background image

 

—————————————————————————— 

Bureau International 
des Poids et Mesures 

 

 

 

 

 

 

 

 

 

 

 

 

The International 

 

 

 

System of Units 

    

(SI)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

8th 

edition 2006 

  

 

—————————————————— 

 

 

 

 

Organisation Intergouvernementale 

 

 

 

 

de la Convention du Mètre 

background image

94 

 

 

 

 

 

 

 

 

 

 

 

 

Note on the use of the English text 

 

To make its work more widely accessible, the International 
Committee for Weights and Measures has decided to publish an 
English version of its reports. Readers should note that the 
official record is always that of the French text. This must be 
used when an authoritative reference is required or when there is 
doubt about the interpretation of the text. 

Translations, complete or partial, of this brochure (or of its earlier 
editions) have been published in various languages, notably in 
Bulgarian, Chinese, Czech, English, German, Japanese, Korean, 
Portuguese, Romanian, and Spanish. The ISO and numerous 
countries have also published standards and guides to the use of 
SI units. 

 

 

background image

 

 

95

 

 

 

The BIPM 
and the Metre Convention 

The International Bureau of Weights and Measures (BIPM) was set up by the Metre 
Convention signed in Paris on 20 May 1875 by seventeen States during the final 
session of the diplomatic Conference of the Metre. This Convention was amended in 
1921. 

The BIPM has its headquarters near Paris, in the grounds (43 520 m

2

) of the Pavillon 

de Breteuil (Parc de Saint-Cloud) placed at its disposal by the French Government; its 
upkeep is financed jointly by the Member States of the Metre Convention. 

The task of the BIPM is to ensure worldwide unification of measurements; its 
function is thus to: 

•

 

establish fundamental standards and scales for the measurement of the principal 
physical quantities and maintain the international prototypes; 

•

 

carry out comparisons of national and international standards; 

•

 

ensure the coordination of corresponding measurement techniques; 

•

 

carry out and coordinate measurements of the fundamental physical constants 
relevant to these activities. 

 

The BIPM operates under the exclusive supervision of the International Committee 
for Weights and Measures (CIPM) which itself comes under the authority of the 
General Conference on Weights and Measures (CGPM) and reports to it on the work 
accomplished by the BIPM. 

Delegates from all Member States of the Metre Convention attend the General 
Conference which, at present, meets every four years. The function of these meetings 
is to: 

•

 

discuss and initiate the arrangements required to ensure the propagation and 
improvement of the International System of Units (SI), which is the modern form 
of the metric system; 

•

 

confirm the results of new fundamental metrological determinations and various 
scientific resolutions of international scope; 

•

 

take all major decisions concerning the finance, organization and development of 
the BIPM. 

 

The CIPM has eighteen members each from a different State: at present, it meets 
every year. The officers of this committee present an annual report on the 
administrative and financial position of the BIPM to the Governments of the Member 
States of the Metre Convention. The principal task of the CIPM is to ensure 
worldwide uniformity in units of measurement. It does this by direct action or by 
submitting proposals to the CGPM. 

As of 31 December 2005, 
fifty-one States were 
members of this 
Convention: Argentina, 
Australia, Austria, Belgium, 
Brazil, Bulgaria, Cameroon, 
Canada, Chile, China, 
Czech Republic, Denmark, 
Dominican Republic, 
Egypt, Finland, France, 
Germany, Greece, Hungary, 
India, Indonesia, Iran 
(Islamic Rep. of), Ireland, 
Israel, Italy, Japan, Korea 
(Dem. People's Rep. of), 
Korea (Rep. of), Malaysia, 
Mexico, The Netherlands, 
New Zealand, Norway, 
Pakistan, Poland, Portugal, 
Romania, Russian 
Federation, Serbia and 
Montenegro, Singapore, 
Slovakia, South Africa, 
Spain, Sweden, 
Switzerland, Thailand, 
Turkey, United Kingdom, 
United States, Uruguay, and 
Venezuela. 
 
Twenty States and 
Economies were Associates 
of the General Conference: 
Belarus, CARICOM, 
Chinese Taipei, Costa Rica, 
Croatia, Cuba, Ecuador, 
Estonia, Hong Kong 
(China), Jamaica, 
Kazakhstan, Kenya, Latvia, 
Lithuania, Malta, Panama, 
Philippines, Slovenia, 
Ukraine, and Viet Nam. 

background image

96 

The activities of the BIPM, which in the beginning were limited to measurements of 
length and mass, and to metrological studies in relation to these quantities, have been 
extended to standards of measurement of electricity (1927), photometry and 
radiometry (1937), ionizing radiation (1960), time scales (1988) and to chemistry 
(2000). To this end the original laboratories, built in 1876

 

-1878, were enlarged in 

1929; new buildings were constructed in 1963-1964 for the ionizing radiation 
laboratories, in 1984 for the laser work and in 1988 for a library and offices. In 2001 
a new building for the workshop, offices and meeting rooms was opened. 

Some forty-five physicists and technicians work in the BIPM laboratories. They 
mainly conduct metrological research, international comparisons of realizations of 
units and calibrations of standards. An annual report, the 

Director’s Report on the 

Activity and Management of the International Bureau of Weights and Measures

gives details of the work in progress. 

Following the extension of the work entrusted to the BIPM in 1927, the CIPM has set 
up bodies, known as Consultative Committees, whose function is to provide it with 
information on matters that it refers to them for study and advice. These Consultative 
Committees, which may form temporary or permanent working groups to study 
special topics, are responsible for coordinating the international work carried out in 
their respective fields and for proposing recommendations to the CIPM concerning 
units. 

The Consultative Committees have common regulations (

BIPM Proc.-Verb. Com. Int. 

Poids et Mesures

, 1963, 

31

, 97). They meet at irregular intervals. The president of 

each Consultative Committee is designated by the CIPM and is normally a member of 
the CIPM. The members of the Consultative Committees are metrology laboratories 
and specialized institutes, agreed by the CIPM, which send delegates of their choice. 
In addition, there are individual members appointed by the CIPM, and a 
representative of the BIPM (Criteria for membership of Consultative Committees, 

BIPM Proc.-Verb. Com. Int. Poids et Mesures

, 1996, 

64

, 124). At present, there are 

ten such committees: 

1.  The Consultative Committee for Electricity and Magnetism (CCEM), new name 

given in 1997 to the Consultative Committee for Electricity (CCE) set up in 
1927; 

2.  The Consultative Committee for Photometry and Radiometry (CCPR), new name 

given in 1971 to the Consultative Committee for Photometry (CCP) set up in 
1933 (between 1930 and 1933 the CCE dealt with matters concerning 
photometry); 

3.  The Consultative Committee for Thermometry (CCT), set up in 1937; 

4.  The Consultative Committee for Length (CCL), new name given in 1997 to the 

Consultative Committee for the Definition of the Metre (CCDM), set up in 1952; 

5.  The Consultative Committee for Time and Frequency (CCTF), new name given 

in 1997 to the Consultative Committee for the Definition of the Second (CCDS) 
set up in 1956; 

6.  The Consultative Committee for Ionizing Radiation (CCRI), new name given in 

1997 to the Consultative Committee for Standards of Ionizing Radiation 
(CCEMRI) set up in 1958 (in 1969 this committee established four sections: 

background image

 

 

97

 

 

 

Section I (X- and 

γ

-rays, electrons), Section II (Measurement of radionuclides), 

Section III (Neutron measurements), Section IV (

α

-energy standards); in 1975 

this last section was dissolved and Section II was made responsible for its field 
of activity); 

 7.  The Consultative Committee for Units (CCU), set up in 1964 (this committee 

replaced the Commission for the System of Units set up by the CIPM in 1954); 

 8.  The Consultative Committee for Mass and Related Quantities (CCM), set up in 

1980; 

 9.  The Consultative Committee for Amount of Substance: Metrology in chemistry 

(CCQM), set up in 1993; 

10.  The Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV), 

set up un 1999. 

The proceedings of the General Conference and the CIPM are published by the BIPM 
in the following series: 

•

 

Report of the meeting of the General Conference on Weights and Measures

•

 

Report of the meeting of the International Committee for Weights and Measures

 

The CIPM decided in 2003 that the reports of meetings of the Consultative 
Committees should no longer be printed, but would be placed on the BIPM website, 
in their original language. 

The BIPM also publishes monographs on special metrological subjects and, under the 
title The International System of Units (SI), a brochure, periodically updated, in 
which are collected all the decisions and recommendations concerning units. 

The collection of the 

Travaux et Mémoires du Bureau International des Poids et 

Mesures

 (22 volumes published between 1881 and 1966) and the 

Recueil de Travaux 

du Bureau International des Poids et Mesures

 (11 volumes published between 1966 

and 1988) ceased by a decision of the CIPM. 

The scientific work of the BIPM is published in the open scientific literature and an 
annual list of publications appears in the 

Director’s Report on the Activity and 

Management of the International Bureau of Weights and Measures

Since 1965 

Metrologia

, an international journal published under the auspices of the 

CIPM, has printed articles dealing with scientific metrology, improvements in 
methods of measurement, work on standards and units, as well as reports concerning 
the activities, decisions and recommendations of the various bodies created under the 
Metre Convention. 

 

background image

98 

The International System of Units 

 

Contents 

The BIPM and the Metre Convention 

 

95 

Preface to the 8th edition  

 

 

101 

 

1  Introduction    

 

 

103 

1.1  Quantities and units   

 

103

 

1.2  The International System of Units (SI) and the corresponding  

system of quantities 

 

 

104 

1.3  Dimensions of quantities 

 

105 

1.4  Coherent units, derived units with special names, and the SI prefixes 

106 

1.5  SI units in the framework of general relativity 

 

107 

1.6  Units for quantities that describe biological effects 

 

107 

1.7  Legislation on units 

 

 

108 

1.8 Historical 

note 

 

 

108 

 

2  SI units  

 

 

 

111 

2.1  SI base units 

 

 

111 

2.1.1 Definitions 

 

 

111 

2.1.1.1  Unit of length (metre) 

 

112 

2.1.1.2  Unit of mass (kilogram) 

 

112 

2.1.1.3  Unit of time (second) 

 

112 

2.1.1.4  Unit of electric current (ampere) 

 

113 

2.1.1.5  Unit of thermodynamic temperature (kelvin) 

113 

2.1.1.6  Unit of amount of substance (mole) 

 

114 

2.1.1.7  Unit of luminous intensity (candela) 

 

115 

2.1.2  Symbols for the seven base units 

 

116 

2.2  SI derived units 

 

 

116 

2.2.1  Derived units expressed in terms of base units 

 

116

 

2.2.2  Units with special names and symbols; units that incorporate 

 

special names and symbols  

 

117 

2.2.3  Units for dimensionless quantities, also called 

 

quantities of dimension one 

 

120 

 

3  Decimal multiples and submultiples of SI units 

 

121 

3.1 SI 

prefixes 

 

 

121 

3.2 The 

kilogram 

 

 

122 

 

background image

 

 

99

 

 

 

4  Units outside the SI 

 

 

123 

4.1  Non-SI units accepted for use with the SI, and units based 

on fundamental constants 

  

123 

4.2  Other non-SI units not recommended for use 

 129 

 

5  Writing unit symbols and names, and expressing the values  

of quantities 

 

 

130 

5.1 Unit 

symbols 

 

 

130

 

5.2 Unit 

names 

 

 

131 

5.3  Rules and style conventions for expressing values of quantities 

131 

5.3.1  Value and numerical value of a quantity, and the use of 

 quantity 

calculus 

 

131 

5.3.2  Quantity symbols and unit symbols 

 

132 

5.3.3  Formatting the value of a quantity 

 

133 

5.3.4  Formatting numbers, and the decimal marker 

 

133

 

5.3.5  Expressing the measurement uncertainty in the value of a quantity 

133 

5.3.6  Multiplying or dividing quantity symbols, the values of quantities, 

 or 

numbers 

 

 

134 

5.3.7  Stating values of dimensionless quantities, or quantities of  
  

dimension one  

 

134 

 

Appendix 1. —  Decisions of the CGPM and the CIPM 

 

137 

Appendix 2. —  Practical realization of the definitions of some important 

  

units 

 

 

172 

Appendix 3. —  Units for photochemical and photobiological quantities 

173 

List of acronyms 

 

 

175 

Index  

 

 

 

177 

background image

 

background image

 

101

 

Preface 
to the 8th edition 

We have pleasure in introducing the 8th edition of this publication, commonly called 
the SI Brochure, which defines and presents the Système International d’Unités, the 
SI (known in English as the International System of Units). This Brochure is 
published as a hard copy, and is also available in electronic form at 

www.bipm.org/en/si/si_brochure/

Since 1970, the Bureau International des Poids et Mesures, the BIPM (known in 
English as the International Bureau of Weights and Measures), has published seven 
previous editions of this document. Its main purpose is to define and promote the SI, 
which has been used around the world as the preferred language of science and 
technology since its adoption in 1948 through a Resolution of the 9th Conférence 
Générale des Poids et Mesures, the CGPM (known in English as the General 
Conference on Weights and Measures). 

The SI is, of course, a living system which evolves, and which reflects current best 
measurement practice. This 8th edition therefore contains a number of changes since 
the previous edition. As before, it lists the definitions of all the base units, and all the 
Resolutions and Recommendations of the Conférence Générale des Poids et Mesures 
and the Comité International des Poids et Mesures, the CIPM (known in English as 
the International Committee for Weights and Measures), relating to the International 
System of Units. Formal reference to CGPM and CIPM decisions are to be found in 
the successive volumes of the 

Comptes Rendus 

of the CGPM (CR) and the 

Procès-

Verbaux

 of the CIPM (PV); many of these are also listed in 

Metrologia

. To simplify 

practical use of the system, the text provides explanations of these decisions, and the 
first chapter provides a general introduction to establishing a system of units and to 
the SI in particular. The definitions and the practical realizations of all the units are 
also considered in the context of general relativity. A brief discussion of units 
associated with biological quantities has been introduced for the first time. 

Appendix 1 reproduces, in chronological order, all the decisions (Resolutions, 
Recommendations, Declarations) promulgated since 1889 by the CGPM and the 
CIPM on units of measurement and the International System of Units.  

Appendix 

2 exists only in the electronic version, which is available at 

www.bipm.org/en/si/si_brochure/appendix2/

. It outlines the practical realization of 

some important units, consistent with the definitions given in the principal text, 
which metrological laboratories can make to realize physical units and to calibrate 
material standards and measuring instruments of the highest quality. This appendix 
will be updated regularly to reflect improvements in the experimental techniques for 
realizing the units. 

Appendix 3 presents units used to measure actinic effects in biological materials. 

background image
background image

103

 

The terms 

quantity

 and 

unit

 are defined in the 

International Vocabulary of 
Basic and General Terms in 
Metrology

, the VIM.  

 
 
 
 
 
 
 
 
 
 
 
The quantity speed, 

v

,

 may 

be expressed in terms of the 
quantities distance, 

x

, and 

time, 

t

, by the equation 

 

v

 = d

x

/d

t

.

 

In most systems of 
quantities and units, 
distance 

x

 and time 

t

 are 

regarded as base quantities, 
for which the metre, m, and 
the second, s, may be 
chosen as base units. Speed 

v

 is then taken as a derived 

quantity, with the derived 
unit metre per second, m/s. 
 
 
For example, in 
electrochemistry, the 
electric mobility of an ion, 

u

, is defined as the ratio of 

its velocity 

v

 to the electric 

field strength, 

E

:  

u

 = 

v

 /

E

The derived unit of electric 
mobility is then given as 
(m/s)/(V/m) = m

2

 V

−

1

 s

−

1

,  

in units which may be easily 
related to the chosen base 
units (V is the symbol for 
the SI derived unit volt).  

1 Introduction 

1.1 

Quantities and units 

The value of a quantity is generally expressed as the product of a number and a unit. 
The unit is simply a particular example of the quantity concerned which is used as a 
reference, and the number is the ratio of the value of the quantity to the unit. For a 
particular quantity, many different units may be used. For example, the speed 

v

 of a 

particle may be expressed in the form 

v

 

= 25 m/s = 90 km/h, where metre per second 

and kilometre per hour are alternative units for expressing the same value of the 
quantity speed. However, because of the importance of a set of well defined and 
easily accessible units universally agreed for the multitude of measurements that 
support today’s complex society, units should be chosen so that they are readily 
available to all, are constant throughout time and space, and are easy to realize with 
high accuracy. 

In order to establish a system of units, such as the International System of Units, the 
SI, it is necessary first to establish a system of quantities, including a set of equations 
defining the relations between those quantities. This is necessary because the 
equations between the quantities determine the equations relating the units, as 
described below. It is also convenient to choose definitions for a small number of 
units that we call 

base units

, and then to define units for all other quantities as 

products of powers of the base units that we call 

derived units

. In a similar way the 

corresponding quantities are described as 

base quantities

 and 

derived quantities

, and 

the equations giving the derived quantities in terms of the base quantities are used to 
determine the expression for the derived units in terms of the base units, as discussed 
further in Section 1.4 below. Thus in a logical development of this subject, the choice 
of quantities and the equations relating the quantities comes first, and the choice of 
units comes second. 

From a scientific point of view, the division of quantities into base quantities and 
derived quantities is a matter of convention, and is not essential to the physics of the 
subject. However for the corresponding units, it is important that the definition of 
each base unit is made with particular care, to satisfy the requirements outlined in the 
first paragraph above, since they provide the foundation for the entire system of units. 
The definitions of the derived units in terms of the base units then follow from the 
equations defining the derived quantities in terms of the base quantities. Thus the 
establishment of a system of units, which is the subject of this brochure, is intimately 
connected with the algebraic equations relating the corresponding quantities. 

The number of derived quantities of interest in science and technology can, of course, 
be extended without limit. As new fields of science develop, new quantities are 
devised by researchers to represent the interests of the field, and with these new 
quantities come new equations relating them to those quantities that were previously 
familiar, and hence ultimately to the base quantities. In this way the derived units to 

background image

104  

•

  

Introduction

 

be used with the new quantities may always be defined as products of powers of the 
previously chosen base units.  

 

1.2 

The International System of Units (SI) and the corresponding 

system of quantities 

This Brochure is concerned with presenting the information necessary to define and 
use the International System of Units, universally known as the SI (from the French 

Système International d’Unités

). The SI was established by and is defined by the 

General Conference on Weights and Measures, the CGPM, as described in the 
Historical note in Section 1.8 below*. 

The system of quantities, including the equations relating the quantities, to be used 
with the SI, is in fact just the quantities and equations of physics that are familiar to 
all scientists, technologists, and engineers. They are listed in many textbooks and in 
many references, but any such list can only be a selection of the possible quantities 
and equations, which is without limit. Many of the quantities, their recommended 
names and symbols, and the equations relating them, are listed in the International 
Standards ISO 31 and IEC 60027 produced by Technical Committee 12 of the 
International Organization for Standardization, ISO/TC 

12, and by Technical 

Committee 25 of the International Electrotechnical Commission, IEC/TC 25. The 
ISO 

31 and IEC 

60027 Standards are at present being revised by the two 

standardization organizations in collaboration. The revised harmonized standard will 
be known as ISO/IEC 80000, 

Quantities and Units

, in which it is proposed that the 

quantities and equations used with the SI will be known as the International System 
of Quantities. 

The base quantities used in the SI are length, mass, time, electric current, 
thermodynamic temperature, amount of substance, and luminous intensity. The base 
quantities are by convention assumed to be independent. The corresponding base 
units of the SI were chosen by the CGPM to be the metre, the kilogram, the second, 
the ampere, the kelvin, the mole, and the candela. The definitions of these base units 
are presented in Section 2.1.1 in the following chapter. The derived units of the SI are 
then formed as products of powers of the base units, according to the algebraic 
relations that define the corresponding derived quantities in terms of the base 
quantities, see Section 1.4 below. 

On rare occasions a choice may arise between different forms of the relations 
between the quantities. An important example occurs in defining the electromagnetic 
quantities. In this case the rationalized four-quantity electromagnetic equations used 
with the SI are based on length, mass, time, and electric current. In these equations, 
the electric constant 

ε

0

 (the permittivity of vacuum) and the magnetic constant 

µ

0

 (the 

permeability of vacuum) have dimensions and values such that 

ε

0

µ

0

 = 1/

c

0

2

, where 

c

0

 

is the speed of light in vacuum. The Coulomb law of electrostatic force between two 
particles with charges 

q

1

 and 

q

2

 separated by a distance 

r

 is written

**

 

1 2

3

0

4

qq

r

ε

=

Ï€

F

r

 

                                                        

*   Acronyms used in this Brochure are listed with their meaning on p. 175. 

** Symbols in bold print are used to denote vectors.

 

The name 

Système 

International d’Unités

,  

and the abbreviation SI, 
were established by the  
11th CGPM in 1960. 
 
 
 
Examples of the equations 
relating quantities used in 
the SI are the Newtonian 
inertial equation relating 
force, 

F

, to mass, 

m

, and 

acceleration, 

a

,  

for a particle: 

F

 = 

ma

, and 

the equation giving the 
kinetic energy, 

T

, of a 

particle moving with 
velocity, 

:  

T

 = 

m

v

 

2

/2. 

background image

Introduction  

•

  

105

 

 

 

and the corresponding equation for the magnetic force between two thin wire 
elements carrying electric currents, 

1

1

2

2

d and d

i

i

l

l

, is written 

 

d

2

F

 = 

3

2

2

1

1

0

×

×

4

r

i

i

)

d

(

d

Ï€

r

l

l

µ

 

 

where d

2

F

 is the double differential of the force 

F

. These equations, on which the SI 

is based, are different from those used in the CGS-ESU, CGS-EMU, and CGS-
Gaussian systems, where 

ε

0

 and 

µ

0

 are dimensionless quantities, chosen to be equal to 

one, and where the rationalizing factors of 4

Ï€

 are omitted. 

 

1.3 

Dimensions of quantities 

By convention physical quantities are organized in a system of dimensions. Each of 
the seven base quantities used in the SI is regarded as having its own dimension, 
which is symbolically represented by a single sans serif roman capital letter. The 
symbols used for the base quantities, and the symbols used to denote their dimension, 
are given as follows. 

 
Base quantities and dimensions used in the SI

 

 

 
Base quantity 

 

Symbol for quantity 

Symbol for dimension 

 
 
length  

 

l

,

 x

,

 r

, etc.

 

L

 

mass  

 

m  

M

 

time, duration 

 

t  

T

 

electric current 

 

I

,

 i 

 

I

 

thermodynamic temperature 

T  

Θ

 

amount of substance 

n  

N

 

luminous intensity   

I

v

 

 

J

 

 

 

All other quantities are derived quantities, which may be written in terms of the base 
quantities by the equations of physics. The dimensions of the derived quantities are 
written as products of powers of the dimensions of the base quantities using the 
equations that relate the derived quantities to the base quantities. In general the 
dimension of any quantity 

Q

 is written in the form of a dimensional product, 

dim 

Q

  =  

L

α

 

M

β

 

T

γ

 

I

δ

 

Θ

ε

 

N

ζ

 

J

η

 

where the exponents 

α

β

γ

δ

ε

ζ

, and 

η

, which are generally small integers which 

can be positive, negative or zero, are called the dimensional exponents. The 
dimension of a derived quantity provides the same information about the relation of 
that quantity to the base quantities as is provided by the SI unit of the derived 
quantity as a product of powers of the SI base units. 

There are some derived quantities 

Q

 for which the defining equation is such that all 

of the dimensional exponents in the expression for the dimension of 

Q

 are zero. This 

is true, in particular, for any quantity that is defined as the ratio of two quantities of 
the same kind. Such quantities are described as being 

dimensionless

, or alternatively 

as being 

of dimension one

. The coherent derived unit for such dimensionless 

quantities is always the number one, 1, since it is the ratio of two identical units for 
two quantities of the same kind. 

There are also some quantities that cannot be described in terms of the seven base 
quantities of the SI at all, but have the nature of a count. Examples are number of 

Quantity symbols are 
always written in an italic 
font, and symbols for 
dimensions in sans-serif 
roman capitals.  
For some quantities a 
variety of alternative 
symbols may be used, as 
indicated for length and 
electric current. 
Note that symbols for 
quantities are only 

recommendations

, in 

contrast to symbols for units 
that appear elsewhere in this 
brochure whose style and 
form is 

mandatory

 (see 

Chapter 5). 
Dimensional symbols and 
exponents are manipulated 
using the ordinary rules of 
algebra. For example, the 
dimension of area is written 
as 

L

2

; the dimension of 

velocity as 

LT

−

1

; the 

dimension of force as 

LMT

−

2

; and the dimension 

of energy is written as 

L

2

MT

−

2

For example, refractive 
index is defined as the ratio 
of the speed of light in 
vacuum to that in the 
medium, and is thus a ratio 
of two quantities of the 
same kind. It is therefore a 
dimensionless quantity.  
Other examples of 
dimensionless quantities are 
plane angle, mass fraction, 
relative permittivity, 
relative  permeability, and 
finesse of a Fabry-Perot 
cavity. 

background image

106  

•

  

Introduction

 

molecules, degeneracy in quantum mechanics (the number of independent states of 
the same energy), and the partition function in statistical thermodynamics (the 
number of thermally accessible states). Such counting quantities are also usually 
regarded as dimensionless quantities, or quantities of dimension one, with the unit 
one, 1. 

 

1.4 

Coherent units, derived units with special names,  
and the SI prefixes 

Derived units are defined as products of powers of the base units. When the product 
of powers includes no numerical factor other than one, the derived units are called 

coherent derived 

units. The base and coherent derived units of the SI form a coherent 

set, designated the set of 

coherent SI units

. The word coherent is used here in the 

following sense: when coherent units are used, equations between the numerical 
values of quantities take exactly the same form as the equations between the 
quantities themselves. Thus if only units from a coherent set are used, conversion 
factors between units are never required. 

The expression for the coherent unit of a derived quantity may be obtained from the 
dimensional product of that quantity by replacing the symbol for each dimension by 
the symbol of the corresponding base unit. 

Some of the coherent derived units in the SI are given special names, to simplify their 
expression (see 2.2.2, p. 118). It is important to emphasize that each physical quantity 
has only one coherent SI unit, even if this unit can be expressed in different forms by 
using some of the special names and symbols. The inverse, however, is not true: in 
some cases the same SI unit can be used to express the values of several different 
quantities (see p. 119). 

The CGPM has, in addition, adopted a series of prefixes for use in forming the 
decimal multiples and submultiples of the coherent SI units (see 3.1, p. 121, where 
the prefix names and symbols are listed). These are convenient for expressing the 
values of quantities that are much larger than or much smaller than the coherent unit. 
Following the CIPM Recommendation 1 (1969) (see p. 155) these are given the name 

SI Prefixes

. (These prefixes are also sometimes used with other non-SI units, as 

described in Chapter 4 below.)  However when prefixes are used with SI units, the 
resulting units are no longer coherent, because a prefix on a derived unit effectively 
introduces a numerical factor in the expression for the derived unit in terms of the 
base units. 

As an exception, the name of the kilogram, which is the base unit of mass, includes 
the prefix kilo, for historical reasons. It is nonetheless taken to be a base unit of the SI. 
The multiples and submultiples of the kilogram are formed by attaching prefix names 
to the unit name â€œgramâ€, and prefix symbols to the unit symbol “g†(see 3.2, p. 122). 
Thus 10

−

6

 kg is written as a milligram, mg, not as a microkilogram, 

µ

kg. 

The complete set of SI units, including both the coherent set and the multiples and 
submultiples of these units formed by combining them with the SI prefixes, are 
designated as the 

complete set of

 

SI units

, or simply the 

SI units

, or the 

units of the SI

Note, however, that the decimal multiples and submultiples of the SI units do not 
form a coherent set.  

As an example of a special 
name, the particular 
combination of base units 
m

2

 kg s

−

2

 for energy is given 

the special name joule, 
symbol J, where by 
definition J = m

2

 kg s

−

2

The length of a chemical 
bond is more conveniently 
given in nanometres, nm, 
than in metres, m; and the 
distance from London to 
Paris is more conveniently 
given in kilometres, km, 
than in metres, m. 

The metre per second, 
symbol m/s, is the coherent 
SI unit of speed. The 
kilometre per second, km/s, 
the centimetre per second, 
cm/s, and the millimetre per 
second, mm/s, are also SI 
units, but they are not 
coherent SI units. 

background image

Introduction  

•

  

107

 

 

 

1.5 

SI units in the framework of general relativity 

The definitions of the base units of the SI were adopted in a context that takes no 
account of relativistic effects. When such account is taken, it is clear that the 
definitions apply only in a small spatial domain sharing the motion of the standards 
that realize them. These units are known as 

proper units

; they are realized from local 

experiments in which the relativistic effects that need to be taken into account are 
those of special relativity. The constants of physics are local quantities with their 
values expressed in proper units. 

Physical realizations of the definition of a unit are usually compared locally. For 
frequency standards, however, it is possible to make such comparisons at a distance 
by means of electromagnetic signals. To interpret the results the theory of general 
relativity is required since it predicts, among other things, a relative frequency shift 
between standards of about 1 part in 10

16

 per metre of altitude difference at the 

surface of the Earth. Effects of this magnitude cannot be neglected when comparing 
the best frequency standards. 

 

1.6 

Units for quantities that describe biological effects  

Units for quantities that describe biological effects are often difficult to relate to units 
of the SI because they typically involve weighting factors that may not be precisely 
known or defined, and which may be both energy and frequency dependent. These 
units, which are not SI units, are described briefly in this section. 

Optical radiation may cause chemical changes in living or non-living materials: this 
property is called 

actinism

 and radiation capable of causing such changes is referred 

to as 

actinic radiation

. In some cases, the results of measurements of photochemical 

and photobiological quantities of this kind can be expressed in terms of SI units. This 
is discussed briefly in Appendix 3. 

Sound causes small pressure fluctuations in the air, superimposed on the normal 
atmospheric pressure, that are sensed by the human ear. The sensitivity of the ear 
depends on the frequency of the sound, but is not a simple function of either the 
pressure changes or the frequency. Therefore frequency-weighted quantities are used 
in acoustics to approximate the way in which sound is perceived. Such frequency-
weighted quantities are employed, for example, in work to protect against hearing 
damage. The effects of ultrasonic acoustic waves pose similar concerns in medical 
diagnosis and therapy. 

Ionizing radiation deposits energy in irradiated matter. The ratio of deposited energy 
to mass is termed 

absorbed dose

. High doses of ionizing radiation kill cells, and this 

is used in radiation therapy. Appropriate biological weighting functions are used to 
compare therapeutic effects of different radiation treatments. Low sub-lethal doses 
can cause damage to living organisms, for instance by inducing cancer. Appropriate 
risk-weighted functions are used at low doses as the basis of radiation protection 
regulations. 

There is a class of units for quantifying the biological activity of certain substances 
used in medical diagnosis and therapy that cannot yet be defined in terms of the units 
of the SI. This is because the mechanism of the specific biological effect that gives 
these substances their medical use is not yet sufficiently well understood for it to be 
quantifiable in terms of physico-chemical parameters. In view of their importance for 

The question of proper units 
is addressed in Resolution 
A4 adopted by the  
XXIst General Assembly  
of the International 
Astronomical Union (IAU) 
in 1991 and by the report of 
the CCDS Working Group 
on the Application of 
General Relativity to 
Metrology (

Metrologia

1997, 

34

, 261-290).  

background image

108  

•

  

Introduction

 

human health and safety, the World Health Organization (WHO) has taken 
responsibility for defining WHO International Units (IU) for the biological activity of 
such substances. 

 

1.7 

Legislation on units 

By legislation, individual countries have established rules concerning the use of units 
on a national basis, either for general use or for specific areas such as commerce, 
health, public safety, and education. In almost all countries this legislation is based on 
the International System of Units. 

The Organisation Internationale de Métrologie Légale (OIML), founded in 1955, is 
charged with the international harmonization of this legislation. 

 

1.8 Historical 

note 

The previous paragraphs of this chapter give a brief overview of the way in which a 
system of units, and the International System of Units in particular, is established. 
This note gives a brief account of the historical development of the International 
System. 

The 9th CGPM (1948, Resolution 6; CR, 64) instructed the CIPM: 

•

 

to study the establishment of a complete set of rules for units of measurement; 

•

 

to find out for this purpose, by official enquiry, the opinion prevailing in 
scientific, technical and educational circles in all countries; 

•

 

to make recommendations on the establishment of a 

practical system of units of 

measurement

 suitable for adoption by all signatories to the 

Convention du Mètre

The same CGPM also laid down, in Resolution 7 (CR, 70), general principles for the 
writing of unit symbols, and listed some coherent derived units which were assigned 
special names. 

The 10th CGPM (1954, Resolution 6; CR, 80) and the 14th CGPM (1971, 
Resolution 3, CR, 78, and 

Metrologia

, 1972, 

8

, 36) adopted as base units of this 

practical system of units the units of the following seven quantities: length, mass, 
time, electric current, thermodynamic temperature, amount of substance, and 
luminous intensity. 

The 11th 

CGPM (1960, Resolution 12; CR, 87) adopted the name 

Système 

International d’Unités

, with the international abbreviation SI, for this practical 

system of units and laid down rules for prefixes, derived units, and the former 
supplementary units, and other matters; it thus established a comprehensive 
specification for units of measurement. Subsequent meetings of the CGPM and CIPM 
have added to, and modified as necessary, the original structure of the SI to take 
account of advances in science and of the needs of users.  

The historical sequence that led to these important CGPM decisions may be 
summarized as follows. 

•

 

The creation of the decimal metric system at the time of the French Revolution 
and the subsequent deposition of two platinum standards representing the metre 
and the kilogram, on 22 June 1799, in the Archives de la République in Paris can 

background image

Introduction  

•

  

109

 

 

 

be seen as the first step in the development of the present International System of 
Units. 

•

 

In 1832, Gauss strongly promoted the application of this metric system, together 
with the second defined in astronomy, as a coherent system of units for the 
physical sciences. Gauss was the first to make 

absolute

 measurements of the 

Earth’s magnetic field in terms of a decimal system based on the 

three 

mechanical units

 millimetre, gram, and second for, respectively, the quantities 

length, mass, and time. In later years, Gauss and Weber extended these 
measurements to include other electrical phenomena. 

•

 

These applications in the field of electricity and magnetism were further 
developed in the 1860s under the active leadership of Maxwell and Thomson 
through the British Association for the Advancement of Science (BAAS). They 
formulated the requirement for a 

coherent system of units

 with 

base

 units and 

derived 

units. In 1874 the BAAS introduced the 

CGS system

, a three-dimensional 

coherent unit system based on the three mechanical units centimetre, gram, and 
second, using prefixes ranging from micro to mega to express decimal 
submultiples and multiples. The subsequent development of physics as an 
experimental science was largely based on this system. 

•

 

The sizes of the coherent CGS units in the fields of electricity and magnetism 
proved to be inconvenient so, in the 1880s, the BAAS and the International 
Electrical Congress, predecessor of the International Electrotechnical 
Commission (IEC), approved a mutually coherent set of 

practical units

. Among 

them were the ohm for electrical resistance, the volt for electromotive force, and 
the ampere for electric current. 

•

 

After the signing of the 

Convention du Mètre

 on 20 May 1875, which created the 

BIPM and established the CGPM and the CIPM, work began on the construction 
of new international prototypes of the metre and kilogram. In 1889 the first 
CGPM sanctioned the international prototypes for the metre and the kilogram. 
Together with the astronomical second as the unit of time, these units constituted 
a three-dimensional mechanical unit system similar to the CGS system, but with 
the base units metre, kilogram, and second, the MKS system.  

•

 

In 1901 Giorgi showed that it is possible to combine the mechanical units of this 
metre-kilogram-second system with the practical electrical units to form a single 
coherent four-dimensional system by adding to the three base units a fourth unit, 
of an electrical nature such as the ampere or the ohm, and rewriting the equations 
occurring in electromagnetism in the so-called rationalized form. Giorgi’s 
proposal opened the path to a number of new developments. 

•

 

After the revision of the 

Convention du Mètre

 by the 6th CGPM in 1921, which 

extended the scope and responsibilities of the BIPM to other fields in physics, 
and the subsequent creation of the Consultative Committee for Electricity (CCE) 
by the 7th CGPM in 1927, the Giorgi proposal was thoroughly discussed by the 
IEC, the International Union of Pure and Applied Physics (IUPAP), and other 
international organizations. This led the CCE to propose, in 1939, the adoption of 
a four-dimensional system based on the metre, kilogram, second, and ampere, the 
MKSA system, a proposal approved by the CIPM in 1946. 

background image

110  

•

  

Introduction

 

•

 

Following an international enquiry by the BIPM, which began in 1948, the 
10th CGPM, in 1954, approved the introduction of the 

ampere

, the 

kelvin

, and 

the 

candela

 as base units, respectively, for electric current, thermodynamic 

temperature, and luminous intensity. The name 

Système International d’Unités

with the abbreviation SI, was given to the system by the 11th CGPM in 1960. At 
the 14th CGPM in 1971, after lengthy discussions between physicists and 
chemists, the current version of the SI was completed by adding the 

mole

 as the 

base unit for amount of substance, bringing the total number of base units to 
seven. 

background image

111

 

 

2 SI 

units

 

2.1 

SI base units 

Formal definitions of all SI base units are adopted by the CGPM. The first two 
definitions were adopted in 1889, and the most recent in 1983. These definitions are 
modified from time to time as science advances.  

 

2.1.1 Definitions 

Current definitions of the base units, as taken from the 

Comptes Rendus

 (CR) of the 

corresponding CGPM, are shown below indented and in a heavy sans-serif font. 
Related decisions which clarify these definitions but are not formally part of them, as 
taken from the 

Comptes Rendus 

of the corresponding CGPM or the 

Procès-Verbaux

 

(PV) of the CIPM, are also shown indented but in a sans-serif font of normal weight. 
The linking text provides historical notes and explanations, but is not part of the 
definitions themselves. 

It is important to distinguish between the definition of a unit and its realization. The 
definition of each base unit of the SI is carefully drawn up so that it is unique and 
provides a sound theoretical basis upon which the most accurate and reproducible 
measurements can be made. The realization of the definition of a unit is the procedure 
by which the definition may be used to establish the value and associated uncertainty 
of a quantity of the same kind as the unit. A description of how the definitions of 
some important units are realized in practice is given on the BIPM website, 

www.bipm.org/en/si/si_brochure/appendix2/

.

 

A coherent SI derived unit is defined uniquely only in terms of SI base units. For 
example, the coherent SI derived unit of resistance, the ohm, symbol â„¦, is uniquely 
defined by the relation Ω = m

2

 kg s

–3

 A

–2

,

 

which follows from the definition of the 

quantity electrical resistance. However any method consistent with the laws of 
physics could be used to realize any SI unit. For example, the unit ohm can be 
realized

 

with high accuracy using the quantum Hall effect and the value of the von 

Klitzing constant recommended by the CIPM (see pp. 163 and 166, respectively, 
Appendix 1). 

Finally, it should be recognized that although the seven base quantities â€“ length, 
mass, time, electric current, thermodynamic temperature, amount of substance, and 
luminous intensity â€“ are by convention regarded as independent, their respective base 
units â€“ the metre, kilogram, second, ampere, kelvin, mole, and candela – are in a 
number of instances interdependent. Thus the definition of the metre incorporates the 
second; the definition of the ampere incorporates the metre, kilogram, and second; the 
definition of the mole incorporates the kilogram; and the definition of the candela 
incorporates the metre, kilogram, and second. 

 

background image

112

  

•

  

 SI units

 

 

2.1.1.1  Unit of length (metre) 

The 1889 definition of the metre, based on the international prototype of platinum-
iridium, was replaced by the 11th CGPM (1960) using a definition based on the 
wavelength of krypton 86 radiation. This change was adopted in order to improve the 
accuracy with which the definition of the metre could be realized, the realization 
being achieved using an interferometer with a travelling microscope to measure the 
optical path difference as the fringes were counted. In turn, this was replaced in 1983 
by the 17th CGPM (1983, Resolution 1, CR, 97, and 

Metrologia

, 1984, 

20

, 25) that 

specified the current definition, as follows: 

The metre is the length of the path travelled by light in vacuum during a 
time interval of 1/299 792 458 of a second. 

It follows that the speed of light in vacuum is exactly 299 792 458 metres per second, 

c

0

 = 299 792 458 m/s. 

The original international prototype of the metre, which was sanctioned by the 
1st CGPM in 1889 (CR, 34-38), is still kept at the BIPM under conditions specified 
in 1889. 

 

2.1.1.2  Unit of mass (kilogram) 

The international prototype of the kilogram, an artefact made of platinum-iridium, is 
kept at the BIPM under the conditions specified by the 1st CGPM in 1889 (CR, 34-
38) when it sanctioned the prototype and declared: 

This prototype shall henceforth be considered to be the unit of mass. 

The 3rd CGPM (1901, CR, 70), in a declaration intended to end the ambiguity in 
popular usage concerning the use of the word “weightâ€, confirmed that: 

The kilogram is the unit of mass; it is equal to the mass of the 
international prototype of the kilogram. 

The complete declaration appears on p. 143. 

It follows that the mass of the international prototype of the kilogram is always 
1 kilogram  exactly, 

m

 

(

K

 

) = 1 kg. However, due to the inevitable accumulation of 

contaminants on surfaces, the international prototype is subject to reversible surface 
contamination that approaches 1 

µ

g per year in mass. For this reason, the CIPM 

declared that, pending further research, the reference mass of the international 
prototype is that immediately after cleaning and washing by a specified method (PV, 
1989, 

57

, 104-105 and PV, 1990, 

58

, 95-97). The reference mass thus defined is used 

to calibrate national standards of platinum-iridium alloy (

Metrologia

, 1994, 

31

, 317-

336). 

 

2.1.1.3  Unit of time (second) 

The unit of time, the second, was at one time considered to be the fraction 1/86 400 
of the mean solar day. The exact definition of “mean solar day†was left to the 
astronomers. However measurements showed that irregularities in the rotation of the 
Earth made this an unsatisfactory definition. In order to define the unit of time more 
precisely, the 11th CGPM (1960, Resolution 9; CR, 86) adopted a definition given by 
the International Astronomical Union based on the tropical year 1900. Experimental 
work, however, had already shown that an atomic standard of time, based on a 
transition between two energy levels of an atom or a molecule, could be realized and 

The symbol, 

c

0

 (or 

sometimes simply 

c

), is the 

conventional symbol for the 

speed of light in vacuum

.  

The symbol, 

m

 

(

K

 

), is used 

to denote the mass of the 
international prototype of 
the kilogram, 

K

.. 

background image

SI units  

•

  

113

 

 

reproduced much more accurately. Considering that a very precise definition of the 
unit of time is indispensable for science and technology, the 13th CGPM (1967/68, 
Resolution 1; CR, 103 and 

Metrologia

, 1968, 

4

, 43) replaced the definition of the 

second by the following: 

The second is the duration of 9 

192 

631 

770 periods of the radiation 

corresponding to the transition between the two hyperfine levels of the 
ground state of the caesium 133 atom. 

It follows that the hyperfine splitting in the ground state of the caesium 133 atom is 
exactly 9 192 631 770 hertz, 

ν

(hfs Cs) = 9 192 631 770 Hz. 

At its 1997 meeting the CIPM affirmed that: 

This definition refers to a caesium atom at rest at a temperature of 0 K. 

This note was intended to make it clear that the definition of the SI second is based 
on a caesium atom unperturbed by black body radiation, that is, in an environment 
whose thermodynamic temperature is 0 K. The frequencies of all primary frequency 
standards should therefore be corrected for the shift due to ambient radiation, as 
stated at the meeting of the Consultative Committee for Time and Frequency in 1999. 

 

2.1.1.4  Unit of electric current (ampere) 

Electric units, called â€œinternational unitsâ€, for current and resistance, were introduced 
by the International Electrical Congress held in Chicago in 1893, and definitions of 
the â€œinternational ampere†and “international ohm†were confirmed by the 
International Conference in London in 1908. 

Although it was already obvious on the occasion of the 8th CGPM (1933) that there 
was a unanimous desire to replace those “international units†by so-called â€œabsolute 
unitsâ€, the official decision to abolish them was only taken by the 9th CGPM (1948), 
which adopted the ampere for the unit of electric current, following a definition 
proposed by the CIPM (1946, Resolution 2; PV, 

20

, 129-137): 

The ampere is that constant current which, if maintained in two straight 
parallel conductors of infinite length, of negligible circular cross-section, 
and placed 1 metre apart in vacuum, would produce between these 
conductors a force equal to 2 × 10

−

 newton per metre of length. 

It follows that the magnetic constant, 

µ

0

, also known as the permeability of free 

space, is exactly 4

Ï€

 

×

 10

−7

 henries per metre, 

µ

0

 = 4

Ï€

 

×

 10

−7

 H/m. 

The expression â€œMKS unit of force†which occurs in the original text of 1946 has 
been replaced here by “newtonâ€, a name adopted for this unit by the 9th CGPM 
(1948, Resolution 7; CR, 70).  

 

2.1.1.5  Unit of thermodynamic temperature (kelvin) 

The definition of the unit of thermodynamic temperature was given in substance by 
the 10th CGPM (1954, Resolution 3; CR, 79) which selected the triple point of water 
as the fundamental fixed point and assigned to it the temperature 273.16 K, so 
defining the unit. The 13th CGPM (1967/68, Resolution 3; CR, 104 and 

Metrologia

1968, 

4

, 43) adopted the name kelvin, symbol K, instead of “degree Kelvinâ€, symbol 

o

K, and defined the unit of thermodynamic temperature as follows (1967/68, 

Resolution 4; CR, 104 and 

Metrologia

, 1968, 

4

, 43): 

The symbol, 

ν

(hfs Cs), is 

used to denote the 
frequency of the hyperfine 
transition in the ground 
state of the caesium atom. 

background image

114

  

•

  

 SI units

 

 

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of 
the thermodynamic temperature of the triple point of water. 

It follows that the thermodynamic temperature of the triple point of water is exactly  
273.16 kelvins, 

T

tpw

 = 273.16 K. 

At its 2005 meeting the CIPM affirmed that:  

This definition refers to water having the isotopic composition defined exactly 
by the following amount of substance ratios: 0.000

 

155

 

76 mole of 

2

H per mole 

of 

1

H, 0.000

 

379

 

9 mole of 

17

O per mole of 

16

O, and 0.002 005 2 mole of 

18

O per 

mole of 

16

O. 

Because of the manner in which temperature scales used to be defined, it remains 
common practice to express a thermodynamic temperature, symbol 

T

, in terms of its 

difference from the reference temperature 

T

0

 

273.15 

K, the ice point. This 

difference is called the Celsius temperature, symbol 

t

, which is defined by the 

quantity equation: 

t

 = 

T

 

−

 

T

0

The unit of Celsius temperature is the degree Celsius, symbol 

o

C, which is by 

definition equal in magnitude to the kelvin. A difference or interval of temperature 
may be expressed in kelvins or in degrees Celsius (13th CGPM, 1967/68, Reso-
lution 3, mentioned above), the numerical value of the temperature difference being 
the same. However, the numerical value of a Celsius temperature expressed in 
degrees Celsius is related to the numerical value of the thermodynamic temperature 
expressed in kelvins by the relation 

t

/

o

C = 

T

/K 

−

 273.15. 

The kelvin and the degree Celsius are also units of the International Temperature 
Scale of 1990 (ITS-90) adopted by the CIPM in 1989 in its Recommendation 5 (CI-
1989; PV, 

57

, 115 and 

Metrologia

, 1990, 

27

, 13). 

 

2.1.1.6  Unit of amount of substance (mole) 

Following the discovery of the fundamental laws of chemistry, units called, for 
example, “gram-atom†and “gram-moleculeâ€, were used to specify amounts of 
chemical elements or compounds. These units had a direct connection with â€œatomic 
weights†and “molecular weightsâ€, which are in fact relative masses. â€œAtomic 
weights†were originally referred to the atomic weight of oxygen, by general 
agreement taken as 16. But whereas physicists separated the isotopes in a mass 
spectrometer and attributed the value 16 to one of the isotopes of oxygen, chemists 
attributed the same value to the (slightly variable) mixture of isotopes 16, 17 and 18, 
which was for them the naturally occurring element oxygen. Finally an agreement 
between the International Union of Pure and Applied Physics (IUPAP) and the 
International Union of Pure and Applied Chemistry (IUPAC) brought this duality to 
an end in 1959/60. Physicists and chemists have ever since agreed to assign the value 
12, exactly, to the so-called atomic weight of the isotope of carbon with mass number 
12 (carbon 12, 

12

C), correctly called the relative atomic mass 

A

r

(

12

C). The unified 

scale thus obtained gives the relative atomic and molecular masses, also known as the 
atomic and molecular weights, respectively. 

The quantity used by chemists to specify the amount of chemical elements or 
compounds is now called â€œamount of substanceâ€. Amount of substance is defined to 
be proportional to the number of specified elementary entities in a sample, the 

The recommended symbol 
for relative atomic mass 
(atomic weight) is 

A

r

(X), 

where the atomic entity X 
should be specified, and for 
relative molecular mass of a 
molecule (molecular 
weight) it is 

M

r

(X), where 

the molecular entity X 
should be specified. 

The symbol, 

T

tpw

, is used to 

denote the thermodynamic 
temperature of the triple 
point of water. 

background image

SI units  

•

  

115

 

 

proportionality constant being a universal constant which is the same for all samples. 
The unit of amount of substance is called the 

mole

, symbol mol, and the mole is 

defined by specifying the mass of carbon 12 that constitutes one mole of carbon 12 
atoms. By international agreement this was fixed at 0.012 kg, i.e. 12 g. 

Following proposals by the IUPAP, the IUPAC, and the ISO, the CIPM gave a 
definition of the mole in 1967 and confirmed it in 1969. This was adopted by the 
14th CGPM (1971, Resolution 3; CR, 78 and 

Metrologia

, 1972, 

8

, 36): 

1.   The mole is the amount of substance of a system which contains as many 

elementary entities as there are atoms in 0.012 kilogram of carbon 12; its 
symbol is “molâ€. 

2.   When the mole is used, the elementary entities must be specified and may be 

atoms, molecules, ions, electrons, other particles, or specified groups of 
such particles. 

It follows that the molar mass of carbon 12 is exactly 12 grams per mole, 

M

(

12

C) = 12 g/mol.  

In 1980 the CIPM approved the report of the CCU (1980) which specified that  

In this definition, it is understood that unbound atoms of carbon 12, at rest and 
in their ground state, are referred to. 

The definition of the mole also determines the value of the universal constant that 
relates the number of entities to amount of substance for any sample. This constant is 
called the Avogadro constant, symbol 

N

A

 or 

L

. If 

N

(X) denotes the number of entities 

X in a specified sample, and if 

n

(X)  denotes the amount of substance of entities X in 

the same sample, the relation is  

n

(X) = 

N

(X)/

N

A

Note that since 

N

(X) is dimensionless, and 

n

(X) has the SI unit mole, the Avogadro 

constant has the coherent SI unit reciprocal mole.  

In the name â€œamount of substanceâ€, the words “of substance†could for simplicity be 
replaced by words to specify the substance concerned in any particular application, so 
that one may, for example, talk of “amount of hydrogen chloride, HClâ€, or “amount 
of benzene, C

6

H

6

â€. It is important to always give a precise specification of the entity 

involved (as emphasized in the second sentence of the definition of the mole); this 
should preferably be done by giving the empirical chemical formula of the material 
involved. Although the word â€œamount†has a more general dictionary definition, this 
abbreviation of the full name “amount of substance†may be used for brevity. This 
also applies to derived quantities such as â€œamount of substance concentrationâ€, which 
may simply be called â€œamount concentrationâ€. However, in the field of clinical 
chemistry the name â€œamount of substance concentration†is generally abbreviated to 
“substance concentrationâ€. 

 

2.1.1.7  Unit of luminous intensity (candela) 

The units of luminous intensity based on flame or incandescent filament standards in 
use in various countries before 1948 were replaced initially by the “new candle†
based on the luminance of a Planck radiator (a black body) at the temperature of 
freezing platinum. This modification had been prepared by the International 
Commission on Illumination (CIE) and by the CIPM before 1937, and the decision 
was promulgated by the CIPM in 1946. It was then ratified in 1948 by the 9th CGPM 
which adopted a new international name for this unit, the 

candela

, symbol cd; in 

The molar mass of an atom 
or molecule X is denoted 

M

(X) or 

M

X

, and is the mass 

per mole of X. 

 

 

When the definition of the 
mole is quoted, it is 
conventional also to include 
this remark. 

background image

116

  

•

  

 SI units

 

 

1967 the 13th CGPM (Resolution 5, CR, 104 and 

Metrologia

, 1968, 

4

, 43-44) gave 

an amended version of this definition. 

In 1979, because of the difficulties in realizing a Planck radiator at high temperatures, 
and the new possibilities offered by radiometry, i.e. the measurement of optical 
radiation power, the 16th CGPM (1979, Resolution 3; CR, 100 and 

Metrologia

, 1980, 

16

, 56) adopted a new definition of the candela: 

The candela is the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 Ã— 10

12

 hertz and that 

has a radiant intensity in that direction of 1/683 watt per steradian. 

It follows that the spectral luminous efficacy for monochromatic radiation of 
frequency of 540 

×

 10

12

 

hertz is exactly 683 

lumens per watt, 

K

 = 683 lm/W 

= 683 cd sr/W. 

 

2.1.2 

Symbols for the seven base units  

The base units of the International System are listed in Table 1, which relates the base 
quantity to the unit name and unit symbol for each of the seven base units 
(10th CGPM (1954, Resolution 6; CR, 80); 11th CGPM (1960, Resolution 12; CR, 
87); 13th CGPM (1967/68, Resolution 3; CR, 104 and 

Metrologia

, 1968, 

4

, 43); 

14th CGPM (1971, Resolution 3; CR, 78 and 

Metrologia

, 1972, 

8

, 36)). 

 
Table 1. SI base units 

 

 
Base quantity 

 

 

 

SI base unit 

_________________________________  

___________________________ 

 
Name  

Symbol    

Name 

  Symbol 

 
 
length  

l, x, r

,

 

etc.  

metre 

  m 

mass  

m

  

 

kilogram 

 

kg 

time, duration 

t

  

 

second  

electric current 

I, i 

  

ampere 

 A 

thermodynamic temperature 

T

  

 

kelvin   

amount of substance 

n

  

 

mole   

mol 

luminous intensity 

I

v

  

 

candela  

cd 

 

 

 

2.2 

SI derived units 

Derived units are products of powers of base units. Coherent derived units are 
products of powers of base units that include no numerical factor other than 1. The 
base and coherent derived units of the SI form a coherent set, designated the set of 

coherent SI units

 (see 1.4, p. 106). 

 

2.2.1 

Derived units expressed in terms of base units 

The number of quantities in science is without limit, and it is not possible to provide a 
complete list of derived quantities and derived units. However, Table 2 lists some 
examples of derived quantities, and the corresponding coherent derived units 
expressed directly in terms of base units. 

 

The symbols for quantities 
are generally single letters 
of the Latin or Greek 
alphabets, printed in an 
italic font, and are 

recommendations

The symbols for units are 

mandatory

, see chapter 5. 

background image

SI units  

•

  

117

 

 

Table 2. Examples of coherent derived units in the SI expressed in terms of base 
units 

 

 
Derived quantity 

 

 

SI coherent derived unit 

__________________________________  

_______________________________________ 

 
Name  

Symbol   

Name 

 

 

Symbol 

 

 
area  

A

  

square 

metre 

 

m

2

 

volume  

V

  

cubic 

metre 

 

 

m

3

 

speed, velocity 

v

 

 

metre per second 

 m/s 

acceleration 

a

 

 

metre per second squared 

 m/s

wavenumber 

σ

ν

~

   reciprocal 

metre 

 

m

−

1

 

density, mass density 

Ï

 

 

kilogram per cubic metre 

 kg/m

3

 

surface density 

Ï

A

 

 

kilogram per square metre 

 kg/m

2

 

specific volume 

v

 

 

cubic metre per kilogram 

 m

3

/kg 

current density 

j

 

 

ampere per square metre 

 A/m

2

 

magnetic field strength 

H

 

 

ampere per metre 

 A/m 

amount concentration 

(

a

)

c

 

 

mole per cubic metre 

 mol/m

   concentration 
mass concentration 

Ï

γ

 

 

kilogram per cubic metre 

 kg/m

luminance 

L

v

 

 

candela per square metre 

 cd/m

2

 

refractive index 

(

b

)

 

n

  

one 

 

 

1

 

relative permeability 

(

b

)

 

µ

r

  

one 

 

 

 

(

a

)  In the field of clinical chemistry this quantity is also called substance concentration. 

(

b

)  These are dimensionless quantities, or quantities of dimension one, and the symbol â€œ1†for the 

unit (the number “oneâ€) is generally omitted in specifying the values of dimensionless 
quantities.  

 

 

2.2.2 

Units with special names and symbols; units that incorporate special 
names and symbols 

For convenience, certain coherent derived units have been given special names and 
symbols. There are 22 such units, as listed in Table 3. These special names and 
symbols may themselves be used in combination with the names and symbols for 
base units and for other derived units to express the units of other derived quantities. 
Some examples are given in Table 4. The special names and symbols are simply a 
compact form for the expression of combinations of base units that are used 
frequently, but in many cases they also serve to remind the reader of the quantity 
involved. The SI prefixes may be used with any of the special names and symbols, 
but when this is done the resulting unit will no longer be coherent. 

Among these names and symbols the last four entries in Table 3 are of particular note 
since they were adopted by the 15th CGPM (1975, Resolutions 8 and 9; CR, 105 and 

Metrologia

, 1975, 

11

, 180), the 16th CGPM (1979, Resolution 5; CR, 100 and 

Metrologia

, 1980, 

16

, 56) and the 21st CGPM (1999, Resolution 12; CR, 334-335 

and 

Metrologia

, 2000, 

37

, 95) specifically with a view to safeguarding human health.  

In both Tables 3 and 4 the final column shows how the SI units concerned may be 
expressed in terms of SI base units. In this column factors such as m

0

, kg

0

, etc., which 

are all equal to 1, are not shown explicitly. 

 

background image

118

  

•

  

 SI units

 

 

Table 3.  Coherent derived units in the SI with special names and symbols 

 

 
 

 

SI coherent derived unit

 (

a

  

—————————————————————————— 

 

 

  

 Expressed 

Expressed 

 

 

 

 

 

 

in terms of 

in terms of 

Derived quantity 

Name 

 

Symbol 

other SI units  SI base units  

 

 
plane angle 

radian

 (

b

 rad 

(

b

)

 m/m 

solid angle 

steradian

 (

b

 sr

 (

c

)

 1 

(

b

)

 

m

2

/m

2

 

 

frequency hertz 

(

d

 Hz 

 

s

−

1

 

force   

newton 

 

 

m kg s

−

2

 

pressure, stress 

pascal 

 

Pa 

N/m

2

 

m

−

1

 kg s

−

2

 

energy, work,  

joule 

 

N m 

m

kg s

−

2

 

 

amount of heat 

power, radiant flux 

watt 

 

J/s 

m

2

 kg s

−

electric charge,  

coulomb 

 

 

s A 

 

amount of electricity 

electric potential difference, 

volt 

 

W/A 

m

2

 kg s

−

3

 A

−

1

 

 electromotive 

force 

capacitance farad 

 

C/V 

m

−

2

 kg

−

1

 s

4

 A

2

 

electric resistance 

ohm 

 

Ω 

V/A 

m

2

 kg s

−

3

 A

−

2

 

electric conductance 

siemens 

 

A/V 

m

−

2

 kg

−

1

 s

3

 A

2

 

magnetic flux 

weber 

 

Wb 

V s 

m

2

 kg s

−

2

 A

−

1

 

magnetic flux density 

tesla 

 

Wb/m

2

 kg 

s

−

2

 A

−

1

 

inductance henry 

 

Wb/A 

m

2

 kg s

−

2

 A

−

2

 

Celsius temperature 

degree Celsius

 (

e

)

 

o

C  

luminous flux 

lumen 

 

lm 

cd sr

 (

c

)

 cd 

illuminance lux 

 

lx 

lm/m

2

 

m

−

2

 cd 

activity referred to 

becquerel 

(

d

)

  

Bq 

 

s

−

1

 

 a 

radionuclide 

(

f

absorbed dose, 

gray 

 

Gy 

J/kg 

m

2

 s

−

2

 

 

specific energy (imparted),  

 kerma 
dose equivalent, 

sievert 

(

g

)

   Sv 

J/kg 

m

2

 s

−

2

 

 

ambient dose equivalent, 

 

directional dose equivalent, 

 

personal dose equivalent 

catalytic activity 

katal 

 

kat 

 

s

−

1

 mol 

 
(

a

)  The SI prefixes may be used with any of the special names and symbols, but when this is done 

the resulting unit will no longer be coherent. 

(

b

)  The radian and steradian are special names for the number one that may be used to convey 

information about the quantity concerned. In practice the symbols rad and sr are used where 
appropriate, but the symbol for the derived unit one is generally omitted in specifying the 
values of dimensionless quantities. 

(

c

)  In photometry the name steradian and the symbol sr are usually retained in expressions for 

units. 

(

d

)  The hertz is used only for periodic phenomena, and the becquerel is used only for stochastic 

processes in activity referred to a radionuclide. 

(

e

)  The degree Celsius is the special name for the kelvin used to express Celsius temperatures. The 

degree Celsius and the kelvin are equal in size, so that the numerical value of a temperature 
difference or temperature interval is the same when expressed in either degrees Celsius or in 
kelvins. 

(

f

)

 

Activity referred to a radionuclide is sometimes incorrectly called radioactivity.  

(

g

)

 

See CIPM Recommendation 2 (CI-2002), p. 168, on the use of the sievert (PV, 2002, 

70

, 205). 

 

 

background image

SI units  

•

  

119

 

 

Table 4. Examples of SI coherent derived units whose names and symbols include 
SI coherent derived units with special names and symbols 
 

 
 

 

SI coherent derived unit 

  

————————————————————————————— 

 

 

 

 

 

 

 

Expressed in terms of 

Derived quantity 

Name 

Symbol 

SI base units 

 

 

dynamic viscosity 

pascal second 

Pa s 

m

−

1

 kg s

−

1

 

moment of force  

newton metre 

N m 

m

2

 kg s

−

2

 

surface tension  

newton per metre 

N/m 

kg s

−

2

 

angular velocity  

radian per second 

rad/s 

m m

−

1

 s

−

1

 = s

−

1

 

angular acceleration  

radian per second squared 

rad/s

m m

−

1

 s

−

 = s

−

2

 

heat flux density, 

watt per square metre  

W/m

kg s

−

3

 

 irradiance 
heat capacity, entropy  

joule per kelvin 

J/K 

m

2

 kg s

−

K

−

1

 

specific heat capacity, 

joule per kilogram kelvin 

J/(kg K) 

m

2

 s

−

2

 K

−

1

 

 specific 

entropy 

specific energy  

joule per kilogram 

J/kg 

m

2

 s

−

2

 

thermal conductivity 

watt per metre kelvin 

W/(m K)  m kg s

−

3

 K

−

1

 

energy density 

joule per cubic metre 

J/m

m

−1

 kg s

−

2

 

electric field strength  

volt per metre 

V/m 

m kg s

−

3

 A

−

1

 

electric charge density  

coulomb per cubic metre 

C/m

m

−

3

 s A 

surface charge density 

coulomb per square metre 

C/m

m

−

2

 s A 

electric flux density, 

coulomb per square metre 

C/m

m

−

2

 s A 

 electric 

displacement 

permittivity 

farad per metre 

F/m 

m

−

3

 kg

−

1

 s

4

 A

2

 

permeability 

henry per metre 

H/m 

m kg s

−

2

 A

−

2

 

molar energy  

joule per mole 

J/mol 

m

2

 kg s

−

2

 mol

−

1

 

molar entropy, 

joule per mole kelvin  

J/(mol K)  m

2

 kg s

−

K

−

1

mol

−

1

 

 

molar heat capacity 

exposure (x- and 

γ

-rays)   coulomb per kilogram  

C/kg 

kg

−

1

 s A 

absorbed dose rate 

gray per second 

Gy/s 

m

2

 s

−

3

 

radiant intensity  

watt per steradian 

W/sr 

m

4

 m

−

2

 kg s

−

3

 = m

2

 kg s

−

3

 

radiance  

watt per square metre steradian 

W/(m

2

 sr)  m

2

 m

−

2

 kg s

−

3

 = kg s

−

3

 

catalytic activity  

katal per cubic metre 

kat/m

m

−

3

 s

−

1

 mol 

 concentration 

 

 

The values of several different quantities may be expressed using the same name and 
symbol for the SI unit. Thus for the quantity heat capacity as well as the quantity 
entropy, the SI unit is the joule per kelvin. Similarly for the base quantity electric 
current as well as the derived quantity magnetomotive force, the SI unit is the 
ampere. It is therefore important not to use the unit alone to specify the quantity. This 
applies not only to scientific and technical texts, but also, for example, to measuring 
instruments (i.e. an instrument read-out should indicate both the unit and the quantity 
measured). 

A derived unit can often be expressed in different ways by combining base units with 
derived units having special names. Joule, for example, may formally be written 
newton metre, or kilogram metre squared per second squared. This, however, is an 
algebraic freedom to be governed by common sense physical considerations; in a 
given situation some forms may be more helpful than others. 

In practice, with certain quantities, preference is given to the use of certain special 
unit names, or combinations of unit names, to facilitate the distinction between 
different quantities having the same dimension. When using this freedom, one may 
recall the process by which the quantity is defined. For example, the quantity torque 

background image

120

  

•

  

 SI units

 

 

may be thought of as the cross product of force and distance, suggesting the unit 
newton metre, or it may be thought of as energy per angle, suggesting the unit joule 
per radian. The SI unit of frequency is given as the hertz, implying the unit cycles per 
second; the SI unit of angular velocity is given as the radian per second; and the SI 
unit of activity is designated the becquerel, implying the unit counts per second. 
Although it would be formally correct to write all three of these units as the 
reciprocal second, the use of the different names emphasises the different nature of 
the quantities concerned. Using the unit radian per second for angular velocity, and 
hertz for frequency, also emphasizes that the numerical value of the angular velocity 
in radian per second is 2Ï€ times the numerical value of the corresponding frequency 
in hertz. 

In the field of ionizing radiation, the SI unit of activity is designated the becquerel 
rather than the reciprocal second, and the SI units of absorbed dose and dose 
equivalent are designated the gray and the sievert, respectively, rather than the joule 
per kilogram. The special names becquerel, gray, and sievert were specifically 
introduced because of the dangers to human health that might arise from mistakes 
involving the units reciprocal second and joule per kilogram, in case the latter units 
were incorrectly taken to identify the different quantities involved. 

 

2.2.3 

Units for dimensionless quantities, also called quantities of dimension 
one 

Certain quantities are defined as the ratio of two quantities of the same kind, and are 
thus dimensionless, or have a dimension that may be expressed by the number one. 
The coherent SI unit of all such dimensionless quantities, or quantities of dimension 
one, is the number one, since the unit must be the ratio of two identical SI units. The 
values of all such quantities are simply expressed as numbers, and the unit one is not 
explicitly shown. Examples of such quantities are refractive index, relative 
permeability, and friction factor. There are also some quantities that are defined as a 
more complex product of simpler quantities in such a way that the product is 
dimensionless. Examples include the “characteristic numbers†like the Reynolds 
number 

Re

 = 

Ï

v

l

/

η

, where 

Ï

 is mass density, 

η

 is dynamic viscosity, 

v

 is speed, and 

l

 

is length. For all these cases the unit may be considered as the number one, which is a 
dimensionless derived unit. 

Another class of dimensionless quantities are numbers that represent a count, such as 
a number of molecules, degeneracy (number of energy levels), and partition function 
in statistical thermodynamics (number of thermally accessible states). All of these 
counting quantities are also described as being dimensionless, or of dimension one, 
and are taken to have the SI unit one, although the unit of counting quantities cannot 
be described as a derived unit expressed in terms of the base units of the SI. For such 
quantities, the unit one may instead be regarded as a further base unit. 

In a few cases, however, a special name is given to the unit one, in order to facilitate 
the identification of the quantity involved. This is the case for the radian and the 
steradian. The radian and steradian have been identified by the CGPM as special 
names for the coherent derived unit one, to be used to express values of plane angle 
and solid angle, respectively, and are therefore included in Table 3. 

The CIPM, recognizing the 
particular importance of the 
health-related units, adopted 
a detailed text on the sievert 
for the 5th edition of this 
Brochure: Recommenda-
tion 1 (CI-1984), adopted 
by the CIPM (PV, 1984, 

52

31 and 

Metrologia

, 1985, 

21

, 90), and Recommenda-

tion 2 (CI-2002), adopted 
by the CIPM (PV, 

70

, 205), 

see pp. 161 and 168, 
respectively. 

background image

121

 

Decimal multiples and submultiples of SI units 

3.1 SI 

prefixes 

The 11th CGPM (1960, Resolution 12; CR, 87) adopted a series of prefix names and 
prefix symbols to form the names and symbols of the decimal multiples and 
submultiples of SI units, ranging from 10

12

 to 10

−

12

. Prefixes for 10

−

15

 and 10

−

18

 were 

added by the 12th CGPM (1964, Resolution 8; CR, 94), for 10

15

 and 10

18

 by the 

15th CGPM (1975, Resolution 10; CR, 106 and 

Metrologia

, 1975, 

11

, 180-181), and 

for 10

21

, 10

24

, 10

−

21

 and 10

−

24

 by the 19th CGPM (1991, Resolution 4; CR, 185 and 

Metrologia

, 1992, 

29

, 3). Table 5 lists all approved prefix names and symbols.  

 

Table 5. SI prefixes 

 

 
Factor Name  Symbol 

Factor Name  Symbol 

 

 
10

deca da 

10

−

1

 deci d 

10

hecto h 

10

−

2

 centi c 

10

kilo k 

10

−

3

 milli m 

10

mega M 

10

−

6

 micro 

µ 

10

giga G 

10

−

9

 nano n 

10

12

 tera  T 

10

−

12

 pico  p 

10

15

 peta P 

10

−

15

 femto f 

10

18

 exa  E 

10

−

18

 atto  a 

10

21

 zetta Z 

10

−

21

 zepto z 

10

24

 yotta Y 

10

−

24

 yocto y 

 

 

Prefix symbols are printed in roman (upright) type, as are unit symbols,  regardless of 
the type used in the surrounding text, and are attached to unit symbols without a 
space between the prefix symbol and the unit symbol. With the exception of da 
(deca), h (hecto), and k (kilo), all multiple prefix symbols are capital (upper case) 
letters, and all submultiple prefix symbols are lower case letters. All prefix names are 
printed in lower case letters, except at the beginning of a sentence. 

The grouping formed by a prefix symbol attached to a unit symbol constitutes a new 
inseparable unit symbol (forming a multiple or submultiple of the unit concerned) 
that can be raised to a positive or negative power and that can be combined with other 
unit symbols to form compound unit symbols. 

Examples

: 2.3 

cm

3

 = 2.3 (cm)

3

 = 2.3 (10

–2

 m)

3

 = 2.3 × 10

–6

 m

 

 1 

cm

–1

 = 1 (cm)

–1

 = 1 (10

–2

 m)

–1

 = 10

2

 m

–1

 = 100 m

−

 

 

1 V/cm = (1 V)/(10

–2

 m) = 10

2

 V/m = 100 V/m 

  

5000 

µ

s

−

1

 = 5000 (

µ

s)

−

1

 = 5000 (10

−

6

 s)

−

1

 = 5 × 10

9

 s

−

1

 

These SI prefixes refer 
strictly to powers of 10. 
They should not be used to 
indicate powers of 2 (for 
example, one kilobit 
represents 1000 bits and not 
1024 bits). The IEC has 
adopted prefixes for binary 
powers in the international 
standard IEC 60027-2: 
2005, third edition,  

Letter symbols to be 
used in electrical 
technology – Part 

2

Telecommunications and 
electronics. 

The names and 

symbols for the prefixes 
corresponding to 2

10

, 2

20

2

30

, 2

40

, 2

50

, and 2

60

 are, 

respectively: kibi, Ki; mebi, 
Mi; gibi, Gi; tebi, Ti; pebi, 
Pi; and exbi, Ei. Thus, for 
example, one kibibyte 
would be written:  
1 KiB = 2

10

 B = 1024 B, 

where B denotes a byte. 
Although these prefixes are 
not part of the SI, they 
should be used in the field 
of information technology 
to avoid the incorrect usage 
of the SI prefixes. 

Examples of  the use of 
prefixes: 
pm  (picometre) 
mmol (millimole) 
GΩ  (gigaohm) 
THz  (terahertz) 

background image

122  

•

  

Decimal multiples and submultiples

 

Similarly prefix names are also inseparable from the unit names to which they are 
attached. Thus, for example, millimetre, micropascal, and meganewton are single 
words. 

Compound prefix symbols, that is, prefix symbols formed by the juxtaposition of two 
or more prefix symbols, are not permitted. This rule also applies to compound prefix 
names. 

Prefix symbols can neither stand alone nor be attached to the number 1, the symbol 
for the unit one. Similarly, prefix names cannot be attached to the name of the unit 
one, that is, to the word “one.†

Prefix names and symbols are used with a number of non-SI units (see Chapter 5), but 
they are never used with the units of time: minute, min; hour, h; day, d. However 
astronomers use milliarcsecond, which they denote mas, and microarcsecond, µas, 
which they use as units for measuring very small angles. 

 

3.2 The 

kilogram 

Among the base units of the International System, the kilogram is the only one whose 
name and symbol, for historical reasons, include a prefix. Names and symbols for 
decimal multiples and submultiples of the unit of mass are formed by attaching prefix 
names to the unit name “gramâ€, and prefix symbols to the unit symbol â€œg†(CIPM 
1967, Recommendation 2; PV, 

35

, 29 and 

Metrologia

,

 

1968, 

4

, 45). 

 

nm (nanometre), 

but not

 

m

µ

(millimicrometre) 
 
The number of lead atoms 
in the sample is  

N

(Pb) = 5 × 10

6

but not

 

N

(Pb) = 5 M,  

where M is intended  
to be the prefix mega 
standing on its own. 

10

−

6

 kg = 1 mg, 

but not

 

µ

kg 

(microkilogram) 

background image

123

 

Units outside the SI 

The International System of Units, the SI, is a system of units, adopted by the CGPM, 
which provides the internationally agreed reference in terms of which all other units 
are now defined. It is recommended for use throughout science, technology, 
engineering, and commerce. The SI base units, and the SI coherent derived units, 
including those with special names, have the important advantage of forming a 
coherent set, with the effect that unit conversions are not required when inserting 
particular values for quantities into quantity equations. Because the SI is the only 
system of units that is globally recognized, it also has a clear advantage for 
establishing a worldwide dialogue. Finally, it simplifies the teaching of science and 
technology to the next generation if everyone uses this system. 

Nonetheless it is recognized that some non-SI units still appear in the scientific, 
technical and commercial literature, and will continue to be used for many years. 
Some non-SI units are of historical importance in the established literature. Other 
non-SI units, such as the units of time and angle, are so deeply embedded in the 
history and culture of the human race that they will continue to be used for the 
foreseeable future. Individual scientists should also have the freedom to sometimes 
use non-SI units for which they see a particular scientific advantage in their work. An 
example of this is the use of CGS-Gaussian units in electromagnetic theory applied to 
quantum electrodynamics and relativity. For these reasons it is helpful to list some of 
the more important non-SI units, as is done below. However, if these units are used it 
should be understood that the advantages of the SI are lost. 

The inclusion of non-SI units in this text does not imply that the use of non-SI units is 
to be encouraged. For the reasons already stated SI units are generally to be preferred. 
It is also desirable to avoid combining non-SI units with units of the SI; in particular, 
the combination of non-SI units with the SI to form compound units should be 
restricted to special cases in order not to compromise the advantages of the SI. 
Finally, when any of the non-SI units in Tables 7, 8, and 9 are used, it is good 
practice to define the non-SI unit in terms of the corresponding SI unit.  

 

4.1 

Non-SI units accepted for use with the SI, and units based on 
fundamental constants 

The CIPM (2004) has revised the classification of non-SI units from that in the 
previous (7th) edition of this Brochure. Table 6 gives non-SI units that are accepted 
for use with the International System by the CIPM, because they are widely used with 
the SI in matters of everyday life. Their use is expected to continue indefinitely, and 
each has an exact definition in terms of an SI unit. Tables 7, 8 and 9 contain units that 
are used only in special circumstances. The units in Table 7 are related to 
fundamental constants, and their values have to be determined experimentally. Tables 
8 and 9 contain units that have exactly defined values in terms of SI units, and are 
used in particular circumstances to satisfy the needs of commercial, legal, or 

background image

124  

•

  

Units outside the SI

 

specialized scientific interests. It is likely that these units will continue to be used for 
many years. Many of these units are also important for the interpretation of older 
scientific texts. Each of the Tables 6, 7, 8 and 9 is discussed in turn below. 

Table 6

 

includes the traditional units of time and angle. It also contains the hectare, 

the litre, and the tonne, which are all in common everyday use throughout the world, 
and which differ from the corresponding coherent SI unit by an integer power of ten. 
The SI prefixes are used with several of these units, but not with the units of time. 

 

Table 6. Non-SI units accepted for use with the International System of Units 
 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units 

 

 

time 

 

minute 

min 

1 min = 60 s 

  

hour 

(

a

)

 

1 h = 60 min = 3600 s 

 

 

day 

1 d = 24 h = 86 400 s 

plane angle 

degree 

(

b

c

)

 

o

 

1

o

 = (

Ï€

/180) rad 

  

minute 

′

 

1

′

 = (1/60)

o

 = (

Ï€

/ 10 800) rad 

  

second 

(

d

)

 

″

 

1

″

 = (1/60)

′

 = (

Ï€

/ 648 000) rad 

area  

hectare 

(

e

)

 

ha 

1 ha = 1 hm

2

 = 10

4

 m

volume  

litre 

(

f

)

 

L, l 

1 L = 1 l = 1 dm

3

 = 10

3

 cm

3

 = 10

−

3

 m

3

 

mass  

tonne 

(

g

)

 

1 t = 10

3

 kg 

 
(

a

)  The symbol for this unit is included in Resolution 7 of the 9th CGPM (1948; CR, 70). 

(

b

)  ISO 31 recommends that the degree be divided decimally rather than using the minute and the 

second. For navigation and surveying, however, the minute has the advantage that one minute 
of latitude on the surface of the Earth corresponds (approximately) to one nautical mile.  

(

c

)  The gon (or grad, where grad is an alternative name for the gon) is an alternative unit of plane 

angle to the degree, defined as (

Ï€

/200) rad. Thus there are 100 gon in a right angle. The 

potential value of the gon in navigation is that because the distance from the pole to the equator 
of the Earth is approximately 10 000 km, 1 km on the surface of the Earth subtends an angle of 
one centigon at the centre of the Earth. However the gon is rarely used. 

(

d

)  For applications in astronomy, small angles are measured in arcseconds (i.e. seconds of plane 

angle), denoted as or 

″

, milliarcseconds, microarcseconds, and picoarcseconds, denoted mas, 

µas, and pas, respectively, where arcsecond is an alternative name for second of plane angle. 

(

e

)  The unit hectare, and its symbol ha, were adopted by the CIPM in 1879 (PV, 1879, 41). The 

hectare is used to express land area. 

(

f

)  The litre, and the symbol lower-case l, were adopted by the CIPM in 1879 (PV, 1879, 41). The 

alternative symbol, capital L, was adopted by the 16th CGPM (1979, Resolution 6; CR, 101 
and 

Metrologia,

 1980, 

16

, 56-57) in order to avoid the risk of confusion between the letter l (el) 

and the numeral 1 (one). 

(

g

)  The tonne, and its symbol t, were adopted by the CIPM in 1879 (PV, 1879, 41). In English 

speaking countries this unit is usually called “metric tonâ€. 

 

 

background image

Units outside the SI

  

•

  

125

 

Table 7 contains units whose values in SI units have to be determined experimentally, 
and thus have an associated uncertainty. Except for the astronomical unit, all other 
units in Table 7 are related to fundamental physical constants. The first three units, 
the non-SI units electronvolt, symbol eV, dalton or unified atomic mass unit, symbol 
Da or u, respectively, and the astronomical unit, symbol ua, have been accepted for 
use with the SI by the CIPM. The units in Table 7 play important roles in a number of 
specialized fields in which the results of measurements or calculations are most 
conveniently and usefully expressed in these units. For the electronvolt and the dalton 
the values depend on the elementary charge 

e

 and the Avogadro constant 

N

A

respectively.  

There are many other units of this kind, because there are many fields in which it is 
most convenient to express the results of experimental observations or of theoretical 
calculations in terms of fundamental constants of nature. The two most important of 
such unit systems based on fundamental constants are the natural unit (n.u.) system 
used in high energy or particle physics, and the atomic unit (a.u.) system used in 
atomic physics and quantum chemistry. In the n.u. system, the base quantities for 
mechanics are speed, action, and mass, for which the base units are the speed of light 
in vacuum 

c

0

, the Planck constant 

h

 divided by 2Ï€, called the reduced Planck constant 

with symbol 

ħ

, and the mass of the electron 

m

e

, respectively. In general these units 

are not given any special names or symbols but are simply called the n.u. of speed, 
symbol 

c

0

, the n.u. of action, symbol 

ħ

, and the n.u. of mass, symbol 

m

e

. In this 

system, time is a derived quantity and the n.u. of time is a derived unit equal to the 
combination of base units 

ħ/m

e

c

0

2

. Similarly, in the a.u. system, any four of the five 

quantities charge, mass, action, length, and energy are taken as base quantities. The 
corresponding base units are the elementary charge 

e

, electron mass 

m

e

, action 

ħ

Bohr radius (or bohr) 

a

0

, and Hartree energy (or hartree) 

E

h

, respectively. In this 

system, time is again a derived quantity and the a.u. of time a derived unit, equal to 
the combination of units 

ħ

/

E

h

. Note that  

a

0

 = 

α

/(4Ï€

R

∞

), where 

α

 is the fine-structure 

constant and 

R

∞

 is the Rydberg constant; and 

E

h

 = 

e

2

/(4Ï€

ε

0

a

0

) =  2

R

∞

hc

0

 = 

α

2

m

e

c

0

2

where 

ε

0

 is the electric constant and has an exact value in the SI. 

For information, these ten natural and atomic units and their values in SI units are 
also listed in Table 7. Because the quantity systems on which these units are based 
differ so fundamentally from that on which the SI is based, they are not generally 
used with the SI, and the CIPM has not formally accepted them for use with the 
International System. To ensure understanding, the final result of a measurement or 
calculation expressed in natural or atomic units should also always be expressed in 
the corresponding SI unit. Natural units (n.u.) and atomic units (a.u.) are used only in 
their own special fields of particle and atomic physics, and quantum chemistry, 
respectively. Standard uncertainties in the least significant digits are shown in 
parenthesis after each numerical value. 

 

background image

126  

•

  

Units outside the SI

 

Table 7. Non-SI units whose values in SI units must be obtained experimentally 
 

 

Quantity 

Name of unit 

Symbol for unit  

Value in SI units 

(

a

)

 

 

 

Units accepted for use with the SI 

energy electronvolt 

(

b

)

 

eV 

1 eV = 1.602 176 53 (14) 

×

 10

−

19

 J 

mass dalton, 

(

c

)

 

Da 

1 Da = 1.660 538 86 (28) 

×

 10

−

27

 kg 

 

unified atomic mass unit 

1 u = 1 Da 

length astronomical 

unit 

(

d

)

 

ua 

1 ua = 1.495 978 706 91 (6) 

×

 10

11

 m 

Natural units (n.u.) 

speed 

n.u. of speed 

c

0

 

299 792 458 m/s (exact) 

 

(speed of light in vacuum) 

action 

n.u. of action 

ħ

 

1.054 571 68 (18) 

×

 10

−

34

 J s 

 

(reduced Planck constant) 

mass 

n.u. of mass 

m

e

 

9.109 3826 (16) 

×

 10

−

31

 kg 

 (electron 

mass) 

time 

n.u. of time 

ħ/

(

m

e

c

0

2

)

 

1.288 088 6677 (86) 

×

 10

−

21

 s 

Atomic units (a.u.) 

charge 

a.u. of charge,  

e

 

1.602 176 53 (14) 

×

 10

−

19

 C 

 (elementary 

charge) 

mass 

a.u. of mass, 

m

e

 

9.109 3826 (16) 

×

 10

−

31

 kg 

 (electron 

mass) 

action 

a.u. of action, 

ħ

 

1.054 571 68 (18) 

×

 10

−

34

 J s 

 

(reduced Planck constant) 

length 

a.u. of length, bohr 

a

0

 

0.529 177 2108 (18) 

×

 10

−

10

 m 

 (Bohr 

radius) 

energy 

a.u. of energy, hartree 

E

h

 

4.359 744 17 (75) 

×

 10

−

18

 J 

 (Hartree 

energy) 

time 

a.u. of time 

ħ/E

h

 

2.418 884 326 505 (16) 

×

 10

−

17

 s 

 

(

a

)  The values in SI units of all units in this table, except the astronomical unit, are taken from the 

2002 CODATA set of recommended values of the fundamental physical constants, P.J. Mohr 
and B.N. Taylor, 

Rev

Mod. Phys

., 2005, 

77

, 1-107. The standard uncertainty in the last two 

digits is given in parenthesis (see 5.3.5, p. 133). 

(

b

)  The electronvolt is the kinetic energy acquired by an electron in passing through a potential 

difference of one volt in vacuum. The electronvolt is often combined with the SI prefixes. 

(

c

)  The dalton (Da) and the unified atomic mass unit (u) are alternative names (and symbols) for 

the same unit, equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground 
state. The dalton is often combined with SI prefixes, for example to express the masses of large 
molecules in kilodaltons, kDa, or megadaltons, MDa, or to express the values of small mass 
differences of atoms or molecules in nanodaltons, nDa, or even picodaltons, pDa. 

(

d

)  The astronomical unit is approximately equal to the mean Earth-Sun distance. It is the radius of 

an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, 
moving with a mean motion of 0.017 202 098 95 radians per day (known as the Gaussian 
constant). The value given for the astronomical unit is quoted from the IERS Conventions 2003 
(D.D. McCarthy and G. Petit eds., 

IERS Technical Note

 32, Frankfurt am Main: Verlag des 

Bundesamts für Kartographie und Geodäsie, 2004, 12). The value of the astronomical unit in 
metres comes from the JPL ephemerides DE403 (Standish E.M., Report of the IAU WGAS 
Sub-Group on Numerical Standards, 

Highlights of Astronomy

, Appenzeller ed., Dordrecht: 

Kluwer Academic Publishers, 1995, 180-184). 

 

 

background image

Units outside the SI

  

•

  

127

 

Tables 8 and 9 contain non-SI units that are used by special interest groups for a 
variety of different reasons. Although the use of SI units is to be preferred for reasons 
already emphasized, authors who see a particular advantage in using these non-SI 
units should have the freedom to use the units that they consider to be best suited to 
their purpose. Since, however, SI units are the international meeting ground in terms 
of which all other units are defined, those who use units from Tables 8 and 9 should 
always give the definition of the units they use in terms of SI units. 

Table 8 also gives the units of logarithmic ratio quantities, the neper, bel, and decibel. 
These are dimensionless units that are somewhat different in their nature from other 
dimensionless units, and some scientists consider that they should not even be called 
units. They are used to convey information on the nature of the logarithmic ratio 
quantity concerned. The neper, Np, is used to express the values of quantities whose 
numerical values are based on the use of the neperian (or natural) logarithm, ln = log

e

The bel and the decibel, B and dB, where 1 dB = (1/10) B, are used to express the 
values of logarithmic ratio quantities whose numerical values are based on the 
decadic logarithm, lg = log

10

. The way in which these units are interpreted is 

described in footnotes (

g

) and (

h

) of Table 8. The numerical values of these units are 

rarely required. The units neper, bel, and decibel have been accepted by the CIPM for 
use with the International System, but are not considered as SI units. 

The SI prefixes are used with two of the units in Table 8, namely, with the bar (e.g. 
millibar, mbar), and with the bel, specifically for the decibel, dB. The decibel is listed 
explicitly in the table because the bel is rarely used without the prefix. 

 

Table 8. Other non-SI units 
 

 

Quantity 

Name of unit 

 Symbol for unit 

Value in SI units 

 

 

pressure bar 

(

a

)

 

 

bar 

 

1 bar = 0.1 MPa = 100 kPa = 10

5

 Pa 

 

millimetre of mercury 

(

b

)

  mmHg   

1 mmHg  

≈

 133.322 Pa  

length Ã¥ngström 

(

c

)

 

 

Ã… 

 

1 Ã… = 0.1 nm = 100 pm = 10

−

10

 m 

distance nautical 

mile 

(

d

)

 

 

 

1 M = 1852 m 

area barn 

(

e

)

 

 

 

1 b = 100 fm

2

 = (10

−

12

 cm)

2

 = 10

−

28

 m

2

 

speed knot 

(

f

)

 

 

kn 

 

1 kn = (1852/3600) m/s 

logarithmic neper 

(

g

i

)

 

 

Np 

 

[see footnote (

j

) regarding the  

  ratio quantities 

bel 

(

h

i

)

 

 

 

numerical value of the neper, the  

 decibel 

(

h

i

)

 

 

dB 

 

bel and the decibel] 

 
(

a

)  The bar and its symbol are included in Resolution 7 of the 9th CGPM (1948; CR, 70). Since 

1982 one bar has been used as the standard pressure for tabulating all thermodynamic data. 
Prior to 1982 the standard pressure used to be the standard atmosphere, equal to 1.013 25 bar, 
or 101 325 Pa. 

(

b

)  The millimetre of mercury is a legal unit for the measurement of blood pressure in some 

countries. 

(

c

)  The Ã¥ngström is widely used by x-ray crystallographers and structural chemists because all 

chemical bonds lie in the range 1 to 3 Ã¥ngströms. However it has no official sanction from the 
CIPM or the CGPM. 

(

d

)  The nautical mile is a special unit employed for marine and aerial navigation to express 

distance. The conventional value given here was adopted by the First International Extra-
ordinary Hydrographic Conference, Monaco 1929, under the name “International nautical 
mileâ€. As yet there is no internationally agreed symbol, but the symbols M, NM, Nm, and nmi 
are all used; in the table the symbol M is used. The unit was originally chosen, and continues to 
be used, because one nautical mile on the surface of the Earth subtends approximately one 
minute of angle at the centre of the Earth, which is convenient when latitude and longitude are 
measured in degrees and minutes of angle. 

background image

128  

•

  

Units outside the SI

 

(

e

)  The barn is a unit of area employed to express cross sections in nuclear physics. 

(

f

)  The knot is defined as one nautical mile per hour. There is no internationally agreed symbol, 

but the symbol kn is commonly used. 

(

g) 

The statement 

L

A

 = 

n

 Np (where 

n

 is a number) is interpreted to mean that ln(

A

2

/

A

1

) = 

n

. Thus 

when 

L

A

 

= 1 Np, 

A

2

/

A

= e. The symbol 

A

 is used here to denote the amplitude of a sinusoidal 

signal, and 

L

A

 is then called the neperian logarithmic amplitude ratio, or the neperian amplitude 

level difference.  

(

h

) The 

statement 

L

X

 = 

m

 dB = (

m

/10) B (where 

m

 is a number) is interpreted to mean that lg(

X

/

X

0

m

/10. Thus when 

L

X

 = 1 B, 

X

/

X

0

 = 10, and when 

L

X

 = 1 dB, 

X

/

X

0

 = 10

1/10

. If 

denotes a 

mean square signal or power-like quantity, 

L

 

is called a power level referred to 

X

0

(

i

)  In using these units it is important that the nature of the quantity be specified, and that any 

reference value used be specified. These units are not SI units, but they have been accepted by 
the CIPM for use with the SI. 

(

j

)  The numerical values of the neper, bel, and decibel (and hence the relation of the bel and the 

decibel to the neper) are rarely required. They depend on the way in which the logarithmic 
quantities are defined.  

 

 

Table 9 differs from Table 8 only in that the units in Table 9 are related to the older 
CGS (centimetre-gram-second) system of units, including the CGS electrical units. In 
the field of mechanics, the CGS system of units was built upon three quantities and 
their corresponding base units: the centimetre, the gram, and the second. The CGS 
electrical units were still derived from only these same three base units, using 
defining equations different from those used for the SI. Because this can be done in 
different ways, it led to the establishment of several different systems, namely the 
CGS-ESU (electrostatic), the CGS-EMU (electromagnetic), and the CGS-Gaussian 
unit systems. It has always been recognized that the CGS-Gaussian system, in 
particular, has advantages in certain areas of physics, particularly in classical and 
relativistic electrodynamics (9th CGPM, 1948, Resolution 6). Table 9 gives the 
relations between these CGS units and the SI, and lists those CGS units that were 
assigned special names. As for the units in Table 8, the SI prefixes are used with 
several of these units (e.g. millidyne, mdyn; milligauss, mG, etc.).  

 

Table 9. Non-SI units associated with the CGS and the CGS-Gaussian system of 
units 

 

 

Quantity 

Name of unit 

Symbol for unit 

Value in SI units   

 

 

energy erg

 (

a

)

 

erg 

1 erg = 10

−

7

 J 

force dyne 

(

a

)

 

dyn 

1 dyn = 10

−

5

 N 

dynamic viscosity 

poise 

(

a

)

 

1 P = 1 dyn s cm

−

2

 = 0.1 Pa s 

kinematic viscosity 

stokes 

St 

1 St = 1 cm

2

 s

−

1

 = 10

−

4

 m

2

 s

−

1

 

luminance stilb 

(

a

)

 

sb 

1 sb = 1 cd cm

−

2

 = 10

4

 cd m

−

2

 

illuminance 

phot 

ph 

1 ph = 1 cd sr cm

−

2

 = 10

4

 lx 

acceleration gal 

(

b

)

 

Gal 

1 Gal = 1 cm s

−

2

 = 10

−

2

 m s

−

2

 

magnetic flux 

maxwell

 (

c

)

 

Mx 

1 Mx = 1 G cm

2

 = 10

−

8

 Wb 

magnetic flux density 

gauss 

(

c

)

 

1 G = 1 Mx cm

−

2

 = 10

−

4

 T 

magnetic field 

Å“rsted 

(

c

)

 Oe 

Oe 

ˆ

=

 (10

3

/4

Ï€

) A m

−

1

 

 

(

a

)  This unit and its symbol were included in Resolution 7 of the 9th CGPM (1948; CR, 70). 

(

b

)  The gal is a special unit of acceleration employed in geodesy and geophysics to express 

acceleration due to gravity.  

background image

Units outside the SI

  

•

  

129

 

(

c

)  These units are part of the so-called “electromagnetic†three-dimensional CGS system based on 

unrationalized quantity equations, and must be compared with care to the corresponding unit of 
the International System which is based on rationalized equations involving four dimensions 
and four quantities for electromagnetic theory. The magnetic flux, 

Φ

, and the magnetic flux 

density, 

B

, are defined by similar equations in the CGS system and the SI, so that the 

corresponding units can be related as in the table. However, the unrationalized magnetic field, 

H

 

(unrationalized) = 4

Ï€

 

×

 

H

 

(rationalized). The equivalence symbol 

ˆ

=

 is used to indicate that 

when 

H

 

(unrationalized) = 1 Oe, 

H

 

(rationalized) = (10

3

/4

Ï€

) A m

−

1

 

 

4.2 

Other non-SI units not recommended for use 

There are many more non-SI units, which are too numerous to list here, which are 
either of historical interest, or are still used but only in specialized fields (for 
example, the barrel of oil) or in particular countries (the inch, foot, and yard). The 
CIPM can see no case for continuing to use these units in modern scientific and 
technical work. However, it is clearly a matter of importance to be able to recall the 
relation of these units to the corresponding SI units, and this will continue to be true 
for many years. The CIPM has therefore decided to compile a list of the conversion 
factors to the SI for such units and to make this available on the BIPM website at 

 

www.bipm.org/en/si/si_brochure/chapter4/conversion_factors.html

background image

130

 

Writing unit symbols and names, and expressing the 
values of quantities 

General principles for the writing of unit symbols and numbers were first given by 
the 9th CGPM (1948, Resolution 7). These were subsequently elaborated by ISO, 
IEC, and other international bodies. As a consequence, there now exists a general 
consensus on how unit symbols and names, including prefix symbols and names, as 
well as quantity symbols should be written and used, and how the values of quantities 
should be expressed. Compliance with these rules and style conventions, the most 
important of which are presented in this chapter, supports the readability of scientific 
and technical papers.  
 

5.1 Unit 

symbols 

Unit symbols are printed in roman (upright) type regardless of the type used in the 
surrounding text. They are printed in lower-case letters unless they are derived from a 
proper name, in which case the first letter is a capital letter. 
An exception, adopted by the 16th CGPM (1979, Resolution 6), is that either capital 
L or lower-case l is allowed for the litre, in order to avoid possible confusion between 
the numeral 1 (one) and the lower-case letter l (el). 
A multiple or sub-multiple prefix, if used, is part of the unit and precedes the unit 
symbol without a separator. A prefix is never used in isolation, and compound 
prefixes are never used.  
Unit symbols are mathematical entities and not abbreviations. Therefore, they are not 
followed by a period except at the end of a sentence, and one must neither use the 
plural nor mix unit symbols and unit names within one expression, since names are 
not mathematical entities. 
In forming products and quotients of unit symbols the normal rules of algebraic 
multiplication or division apply. Multiplication must be indicated by a space or a 
half-high (centred) dot (

â‹…

), since otherwise some prefixes could be misinterpreted as a 

unit symbol. Division is indicated by a horizontal line, by a solidus (oblique stroke, /) 
or by negative exponents. When several unit symbols are combined, care should be 
taken to avoid ambiguities, for example by using brackets or negative exponents. A 
solidus must not be used more than once in a given expression without brackets to 
remove ambiguities. 
It is not permissible to use abbreviations for unit symbols or unit names, such as sec 
(for either s or second), sq. mm (for either mm

2

 or square millimetre), cc (for either 

cm

3

 or cubic centimetre), or mps (for either m/s or metre per second). The use of the 

correct symbols for SI units, and for units in general, as listed in earlier chapters of 
this Brochure, is mandatory. In this way ambiguities and misunderstandings in the 
values of quantities are avoided. 

m, metre 
s, second 
Pa, pascal 
Ω, ohm 

 
 

L or l, litre 
 

 

nm, 

 not 

 m

µ

 
It is 75 cm long, 

not 

 75 cm. long 

= 75 cm,

 

not

 

 

75 cms 

 
coulomb per kilogram, 

not

 coulomb per kg 

N m  or N 

â‹…

 

for a newton metre 

m/s  or 

s

m

  or m s

–1

for metre per second 
 
ms, millisecond 
m s, metre times second 
 
m kg/(s

3

 A), 

or   m kg s

–3

 A

–1

,

 

but not

   m kg/s

3

/A

,

 

nor       

  m kg/s

3

 A 

background image

 

Writing unit symbols and names  

•

  

131

 

5.2 Unit 

names 

Unit names are normally printed in roman (upright) type, and they are treated like 
ordinary nouns. In English, the names of units start with a lower-case letter (even 
when the symbol for the unit begins with a capital letter), except at the beginning of a 
sentence or in capitalized material such as a title. In keeping with this rule, the correct 
spelling of the name of the unit with the symbol °C is “degree Celsius†(the unit 
degree begins with a lower-case d and the modifier Celsius begins with an upper-case 
C because it is a proper name). 
Although the values of quantities are normally expressed using symbols for numbers 
and symbols for units, if for some reason the unit name is more appropriate than the 
unit symbol, the unit name should be spelled out in full.  
When the name of a unit is combined with the name of a multiple or sub-multiple 
prefix, no space or hyphen is used between the prefix name and the unit name. The 
combination of prefix name plus unit name is a single word. See also Chapter 3, 
Section 3.1. 
In both English and in French, however, when the name of a derived unit is formed 
from the names of individual units by multiplication, then either a space or a hyphen 
is used to separate the names of the individual units. 
In both English and in French modifiers such as “squared†or “cubed†are used in the 
names of units raised to powers, and they are placed after the unit name. However, in 
the case of area or volume, as an alternative the modifiers “square†or “cubic†may be 
used, and these modifiers are placed before the unit name, but this applies only in 
English. 
 

5.3 

Rules and style conventions for expressing values of 
quantities 

5.3.1 

Value and numerical value of a quantity, and the use of quantity calculus  

The value of a quantity is expressed as the product of a number and a unit, and the 
number multiplying the unit is the numerical value of the quantity expressed in that 
unit. The numerical value of a quantity depends on the choice of unit. Thus the value 
of a particular quantity is independent of the choice of unit, although the numerical 
value will be different for different units. 
Symbols for quantities are generally single letters set in an italic font, although they 
may be qualified by further information in subscripts or superscripts or in brackets. 
Thus 

C

 is the recommended symbol for heat capacity, 

C

m

 for molar heat capacity, 

C

m, 

p

 for molar heat capacity at constant pressure, and 

C

m,

V

 for molar heat capacity at 

constant volume. 
Recommended names and symbols for quantities are listed in many standard 
references, such as the ISO Standard 31 

Quantities and Units

, the IUPAP 

SUNAMCO Red Book 

Symbols, Units and Nomenclature in Physics

, and the IUPAC 

Green Book 

Quantities, Units and Symbols in Physical Chemistry

. However, symbols 

for quantities are recommendations (in contrast to symbols for units, for which the 
use of the correct form is mandatory). In particular circumstances authors may wish 
to use a symbol of their own choice for a quantity, for example in order to avoid a 
conflict arising from the use of the same symbol for two different quantities. In such 

milligram, 

but not

  milli-gram 

 
kilopascal, 

but not

  kilo-pascal 

 
 
 
pascal second, or 
pascal-second 

metre per second squared, 
square centimetre, 
cubic millimetre, 
ampere per square metre, 
kilogram per cubic metre. 

unit name    symbol 

 

joule 

       J 

hertz 

       Hz 

metre 

       m 

second         s  
ampere         A 
watt               W 

2.6 m/s, 
or  2.6 metres per second 

The same value of a speed  

v

 = d

x

/d

t

 of a particle 

might be given by either  
of the expressions  

v

 = 25 m/s  = 90 km/h,  

where 25 is the numerical 
value of the speed in the 
unit metres per second, and 
90 is the numerical value of 
the speed in the unit 
kilometres per hour. 

background image

132  

•

  

Writing unit symbols and names

 

cases, the meaning of the symbol must be clearly stated. However, neither the name 
of a quantity, nor the symbol used to denote it, should imply any particular choice of 
unit. 
Symbols for units are treated as mathematical entities. In expressing the value of a 
quantity as the product of a numerical value and a unit, both the numerical value and 
the unit may be treated by the ordinary rules of algebra. This procedure is described 
as the use of quantity calculus, or the algebra of quantities.  For example, the 
equation  

T

 = 293 K  may equally  be written  

T

/K = 293. It is often convenient to 

write the quotient of a quantity and a unit in this way for the heading of a column in a 
table, so that the entries in the table are all simply numbers. For example, a table of 
vapour pressure against temperature, and the natural logarithm of vapour pressure 
against reciprocal temperature, may be formatted as shown below. 
 

 

T

/K  

10

3

 K/

T

 

p

/MPa ln(

p

/MPa) 

 

216.55  

4.6179 

0.5180 

−

0.6578 

273.15  

3.6610 

3.4853 

1.2486 

304.19  

3.2874 

7.3815 

1.9990 

 

 
The axes of a graph may also be labelled in this way, so that the tick marks are 
labelled only with numbers, as in the graph below. 

-0.8

0.0

0.8

1.6

2.4

3.2

3.6

4.0

4.4

4.8

1000 K/

T

ln

(

p

/M

Pa

)

 

Algebraically equivalent forms may be used in place of 10

3

 K/

T

, such as kK/

T

, or 

10

3

 (

T

/K)

−

1

 

5.3.2 

Quantity symbols and unit symbols 

Just as the quantity symbol should not imply any particular choice of unit, the unit 
symbol should not be used to provide specific information about the quantity, and 
should never be the sole source of information on the quantity. Units are never 
qualified by further information about the nature of the quantity; any extra 
information on the nature of the quantity should be attached to the quantity symbol 
and not to the unit symbol.  

For example: 
The maximum electric 
potential difference is  

U

max

 = 1000 V 

but not 

U

 = 1000 V

max

.

 

The mass fraction of copper 
in the sample of silicon is 

w

(Cu) = 1.3 × 10

−

but not 

1.3 × 10

−

6

 w/w. 

background image

 

Writing unit symbols and names  

•

  

133

 

5.3.3 

Formatting the value of a quantity 

The numerical value always precedes the unit, and a space is always used to separate 
the unit from the number. Thus the value of the quantity is the product of the number 
and the unit, the space being regarded as a multiplication sign (just as a space 
between units implies multiplication). The only exceptions to this rule are for the unit 
symbols for degree, minute, and second for plane angle, °, â€², and â€³, respectively, for 
which no space is left between the numerical value and the unit symbol. 
This rule means that the symbol °C for the degree Celsius is preceded by a space 
when one expresses values of Celsius temperature 

t

Even when the value of a quantity is used as an adjective, a space is left between the 
numerical value and the unit symbol. Only when the name of the unit is spelled out 
would the ordinary rules of grammar apply, so that in English a hyphen would be 
used to separate the number from the unit. 
In any one expression, only one unit is used. An exception to this rule is in expressing 
the values of time and of plane angles using non-SI units. However, for plane angles 
it is generally preferable to divide the degree decimally. Thus one would write 22.20° 
rather than 22° 12′, except in fields such as navigation, cartography, astronomy, and 
in the measurement of very small angles. 
 

5.3.4 

Formatting numbers, and the decimal marker 

The symbol used to separate the integral part of a number from its decimal part is 
called the decimal marker. Following the 22nd CGPM (2003, Resolution 10), the 
decimal marker â€œshall be either the point on the line or the comma on the line.† The 
decimal marker chosen should be that which is customary in the context concerned. 
If the number is between +1 and 

−

1, then the decimal marker is always preceded by a 

zero. 
Following the 9th CGPM (1948, Resolution 7) and the 22nd CGPM (2003, 
Resolution 10), for numbers with many digits the digits may be divided into groups 
of three by a thin space, in order to facilitate reading. Neither dots nor commas are 
inserted in the spaces between groups of three. However, when there are only four 
digits before or after the decimal marker, it is customary not to use a space to isolate a 
single digit. The practice of grouping digits in this way is a matter of choice; it is not 
always followed in certain specialized applications such as engineering drawings, 
financial statements, and scripts to be read by a computer.  
For numbers in a table, the format used should not vary within one column. 
 

5.3.5 

Expressing the measurement uncertainty in the value of a quantity 

The uncertainty that is associated with the estimated value of a quantity should be 
evaluated and expressed in accordance with the 

Guide to the Expression of Uncer-

tainty in Measurement

 [ISO, 1995]. The standard uncertainty (i.e. estimated standard 

deviation, coverage factor 

k

 = 1) associated with a quantity 

x

 is denoted by 

u

(

x

). A 

convenient way to represent the uncertainty is given in the following example: 

m

n

 = 

1.674 927 28 (29)

 Ã—

 10

–27

 kg. 

where 

m

n

 is the symbol for the quantity (in this case the mass of a neutron), and the 

number in parenthesis is the numerical value of the combined standard uncertainty of 
the estimated value of 

m

n

 referred to the last two digits of the quoted value; in this 

l

  = 10.234 m, 

but not  

 = 10 m  23.4 cm 

−

0.234, 

but not

  

−

.234 

t

 = 30.2 

o

C, 

but not

  t 

= 30.2

o

C, 

nor       

 t 

= 30.2

o

 C 

 
a 10 kΩ resistor 
 
a 35-millimetre film 

m

 = 12.3 g  where 

is used 

as a symbol for the quantity 
mass, but  

φ

  = 30° 22′ 8″, 

where 

φ

 is used as a symbol 

for the quantity plane angle. 

43 279.168 29, 

but not  

43,279.168,29 

 
 

either

   3279.1683 

or

          

3 279.168 3 

background image

134  

•

  

Writing unit symbols and names

 

case  

u

(

m

n

) = 0.000 000 29 × 10

−

27

 kg. If any coverage factor, 

k

, different from one, is 

used, this factor must be stated. 
 

5.3.6 

Multiplying or dividing quantity symbols, the values of quantities, or 
numbers 

When multiplying or dividing quantity symbols any of the following methods may be 
used:  

ab

a b

a

â‹…

 

b

a

 Ã— 

b

a

/

b

b

a

a b

−

1

When multiplying the value of quantities either a multiplication sign, 

×

, or brackets 

should be used, not a half-high (centred) dot. When multiplying numbers only the 
multiplication sign, 

×

, should be used. 

When dividing the values of quantities using a solidus, brackets are used to remove 
ambiguities. 
 

5.3.7 

Stating values of dimensionless quantities, or quantities of dimension 
one 

As discussed in Section 2.2.3, the coherent SI unit for dimensionless quantities, also 
termed quantities of dimension one, is the number one, symbol 1. Values of such 
quantities are expressed simply as numbers. The unit symbol 1 or unit name “one†are 
not explicitly shown, nor are special symbols or names given to the unit one, apart 
from a few exceptions as follows. For the quantity plane angle, the unit one is given 
the special name radian, symbol rad, and for the quantity solid angle, the unit one is 
given the special name steradian, symbol sr. For the logarithmic ratio quantities, the 
special names neper, symbol Np, bel, symbol B, and decibel, symbol dB, are used 
(see 4.1 and Table 8, p. 127). 
Because SI prefix symbols can neither be attached to the symbol 1 nor to the name 
“oneâ€, powers of 10 are used to express the values of particularly large or small 
dimensionless quantities. 
In mathematical expressions, the internationally recognized symbol % (percent) may 
be used with the SI to represent the number 0.01. Thus, it can be used to express the 
values of dimensionless quantities. When it is used, a space separates the number and 
the symbol %. In expressing the values of dimensionless quantities in this way, the 
symbol % should be used rather than the name “percentâ€. 
In written text, however, the symbol % generally takes the meaning of “parts per 
hundredâ€. 
Phrases such as “percentage by massâ€, “percentage by volumeâ€, or â€œpercentage by 
amount of substance†should not be used; the extra information on the quantity 
should instead be conveyed in the name and symbol for the quantity. 
In expressing the values of dimensionless fractions (e.g. mass fraction, volume 
fraction, relative uncertainties), the use of a ratio of two units of the same kind is 
sometimes useful. 
The term “ppmâ€, meaning 10

−

6

 relative value, or 1 in 10

6

, or parts per million, is also 

used. This is analogous to the meaning of percent as parts per hundred. The terms 
“parts per billionâ€, and “parts per trillionâ€, and their respective abbreviations “ppbâ€, 
and â€œpptâ€, are also used, but their meanings are language dependent. For this reason 
the terms ppb and ppt are best avoided. (In English-speaking countries, a billion is 
now generally taken to be 10

9

 and a trillion to be 10

12

; however, a billion may still 

Examples: 
 

F

 = 

ma

 for force equals 

mass times acceleration 
 
(53 m/s) 

×

 10.2 s 

or (53 m/s)(10.2 s) 
 
25 

×

 60.5 

but not

   25 

â‹…

 60.5 

 
(20 m)/(5 s) = 4 m/s 
 
(

a/b

)

/c

,  

not

  

a/b/c

 

x

B

 = 0.0025 = 0.25 %, 

where 

x

B

 is the quantity 

symbol for amount fraction 
(mole fraction) of entity B. 
 
The mirror reflects 95 % of 
the incident photons. 

 

φ

 = 3.6 %, 

but not

 

φ 

 = 3.6 % (

V

/

V

), 

where 

φ

 denotes volume 

fraction. 
 
 

x

B   

= 2.5 × 10

−

3  

        

= 2.5 mmol/mol 

 

u

r

(

U

) = 0.3 µV/V, 

where 

u

r

(

U

) is the relative 

uncertainty of the measured 
voltage 

U

n

 = 1.51, 

but not

  

n

 = 1.51 × 1, 

where 

n

 is the quantity 

symbol for refractive index. 

background image

 

Writing unit symbols and names  

•

  

135

 

sometimes be interpreted as 10

12

 and a trillion as 10

18

. The abbreviation ppt is also 

sometimes read as parts per thousand, adding further confusion.) 
When any of the terms %, ppm, etc., are used it is important to state the 
dimensionless quantity whose value is being specified.  

background image

 

background image

137

 

Appendix 1.  Decisions of the CGPM and the CIPM 

This appendix lists those decisions of the CGPM and the CIPM that bear directly 
upon definitions of the units of the SI, prefixes defined for use as part of the SI, and 
conventions for the writing of unit symbols and numbers. It is not a complete list of 
CGPM and CIPM decisions. For a complete list, reference must be made to 
successive volumes of the 

Comptes Rendus des Séances de la Conférence Générale 

des Poids et Mesures

 (CR) and 

Procès-Verbaux

 

des Séances du Comité International 

des Poids et Mesures

 (PV) or, for recent decisions, to 

Metrologia

Since the SI is not a static convention, but evolves following developments in the 
science of measurement, some decisions have been abrogated or modified; others 
have been clarified by additions. Decisions that have been subject to such changes are 
identified by an asterisk (*) and are linked by a note to the modifying decision. 

The original text of each decision (or its translation) is shown in a different font (sans 
serif) of normal weight to distinguish it from the main text. The asterisks and notes 
were added by the BIPM to make the text more understandable. They do not form 
part of the original text. 

The decisions of the CGPM and CIPM are listed in this appendix in strict 
chronological order, from 1889 to 2005, in order to preserve the continuity with 
which they were taken. However in order to make it easy to locate decisions related 
to particular topics a table of contents is included below, ordered by subject, with 
page references to the particular meetings at which decisions relating to each subject 
were taken. 

 

background image

138

  

•

  Appendix 1

 

Table of Contents of Appendix 1 

Decisions relating to the establishment of the SI 

 

 

page 

9th

 

CGPM, 1948: 

decision to establish the SI 

 

145 

10th CGPM, 1954: 

decision on the first six base units

 

147

 

CIPM 1956: 

 

decision to adopt the name “Système International d’Unitésâ€

 

148

 

11th CGPM, 1960: 

confirms the name and the abbreviation “SIâ€, 

149

 

 

 

 

names prefixes from tera to pico,

 

149

 

 

 

 

establishes the supplementary units rad and sr,

 

149

 

 

 

 

lists some derived units 

 

150

 

CIPM, 1969: 

 

declarations concerning base, supplementary, 

 

 

 

derived and coherent units, and the use of prefixes

 

155

 

CIPM, 2001 

 

“SI units†and “units of the SI†

166 

 

Decisions relating to the base units of the SI 

Length 

1st CGPM, 1889: 

sanction of the prototype metre 

142

 

7th CGPM, 1927: 

definition and use of the prototype metre

 

143

 

11th CGPM, 1960: 

redefinition of the metre in terms of krypton 86 radiation

 

148

 

15th CGPM, 1975: 

recommends value for the speed of light

 

157 

17th CGPM, 1983: 

redefinition of the metre using the speed of light,

 

160 

 

 

 

r

ealization of the definition of the metre

 161

 

CIPM, 2002: 

 

specifies the rules for the practical realization of the  

 

 

 

definition of the metre

 

 

166

 

CIPM, 2003: 

 

revision of the list of recommended radiations

 

169 

CIPM, 2005: 

 

revision of the list of recommended radiations

 

171 

 

Mass 

1st CGPM, 1889: 

sanction of the prototype kilogram

 

142

 

3rd CGPM, 1901: 

declaration on distinguishing mass and weight, 

 

 

 

and on the conventional value of 

g

n

 

143

 

CIPM, 1967: 

 

declaration on applying prefixes to the gram

 

152

 

21st CGPM, 1999: 

future redefinition of the kilogram

 

165 

 

Time 

CIPM, 1956: 

 

definition of the second as a fraction of the  

 

 

 

tropical year 1900

 

 

147

 

11th CGPM, 1960: 

ratifies the CIPM 1956 definition of the second

 

148

 

background image

Appendix 1  

•

  

139

 

 

 

 

  

  

 

page 

CIPM, 1964: 

 

declares the caesium 133 hyperfine transition 

 

 

 

to be the recommended standard

 

151

 

12th CGPM, 1964: 

empowers CIPM to investigate atomic 

 

 

 

and molecular frequency standards

 

151

 

13th CGPM, 1967/68:  defines the second in terms of the caesium transition

 

153

 

CCDS, 1970: 

 

defines International Atomic Time, TAI

 

155

 

1

4th CGPM, 1971: 

requests the CIPM to define and establish 

 

 

 

International Atomic Time, TAI

 

156

 

15th CGPM, 1975: 

endorses the use of Coordinated Universal Time, UTC

 

157

 

 

Electrical units 

CIPM, 1946: 

 

definitions of mechanical and electrical units in the SI

 

144

 

14th CGPM, 1971: 

adopts the name siemens, symbol S, for electrical  

  

 conductance

 

 

156

 

18th CGPM, 1987: 

forthcoming adjustment to the representations of 

 

 

 

the volt and of the ohm 

 

161

 

CIPM, 1988: 

 

Josephson effect

 

 

162

 

CIPM, 1988: 

 

quantum Hall effect

 

 

163

 

CIPM, 2000:  

 

realization of the ohm using the value of the 

 

 

 

von Klitzing constant 

 

166

 

 

Thermodynamic temperature 

9th CGPM, 1948: 

adopts the triple point of water as the thermodynamic 

 

 

 

reference point,  

 

144

 

 

 

 

adopts the zero of Celsius temperature to be 

 

 

 

0.01 degree below the triple point

 

144

 

CIPM, 1948: 

 

adopts the name degree Celsius for the Celsius  

  

 temperature 

scale

 

 

145

 

10th CGPM, 1954: 

defines thermodynamic temperature such that the  

 

 

 

triple point of water is 273.16 degrees Kelvin exactly,

 

146

 

 

 

 

defines standard atmosphere 

   

147

 

13th CGPM, 1967/68:  decides formal definition of the kelvin, symbol K 

154

 

CIPM, 1989: 

 

the International Temperature Scale of 1990, ITS-90

 

163

 

CIPM, 2005: 

 

note added to the definition of the kelvin concerning the 

 

 

 

isotopic composition of water

  

 

170 

 

Amount of substance  

14th CGPM, 1971: 

definition of the mole, symbol mol, as a seventh 

 

 

 

base unit, and rules for its use 

 

156

 

21st CGPM, 1999: 

adopts the special name katal, kat

 

165 

 

background image

140

  

•

  Appendix 1

 

Luminous 

intensity 

  

  

 

 

page 

CIPM, 1946: 

 

definition of photometric units, new candle and new lumen

 

143

 

13th CGPM, 1967/68:  defines the candela, symbol cd, in terms of a black body

 

154

 

16th CGPM, 1979: 

redefines the candela in terms of monochromatic radiation

 

158

 

 

Decisions relating to SI derived and supplementary units  

SI derived units 

12th CGPM, 1964: 

accepts the continued use of the curie as a non-SI unit

 

152

 

13th CGPM, 1967/68:  lists some examples of derived units

 

154

 

15th CGPM, 1975: 

adopts the special names becquerel, Bq, and gray, Gy

 

157

 

16th CGPM, 1979: 

adopts the special name sievert, Sv

 

159 

CIPM, 1984: 

 

decides to clarify the relationship between absorbed dose 

 

 

 

(SI unit gray) and dose equivalent (SI unit sievert)

 

161

 

CIPM, 2002: 

 

modifies the relationship between absorbed dose  

 

 

 

and dose equivalent

 

 

168

 

 

Supplementary units 

CIPM, 1980: 

 

decides to interpret supplementary units

 

 

 

 

as dimensionless derived units 

159

 

20th CGPM, 1995: 

decides to abrogate the class of supplementary units, 

 

 

 

and confirms the CIPM interpretation that they are  

 

 

 

dimensionless derived units 

 

164

 

 

Decisions concerning terminology and the acceptance of units for use with the SI 

SI prefixes 

12th CGPM, 1964: 

decides to add femto and atto to the list of prefixes

 

152

 

15th CGPM, 1975: 

decides to add peta and exa to the list of prefixes

 

158

 

19th CGPM, 1991: 

decides to add zetta, zepto, yotta, and yocto to the  

 

 

 

list of prefixes 

 

164

 

 

Unit symbols and numbers 

9th CGPM, 1948: 

decides rules for printing unit symbols

 

146

 

 

Unit names 

13th CGPM, 1967/68:  abrogates the use of the micron and new candle

 

155

 

 

 

 

as units accepted for use with the SI 

 

The decimal marker 

22nd CGPM, 2003: 

decides to allow the use of the point or the comma 

 

 

 

on the line as the decimal marker

 

169

 

 

background image

Appendix 1  

•

  

141

 

 

 

Units accepted for use with the SI:  an example, the litre 

 

page 

3rd CGPM, 1901: 

defines the litre as the volume of 1 kg of water

 

142

 

11th CGPM, 1960: 

requests the CIPM to report on the difference  

 

 

 

between the litre and the cubic decimetre

 

150

 

CIPM, 1961: 

 

recommends that volume be expressed in SI units 

 

 

 

and not in litres

 

 

151

 

12th CGPM, 1964: 

abrogates the former definition of the litre, 

 

 

 

recommends that litre may be used as a special  

 

 

 

name for the cubic decimetre 

 

152

 

16th CGPM, 1979: 

decides, as an exception, to allow both l and L as 

 

 

 

symbols for the litre 

 

159

 

 

background image

142

  

•

  Appendix 1

 

1st CGPM, 1889 

  Sanction of the international prototypes of the metre and the kilogram 

(CR, 34-38)

The Conférence Générale des Poids et Mesures, 

considering 

•

  the “Compte rendu of the President of the Comité International des Poids et Mesures 

(CIPM)†and the â€œReport of the CIPMâ€, which show that, by the collaboration of the 
French section of the International Metre Commission and of the CIPM, the 
fundamental measurements of the international and national prototypes of the metre 
and of the kilogram have been made with all the accuracy and reliability which the 
present state of science permits; 

•

  that the international and national prototypes of the metre and the kilogram are made of 

an alloy of platinum with 10 per cent iridium, to within 0.0001; 

•

  the equality in length of the international Metre and the equality in mass of the 

international Kilogram with the length of the Metre and the mass of the Kilogram kept in 
the Archives of France;  

•

  that the differences between the national Metres and the international Metre lie within 

0.01 millimetre and that these differences are based on a hydrogen thermometer scale 
which can always be reproduced thanks to the stability of hydrogen, provided identical 
conditions are secured; 

•

  that the differences between the national Kilograms and the international Kilogram lie 

within 1 milligram; 

•

  that the international Metre and Kilogram and the national Metres and Kilograms fulfil 

the requirements of the Metre Convention, 

sanctions 

A.  As regards international prototypes: 

1.  The Prototype of the metre chosen by the CIPM. This prototype, at the temperature of 

melting ice, shall henceforth represent the metric unit of length. 

2.  The Prototype of the kilogram adopted by the CIPM. This prototype shall henceforth be 

considered as the unit of mass. 

3.  The hydrogen thermometer centigrade scale in terms of which the equations of the 

prototype Metres have been established. 

B.  As regards national prototypes:   ..... 

… 

 

3rd CGPM, 1901 

  Declaration concerning the definition of the litre 

(CR, 38-39)

… 

T

he Conference declares 

1.  The unit of volume, for high accuracy determinations, is the volume occupied by a mass 

of 1 kilogram of pure water, at its maximum density and at standard atmospheric 
pressure: this volume is called “litreâ€. 

2. … 

* The definition of the 
metre was abrogated in 
1960 by the 11th CGPM 
(Resolution 6,  
see p. 148). 

* This definition was 
abrogated in 1964 by the 
12th CGPM (Resolution 6,
see p. 152). 

background image

Appendix 1  

•

  

143

 

 

 

  Declaration on the unit of mass and on the definition of weight; 

conventional value of

 g

(CR, 70)

 

Taking into account

 the decision of the Comité International des Poids et Mesures of 

15 October 1887, according to which the kilogram has been defined as unit of mass; 

Taking into account

 the decision contained in the sanction of the prototypes of the Metric 

System, unanimously accepted by the Conférence Générale des Poids et Mesures on 
26 September 1889; 

Considering

 the necessity to put an end to the ambiguity which in current practice still 

exists on the meaning of the word 

weight

, used sometimes for 

mass

, sometimes for 

mechanical force

The Conference declares 

1.  The kilogram is the unit of mass; it is equal to the mass of the international prototype of 

the kilogram; 

2.  The word “weight†denotes a quantity of the same nature as a “forceâ€: the weight of a 

body is the product of its mass and the acceleration due to gravity; in particular, the 
standard weight of a body is the product of its mass and the standard acceleration due 
to gravity; 

3.  The value adopted in the International Service of Weights and Measures for the 

standard acceleration due to gravity is 980.665 cm/s

2

, value already stated in the laws 

of some countries. 

 

7th CGPM, 1927 

  Definition of the metre by the international Prototype

 (CR, 49)

The unit of length is the metre, defined by the distance, at 0°, between the axes of the two 
central lines marked on the bar of platinum-iridium kept at the Bureau International des 
Poids et Mesures and declared Prototype of the metre by the 1st Conférence Générale des 
Poids et Mesures, this bar being subject to standard atmospheric pressure and supported 
on two cylinders of at least one centimetre diameter, symmetrically placed in the same 
horizontal plane at a distance of 571 mm from each other. 

 

CIPM, 1946 

  Definitions of photometric units 

(PV, 

20

, 119-122)

Resolution 

… 

4. The photometric units may be defined as follows: 

New candle

 (unit of luminous intensity). â€” The value of the new candle is such that the 

brightness of the full radiator at the temperature of solidification of platinum is 60 new 
candles per square centimetre. 

New lumen

 (unit of luminous flux). â€” The new lumen is the luminous flux emitted in unit 

solid angle (steradian) by a uniform point source having a luminous intensity of 1 new 
candle. 

5. … 

 

This value of 

g

was the 

conventional reference for 
calculating the now 
obsolete unit kilogram 
force. 

* This definition was 
abrogated in 1960 by the 
11th CGPM (Resolution 6, 
see p. 148). 

* The two definitions 
contained in this 
Resolution were 
ratified in 1948 by the 
9th CGPM, which also 
approved the name 
candela given to the 
“new candle†(CR, 
54). For the lumen the 
qualifier “new†was 
later abandoned. 
This definition was 
modified in 1967 by 
the 13th CGPM 
(Resolution 5, see 
p. 154). 

background image

144

  

•

  Appendix 1

 

  Definitions of electric units

 (PV, 

20

, 132-133)

 

Resolution 2 

... 

4.  (A) Definitions of the mechanical units which enter the definitions of electric units: 

Unit of force

. â€” The unit of force [in the MKS (metre, kilogram, second) system] is the 

force which gives to a mass of 1 kilogram an acceleration of 1 metre per second, per 
second. 

Joule

 

(unit of energy or work). â€” The joule is the work done when the point of application 

of 1 MKS unit of force [newton] moves a distance of 1 metre in the direction of the 
force. 

Watt

 (unit of power). â€” The watt is the power which in one second gives rise to energy of 

1 joule. 

 

(B) Definitions of electric units. The Comité International des Poids et Mesures (CIPM) 
accepts the following propositions which define the theoretical value of the electric 
units: 

Ampere

 (unit of electric current). â€” The ampere is that constant current which, if 

maintained in two straight parallel conductors of infinite length, of negligible circular 
cross-section, and placed 1 metre apart in vacuum, would produce between these 
conductors a force equal to 2 

×

 10

−

7

 MKS unit of force [newton] per metre of length. 

Volt

 

(unit of potential difference and of electromotive force). â€” The volt is the potential 

difference between two points of a conducting wire carrying a constant current of 
1 ampere, when the power dissipated between these points is equal to 1 watt. 

Ohm

 (unit of electric resistance). â€” The ohm is the electric resistance between two points 

of a conductor when a constant potential difference of 1 volt, applied to these points, 
produces in the conductor a current of 1 ampere, the conductor not being the seat of 
any electromotive force. 

Coulomb

 (unit of quantity of electricity). â€” The coulomb is the quantity of electricity carried 

in 1 second by a current of 1 ampere. 

Farad 

(unit of capacitance). â€” The farad is the capacitance of a capacitor between the 

plates of which there appears a potential difference of 1 volt when it is charged by a 
quantity of electricity of 1 coulomb. 

Henry

 

(unit of electric inductance). â€” The henry is the inductance of a closed circuit in 

which an electromotive force of 1 volt is produced when the electric current in the circuit 
varies uniformly at the rate of 1 ampere per second. 

Weber

 (unit of magnetic flux). â€” The weber is the magnetic flux which, linking a circuit of 

one turn, would produce in it an electromotive force of 1 volt if it were reduced to zero at 
a uniform rate in 1 second. 

 

9th CGPM, 1948 

  Triple point of water; thermodynamic scale with a single fixed point; unit 

of quantity of heat (joule)

 

(CR, 55 and 63)

 

Resolution 3 

1.  With present-day techniques, the triple point of water is capable of providing a 

thermometric reference point with an accuracy higher than can be obtained from the 
melting point of ice. 

 

In consequence the Comité Consultatif de Thermométrie et Calorimétrie (CCTC) 
considers that the zero of the centesimal thermodynamic scale must be defined as the 
temperature 0.0100 degree below that of the triple point of water. 

The definitions contained 
in this Resolution were 
ratified in 1948 by the 
9th CGPM (CR, 49), 
which also adopted the 
name newton

 

(Resolution 7) for the 
MKS unit of force. 

background image

Appendix 1  

•

  

145

 

 

 

2.  The CCTC accepts the principle of an absolute thermodynamic scale with a single 

fundamental fixed point, at present provided by the triple point of pure water, the 
absolute temperature of which will be fixed at a later date. 

 

The introduction of this new scale does not affect in any way the use of the International 
Scale, which remains the recommended practical scale. 

3.  The unit of quantity of heat is the joule. 

Note:

 

 It is requested that the results of calorimetric experiments be as far as possible 

expressed in joules. If the experiments are made by comparison with the rise of 
temperature of water (and that, for some reason, it is not possible to avoid using the 
calorie), the information necessary for conversion to joules must be provided. The CIPM, 
advised by the CCTC, should prepare a table giving, in joules per degree, the most 
accurate values that can be obtained from experiments on the specific heat of water.  

A table, prepared in response to this request, was approved and published by the 
CIPM in 1950 (PV, 

22

, 92). 

 

  Adoption of “degree Celsius†

[

CIPM, 1948

 (PV

, 21, 

88) 

and

 

9th CGPM

1948 

(CR, 64)]

 

From three names (“degree centigradeâ€, “centesimal degreeâ€, “degree Celsiusâ€) 
proposed to denote the degree of temperature, the CIPM has chosen â€œdegree Celsius†
(PV, 

21

, 88). 

This name is also adopted by the 9th CGPM (CR, 64). 

 

  Proposal for establishing a practical system of units of measurement 

(CR, 64)

 

Resolution 6 

The Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the Comité International des Poids et Mesures (CIPM) has been requested by the 

International Union of Physics to adopt for international use a practical Système 
International d’Unités; that the International Union of Physics recommends the MKS 
system and one electric unit of the absolute practical system, but does not recommend 
that the CGS system be abandoned by physicists; 

•

  that the CGPM has itself received from the French Government a similar request, 

accompanied by a draft to be used as basis of discussion for the establishment of a 
complete specification of units of measurement; 

instructs

 the CIPM: 

•

  to seek by an energetic, active, official enquiry the opinion of scientific, technical and 

educational circles of all countries (offering them, in fact, the French document as 
basis); 

•

  to gather and study the answers; 

•

  to make recommendations for a single practical system of units of measurement, 

suitable for adoption by all countries adhering to the Metre Convention. 

 

background image

146

  

•

  Appendix 1

 

  Writing and printing of unit symbols and of numbers

 (CR, 70)

Resolution 7 

Principles 

Roman (upright) type, in general lower-case, is used for symbols of units; if, however, the 
symbols are derived from proper names, capital roman type is used. These symbols are 
not followed by a full stop. 

In numbers, the comma (French practice) or the dot (British practice) is used only to 
separate the integral part of numbers from the decimal part. Numbers may be divided in 
groups of three in order to facilitate reading; neither dots nor commas are ever inserted in 
the spaces between groups. 

 

Unit  

Symbol 

Unit 

Symbol 

•

 metre 

ampere 

•

 square metre 

m

2

 volt 

•

 cubic metre 

m

3

 watt 

•

 micron 

µ

 ohm 

Ω

 

•

 litre    

coulomb 

•

 gram  

farad 

•

 tonne 

henry 

second s 

hertz 

Hz 

erg  

 

erg 

poise 

dyne  

dyn 

newton 

degree Celsius 

°C 

•

 candela (new candle) 

cd 

•

 degree absolute 

°K 

lux 

lx 

calorie  

cal 

lumen 

lm 

bar  

 

bar 

stilb 

sb 

hour  

 

Notes 

1.  The symbols whose unit names are preceded by dots are those which had already 

been adopted by a decision of the CIPM. 

2.  The symbol for the stere, the unit of volume for firewood, shall be “st†and not â€œsâ€, which 

had been previously assigned to it by the CIPM. 

3.  To indicate a temperature interval or difference, rather than a temperature, the word 

“degree†in full, or the abbreviation “degâ€, must be used. 

 

10th CGPM, 1954 

  Definition of the thermodynamic temperature scale 

(CR, 79)

Resolution 3 

The 10th Conférence Générale des Poids et Mesures decides to define the thermodynamic 
temperature scale by choosing the triple point of water as the fundamental fixed point, and 
assigning to it the temperature 273.16 degrees Kelvin, exactly. 

 

* The CGPM abrogated 
certain decisions on units 
and terminology, in 
particular: micron, degree 
absolute, and the terms 
“degreeâ€, and “degâ€,  
13th CGPM, 1967/68 
(Resolutions 7 and 3,  
see pp. 155 and 153, 
respectively), and the litre; 
16th CGPM, 1979 
(Resolution 6, see p. 159). 

* The 13th CGPM in 1967 
explicitly defined the 
kelvin (Resolution 4, see 
p. 154). 

background image

Appendix 1  

•

  

147

 

 

 

  Definition of the standard atmosphere 

(CR, 79)

 

Resolution 4 

The 10th Conférence Générale des Poids et Mesures (CGPM), having noted that the 
definition of the standard atmosphere given by the 9th 

CGPM when defining the 

International Temperature Scale led some physicists to believe that this definition of the 
standard atmosphere was valid only for accurate work in thermometry, 

declares

 

that it adopts, for general use, the definition: 

 

1 standard atmosphere = 1 013 250 dynes per square centimetre, 

 

i.e., 101 325 newtons per square metre. 

 

  Practical system of units 

(CR, 80)

Resolution 6 

In accordance with the wish expressed by the 9th Conférence Générale des Poids et 
Mesures (CGPM) in its Resolution 6 concerning the establishment of a practical system of 
units of measurement for international use, the 10th CGPM 

decides 

to adopt as base units of the system, the following units: 

length   

 

 

 

metre 

mass    

 

 

 

kilogram 

time    

 

 

 

second 

electric current    

 

 

ampere 

thermodynamic temperature  

 

degree Kelvin 

luminous intensity  

 

 

candela 

 

CIPM, 1956 

  Definition of the unit of time (second) 

(PV,

 25

, 77)

Resolution 1 

In virtue of the powers invested in it by Resolution 5 of the 10th Conférence Générale des 
Poids et Mesures, the Comité International des Poids et Mesures, 

considering 

1.  that the 9th General Assembly of the International Astronomical Union (Dublin, 1955) 

declared itself in favour of linking the second to the tropical year, 

2.  that, according to the decisions of the 8th General Assembly of the International 

Astronomical Union (Rome, 1952), the second of ephemeris time (ET) is the fraction 

 

496

986

408

813

276

960

12

 

×

 10

−

9

 of the tropical year for 1900 January 0 at 12 h ET, 

decides  

“The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 
12 hours ephemeris time.†
 

* The unit name “degree 
kelvin†was changed to 
“kelvin†in 1967 by the 
13th CGPM (Resolution 3, 
see p. 153). 

* This definition was 
abrogated in 1967 by the 
13th CGPM (Resolution 1, 
see p. 153). 

background image

148

  

•

  Appendix 1

 

  Système International d’Unités 

(PV, 

25

, 83)

 

Resolution 3 

The Comité International des Poids et Mesures, 

considering 

•

  the task entrusted to it by Resolution 6 of the 9th Conférence Générale des Poids et 

Mesures (CGPM) concerning the establishment of a practical system of units of 
measurement suitable for adoption by all countries adhering to the Metre Convention, 

•

  the documents received from twenty-one countries in reply to the enquiry requested by 

the 9th CGPM, 

•

  Resolution 6 of the 10th CGPM, fixing the base units of the system to be established, 

recommends 

1.  that the name â€œSystème International d’Unités†be given to the system founded on the 

base units adopted by the 10th CGPM, viz.: 

[This is followed by the list of the six base units with their symbols, reproduced in 
Resolution 12 of the 11th CGPM (1960)]. 

2.  that the units listed in the table below be used, without excluding others which might be 

added later: 

[This is followed by the table of units reproduced in paragraph 4 of Resolution 12 
of the 11th CGPM (1960)]. 

 

11th CGPM, 1960 

  Definition of the metre 

(CR, 85)

Resolution 6 

The 11th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the international Prototype does not define the metre with an accuracy adequate for 

the present needs of metrology, 

•

  that it is moreover desirable to adopt a natural and indestructible standard, 

decides 

1.  The metre is the length equal to 1 650 763.73 wavelengths in vacuum of the radiation 

corresponding to the transition between the levels 2p

10

 and 5d

5

 of the krypton 86 atom. 

2.  The definition of the metre in force since 1889, based on the international Prototype of 

platinum-iridium, is abrogated. 

3.  The international Prototype of the metre sanctioned by the 1st CGPM in 1889 shall be 

kept at the BIPM under the conditions specified in 1889. 

 

  Definition of the unit of time (second)

 (CR, 86)

Resolution 9 

The 11th Conférence Générale des Poids et Mesures (CGPM), 

considering  

•

  the powers given to the Comité International des Poids et Mesures (CIPM) by the 

10th CGPM to define the fundamental unit of time,  

* This definition was 
abrogated in 1983 by the 
17th CGPM (Resolution 1, 
see p. 160). 

* This definition was 
abrogated in 1967 by the 
13th CGPM (Resolution 1, 
see p. 153).

 

background image

Appendix 1  

•

  

149

 

 

 

•

  the decision taken by the CIPM in 1956,  

ratifies

 

the following definition: 

“The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 
12 hours ephemeris time.†

 

  Système International d’Unités 

(CR, 87)

Resolution 12 

The 11th Conférence Générale des Poids et Mesures (CGPM), 

considering  

•

  Resolution 6 of the 10th CGPM, by which it adopted six base units on which to establish 

a practical system of measurement for international use: 

 length 

   

 metre 

 mass 

   

 kilogram 

kg 

 time 

   

 second 

 electric 

current   

 ampere 

 

thermodynamic temperature 

 

degree Kelvin 

°K 

 luminous 

intensity 

 

 candela 

cd 

•

  Resolution 3 adopted by the Comité International des Poids et Mesures (CIPM) in 

1956, 

•

  the recommendations adopted by the CIPM in 1958 concerning an abbreviation for the 

name of the system, and prefixes to form multiples and submultiples of the units, 

decides 

1.  the system founded on the six base units above is called the â€œSystème International 

d’Unitésâ€; 

2.  the international abbreviation of the name of the system is: SI; 

3.  names of multiples and submultiples of the units are formed by means of the following 

prefixes: 

 

           Multiplying factor 

  Prefix    Symbol 

Multiplying factor          Prefix  Symbol 

   1 000 000 000 000 = 10

12 

tera 

 

0.1 = 10

−

1

   deci 

 

1 000 000 000 = 10

 

giga 

0.01 = 10

−

2

   centi 

 

1 000 000 = 10

 

mega 

0.001 = 10

−

3

   milli 

 

1 000 = 10

3  

kilo 

0.000 001 = 10

−

6

   micro 

µ

 

 

100 = 10

 

hecto 

0.000 000 001 = 10

−

9

   nano 

 

10 = 10

 

deca 

da 

0.000 000 000 001 = 10

−

12

 pico 

 

4.  the units listed below are used in the system, without excluding others which might be 

added later. 

 

Supplementary units

 

plane angle  

 

radian 

rad 

solid angle  

 

 

steradian 

sr 

 

* The CGPM later 
abrogated certain of its 
decisions and extended the 
list of prefixes, see notes 
below. 

A seventh base unit, the 
mole, was adopted by the 
14th CGPM in 1971 
(Resolution 3, see p. 156)

.

 

The name and symbol for 
the unit of thermodynamic 
temperature was modified 
by the 13th CGPM in 1967 
(Resolution 3, see p. 153). 

Further

 

prefixes were 

adopted by the 12th CGPM 
in 1964 (Resolution 8,  
see p. 152),  
the 15th CGPM in 1975 
(Resolution 10, see p. 158) 
and the 19th CGPM in 
1991 (Resolution 4,  
see p. 164). 

The 20th CGPM in 1995 
abrogated the class of 
supplementary units in the 
SI (Resolution 8, see 
p. 164). These are now 
considered as derived 
units. 

background image

150

  

•

  Appendix 1

 

Derived units 

area  

 

square 

metre 

m

2

 

volume  

cubic 

metre 

m

3

 

frequency  

hertz 

Hz 

1/s 

mass density (density)  

kilogram per cubic metre 

kg/m

3

 

speed, velocity 

 

metre per second 

m/s 

angular velocity 

 

radian per second 

rad/s 

acceleration 

 

metre per second squared 

m/s

2

 

angular acceleration 

 

radian per second squared 

rad/s

2

 

force   

 

newton 

kg · m/s

2

 

pressure (mechanical stress)   newton per square metre 

N/m

2

 

kinematic viscosity 

 

square metre per second 

m

2

/s 

dynamic viscosity 

 

newton-second per square  

 

 

 

 

   metre 

N · s/m

2

 

work, energy, quantity of heat  joule 

N · m 

power  

 

watt 

J/s 

quantity of electricity (side bar)  coulomb 

A · s 

tension (voltage), 
   potential difference, 
   electromotive force   

volt 

W/A 

electric field strength   

volt per metre 

V/m 

electric resistance 

 

ohm 

Ω

 V/A 

capacitance 

 

farad 

A · s/V 

magnetic flux  

 

weber 

Wb 

V · s 

inductance 

 

henry 

V · s/A 

magnetic flux density   

tesla 

Wb/m

2

 

magnetic field strength  

ampere per metre 

A/m 

magnetomotive force   

ampere 

luminous flux  

 

lumen 

lm 

cd · sr 

luminance 

 

candela per square metre 

cd/m

2

 

illuminance  

lux 

lx lm/m

2

 

 

  Cubic decimetre and litre 

(CR, 88)

 

Resolution 13 

The 11th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the cubic decimetre and the litre are unequal and differ by about 28 parts in 10

6

,  

•

  that determinations of physical quantities which involve measurements of volume are 

being made more and more accurately, thus increasing the risk of confusion between 
the cubic decimetre and the litre, 

requests

 

the Comité International des Poids et Mesures to study the problem and submit 

its conclusions to the 12th CGPM. 

 

The 13th CGPM in 1967 
(Resolution 6, see p. 154) 
specified other units which 
should be added to the list. 
In principle, this list of 
derived units is without 
limit. 

Modern practice is to use 
the phrase “amount of 
heat†rather than “quantity 
of heatâ€, because the word 
quantity has a different 
meaning in metrology. 

Modern practice is to use 
the phrase  â€œamount of 
electricity†rather than 
“quantity of electricity†
(see note above). 

background image

Appendix 1  

•

  

151

 

 

 

CIPM, 1961 

  Cubic decimetre and litre 

(PV,

 

29

, 34)

 

Recommendation 

The Comité International des Poids et Mesures recommends that the results of accurate 
measurements of volume be expressed in units of the International System and not in 
litres. 

 

CIPM, 1964 

  Atomic and molecular frequency standards 

(PV,

 32

, 26 and CR, 93)

 

Declaration 

The Comité International des Poids et Mesures, 

empowered

 

by Resolution 5 of the 12th Conférence Générale des Poids et Mesures to 

name atomic or molecular frequency standards for temporary use for time measurements 
in physics, 

declares

 

that the standard to be employed is the transition between the hyperfine levels 

= 4

, M = 

0 and 

F = 

3, 

= 0 of the ground state 

2

S

1/2

 of the caesium 133 atom, 

unperturbed by external fields, and that the frequency of this transition is assigned the 
value 9 192 631 770 hertz. 

 

12th CGPM, 1964 

  Atomic standard of frequency

 (CR, 93)

 

Resolution 5 

The 12th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the 11th CGPM noted in its Resolution 10 the urgency, in the interests of accurate 

metrology, of adopting an atomic or molecular standard of time interval,  

•

  that, in spite of the results already obtained with caesium atomic frequency standards, 

the time has not yet come for the CGPM to adopt a new definition of the second, base 
unit of the Système International d’Unités, because of the new and considerable 
improvements likely to be obtained from work now in progress, 

considering also

 

that it is not desirable to wait any longer before time measurements in 

physics are based on atomic or molecular frequency standards, 

empowers

 

the Comité International des Poids et Mesures to name the atomic or molecular 

frequency standards to be employed for the time being, 

requests

 

the organizations and laboratories knowledgeable in this field to pursue work 

connected with a new definition of the second. 

 

background image

152

  

•

  Appendix 1

 

  Litre

 (CR, 93)

 

Resolution 6 

The 12th Conférence Générale des Poids et Mesures (CGPM)

considering

 

Resolution 13 adopted by the 11th CGPM in 1960 and the Recommendation 

adopted by the Comité International des Poids et Mesures in 1961, 

1. 

abrogates

 

the definition of the litre given in 1901 by the 3rd CGPM, 

2. 

declares

 

that the word “litre†may be employed as a special name for the cubic 

decimetre, 

3. 

recommends

 

that the name litre should not be employed to give the results of high-

accuracy volume measurements. 

 

  Curie

 (CR, 94)

Resolution 7 

The 12th Conférence Générale des Poids et Mesures, 

considering

 

that the curie has been used for a long time in many countries as unit of 

activity for radionuclides, 

recognizing

 

that in the Système International d’Unités (SI), the unit of this activity is the 

second to the power of minus one (s

−

1

), 

accepts

 

that the curie be still retained, outside SI, as unit of activity, with the value 

3.7 

×

 10

10

 s

−

1

. The symbol for this unit is Ci. 

 

  SI prefixes femto and atto

 (CR, 94)

Resolution 8 

The 12th Conférence Générale des Poids et Mesures (CGPM) 

decides

 

to add to the list of prefixes for the formation of names of multiples and sub-

multiples of units, adopted by the 11th CGPM, Resolution 12, paragraph 3, the following 
two new prefixes: 

Multiplying factor   

Prefix 

Symbol 

10

−

15

  

 

femto 

10

−

18

  

atto  a 

 

CIPM, 1967 

  Decimal multiples and submultiples of the unit of mass 

(PV,

 35,

 29 and 

Metrologia

, 1968,

 4

, 45)

 

Recommendation 2 

The Comité International des Poids et Mesures, 

considering

 

that the rule for forming names of decimal multiples and submultiples of the 

units of paragraph 3 of Resolution 12 of the 11th Conférence Générale des Poids et 
Mesures (CGPM) (1960) might be interpreted in different ways when applied to the unit of 
mass, 

declares

 

that the rules of Resolution 12 of the 11th CGPM apply to the kilogram in the 

following manner: the names of decimal multiples and submultiples of the unit of mass are 
formed by attaching prefixes to the word “gramâ€. 

* The name “becquerel†
(Bq) was adopted by the 
15th CGPM in 1975 
(Resolution 8, see p. 157) 
for the SI unit of activity: 
1 Ci = 3.7 

×

 10

10 

Bq. 

* New prefixes were added 
by the 15th CGPM in 1975 
(Resolution 10, see 
p. 158). 

background image

Appendix 1  

•

  

153

 

 

 

13th CGPM, 1967/68 

  SI unit of time (second)

 (CR, 103 and 

Metrologia

, 1968,

 4

, 43)

 

Resolution 1 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the definition of the second adopted by the Comité International des Poids et 

Mesures (CIPM) in 1956 (Resolution 1) and ratified by Resolution 9 of the 11th CGPM 
(1960), later upheld by Resolution 5 of the 12th CGPM (1964), is inadequate for the 
present needs of metrology, 

•

  that at its meeting of 1964 the CIPM, empowered by Resolution 5 of the 12th CGPM 

(1964), recommended, in order to fulfil these requirements, a caesium atomic frequency 
standard for temporary use, 

•

  that this frequency standard has now been sufficiently tested and found sufficiently 

accurate to provide a definition of the second fulfilling present requirements, 

•

  that the time has now come to replace the definition now in force of the unit of time of 

the Système International d’Unités by an atomic definition based on that standard, 

decides 

1.  The SI unit of time is the second defined as follows: 

 

“The second is the duration of 9 192 631 770 periods of the radiation corresponding to 
the transition between the two hyperfine levels of the ground state of the caesium 133 
atomâ€; 

2.  Resolution 1 adopted by the CIPM at its meeting of 1956 and Resolution 9 of the 

11th CGPM are now abrogated. 

 

  SI unit of thermodynamic temperature (kelvin) 

(CR, 104 and 

Metrologia

1968,

 4

, 43)

Resolution 3 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  the names “degree Kelvin†and “degreeâ€, the symbols “°K†and “deg†and the rules for 

their use given in Resolution 7 of the 9th CGPM (1948), in Resolution 12 of the 
11th CGPM (1960), and the decision taken by the Comité International des Poids et 
Mesures in 1962 (PV, 

30

, 27), 

•

  that the unit of thermodynamic temperature and the unit of temperature interval are one 

and the same unit, which ought to be denoted by a single name and a single symbol, 

decides 

1.  the unit of thermodynamic temperature is denoted by the name â€œkelvin†and its symbol 

is “Kâ€;** 

2.  the same name and the same symbol are used to express a temperature interval; 

3.  a temperature interval may also be expressed in degrees Celsius; 

4.  the decisions mentioned in the opening paragraph concerning the name of the unit of 

thermodynamic temperature, its symbol and the designation of the unit to express an 
interval or a difference of temperatures are abrogated, but the usages which derive 
from these decisions remain permissible for the time being. 

At its 1997 meeting, the 
CIPM affirmed that this 
definition refers to a 
caesium atom at rest at a 
thermodynamic 
temperature of 0 K. 

* At its 1980 meeting, the 
CIPM approved the report 
of the 7th meeting of the 
CCU, which requested that 
the use of the symbols 
“°K†and “deg†no longer 
be permitted. 

** See Recommendation 2 
(CI-2005) of the CIPM on 
the isotopic composition of 
water entering in the 
definition of the kelvin, 
p. 170. 

background image

154

  

•

  Appendix 1

 

  Definition of the SI unit of thermodynamic temperature (kelvin) 

(CR, 104 

and 

Metrologia

, 1968, 

4

, 43)

Resolution 4 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering

 

that it is useful to formulate more explicitly the definition of the unit of 

thermodynamic temperature contained in Resolution 3 of the 10th CGPM (1954), 

decides

 

to express this definition as follows: 

“The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the 
thermodynamic temperature of the triple point of water.†

 

  SI unit of luminous intensity (candela)

 (CR, 104 and 

Metrologia

, 1968, 

4

43-44)

Resolution 5 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  the definition of the unit of luminous intensity ratified by the 9th CGPM (1948) and 

contained in the â€œResolution concerning the change of photometric units†adopted by 
the Comité International des Poids et Mesures in 1946 (PV, 

20

, 119) in virtue of the 

powers conferred by the 8th CGPM (1933), 

•

  that this definition fixes satisfactorily the unit of luminous intensity, but that its wording 

may be open to criticism, 

decides

 

to express the definition of the candela as follows: 

“The candela is the luminous intensity, in the perpendicular direction, of a surface of 
1/600 000 square metre of a black body at the temperature of freezing platinum under a 
pressure of 101 325 newtons per square metre.†

 

  SI derived units 

(CR, 105 and 

Metrologia

, 1968, 

4

, 44)

Resolution 6 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering

 

that it is useful to add some derived units to the list of paragraph 4 of 

Resolution 12 of the 11th CGPM (1960), 

decides

 

to add: 

wave number  

 

 

 

1 per metre 

 

m

−

1

 

entropy  

 

 

 

joule per kelvin 

 

J/K 

specific heat capacity    

 

joule per kilogram kelvin 

J/(kg · K) 

thermal conductivity    

 

watt per metre kelvin  

W/(m · K) 

radiant intensity    

 

 

watt per steradian 

 

W/sr 

activity (of a radioactive source)  

1 per second 

 

s

−

 

* See Recommendation 5  
(CI-1989) of the CIPM on 
the International 
Temperature Scale of 
1990, p. 163. 

* This definition was 
abrogated by the 
16th CGPM in 1979 
(Resolution 3, see p. 158). 

* The unit of activity was 
given a special name and 
symbol by the

 

15th CGPM

in 1975 (Resolution 8, see 
p. 157). 

background image

Appendix 1  

•

  

155

 

 

 

  Abrogation of earlier decisions (micron and new candle)

 (CR, 105 and 

Metrologia

, 1968,

 4

, 44) 

Resolution 7 

The 13th Conférence Générale des Poids et Mesures (CGPM), 

considering

 

that subsequent decisions of the General Conference concerning the 

Système International d’Unités are incompatible with parts of Resolution 7 of the 9th CGPM 
(1948), 

decides

 

accordingly to remove from Resolution 7 of the 9th Conference: 

1.  the unit name “micronâ€, and the symbol “

µ

†which had been given to that unit but which 

has now become a prefix; 

2.  the unit name “new candleâ€. 

 

CIPM, 1969 

  Système International d’Unités, Rules for application of Resolution 12 of 

the 11th CGPM (1960)

 (PV, 

37

30 and 

Metrologia

, 1970,

 6

, 66)

Recommendation 1 

The Comité International des Poids et Mesures, 

considering

 

that Resolution 12 of the 11th Conférence Générale des Poids et Mesures 

(CGPM) (1960), concerning the Système International d’Unités, has provoked discussions 
on certain of its aspects, 

declares 

1. the base units, the supplementary units and the derived units of the Système 

International d’Unités, which form a coherent set, are denoted by the name “SI unitsâ€;** 

2. the prefixes adopted by the CGPM for the formation of decimal multiples and 

submultiples of SI units are called “SI prefixesâ€; 

and 

recommends

 

3.  the use of SI units and of their decimal multiples and submultiples whose names are 

formed by means of SI prefixes. 

Note:

 

The name “supplementary unitsâ€, appearing in Resolution 12 of the 11th CGPM (and 

in the present Recommendation) is given to SI units for which the General Conference 
declines to state whether they are base units or derived units. 

 

CCDS, 1970 (

In

 CIPM, 1970) 

  Definition of TAI

 (PV,

 38

, 110-111 and 

Metrologia

, 1971, 

7

, 43)

 

Recommendation S 2 

International Atomic Time (TAI) is the time reference coordinate established by the Bureau 
International de l'Heure on the basis of the readings of atomic clocks operating in various 
establishments in accordance with the definition of the second, the unit of time of the 
International System of Units. 

In 1980, the definition of TAI was completed as follows (declaration of the CCDS, 

BIPM Com. Cons. Déf. Seconde

, 1980, 

9

, S 15 and 

Metrologia

, 1981, 

17

, 70): 

TAI is a coordinate time scale defined in a geocentric reference frame with the SI second 
as realized on the rotating geoid as the scale unit. 

* The 20th CGPM in 1995 
decided to abrogate the 
class of supplementary 
units in the SI 
(Resolution 8, see p. 164). 

This definition was further 
amplified by the 
International Astronomical 
Union in 1991,  
Resolution A4:  
“TAI is a realized time 
scale whose ideal form, 
neglecting a constant offset 
of 32.184 s, is Terrestrial 
Time (TT), itself related to 
the time coordinate of the 
geocentric reference frame, 
Geocentric Coordinate 
Time (TCG), by a constant 
rate.†
(see Proc. 21st General 
Assembly of the IAU, 

IAU 

Trans.

, 1991, vol. 

XXIB,

 

Kluwer.) 

** The CIPM approved in 
2001 a proposal of the 
CCU to clarify the 
definition of « SI units » 
and « units of the SI », 
see p. 166. 

background image

156

  

•

  Appendix 1

 

14th CGPM, 1971 

  Pascal and siemens

 (CR, 78)

 

The 14th Conférence Générale des Poids et Mesures adopted the special names “pascal†
(symbol Pa), for the SI unit newton per square metre, and “siemens†(symbol S), for the SI 
unit of electric conductance [reciprocal ohm]. 

 

  International Atomic Time, function of CIPM 

(CR, 77-78 and 

Metrologia

1972, 

8

, 35)

 

Resolution 1 

The 14th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the second, unit of time of the Système International d’Unités, has since 1967 been 

defined in terms of a natural atomic frequency, and no longer in terms of the time 
scales provided by astronomical motions, 

•

  that the need for an International Atomic Time (TAI) scale is a consequence of the 

atomic definition of the second, 

•

  that several international organizations have ensured and are still successfully ensuring 

the establishment of the time scales based on astronomical motions, particularly thanks 
to the permanent services of the Bureau International de l'Heure (BIH),  

•

  that the BIH has started to establish an atomic time scale of recognized quality and 

proven usefulness, 

•

  that the atomic frequency standards for realizing the second have been considered and 

must continue to be considered by the Comité International des Poids et Mesures 
(CIPM) helped by a Consultative Committee, and that the unit interval of the 
International Atomic Time scale must be the second realized according to its atomic 
definition, 

•

  that all the competent international scientific organizations and the national laboratories 

active in this field have expressed the wish that the CIPM and the CGPM should give a 
definition of International Atomic Time, and should contribute to the establishment of 
the International Atomic Time scale, 

•

  that the usefulness of International Atomic Time entails close coordination with the time 

scales based on astronomical motions,  

requests

 

the CIPM 

1.  to give a definition of International Atomic Time, 

2. to take the necessary steps, in agreement with the international organizations 

concerned, to ensure that available scientific competence and existing facilities are 
used in the best possible way to realize the International Atomic Time scale and to 
satisfy the requirements of users of International Atomic Time.  

 

  SI unit of amount of substance (mole)

 (CR, 78 and 

Metrologia

, 1972, 

8

, 36)

Resolution 3 

The 14th Conférence Générale des Poids et Mesures (CGPM), 

considering

 

the advice of the International Union of Pure and Applied Physics, of the 

International Union of Pure and Applied Chemistry, and of the International Organization for 
Standardization, concerning the need to define a unit of amount of substance, 

* At its 1980 meeting, the 
CIPM approved the report 
of the 7th meeting of the 
CCU (1980) specifying 
that, in this definition, it is 
understood that unbound 
atoms of carbon 12, at rest 
and in their ground state, 
are referred to. 

The definition of TAI was 
given by the CCDS in 
1970 (now the CCTF), see 
p. 155. 

background image

Appendix 1  

•

  

157

 

 

 

decides 

1.  The mole is the amount of substance of a system which contains as many elementary 

entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is “molâ€. 

2.  When the mole is used, the elementary entities must be specified and may be atoms, 

molecules, ions, electrons, other particles, or specified groups of such particles. 

3.  The mole is a base unit of the Système International d’Unités. 

 

15th CGPM, 1975 

  Recommended value for the speed of light 

(CR, 103 and 

Metrologia

, 1975,

 

11

, 179-180)

 

Resolution 2 

The 15th Conférence Générale des Poids et Mesures, 

considering

 

the excellent agreement among the results of wavelength measurements on 

the radiations of lasers locked on a molecular absorption line in the visible or infrared 
region, with an uncertainty estimated at Â± 4 

×

 10

−

9

 which corresponds to the uncertainty of 

the realization of the metre, 

considering

 

also the concordant measurements of the frequencies of several of these 

radiations, 

recommends

 

the use of the resulting value for the speed of propagation of 

electromagnetic waves in vacuum 

c

 = 299 792 458 metres per second. 

 

  Coordinated Universal Time (UTC)

 (CR, 104 and 

Metrologia

, 1975, 

11

, 180)

 

Resolution 5 

The 15th Conférence Générale des Poids et Mesures, 

considering

 

that the system called “Coordinated Universal Time†(UTC) is widely used, 

that it is broadcast in most radio transmissions of time signals, that this wide diffusion 
makes available to the users not only frequency standards but also International Atomic 
Time and an approximation to Universal Time (or, if one prefers, mean solar time),  

notes

 

that this Coordinated Universal Time provides the basis of civil time, the use of 

which is legal in most countries,  

judges 

that this usage can be strongly endorsed. 

 

 

 

 

SI units for ionizing radiation (becquerel and gray) 

(CR, 105 and 

Metrologia

, 1975, 

11

, 180)

Resolutions 8 and 9 

The 15th Conférence Générale des Poids et Mesures, 

by reason of the pressing requirement, expressed by the International Commission on 
Radiation Units and Measurements (ICRU), to extend the use of the Système International 
d’Unités to radiological research and applications,  

by reason of the need to make as easy as possible the use of the units for nonspecialists,  

taking into consideration also the grave risks of errors in therapeutic work, 

adopts

 

the following special name for the SI unit of activity:  

becquerel

symbol Bq, equal to one reciprocal second  (Resolution 8), 

adopts

 

the following special name for the SI unit of ionizing radiation: 

gray

symbol Gy, equal to one joule per kilogram (Resolution 9).

 

The relative uncertainty 
given here corresponds to 
three standard deviations 
in the data considered. 

* At its 1976 meeting, the 
CIPM approved the report 
of the 5th meeting of the 
CCU (1976), specifying 
that, following the advice 
of the ICRU, the gray may 
also be used to express 
specific energy imparted, 
kerma and absorbed dose 
index. 

background image

158

  

•

  Appendix 1

 

Note:

 

 The gray is the SI unit of absorbed dose. In the field of ionizing radiation, the gray 

may be used with other physical quantities also expressed in joules per kilogram: the 
Comité Consultatif des Unités has responsibility for studying this matter in collaboration 
with the competent international organizations. 

 

  SI prefixes peta and exa 

(CR, 106 and 

Metrologia

, 1975,

 11

, 180-181)

Resolution 10 

The 15th Conférence Générale des Poids et Mesures (CGPM) 

decides

 

to add to the list of SI prefixes to be used for multiples, which was adopted by the 

11th CGPM, Resolution 12, paragraph 3, the two following prefixes: 

 

Multiplying factor   

Prefix 

 

Symbol 

10

15  

 peta 

 

10

18

  

 

exa 

  E 

 

16th CGPM, 1979 

  SI unit of luminous intensity (candela) 

(CR, 100 and 

Metrologia

, 1980, 

16

56)

 

Resolution 3 

The 16th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that despite the notable efforts of some laboratories there remain excessive 

divergences between the results of realizations of the candela based upon the present 
black body primary standard, 

•

  that radiometric techniques are developing rapidly, allowing precisions that are already 

equivalent to those of photometry and that these techniques are already in use in 
national laboratories to realize the candela without having to construct a black body, 

•

  that the relation between luminous quantities of photometry and radiometric quantities, 

namely the value of 683 lumens per watt for the spectral luminous efficacy of 
monochromatic radiation of frequency 540 

×

 10

12

 hertz, has been adopted by the 

Comité International des Poids et Mesures (CIPM) in 1977, 

•

  that this value has been accepted as being sufficiently accurate for the system of 

luminous photopic quantities, that it implies a change of only about 3 % for the system 
of luminous scotopic quantities, and that it therefore ensures satisfactory continuity, 

•

  that the time has come to give the candela a definition that will allow an improvement in 

both the ease of realization and the precision of photometric standards, and that applies 
to both photopic and scotopic photometric quantities and to quantities yet to be defined 
in the mesopic field, 

decides 

1.  The candela is the luminous intensity, in a given direction, of a source that emits 

monochromatic radiation of frequency 540 

×

 10

12

 hertz and that has a radiant intensity 

in that direction of 1/683 watt per steradian. 

2.  The definition of the candela (at the time called new candle) adopted by the CIPM in 

1946 by reason of the powers conferred by the 8th CGPM in 1933, ratified by the 
9th CGPM in 1948, then amended by the 13th CGPM in 1967, is abrogated. 

 

* New prefixes were added 
by the 19th CGPM in 1991 
(Resolution 4, see p. 164). 

Photopic vision is detected 
by the cones on the retina 
of the eye, which are 
sensitive to a high level of 
luminance  
(L > ca. 10 cd/m

2

) and are 

used in daytime vision. 
Scotopic vision is detected 
by the rods of the retina, 
which are sensitive to low 
level luminance 
(L < ca. 10

−3

 cd/m

2

),  

used in night vision. 
In the domain between 
these levels of luminance 
both cones and rods are 
used, and this is described 
as mesopic vision. 

background image

Appendix 1  

•

  

159

 

 

 

  Special name for the SI unit of dose equivalent (sievert)

 (CR, 100 and 

Metrologia

, 1980, 

16

, 56)

Resolution 5 

The 16th Conférence Générale des Poids et Mesures, 

considering 

•

  the effort made to introduce SI units into the field of ionizing radiations, 

•

  the risk to human beings of an underestimated radiation dose, a risk that could result 

from a confusion between absorbed dose and dose equivalent, 

•

  that the proliferation of special names represents a danger for the Système 

International d’Unités and must be avoided in every possible way, but that this rule can 
be broken when it is a matter of safeguarding human health, 

adopts

 

the special name 

sievert

symbol Sv, for the SI unit of dose equivalent in the field 

of radioprotection. The sievert is equal to the joule per kilogram. 

 

  Symbols for the litre

 (CR, 101 and 

Metrologia

, 1980, 

16

, 56-57)

 

Resolution 6 

The 16th Conférence Générale des Poids et Mesures (CGPM), 

recognizing

 

the general principles adopted for writing the unit symbols in Resolution 7 of 

the 9th CGPM (1948), 

considering

 

that the symbol l for the unit litre was adopted by the Comité International des 

Poids et Mesures (CIPM) in 1879 and confirmed in the same Resolution of 1948, 

considering

 

also that, in order to avoid the risk of confusion between the letter l and the 

number 1, several countries have adopted the symbol L instead of l for the unit litre, 

considering

 

that the name litre, although not included in the Système International 

d’Unités, must be admitted for general use with the System, 

decides

as an exception, to adopt the two symbols l and L as symbols to be used for the 

unit litre,  

considering

 

further that in the future only one of these two symbols should be retained, 

invites

 

the CIPM to follow the development of the use of these two symbols and to give the 

18th CGPM its opinion as to the possibility of suppressing one of them. 

 

CIPM, 1980 

  SI supplementary units (radian and steradian)

 (PV, 

48

, 24 and 

Metrologia

1981, 

17

, 72)

Recommendation 1 

The Comité International des Poids et Mesures (CIPM),  

taking into consideration

 Resolution 3 adopted by ISO/TC 12 in 1978 and Recommen-

dation U 1 (1980) adopted by the Comité Consultatif des Unités at its 7th meeting, 

considering 

•

  that the units radian and steradian are usually introduced into expressions for units 

when there is need for clarification, especially in photometry where the steradian plays 
an important role in distinguishing between units corresponding to different quantities, 

•

  that in the equations used one generally expresses plane angle as the ratio of two 

lengths and solid angle as the ratio between an area and the square of a length, and 
consequently that these quantities are treated as dimensionless quantities, 

* The CIPM, in 1984, 
decided to accompany 
this Resolution with an 
explanation 
(Recommendation 1,  
see p. 161). 

The CIPM, in 1990, 
considered that it was still 
too early to choose a single 
symbol for the litre. 

* The class of SI 
supplementary units was 
abrogated by decision of 
the 20th CGPM in 1995 
(Resolution 8, see p. 164). 

background image

160

  

•

  Appendix 1

 

•

  that the study of the formalisms in use in the scientific field shows that none exists 

which is at the same time coherent and convenient and in which the quantities plane 
angle and solid angle might be considered as base quantities, 

considering also 

•

  that the interpretation given by the CIPM in 1969 for the class of supplementary units 

introduced in Resolution 12 of the 11th Conférence Générale des Poids et Mesures 
(CGPM) in 1960 allows the freedom of treating the radian and the steradian as SI base 
units, 

•

  that such a possibility compromises the internal coherence of the SI based on only 

seven base units, 

decides

 to interpret the class of supplementary units in the International System as a class 

of dimensionless derived units for which the CGPM allows the freedom of using or not 
using them in expressions for SI derived units. 

 

17th CGPM, 1983 

  Definition of the metre

 (CR, 97 and 

Metrologia

, 1984,

 20

, 25)

 

Resolution 1 

The 17th Conférence Générale des Poids et Mesures (CGPM), 

considering 

•

  that the present definition does not allow a sufficiently precise realization of the metre 

for all requirements, 

•

  that progress made in the stabilization of lasers allows radiations to be obtained that 

are more reproducible and easier to use than the standard radiation emitted by a 
krypton 86 lamp, 

•

  that progress made in the measurement of the frequency and wavelength of these 

radiations has resulted in concordant determinations of the speed of light whose 
accuracy is limited principally by the realization of the present definition of the metre, 

•

  that wavelengths determined from frequency measurements and a given value for the 

speed of light have a reproducibility superior to that which can be obtained by 
comparison with the wavelength of the standard radiation of krypton 86, 

•

  that there is an advantage, notably for astronomy and geodesy, in maintaining 

unchanged the value of the speed of light recommended in 1975 by the 15th CGPM in 
its Resolution 2 (

c

 = 299 792 458 m/s), 

•

  that a new definition of the metre has been envisaged in various forms all of which have 

the effect of giving the speed of light an exact value, equal to the recommended value, 
and that this introduces no appreciable discontinuity into the unit of length, taking into 
account the relative uncertainty of ± 4 

×

 10

−

9

 of the best realizations of the present 

definition of the metre, 

•

  that these various forms, making reference either to the path travelled by light in a 

specified time interval or to the wavelength of a radiation of measured or specified 
frequency, have been the object of consultations and deep discussions, have been 
recognized as being equivalent and that a consensus has emerged in favour of the first 
form, 

•

  that the Comité Consultatif pour la Définition du Mètre (CCDM) is now in a position to 

give instructions for the practical realization of such a definition, instructions which 
could include the use of the orange radiation of krypton 86 used as standard up to now, 
and which may in due course be extended or revised, 

The relative uncertainty 
given here corresponds to 
three standard deviations 
in the data considered. 

background image

Appendix 1  

•

  

161

 

 

 

decides 

1.  The metre is the length of the path travelled by light in vacuum during a time interval of 

1/299 792 458 of a second, 

2.  The definition of the metre in force since 1960, based upon the transition between the 

levels 2p

10

 and 5d

5

 of the atom of krypton 86, is abrogated. 

 

  On the realization of the definition of the metre 

(CR, 98 and 

Metrologia

1984,

 20

, 25-26)

 

Resolution 2 

The 17th Conférence Générale des Poids et Mesures, 

invites

 

the Comité International des Poids et Mesures 

•

  to draw up instructions for the practical realization of the new definition of the metre, 

•

  to choose radiations which can be recommended as standards of wavelength for the 

interferometric measurement of length and to draw up instructions for their use, 

•

  to pursue studies undertaken to improve these standards. 

 

CIPM, 1984 

  Concerning the sievert 

(PV

52

31 and 

Metrologia

, 1985, 

21

, 90)

Recommendation 1 

The Comité International des Poids et Mesures, 

considering

 

the confusion which continues to exist on the subject of Resolution 5, 

approved by the 16th Conférence Générale des Poids et Mesures (1979), 

decides

 

to introduce the following explanation in the brochure â€œLe Système International 

d'Unités (SI)â€: 

The quantity dose equivalent 

H

 is the product of the absorbed dose 

of ionizing radiation 

and the dimensionless factors 

Q

 (quality factor) and 

N

 (product of any other multiplying 

factors) stipulated by the International Commission on Radiological Protection: 

H = Q · N · D. 

Thus, for a given radiation, the numerical value of 

in joules per kilogram may differ from 

that of 

in joules per kilogram depending upon the values of 

and 

N. 

In order to avoid 

any risk of confusion between the absorbed dose 

and the dose equivalent 

H

, the special 

names for the respective units should be used, that is, the name gray should be used 
instead of joules per kilogram for the unit of absorbed dose 

and the name sievert instead 

of joules per kilogram for the unit of dose equivalent 

H. 

 

18th CGPM, 1987 

  Forthcoming adjustment to the representations of the volt and of the 

ohm

 (CR, 100 and 

Metrologia

, 1988,

 25

, 115)

 

Resolution 6 

The 18th Conférence Générale des Poids et Mesures, 

considering 

•

  that worldwide uniformity and long-term stability of national representations of the 

electrical units are of major importance for science, commerce and industry from both 
the technical and economic points of view,  

See Recommendation 1 
(CI-2002) of the CIPM on 
the revision of the practical 
realization of the definition
of the metre, p. 166. 

* The CIPM, in 2002, 
decided to change the 
explanation of the  
quantity dose equivalent  
in the SI Brochure 
(Recommendation 2,  
see p. 168). 

background image

162

  

•

  Appendix 1

 

•

  that many national laboratories use the Josephson effect and are beginning to use the 

quantum Hall effect to maintain, respectively, representations of the volt and of the 
ohm, as these offer the best guarantees of long-term stability,  

•

  that because of the importance of coherence among the units of measurement of the 

various physical quantities the values adopted for these representations must be as 
closely as possible in agreement with the SI,  

•

  that the results of recent and current experiment will permit the establishment of an 

acceptable value, sufficiently compatible with the SI, for the coefficient which relates 
each of these effects to the corresponding electrical unit, 

invites

 

the laboratories whose work can contribute to the establishment of the quotient 

voltage/frequency in the case of the Josephson effect and of the quotient voltage/current 
for the quantum Hall effect to vigorously pursue these efforts and to communicate their 
results without delay to the Comité International des Poids et Mesures, and 

instructs 

the Comité International des Poids et Mesures to recommend, as soon as it 

considers it possible, a value for each of these quotients together with a date for them to be 
put into practice simultaneously in all countries; these values should be announced at least 
one year in advance and would be adopted on 1 January 1990. 

 

CIPM, 1988 

  Representation of the volt by means of the Josephson effect 

(PV, 

56

, 44 

and 

Metrologia

, 1989, 

26

, 69)

 

Recommendation 1 

The Comité International des Poids et Mesures, 

acting

 

in accordance with instructions given in Resolution 6 of the 18th Conférence 

Générale des Poids et Mesures concerning the forthcoming adjustment of the 
representations of the volt and the ohm, 

considering 

•

  that a detailed study of the results of the most recent determinations leads to a value of 

483 597.9 GHz/V for the Josephson constant, 

K

J

,

 

that is to say, for the quotient of 

frequency divided by the potential difference corresponding to the 

n = 

1 step in the 

Josephson effect, 

•

  that the Josephson effect, together with this value of 

K

J

,

 

can be used to establish a 

reference standard of electromotive force having a one-standard-deviation uncertainty 
with respect to the volt estimated to be 4 parts in 10

7

, and a reproducibility which is 

significantly better, 

recommends 

•

  that 483 597.9 GHz/V exactly be adopted as a conventional value, denoted by 

K

J-90

 for 

the Josephson constant, 

K

J

,  

•

  that this new value be used from 1 January 1990, and not before, to replace the values 

currently in use, 

•

  that this new value be used from this same date by all laboratories which base their 

measurements of electromotive force on the Josephson effect, and 

•

  that from this same date all other laboratories adjust the value of their laboratory 

reference standards to agree with the new adopted value, 

is of the opinion

 

that no change in this recommended value of the Josephson constant 

will be necessary in the foreseeable future, and 

draws the attention

 

of laboratories to the fact that the new value is greater by 3.9 GHz/V, 

or about 8 parts in 10

6

, than the value given in 1972 by the Comité Consultatif d'Électricité 

in its Declaration E-72. 

background image

Appendix 1  

•

  

163

 

 

 

  Representation of the ohm by means of the quantum Hall effect 

(PV,

 56

45 and 

Metrologia

, 1989, 

26

,

 

70)

 

Recommendation 2 

The Comité International des Poids et Mesures, 

acting

 

in accordance with instructions given in Resolution 6 of the 18th Conférence 

Générale des Poids et Mesures concerning the forthcoming adjustment of the 
representations of the volt and the ohm, 

considering 

•

  that most existing laboratory reference standards of resistance change significantly with 

time,  

•

  that a laboratory reference standard of resistance based on the quantum Hall effect 

would be stable and reproducible,  

•

  that a detailed study of the results of the most recent determinations leads to a value of 

25 812.807 

Ω

 for the von Klitzing constant, 

R

K

,

 

that is to say, for the quotient of the Hall 

potential difference divided by current corresponding to the plateau 

i

 = 1 in the quantum 

Hall effect,  

•

  that the quantum Hall effect, together with this value of 

R

K

, can be used to establish a 

reference standard of resistance having a one-standard-deviation uncertainty with 
respect to the ohm estimated to be 2 parts in 10

7

, and a reproducibility which is 

significantly better, 

recommends 

•

  that 25 812.807 

Ω

 exactly be adopted as a conventional value, denoted by 

R

K-90

, for the 

von Klitzing constant, 

R

K

•

  that this value be used from 1 January 1990, and not before, by all laboratories which 

base their measurements of resistance on the quantum Hall effect, 

•

  that from this same date all other laboratories adjust the value of their laboratory 

reference standards to agree with 

R

K-90

•

  that in the use of the quantum Hall effect to establish a laboratory reference standard of 

resistance, laboratories follow the most recent edition of the technical guidelines for 
reliable measurements of the quantized Hall resistance drawn up by the Comité 
Consultatif d'Électricité and published by the Bureau International des Poids et 
Mesures, and 

is of the opinion

 

that no change in this recommended value of the von Klitzing constant 

will be necessary in the foreseeable future. 

 

CIPM, 1989 

  The International Temperature Scale of 1990 

(PV, 

57

, 115 and 

Metrologia

1990,

 27

, 13)

 

Recommendation 5 

The Comité International des Poids et Mesures (CIPM) acting in accordance with 
Resolution 7 of the 18th Conférence Générale des Poids et Mesures (1987) has adopted 
the International Temperature Scale of 1990 (ITS-90) to supersede the International 
Practical Temperature Scale of 1968 (IPTS-68). 

The CIPM 

notes 

that, by comparison with the IPTS-68, the ITS-90 

•

  extends to lower temperatures, down to 0.65 K, and hence also supersedes the 

EPT-76, 

•

  is in substantially better agreement with corresponding thermodynamic temperatures, 

At its 89th meeting in 
2000, the CIPM approved 
the declaration of the 
22nd meeting of the 
CCEM on the use of the 
value of the von Klitzing 
constant, see p. 166. 

background image

164

  

•

  Appendix 1

 

•

  has much improved continuity, precision and reproducibility throughout its range and 

•

  has subranges and alternative definitions in certain ranges which greatly facilitate its 

use. 

The CIPM also 

notes

 

that, to accompany the text of the ITS-90 there will be two further 

documents, the 

Supplementary Information for the ITS-90

 and 

Techniques for 

Approximating the ITS-90

. These documents will be published by the BIPM and periodically 

updated. 

The CIPM 

recommends

 

•

  that on 1 January 1990 the ITS-90 come into force and  

•

  that from this same date the IPTS-68 and the EPT-76 be abrogated. 

 

19th CGPM, 1991 

  SI prefixes zetta, zepto, yotta and yocto 

(CR, 185 and 

Metrologia

, 1992, 

29

3)

 

Resolution 4 

The 19th Conférence Générale des Poids et Mesures (CGPM) 

decides

 

to add to the list of SI prefixes to be used for multiples and submultiples of units, 

adopted by the 11th CGPM, Resolution 12, paragraph 3, the 12th CGPM, Resolution 8 and 
the 15th CGPM, Resolution 10, the following prefixes: 

 

Multiplying factor   

 

Prefix 

Symbol 

10

21

  

 

 

zetta 

10

−

21

  

 

 

zepto 

10

24

  

 

 

yotta 

10

−

24

  

 

 

yocto 

 

20th CGPM, 1995 

  Elimination of the class of supplementary units in the SI

 (CR, 223 and 

Metrologia

, 1996,

 33

, 83)

 

Resolution 8 

The 20th Conférence Générale des Poids et Mesures (CGPM),  

considering 

•

  that the 11th Conférence Générale in 1960 in its Resolution 12, establishing the 

Système International d’Unités, SI, distinguished between three classes of SI units: the 
base units, the derived units, and the supplementary units, the last of these comprising 
the radian and the steradian, 

•

  that the status of the supplementary units in relation to the base units and the derived 

units gave rise to debate, 

•

  that the Comité International des Poids et Mesures, in 1980, having observed that the 

ambiguous status of the supplementary units compromises the internal coherence of 
the SI, has in its Recommendation 1 (CI-1980) interpreted the supplementary units, in 
the SI, as dimensionless derived units, 

approving 

the interpretation given by the Comité International in 1980, 

The names zepto and zetta 
are derived from septo 
suggesting the number 
seven (the seventh power 
of 10

3

) and the letter “z†is 

substituted for the letter 
“s†to avoid the duplicate 
use of the letter “s†as a 
symbol. The names yocto 
and yotta are derived from 
octo, suggesting the 
number eight (the eighth 
power of 10

3

); the letter 

“y†is added to avoid the 
use of the letter “o†as a 
symbol because it may be 
confused with the number 
zero. 

background image

Appendix 1  

•

  

165

 

 

 

decides 

•

  to interpret the supplementary units in the SI, namely the radian and the steradian, as 

dimensionless derived units, the names and symbols of which may, but need not, be 
used in expressions for other SI derived units, as is convenient, 

•

  and, consequently, to eliminate the class of supplementary units as a separate class in 

the SI.

 

 

21st CGPM, 1999 

  The definition of the kilogram 

(CR, 331 and 

Metrologia

, 2000,

 37

, 94)

 

Resolution 7 

The 21st Conférence Générale des Poids et Mesures, 

considering 

•

  the need to assure the long-term stability of the International System of Units (SI), 

•

  the intrinsic uncertainty in the long-term stability of the artefact defining the unit of 

mass, one of the base units of the SI, 

•

  the consequent uncertainty in the long-term stability of the other three base units of the 

SI that depend on the kilogram, namely, the ampere, the mole and the candela, 

•

  the progress already made in a number of different experiments designed to link the 

unit of mass to fundamental or atomic constants, 

•

  the desirability of having more than one method of making such a link, 

recommends 

that national laboratories continue their efforts to refine experiments that link 

the unit of mass to fundamental or atomic constants with a view to a future redefinition of 
the kilogram. 

 

  Special name for the SI derived unit mole per second, the katal, for the 

expression of catalytic activity

 (CR, 334-335 and 

Metrologia

, 2000,

 37

, 95)

 

Resolution 12 

The 21st Conférence Générale des Poids et Mesures,  

considering 

•

  the importance for human health and safety of facilitating the use of SI units in the fields 

of medicine and biochemistry, 

•

  that a non-SI unit called “unitâ€, symbol U, equal to 1 

µ

mol

 

·

 

min

–1

, which is not coherent 

with the International System of Units (SI), has been in widespread use in medicine and 
biochemistry since 1964 for expressing catalytic activity, 

•

  that the absence of a special name for the SI coherent derived unit mole per second 

has led to results of clinical measurements being given in various local units, 

•

  that the use of SI units in medicine and clinical chemistry is strongly recommended by 

the international unions in these fields, 

•

  that the International Federation of Clinical Chemistry and Laboratory Medicine has 

asked the Consultative Committee for Units to recommend the special name katal, 
symbol kat, for the SI unit mole per second, 

•

  that while the proliferation of special names represents a danger for the SI, exceptions 

are made in matters related to human health and safety (15th General Conference, 
1975, Resolutions 8 and 9, 16th General Conference, 1979, Resolution 5), 

background image

166

  

•

  Appendix 1

 

noting 

that the name katal, symbol kat, has been used for the SI unit mole per second for 

over thirty years to express catalytic activity, 

decides 

to adopt the special name katal, symbol kat, for the SI unit mole per second to 

express catalytic activity, especially in the fields of medicine and biochemistry, 

and

 recommends 

that when the katal is used, the measurand be specified by reference to 

the measurement procedure; the measurement procedure must identify the indicator 
reaction. 

 

CIPM, 2000 

  â€œuse of the von Klitzing constant to express the value of a reference 

standard of resistance as a function of quantum Hall effect†

(PV

68

101)

 

At its 89th meeting in 2000, the CIPM approved the following declaration of the 
22nd meeting of the CCEM (CCEM, 

22

, 90): 

“The CCEM, having reviewed the 1998 CODATA least squares adjustment of the 
fundamental constants, is now of the opinion that the quantum Hall effect, together with the 
value of 

R

K-90

, can be used to establish a reference standard of resistance having a relative 

one standard deviation uncertainty with respect to the ohm, estimated to be 1 

×

 10

−

7

, and a 

reproducibility which is significantly better. This represents a reduction in the uncertainty of 
a factor of two compared with the 1988 recommendation.†

 

CIPM, 2001 

  “SI units†and “units of the SI†

(PV

69

120)

 

The CIPM approved in 2001 the following proposal of the CCU regarding “SI units†
and “units of the SIâ€: 

“We suggest that “SI units†and “units of the SI†should be regarded as names that include 
both the base units and the coherent derived units, and also all units obtained by 
combining these with the recommended multiple and sub-multiple prefixes. 

We suggest that the name “coherent SI units†should be used when it is desired to restrict 
the meaning to only the base units and the coherent derived units.†

 

CIPM, 2002 

  Revision of the practical realization of the definition of the metre 

(PV

70

194-204 and 

Metrologia

40

, 103-133)

 

Recommendation 1 

The International Committee for Weights and Measures, 

recalling 

•

  that in 1983 the 17th General Conference (CGPM) adopted a new definition of the 

metre; 

•

  that in the same year the CGPM invited the International Committee (CIPM) 

•

  to draw up instructions for the practical realization of the metre, 

•

  to choose radiations which can be recommended as standards of wavelength for 

the interferometric measurement of length and draw up instructions for their use, 

•

  to pursue studies undertaken to improve these standards and in due course to 

extend or revise these instructions; 

background image

Appendix 1  

•

  

167

 

 

 

•

  that in response to this invitation the CIPM adopted Recommendation 1 (CI-1983) (

mise 

en pratique 

of the definition of the metre) to the effect 

•

  that the metre should be realized by one of the following methods: 

(a) by means of the length 

l

 of the path travelled in vacuum by a plane electromagnetic 

wave in a time 

t

; this length is obtained from the measured time 

t

, using the relation 

l = c

0

 

· 

t

 and the value of the speed of light in vacuum 

c

0

 = 

299 792 458 m/s, 

(b) by means of the wavelength in vacuum 

λ

 of a plane electromagnetic wave of 

frequency 

f

; this wavelength is obtained from the measured frequency 

f

 using the 

relation 

λ

 = c

/

 

and the value of the speed of light in vacuum 

c

0

 = 

299 792 458 m/s, 

(c) by means of one of the radiations from the list below, whose stated wavelength in 

vacuum or whose stated frequency can be used with the uncertainty shown, 
provided that the given specifications and accepted good practice are followed; 

•

  that in all cases any necessary corrections be applied to take account of actual 

conditions such as diffraction, gravitation or imperfection in the vacuum; 

•

  that in the context of general relativity, the metre is considered a unit of proper 

length. Its definition, therefore, applies only within a spatial extent sufficiently small 
that the effects of the non-uniformity of the gravitational field can be ignored (note 
that, at the surface of the Earth, this effect in the vertical direction is about 1 part in 
10

16

 per metre). In this case, the effects to be taken into account are those of 

special relativity only. The local methods for the realization of the metre 
recommended in (b) and (c) provide the proper metre but not necessarily that given 
in (a). Method (a) should therefore be restricted to lengths 

l

 which are sufficiently 

short for the effects predicted by general relativity to be negligible with respect to the 
uncertainties of realization. For advice on the interpretation of measurements in 
which this is not the case, see the report of the Consultative Committee for Time 
and Frequency (CCTF) Working Group on the Application of General Relativity to 
Metrology (Application of general relativity to metrology, 

Metrologia

, 1997, 

34

, 261-

290); 

•

  that the CIPM had already recommended a list of radiations for this purpose;

 

recalling

 

also that in 1992 and in 1997 the CIPM revised the practical realization of the 

definition of the metre; 

considering 

•

  that science and technology continue to demand improved accuracy in the realization of 

the metre; 

•

  that since 1997 work in national laboratories, in the BIPM and elsewhere has identified 

new radiations and methods for their realization which lead to lower uncertainties; 

•

  that there is an increasing move towards optical frequencies for time-related activities, 

and that there continues to be a general widening of the scope of application of the 
recommended radiations of the 

mise en pratique

 to cover not only dimensional 

metrology and the realization of the metre, but also high-resolution spectroscopy, 
atomic and molecular physics, fundamental constants and telecommunication; 

•

  that a number of new frequency values with reduced uncertainties for radiations of high-

stability cold atom and ion standards already listed in the recommended radiations list 
are now available, that the frequencies of radiations of several new cold atom and ion 
species have also recently been measured, and that new improved values with 
substantially reduced uncertainties for a number of optical frequency standards based 
on gas cells have been determined, including the wavelength region of interest to 
optical telecommunications; 

•

  that new femtosecond comb techniques have clear significance for relating the 

frequency of high-stability optical frequency standards to that of the frequency standard 
realizing the SI second, that these techniques represent a convenient measurement 
technique for providing traceability to the International System of Units (SI) and that 

background image

168

  

•

  Appendix 1

 

comb technology also can provide frequency sources as well as a measurement 
technique; 

recognizes

 

comb techniques as timely and appropriate, and recommends further research 

to fully investigate the capability of the techniques; 

welcomes

 

validations now being made of comb techniques by comparison with other 

frequency chain techniques; 

urges

 

national metrology institutes and other laboratories to pursue the comb technique to 

the highest level of accuracy achievable and also to seek simplicity so as to encourage 
widespread application; 

recommends  

•

  that the list of recommended radiations given by the CIPM in 1997 (Recom-

mendation 1 (CI-1997)) be replaced by the list of radiations given below*, including 

•

  updated frequency values for cold Ca atom, H atom and the trapped Sr

+

 ion, 

•

  frequency values for new cold ion species including trapped Hg

ion, trapped In

+

 ion 

and trapped Yb

+

 ion, 

•

  updated frequency values for Rb-stabilized lasers, I

2

-stabilized Nd:YAG and He-Ne 

lasers, CH

4

-stabilized He-Ne lasers and OsO

4

-stabilized CO

2

 lasers at 10 

µ

m, 

•

  frequency values for standards relevant to the optical communications bands, 

including Rb- and C

2

H

2

-stabilized lasers. 

. . . 

 

  Dose equivalent

 (PV

70

205)

 

Recommendation 2 

The International Committee for Weights and Measures, 

considering

 that  

•

  the current definition of the SI unit of dose equivalent (sievert) includes a factor “

N

 

†

(product of any other multiplying factors) stipulated by the International Commission on 
Radiological Protection (ICRP), and  

•

  both the ICRP and the International Commission on Radiation Units and Measurements 

(ICRU) have decided to delete this factor 

as it is no longer deemed to be necessary, 

and  

•

  the current SI definition of 

H

 including the factor 

N

 is causing some confusion, 

decides

 to change the explanation in the brochure “Le Système International d'Unités (SI)†

to the following: 

The quantity dose equivalent 

H

 is the product of the absorbed dose 

D

 of ionizing radiation 

and the dimensionless factor 

Q

 (quality factor) defined as a function of linear energy 

transfer by the ICRU: 

H = Q · D

.

 

Thus, for a given radiation, the numerical value of 

H

 in joules per kilogram may differ from 

that of 

in joules per kilogram depending on the value of 

Q.

  

The Committee further 

decides

 to maintain the final sentence in the explanation as follows: 

In order to avoid any risk of confusion between the absorbed dose 

and the dose 

equivalent 

H

, the special names for the respective units should be used, that is, the name 

gray should be used instead of joules per kilogram for the unit of absorbed dose 

and the 

name sievert instead of joules per kilogram for the unit of dose equivalent 

H. 

 

* The list of recommended 
radiations, 
Recommendation 1 
(CI-2002), is given in PV, 

70

, 197-204 and 

Metrologia

, 2003, 

40

104-115.  
Updates are available on 
the BIPM website at 

www.bipm.org/en/ 
publications/mep.html

See also 

J. Radiol. Prot.

2005,

 25

, 97-100. 

background image

Appendix 1  

•

  

169

 

 

 

CIPM, 2003 

  Revision of the 

Mise en Pratique

 list of recommended radiations 

(PV

71

146 and 

Metrologia

, 2004, 

41

, 99-100)

 

Recommendation 1 

The International Committee for Weights and Measures, 

considering

 that 

•

  improved frequency values for radiations of some high-stability cold ion standards 

already documented in the recommended radiations list have recently become 
available; 

•

  improved frequency values for the infra-red gas-cell-based optical frequency standard 

in the optical telecommunications region, already documented in the recommended 
radiations list, have been determined; 

•

  femtosecond comb-based frequency measurements for certain iodine gas-cell 

standards on the subsidiary recommended source list have recently been made for the 
first time, leading to significantly reduced uncertainty; 

proposes

 that the 

recommended radiation

 list be revised to include the following: 

•

  updated frequency values for the single trapped 

88

Sr

+

 ion quadrupole transition and the 

single trapped 

171

Yb

+

 octupole transition; 

•

  an updated frequency value for the C

2

H

2

-stabilized standard at 1.54 

µ

m; 

•

  updated frequency values for the I

2

-stabilized standards at 543 nm and 515 nm. 

 

22nd CGPM, 2003 

  Symbol for the decimal marker 

(CR, 381 and 

Metrologia

, 2004, 

41

, 104)

 

Resolution 10 

The 22nd General Conference, 

considering 

that

 

•

  a principal purpose of the International System of Units (SI) is to enable values of 

quantities to be expressed in a manner that can be readily understood throughout the 
world, 

•

  the value of a quantity is normally expressed as a number times a unit, 

•

  often the number in the expression of the value of a quantity contains multiple digits 

with an integral part and a decimal part, 

•

  in Resolution 7 of the 9th General Conference, 1948, it is stated that “In numbers, the 

comma (French practice) or the dot (British practice) is used only to separate the 
integral part of numbers from the decimal partâ€, 

•

  following a decision of the International Committee made at its 86th meeting (1997), the 

International Bureau of Weights and Measures now uses the dot (point on the line) as 
the decimal marker in all the English language versions of its publications, including the 
English text of the SI Brochure (the definitive international reference on the SI), with the 
comma (on the line) remaining the decimal marker in all of its French language 
publications, 

•

  however, some international bodies use the comma on the line as the decimal marker 

in their English language documents, 

•

  furthermore, some international bodies, including some international standards 

organizations, specify the decimal marker to be the comma on the line in all languages, 

Further updates are 
available on the BIPM 
website at 

www.bipm.org/en/ 
publications/mep.html

background image

170

  

•

  Appendix 1

 

•

  the prescription of the comma on the line as the decimal marker is in many languages 

in conflict with the customary usage of the point on the line as the decimal marker in 
those languages, 

•

  in some languages that are native to more than one country, either the point on the line 

or the comma on the line is used as the decimal marker depending on the country, 
while in some countries with more than one native language, either the point on the line 
or comma on the line is used depending on the language, 

declares 

that the symbol for the decimal marker shall be either the point on the line or the 

comma on the line, 

reaffirms

 that “Numbers may be divided in groups of three in order to facilitate reading; 

neither dots nor commas are ever inserted in the spaces between groupsâ€, as stated in 
Resolution 7 of the 9th CGPM, 1948. 

 

CIPM, 2005 

  

Clarification of the definition of the kelvin, unit of thermodynamic 

temperature

 (PV, 

94

, in press and 

Metrologia

, 2006, 

43

, 177-178) 

Recommendation 2 

The International Committee for Weights and Measures (CIPM), 

considering 

•

  that the kelvin, unit of thermodynamic temperature, is defined as the fraction 1/273.16 

of the thermodynamic temperature of the triple point of water, 

•

  that the temperature of the triple point depends on the relative amount of isotopes of 

hydrogen and oxygen present in the sample of water used, 

•

  that this effect is now one of the major sources of the observed variability between 

different realizations of the water triple point,  

decides 

•

  that the definition of the kelvin refer to water of a specified isotopic composition, 

•

  that this composition be: 

0.000 155 76 mole of 

2

H per mole of 

1

H,  

0.000 379 9 mole of 

17

O per mole of 

16

O, and 

0.002 005 2 mole of 

18

O per mole of 

16

O, 

which is the composition of the International Atomic Energy Agency reference material 
Vienna Standard Mean Ocean Water (VSMOW), as recommended by IUPAC in “Atomic 
Weights of the Elements: Review 2000â€. 

•

  that this composition be stated in a note attached to the definition of the kelvin in the SI 

brochure as follows: 

“This definition refers to water having the isotopic composition defined exactly by the 
following amount of substance ratios: 0.000 155 76 mole of 

2

H per mole of 

1

H, 

0.000 379 9 mole of 

17

O per mole of 

16

O and 0.002 005 2 mole of 

18

O per mole of 

16

Oâ€. 

 

background image

Appendix 1  

•

  

171

 

 

 

  Revision of the 

Mise en pratique

 list of recommended radiations 

(PV

94,

 

in press and 

Metrologia

, 2006, 

43

, 178)

 

Recommendation 3 

The International Committee for Weights and Measures (CIPM), 

considering

 

that: 

•

  improved frequency values for radiations of some high-stability cold ion and cold atom 

standards already documented in the recommended radiations list have recently 
become available; 

•

  improved frequency values for the infra-red gas-cell-based optical frequency standard 

in the optical telecommunications region, already documented in the recommended 
radiations list, have been determined; 

•

  improved frequency values for certain iodine gas-cell standard, already documented in 

the subsidiary recommended source list, have been determined; 

•

  frequencies of new cold atoms, of atoms in the near-infrared region and of molecules in 

the optical telecommunications region have been determined by femtosecond comb-
based frequency measurements for the first time; 

decides

 

that the list of 

recommended radiations

 be revised to include the following:

 

•

  updated frequency values for the single trapped 

88

Sr

+

 ion quadrupole transition, the 

single trapped 

199

Hg

+

 quadrupole transition and the single trapped 

171

Yb

+

 quadrupole 

transition; 

•

  an updated frequency value for the Ca atom transition; 

•

  an updated frequency value for the C

2

H

2

-stabilized standard at 1.54 

µ

m; 

•

  an updated frequency value for the I

2

-stabilized standard at 515 nm; 

•

  the addition of the 

87

Sr atom transition at 698 nm; 

•

  the addition of the 

87

Rb atom two-photon transitions at 760 nm; 

•

  the addition of the 

12

C

2

H

2

  (

ν

1 + 

ν

3) band and the 

13

C

2

H

2

  (

ν

1 + 

ν

3) and 

(

ν

1 + 

ν

3 + 

ν

4 + 

ν

5) bands at 1.54 µm. 

 

background image

172

 

Appendix 2.  Practical realization of the definitions of some 

 important 

units 

Appendix 2 is published in electronic form only, and is available on the BIPM website at 

www.bipm.org/en/si/si_brochure/appendix2/

background image

 

173

 

Appendix 3.  Units for photochemical and photobiological 
 quantities 

Optical radiation is able to cause chemical changes in certain living or non-living 
materials: this property is called actinism, and radiation capable of causing such 
changes is referred to as actinic radiation. Actinic radiation has the fundamental 
characteristic that, at the molecular level, one photon interacts with one molecule to 
alter or break the molecule into new molecular species. It is therefore possible to 
define specific photochemical or photobiological quantities in terms of the result of 
optical radiation on the associated chemical or biological receptors. 

In the field of metrology, the only photobiological quantity which has been formally 
defined for measurement in the SI is for the interaction of light with the human eye in 
vision. An SI base unit, the candela, has been defined for this important 
photobiological quantity. Several other photometric quantities with units derived 
from the candela have also been defined (such as the lumen and the lux, see Table 3 
in Chapter 2, p. 118). 

 

Actinic action spectrum 

Optical radiation can be characterized by its spectral power distribution. The 
mechanisms by which optical radiation is absorbed by chemical or biological systems 
are usually complicated, and are always wavelength (or frequency) dependent. For 
metrological purposes, however, the complexities of the absorption mechanisms can 
be ignored, and the actinic effect is characterized simply by an actinic action 
spectrum linking the photochemical or the photobiological response to the incident 
radiation. This actinic action spectrum describes the relative effectiveness of 
monochromatic optical radiation at wavelength 

λ

 to elicit a given actinic response. It 

is given in relative values, normalized to 1 for the maximum of efficacy. Usually 
actinic action spectra are defined and recommended by international scientific or 
standardizing organizations. 

For vision, two action spectra have been defined by the CIE and endorsed by the 
CIPM: 

V

(

λ

) for photopic vision and 

V

 

′

(

λ

) for scotopic vision. These are used in the 

measurement of photometric quantities and are an implicit part of the definition of the 
SI unit for photometry, the candela. Photopic vision is detected by the cones on the 
retina of the eye, which are sensitive to a high level of luminance (

> ca. 10 cd m

−

2

and are used in daytime vision. Scotopic vision is detected by the rods of the retina, 
which are sensitive to low level luminance (

< ca. 10

−

3

 cd m

−

2

), used in night vision. 

In the domain between these levels of luminance both cones and rods are used, and 
this is described as mesopic vision. 

Other action spectra for other actinic effects have also been defined by the CIE, such 
as the erythemal (skin reddening) action spectrum for ultraviolet radiation, but these 
have not been given any special status within the SI. 

 

The definition of 
photometric quantities and 
units can be found in the

 

International Lighting 
Vocabulary

, CIE 

publication 17.4 (1987) or 
in the 

International 

Electrotechnical 
Vocabulary

, IEC 

publication 50, 
chapter 845: lighting. 

Principles governing 
photometry, 

Monographie 

BIPM, 

1983, 32 pp.

 

background image

174

  

•

  Appendix 3

 

Measurement of photochemical or photobiological quantities 
and their corresponding units 

The photometric quantities and photometric units which are used at present for vision 
are well established and have been widely used for a long time. They are not affected 
by the following rules. For all other photochemical and photobiological quantities the 
following rules shall be applied for defining the units to be used. 

A photochemical or photobiological quantity is defined in purely physical terms as 
the quantity derived from the corresponding radiant quantity by evaluating the 
radiation according to its action upon a selective receptor, the spectral sensitivity of 
which is defined by the actinic action spectrum of the photochemical or 
photobiological effect considered. The quantity is given by the integral over 
wavelength of the spectral distribution of the radiant quantity weighted by the 
appropriate actinic action spectrum. The use of integrals implicitly assumes a law of 
arithmetic additivity for actinic quantities, although such a law is not perfectly 
obeyed by actual actinic effects. The action spectrum is a relative quantity; it is 
dimensionless, with the SI unit one. The radiant quantity has the radiometric unit 
corresponding to that quantity. Thus, following the rule for obtaining the SI unit for a 
derived quantity, the unit of the photochemical or photobiological quantity is the 
radiometric unit of the corresponding radiant quantity. When giving a quantitative 
value, it is essential to specify whether a radiometric or actinic quantity is intended as 
the unit is the same. If an actinic effect exists in several action spectra, the action 
spectrum used for measurement has to be clearly specified. 

This method of defining the units to be used for photochemical or photobiological 
quantities has been recommended by the Consultative Committee for Photometry and 
Radiometry at its 9th meeting in 1977. 

As an example, the erythemal effective irradiance 

E

er

 from a source of ultraviolet 

radiation is obtained by weighting the spectral irradiance of the radiation at 
wavelength 

λ

 by the effectiveness of radiation at this wavelength to cause an 

erythema, and summing over all wavelengths present in the source spectrum. This 
can be expressed mathematically as: 

er

er

( ) d

E

E s

λ

λ Î»

=

∫

 

where 

E

λ

 is the spectral irradiance at wavelength 

λ

 (usually reported in the SI unit 

W m

−

2

 nm

−

1

), and 

s

er

(

λ

) is the actinic spectrum normalized to 1 at its maximum 

spectral value. The erythemal irradiance 

E

er

 determined in this way is usually quoted 

in the SI unit W m

−

2

background image

175 

List of acronyms 

used in the present volume 

Acronyms for laboratories, committees and conferences* 

BAAS 

British Association for the Advancement of Science 

BIH 

Bureau International de l’Heure 

BIPM 

International Bureau of Weights and Measures/Bureau International des 

Poids et Mesures 

CARICOM Carribean 

Community 

CCAUV 

Consultative Committee for Acoustics, Ultrasound and Vibration/ 

Comité Consultatif de l’Acoustique, des Ultrasons et des Vibrations 

CCDS* 

Consultative Committee for the Definition of the Second/ 

Comité Consultatif pour la Définition de la Seconde, see CCTF 

CCE* 

Consultative Committee for Electricity/Comité Consultatif d'Électricité, 

see CCEM 

CCEM 

(formerly the CCE) Consultative Committee for Electricity and 

Magnetism/Comité Consultatif d'Électricité et Magnétisme 

CCL 

Consultative Committee for Length/Comité Consultatif des Longueurs 

CCM 

Consultative Committee for Mass and Related Quantities/ 

Comité Consultatif pour la Masse et les Grandeurs Apparentées 

CCPR 

Consultative Committee for Photometry and Radiometry/ 

Comité Consultatif de Photométrie et Radiométrie 

CCQM 

Consultative Committee for Amount of Substance: Metrology in 

Chemistry/Comité Consultatif pour la Quantité de Matière : Métrologie 

en Chimie 

CCRI 

Consultative Committee for Ionizing Radiation/Comité Consultatif des 

Rayonnements Ionisants 

CCT 

Consultative Committee for Thermometry/Comité Consultatif de 

Thermométrie 

CCTF 

(formerly the CCDS) Consultative Committee for Time and Frequency/ 

Comité Consultatif du Temps et des Fréquences 

CCU 

Consultative Committee for Units/Comité Consultatif des Unités 

CGPM 

General Conference on Weights and Measures/Conférence Générale des 

Poids et Mesures 

CIE 

International Commission on Illumination/Commission Internationale 

de l’Éclairage 

CIPM 

International Committee for Weights and Measures/ 

Comité International des Poids et Mesures 

CODATA 

Committee on Data for Science and Technology 

CR 

Comptes Rendus

 of the Conférence Générale des Poids et Mesures, 

CGPM 

IAU 

International Astronomical Union 

ICRP 

International Commission on Radiological Protection 

                                                           

* Organizations marked with an asterisk either no longer exist or operate under a different acronym. 

background image

176 

 

•

  

List of acronyms

 

ICRU 

International Commission on Radiation Units and Measurements 

IEC 

International Electrotechnical Commission/Commission 

Électrotechnique Internationale 

IERS 

International Earth Rotation and Reference Systems Service 

ISO 

International Organization for Standardization 

IUPAC 

International Union of Pure and Applied Chemistry 

IUPAP 

International Union of Pure and Applied Physics 

OIML 

Organisation Internationale de Métrologie Légale 

PV 

Procès-Verbaux

 of the Comité International des Poids et Mesures, 

CIPM 

SUNAMCO 

Commission for Symbols, Units, Nomenclature, Atomic Masses and 

Fundamental Constants, IUPAP 

WHO 

World Health Organization 

 

Acronyms for scientific terms 

CGS 

Three-dimensional coherent system of units based on the three 

mechanical units centimetre, gram and second 

EPT-76 

Provisional Low Temperature Scale of 1976/Échelle provisoire de 

température de 1976 

IPTS-68 

International Practical Temperature Scale of 1968 

ITS-90 

International Temperature Scale of 1990 

MKS 

System of units based on the three mechanical units metre, kilogram, 

and second 

MKSA 

Four-dimensional system of units based on the metre, kilogram, second, 

and the ampere 

SI 

International System of Units/Système International d’Unités 

TAI 

International Atomic Time/Temps Atomique International 

TCG 

Geocentric Coordinated Time/Temps-coordonnée Géocentrique 

TT Terrestrial 

Time 

UTC 

Coordinated Universal Time 

VSMOW 

Vienna Standard Mean Ocean Water 

background image

 

177 

 

Index 

Numbers in boldface indicate the pages where the definitions of the units, or terms, 
are to be found. 
 

acceleration due to gravity, standard value of 

(

g

n)

,

 143 

absolute units, 113 

absorbed dose, 107, 118-120, 157, 159-161, 

168 

actinic radiation, 107, 173-174 

actinism, 107, 173 

activity referred to a radionuclide, 118, 152 

amount of substance, 103-105, 114-

115

, 156-

157

 

ampere (A), 104, 109-110, 

113

, 116, 144, 

146, 147, 149, 150 

arcsecond, 124 

astronomical unit, 125-126 

atomic physics, 125 

atomic units, 125-126 

atomic weight, 114 

Avogadro constant, 115, 125 

 

bar, 127, 146 

barn, 127-128 

base quantity, 

103

-105, 116 

base unit(s), 

103

-104, 111-116, 147, 148, 149, 

156-157 

becquerel (Bq), 118, 120, 152, 

157

 

bel (B), 127-128, 134 

biological quantities, 107 

Bohr radius, bohr, 125-126 

British Association for the Advancement of 

Science (BAAS), 109 

 

calorie, 146 

candela (cd), 104, 110, 115-

116

, 146, 147, 

149, 154, 158; new candle, 155 

Celsius temperature, 114, 118, 133, 145 

CGS, 109, 128-129, 145 

CGS-EMU, 105, 128 

CGS-ESU, 105, 128 

CGS-Gaussian, 105, 128 

clinical chemistry, 115, 165 

CODATA, 126, 166 

coherent derived units, 106, 116-120, 166 

Convention du Mètre, 108-109 

Coordinated Universal Time (UTC), 157 

coulomb (C), 118, 

144

, 146, 150 

Coulomb law, 104 

counting quantities, 105, 120 

curie (Ci), 152 

 

dalton (Da), 125-126 

day (d), 122, 124 

decibel (dB), 127-128, 134 

decimal marker, 102, 133, 169-170 

decimal metric system, 108 

definitions of base units, 

111-116

 

degree Celsius (°C), 114, 118, 131, 133, 145, 

146 

derived quantity, 

103

, 105, 116-120 

derived unit(s), 

103

, 116-120, 

154

 

digits in threes, grouping digits, 133, 169-170 

dimensional symbols, 105 

dimensionless quantities, 105, 117, 

120

, 134, 

159 

dose equivalent, see sievert 

dynamic viscosity (poise), 128, 146 

dyne (dyn), 128, 146 

 

electric current, 104-105, 113, 116, 144, 146, 

147, 149 

electrical units, 

144

 

electromagnetic quantities, 104, 128-129 

background image

178

  

•

  Index

 

 

electron mass, 125-126 

electronvolt (eV), 125-126 

elementary charge, 125-126 

erg, 128, 146 

establishment of the SI, 145, 147, 148, 149 

 

farad (F), 118, 

144

, 146, 150 

foot, 129 

formatting the value of a quantity, 133 

four-quantity electromagnetic equations, 104 

 

gal (Gal), 128 

Gauss, 109 

gauss (G), 128 

general relativity, 107, 167 

Giorgi, 109 

gon, 124 

grad, 124 

gram, 106, 109, 122, 146, 152 

gram-atom, gram-molecule, 114 

gray (Gy), 118, 120, 

157

-158, 161 

 

Hall effect (incl. quantum Hall effect), 111, 

161-

163

, 166 

Hartree energy, hartree, 125, 126 

heat capacity, 119, 131 

hectare (ha), 124 

henry (H), 118, 

144

, 146, 150 

hertz (Hz), 118, 146, 150 

historical note, 108-110 

hour (h), 122, 124, 146 

hyperfine splitting of the caesium atom, 113 

 

IEC Standard 60027, 104 

inch, 129 

International Atomic Time (TAI), 155, 156 

international prototype of the kilogram, 109, 

112

, 142, 143 

international prototype of the metre, 109, 

112

142, 143, 148 

International System of Quantities (ISQ), 

104

,  

International System of Units (SI), 104, 145, 

147, 148, 149 

International Temperature Scale of 1990 

(ITS-90), 163-164 

International Units (IU) WHO, 108 

ionizing radiation, 107, 120, 157-158, 159, 

161, 168 

ISO Standard 31, 102, 104, 131 

ISO/IEC Standard 80000, 104 

ISO/TC 12, 104, 159 

IUPAC, 114-115; Green Book, 131 

IUPAP SUNAMCO, 114-115; Red Book, 131 

 

Josephson effect, 

162

 

Josephson constant (

K

J

K

J

−

90

), 162 

joule (J), 106, 118, 119, 131,

 144

-145, 150 

 

katal (kat), 118, 

165

-166 

kelvin (K), 104, 110, 113-

114

, 116, 153, 154, 

170 

kibibyte (kilobyte), 121 

kilogram, 104, 108-109, 

112

, 116, 122, 142, 

143, 147, 149, 152, 165 

kinematic viscosity (stokes), 128 

 

legislation on units, 108 

length, 104-105, 109, 

112

, 116, 142, 143, 147 

litre (L or l), 

124

, 130, 142, 146, 150, 151, 

152, 159 

logarithmic ratio quantities, 127 

logarithmic ratio units, 127-128, 134 

lumen (lm), 118, 146, 150; new lumen, 143 

luminous intensity, 104-105, 115-

116

, 143, 

147, 149, 154, 158 

lux (lx), 118, 146, 150 

 

magnetic constant, permeability of vacuum, 

104, 113 

mandatory symbols for units, 105, 116, 130-

131 

mass, 104-105, 109, 

112,

 116, 122, 142, 143, 

149, 152, 165 

mass and weight, 143 

Maxwell, 109 

maxwell (Mx), 128 

mesopic, 158, 173 

background image

 Index

  

•

  

179 

 

metre (m), 104, 108, 

112

, 131, 142, 143, 146, 

147, 148, 149, 160-161 

metric ton, 124, 146 

microarcsecond (µas), 122, 124 

milliarcsecond (mas), 122, 124 

millimetre of mercury, 127 

minute (min), 124 

MKS system, 109, 144 

MKSA system, 109 

mole (mol), 104, 110, 114-

115

, 156-157 

molecular weight, 114-115 

multiples (and submultiples) of the kilogram, 

106, 122, 152 

multiples, prefixes for, 106, 121-122, 149, 

152, 155, 158, 164 

 

natural units, 125-126 

nautical mile, 124, 127 

neper (Np), 127-128, 134 

newton (N), 113, 118, 144, 146, 150 

non-SI units, 123-129 

numerical value of a quantity, 131-132 

 

Å“rsted (Oe), 128 

ohm (Ω), 109, 113, 118, 130, 

144

, 146, 150, 

161-162, 163, 166

 

OIML, 108 

 

pascal (Pa), 118, 131, 156 

percent, 134-135 

phot (ph), 128 

photobiological quantities, 107, 173-174 

photochemical quantities, 107, 173-174 

photometric units, 

143

, 154, 173-174 

photopic vision, 158, 173 

poise (P), 128, 146 

ppb, 134 

ppm, 134-135 

ppt, 134 

practical units, 109, 145, 147, 148, 149 

prefixes, 106, 117, 

121

, 124, 127-128, 130, 

149, 152, 155, 158, 164 

 

quantities of dimension one, 105, 117, 118, 

120, 134-135 

quantity, 103 

quantity calculus, 131-132 

quantity symbols, 105, 131, 132-133 

quantity, base, 

103

, 104, 105, 116 

quantity, derived, 

103

, 104, 105, 116-120 

 

radian (rad), 118, 120, 134, 149, 159-160, 

164-165 

radiation therapy, 107 

rationalizing factors, 105 

realization of a unit, 101, 

111

, 172 

recommended symbols for quantities, 105, 

131 

reduced Planck constant, 125, 126 

 

scotopic, 158, 173 

second (s), 104, 109, 112-

113

, 116, 131, 146, 

147, 148-149, 153 

SI prefixes, 106, 117, 

121

, 124, 127-128, 130, 

149, 152, 155, 158, 164 

SI, see Système International d’Unités 

siemens (S), 118, 156 

sievert (Sv), 118, 120, 159, 161, 168 

sound, units for, 107 

special names and symbols for units, 106, 

117-120 

speed of light in vacuum, 112, 126, 167 

standard atmosphere, 127, 

147

 

steradian (sr), 118, 120, 134, 149, 159-160, 

164-165 

stilb (sb), 128, 146 

stokes (St), 128 

submultiples, prefixes for, 106, 121-122, 149, 

152, 155, 158, 164 

supplementary units, 149, 

155

, 159-160, 164-

165 

Système International d'Unités (SI), see 

International System of Units 

 

background image

180

  

•

  Index

 

 

TAI, see International Atomic Time 

tesla (T), 118, 150 

thermodynamic temperature, 104-105, 113-

114

, 146, 147, 149, 153, 154, 170 

thermodynamic temperature scale, 146 

Thomson, 109 

time (duration), 104-105, 112-

113

, 116, 147, 

153 

tonne, 124, 146 

triple point of water, 113-

114

, 144-145, 146, 

154, 170 

 

uncertainty, 133 

unit (SI), 111-120 

unit names, 

131

, 146 

unit symbols, 116, 130, 146 

unit, base, 

103

, 111, 116, 147, 149, 157 

unit, derived, 

103

, 116-119, 150, 154 

units for biological quantities, 107 

UTC, see Coordinated Universal Time 

 

value of a quantity, 131-132 

volt (V),

 

118, 

144

, 146, 150, 161, 162 

von Klitzing constant (

R

K

R

K

−

90

), 111, 163, 

166 

 

water, isotopic composition, 114, 170 

watt (W), 118,

 144

, 146, 150 

Weber, 109 

weber (Wb),

 

118, 

144

, 150 

WHO, 108 

 

yard, 129 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

STEDI MEDIA 

1, Boulevard Ney, 75018 Paris 

Dépôt légal, n° 8844 

ISBN 92-822-2213-6 

Achevé d’imprimer : mai 2006 

Imprimé en France 

 


Document Outline