background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

217

217

217

217 

 

Railway Track Design 

Basic considerations and guidelines to be used in the establishment 
of railway horizontal and vertical alignments. 

he route upon which a train travels and the track is constructed is defined as an 

alignment.  An alignment is defined in two fashions.  First, the horizontal 
alignment defines physically where the route or track goes (mathematically the 

XY plane).  The second component is a vertical alignment, which defines the elevation, 
rise and fall (the Z component). 

Alignment considerations weigh more heavily on railway design versus highway design 
for several reasons.  First, unlike most other transportation modes, the operator of a 

train has no control over horizontal movements (i.e. steering).  The guidance 
mechanism for railway vehicles is defined almost exclusively by track location and thus 

the track alignment.  The operator only has direct control over longitudinal aspects of 
train movement over an alignment defined by the track, such as speed and 

forward/reverse direction.  Secondly, the relative power available for locomotion 
relative to the mass to be moved is significantly less than for other forms of 

transportation, such as air or highway vehicles. (See Table 6-1)  Finally, the physical 
dimension of the vehicular unit (the train) is extremely long and thin, sometimes 

approaching two miles in length.  This compares, for example, with a barge tow, which 
may encompass 2-3 full trains, but may only be 1200 feet in length. 

These factors result in much more limited constraints to the designer when considering 
alignments of small terminal and yard facilities as well as new routes between distant 

locations. 

The designer MUST take into account the type of train traffic (freight, passenger, light 

rail, length, etc.), volume of traffic (number of vehicles per day, week, year, life cycle) 
and speed when establishing alignments.  The design criteria for a new coal route 

across the prairie handling 15,000 ton coal trains a mile and a half long ten times per 
day will be significantly different than the extension of a light rail (trolley) line in 

downtown San Francisco. 

Chapter

T

©2003 AREMA® 

background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

223

223

223

223 

 

curves as D (degrees per 20 meter arc).  However, there does not seem to be any 
widespread incorporation of this practice. When working with light rail or in metric 

units, current practice employs curves defined by radius.   

As a vehicle traverses a curve, the vehicle transmits a centrifugal force to the rail at the 

point of wheel contact.  This force is a function of the severity of the curve, speed of 
the vehicle and the mass (weight) of the vehicle.  This force acts at the center of gravity 

of the rail vehicle.  This force is resisted by the track.  If the vehicle is traveling fast 
enough, it may derail due to rail rollover, the car rolling over or simply derailing from 

the combined transverse force exceeding the limit allowed by rail-flange contact. 

This centrifugal force can be 

counteracted by the application of 
superelevation (or banking), which 

effectively raises the outside rail in the 
curve by rotating the track structure 

about the inside rail. (See Figure 6-6)  
The point, at which this elevation of the 

outer rail relative to the inner rail is such 
that the weight is again equally 

distributed on both rails, is considered 
the equilibrium elevation.  Track is 

rarely superelevated to the equilibrium 
elevation.  The difference between the 

equilibrium elevation and the actual 
superelevation is termed underbalance. 

Though trains rarely overturn strictly 
from centrifugal force from speed 
(they usually derail first).  This same 

logic can be used to derive the overturning speed.  Conventional wisdom dictates that 
the rail vehicle is generally considered stable if the resultant of forces falls within the 

middle third of the track.  This equates to the middle 20 inches for standard gauge 
track assuming that the wheel load upon the rail head is approximately 60-inches apart.  

As this resultant force begins to fall outside the two rails, the vehicle will begin to tip 
and eventually overturn.  It should be noted that this overturning speed would vary 

depending upon where the center of gravity of the vehicle is assumed to be. 

There are several factors, which are considered in establishing the elevation for a curve.  

The limit established by many railways is between five and six-inches for freight 
operation and most passenger tracks.  There is also a limit imposed by the Federal 

Railroad Administration (FRA) in the amount of underbalance employed, which is 
generally three inches for freight equipment and most passenger equipment.   

             Figure 6-6  Effects of Centrifugal Force

©2003 AREMA® 

background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

224

224

224

224 

 

Underbalance limits 
above three to four 

inches (to as much as five 
or six inches upon FRA 

approval of a waiver 
request) for specific 

passenger equipment may 
be granted after testing is 

conducted. 

Track is rarely elevated to 

equilibrium elevation 
because not all trains will 

be moving at equilibrium 
speed through the curve.  

Furthermore, to reduce 
both the maximum 

allowable superelevation along with a reduction of underbalance provides a margin for 
maintenance.  Superelevation should be applied in 1/4-inch increments in most 

situations.  In some situations, increments may be reduced to 1/8 inch if it can be 
determined that construction and maintenance equipment can establish and maintain 

such a tolerance.  Even if it is determined that no superelevation is required for a curve, 
it is generally accepted practice to superelevate all curves a minimum amount (1/2 to   

3/4 of an inch).  Each railway will have its own standards for superelevation and 
underbalance, which should be used unless directed otherwise. 

The transition from level track on tangents to curves can be accomplished in two ways.  
For low speed tracks with minimum superelevation, which is commonly found in yards 

and industry tracks, the superelevation is run-out before and after the curve, or through 
the beginning of the curve if space prevents the latter.  A commonly used value for this 

run-out is 31-feet per half inch of superelevation. 

On main tracks, it is preferred to establish the transition from tangent level track and 

curved superelevated track by the use of a spiral or easement curve.  A spiral is a curve 
whose degree of curve varies exponentially from infinity (tangent) to the degree of the 

body curve.  The spiral completes two functions, including the gradual introduction of 
superelevation as well as guiding the railway vehicle from tangent track to curved track.  

Without it, there would be very high lateral dynamic load acting on the first portion of 
the curve and the first portion of tangent past the curve due to the sudden introduction 

and removal of centrifugal forces associated with the body curve. 

There are several different types of mathematical spirals available for use, including the 

clothoid, the cubic parabola and the lemniscate.  Of more common use on railways are 
the Searles, the Talbot and the AREMA 10-Chord spirals, which are empirical 

approximations of true spirals.  Though all have been applied to railway applications to 

Figure 6-7  Overbalance, Equilibrium and Underbalanced

UNDERBALANCE

Superelevation

Centrifugal

Force

Gravity

Resultant

Center of

Gravity

EQUILIBRIUM

Superelevation

Centrifugal

Force

Gravity

Resultant

Center of

Gravity

OVERBALANCE

Superelevation

Gravity

Resultant

Centrifugal

Force

Center of

Gravity

D

E

V

a

0007

.

0

3

max

+

=

= Maximum allowable operating speed (mph).
= Average elevation of the outside rail (inches).
= Degree of curvature (degrees).

D

E

V

a

max

Amount of 
Underbalance

©2003 AREMA® 

background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

232

232

232

232 

 

6.4  Alignment Design 

In a perfect world, all railway alignments would be tangent and flat, thus providing for 

the most economical operations and the least amount of maintenance.  Though this is 
never the set of circumstances from which the designer will work, it is that ideal that 

he/she must be cognizant to optimize any design. 

From the macro perspective, there has been for over 150 years, the classic railway 

location problem where a route between two points must be constructed.  One option 
is to construct a shorter route with steep grades.  The second option is to build a longer 

route with greater curvature along gentle sloping topography.  The challenge is for the 
designer to choose the better route based upon overall construction, operational and 

maintenance criteria.  Such an example is shown below. 

 

 

Figure 6-9  Heavy Curvature on the Santa Fe - Railway Technical Manual â€“ Courtesy of BNSF 

Suffice it to say that in today’s environment, the designer must also add to the decision 

model environmental concerns, politics, land use issues, economics, long-term traffic 
levels and other economic criteria far beyond what has traditionally been considered.  

These added considerations are well beyond what is normally the designer’s task of 
alignment design, but they all affect it.  The designer will have to work with these issues 

occasionally, dependent upon the size and scope of the project. 

©2003 AREMA® 

background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

233

233

233

233 

 

On a more discrete level, the designer must take the basic components of alignments, 
tangents, grades, horizontal and vertical curves, spirals and superelevation and 

construct an alignment, which is cost effective to construct, easy to maintain, efficient 
and safe to operate.  There have been a number of guidelines, which have been 

developed over the past 175 years, which take the foregoing into account.  The 
application of these guidelines will suffice for approximately 75% of most design 

situations.  For the remaining situations, the designer must take into account how the 
track is going to be used (train type, speed, frequency, length, etc.) and drawing upon 

experience and judgment, must make an educated decision.  The decision must be in 
concurrence with that of the eventual owner or operator of the track as to how to 

produce the alignment with the release of at least one of the restraining guidelines. 

Though AREMA has some general guidance for alignment design, each railway usually 

has its own design guidelines, which complement and expand the AREMA 
recommendations.  Sometimes, a less restrictive guideline from another entity can be 

employed to solve the design problem.  Other times, a specific project constraint can 
be changed to allow for the exception.  Other times, it’s more complicated, and the 

designer must understand how a train is going to perform to be able to make an 
educated decision.  The following are brief discussions of some of the concepts which 

must be considered when evaluating how the most common guidelines were 
established. 

A freight train is most 
commonly comprised of 

power and cars.  The 
power may be one or 

several locomotives 
located at the front of a 

train.  The cars are then 
located in a line behind 

the power.  Occasionally, 
additional power is placed 

at the rear, or even in the 
center of the train and 

may be operated remotely 
from the head-end.  The 

train can be effectively 
visualized for this 

discussion as a chain lying 
on a table.  We will assume for the sake of simplicity that the power is all at one end of 

the chain. 

Trains, and in this example the chain, will always have longitudinal forces acting along 

their length as the train speeds up or down, as well as reacting to changes in grade and 
curvature.  It is not unusual for a train to be in compression over part of its length 

Figure 6-10  Automatic Coupler 

©2003 AREMA® 

background image

C H A P T E R   6   â€“   R A I L W A Y   T R A C K   D E S I G N  

234

234

234

234 

 

(negative longitudinal force) and in tension (positive) on another portion.  These forces 
are often termed ‘buff’ (negative) and ‘draft’ (positive) forces.  Trains are most often 

connected together with couplers (Figure 6-10).  The mechanical connections of most 
couplers in North America have several inches (up to six or eight in some cases) of 

play between pulling and pushing.  This is termed slack. 

If one considers that a long train of 100 cars may be 6000' long, and that each car 

might account for six inches of slack, it becomes mathematically possible for a 
locomotive and the front end of a train to move fifty feet before the rear end moves at 

all.  As a result, the dynamic portion of the buff and draft forces can become quite 
large if the operation of the train, or more importantly to the designer, the geometry of 

the alignment contribute significantly to the longitudinal forces. 

As the train moves or 

accelerates, the chain is pulled 
from one end.  The force at 

any point in the chain (Figure 
6-11) is simply the force 

being applied to the front end 
of the chain minus the 

frictional resistance of the 
chain sliding on the table 

from the head end to the 
point under consideration.  

 
As the chain is pulled in a straight line, the remainder of the chain follows an identical 

path.  However, as the chain is pulled around a corner, the middle portion of the chain 
wants to deviate from the initial path of the front-end.  On a train, there are three 

things preventing this from occurring.  First, the centrifugal force, as the rail car moves 
about the curve, tends to push the car away from the inside of the curve.  When this 

fails, the wheel treads are both canted inward to encourage the vehicle to maintain the 
course of the track. The last resort is the action of the wheel flange striking the rail and 

guiding the wheel back on course. 
 

Attempting to push the chain causes a different situation.  A gentle nudge on a short 
chain will generally allow for some movement along a line.  However, as more force is 

applied and the chain becomes longer, the chain wants to buckle in much the same way 
an overloaded, un-braced column would buckle (See Figure 6-12).  The same theories 

that Euler applied to column buckling theory can be conceptually applied to a train 
under heavy buff forces.  Again, the only resistance to the buckling force becomes the 

wheel/rail interface.

 

 

 

Figure 6-11  Force Applied Throughout the Train - ATSF Railroad Technical 

Manual - Courtesy of BNSF 

©2003 AREMA®