak positions

≡

1;  =

√

2;  =

√

3

≡

1;  =

√

4/3;  =

√

8/3

≡

1;  =

√

3;  =

√

4

background image

Recognizing Reciprocal Space Patterns:

Preferential Orientation

Real 

space 

packing

Reciprocal 

space 

image

Randomly 

aligned rods

Preferentially 

aligned rods

Hydrated DNA

background image

Extracting Physical Parameters from X-ray data

q

φ

I(q)

I(

φ

)

φ

q

background image

Extracting Physical Parameters from X-ray data

Molecular size: Radius of gyration (R

g

)

Guinier plot

R

g

2

α

ln I(q) / q

2

I(q) = I(0) exp [-q

2

R

g

/ 3]

Guinier region: q  <  1 / R

g

lnI

(q

)

q

2

background image

Extracting Physical Parameters from X-ray data

Molecular conformation: Scaling exponent

Guinier plateau

Intermediate 

region

ln

I(

q

)

ln q

Rod

Sphere

Coil in
good solvent

q

-1

q

-5/3

q

-4

Gradient of profile in 
intermediate region 
implies fractal dimension 
of scattering unit

background image

Molecular Conformation in Dentin

q

Θ

SAXS pattern

pulp

DEJ

John H Kinney

Department of Preventive and Restorative Dental Sciences, 
University of California, San Francisco, CA 94143

background image

Molecular Conformation in Dentin

1

1.2

1.4

1.6

1.8

2

2.2

0

0.5

1

1.5

2

Distance from pulp (mm)

Sc

aling

 e

xp

one

nt

16G213
16G224
17G246

background image

Shape change of mineral crystallites from needle-like to plate-like from pulp to 
dentin-enamel junction (DEJ).

pulp

DEJ

1

1.4

1.8

2.2

0

0.5

1

1.5

2

Distance from pulp (mm)

Scaling exponent

needle-like

plate-like

0

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

q / nm

-1

I(q)

Control tooth

DI tooth

6

3

4 5

3

Dentinogenesis imperfecta (DI) teeth 
shown to exhibit impaired development 
of intrafibrillar mineral: characteristic 
scattering peaks are absent from the 
diseased tooth. 

Molecular Conformation in Dentin

background image

Extracting Physical Parameters from X-ray data

Kratky plot

Molecular conformation: Persistence length of coiled chain

I(q) q

2

q

q*

persistence length 

= 6 / (

Ï€

q*)

background image

q

φ

Extracting Physical Parameters from X-ray data

0

0

I(

φ

)

φ

Azimuthal profile

Molecular orientation: Orientation parameter P

2

<P

2n

(cos 

φ

)> = 

∫

I(s,

φ

) P

2n

(cos 

φ

) sin 

φ

d

φ

∫

I(s,

φ

) sin 

φ

d

φ

Normalized: 

-0.5  <  P

2

<  1

background image

Orientation parameters: 0 < P

2

< 0.3

Axis of orientation

Measuring the degree and inclination of preferential molecular 
orientation in a piece of injection molded plastic (e.g. hip replacement 
joints). ~ 1500 WAXS patterns

Molecular Orientation in Injection Moldings

Marks the injection point

background image

SSRL Beamline 1-4: SAXS Materials Science

shutter

beam 
defining 
slits

ion 
chambers

sample 
stage

guard 
slits

CCD detector

optical rail & table

N

2  

supply

X-rays