background image

 

 
 
 
 
 
 
 

Guidelines for Environmental Infection Control 

in Health-Care Facilities 

 
 
 
 
 
 
 
 

Recommendations of CDC and the Healthcare Infection Control 

Practices Advisory Committee (HICPAC) 

 
 
 
 
 
 
 
 

U.S. Department of Health and Human Services 

Centers for Disease Control and Prevention (CDC) 

Atlanta, GA  30333 

 
 

2003 

 

background image

 

 
 
 
 
 
Suggested Citations: 

 

 

 

Available from the CDC Internet Site:

 

 

 The full-text version of the guidelines appears as a web-based document at the CDC’s
Division of Healthcare Quality Promotion’s Internet site at:
www.cdc.gov/ncidod/hip/enviro/guide.htm
 

The full-text version of the guidelines should be cited when reference is made primarily to

material in Parts I and IV.  The print version of the guidelines appears as:

 

 Sehulster LM, Chinn RYW, Arduino MJ, Carpenter J, Donlan R, Ashford D, Besser R,

 Fields B, McNeil MM, Whitney C, Wong S, Juranek D, Cleveland J.  Guidelines for 

environmental infection control in health-care facilities.  Recommendations from CDC and 

the Healthcare Infection Control Practices Advisory Committee (HICPAC).  Chicago IL; 

American Society for Healthcare Engineering/American Hospital Association; 2004.

 

 

Part II of these guidelines appeared in the CDC’s “Morbidity and Mortality 
Weekly Report:” 

 

Centers for Disease Control and Prevention.  Guidelines for environmental infection control in 

health-care facilities: recommendations of CDC and the Healthcare Infection Control Practices 

Advisory Committee (HICPAC).  MMWR 2003; 52 (No. RR-10): 1–48. 

 

 

Updates to the Part II recommendations also appeared in the MMWR in 2003 as “Errata: Vol. 

52 (No. RR-10)” (MMWR Vol. 52 [42]: 1025–6) on October 24, 2003 and as a “Notice to 

Readers” scheduled to appear in February 2004.  The full-text version of these guidelines (this 

document) incorporates these updates. 

 

 

 

 

 

 

 

 

 

background image

 

i

Centers for Disease Control and Prevention 

Healthcare Infection Control Practices Advisory 

Committee (HICPAC) 

 

Guidelines for Environmental Infection Control in 

Health-Care Facilities 

 
Abstract 

 
Background: 

Although the environment serves as a reservoir for a variety of microorganisms, it is rarely implicated in 

disease transmission except in the immunocompromised population.  Inadvertent exposures to 

environmental opportunistic pathogens (e.g., 

Aspergillus

 spp. and 

Legionella

 spp.) or airborne 

pathogens (e.g., 

Mycobacterium tuberculosis

 and varicella-zoster virus) may result in infections with 

significant morbidity and/or mortality.  Lack of adherence to established standards and guidance (e.g., 

water quality in dialysis, proper ventilation for specialized care areas such as operating rooms, and 

proper use of disinfectants) can result in adverse patient outcomes in health-care facilities. 

 

Objective: 

The objective is to develop an environmental infection-control guideline that reviews and reaffirms 

strategies for the prevention of environmentally-mediated infections, particularly among health-care 

workers and immunocompromised patients.  The recommendations are evidence-based whenever 

possible. 

 

Search Strategies: 

The contributors to this guideline reviewed predominantly English-language articles identified from 

MEDLINE literature searches, bibliographies from published articles, and infection-control textbooks. 

 

Criteria for Selecting Citations and Studies for This Review: 

Articles dealing with outbreaks of infection due to environmental opportunistic microorganisms and 

epidemiological- or laboratory experimental studies were reviewed.  Current editions of guidelines and 

standards from organizations (i.e., American Institute of Architects [AIA], Association for the 

Advancement of Medical Instrumentation [AAMI], and American Society of Heating, Refrigeration, 

and Air-Conditioning Engineers [ASHRAE]) were consulted.  Relevant regulations from federal 

agencies (i.e., U.S. Food and Drug Administration [FDA]; U.S. Department of Labor, Occupational 

Safety and Health Administration [OSHA]; U.S. Environmental Protection Agency [EPA]; and U.S. 

Department of Justice) were reviewed.  Some topics did not have well-designed, prospective studies nor 

reports of outbreak investigations.  Expert opinions and experience were consulted in these instances. 

 

Types of Studies: 

Reports of outbreak investigations, epidemiological assessment of outbreak investigations with control 

strategies, and 

in vitro

 environmental studies were assessed.  Many of the recommendations are derived 

background image

 

ii 

from empiric engineering concepts and reflect industry standards.  A few of the infection-control 

measures proposed cannot be rigorously studied for ethical or logistical reasons. 

 

Outcome Measures: 

Infections caused by the microorganisms described in this guideline are rare events, and the effect of 

these recommendations on infection rates in a facility may not be readily measurable.  Therefore, the 

following steps to measure performance are suggested to evaluate these recommendations: 

 

1.

 

Document whether infection-control personnel are actively involved in all phases of a health-

care facility’s demolition, construction, and renovation.  Activities should include performing a 

risk assessment of the necessary types of construction barriers, and daily monitoring and 

documenting of the presence of negative airflow within the construction zone or renovation 

area. 

2.

 

Monitor and document daily the negative airflow in airborne infection isolation rooms (AII) and 

positive airflow in protective environment rooms (PE), especially when patients are in these 

rooms. 

3.

 

Perform assays at least once a month by using standard quantitative methods for endotoxin in 

water used to reprocess hemodialyzers, and for heterotrophic, mesophilic bacteria in water used 

to prepare dialysate and for hemodialyzer reprocessing. 

4.

 

Evaluate possible environmental sources (e.g., water, laboratory solutions, or reagents) of 

specimen contamination when nontuberculous mycobacteria (NTM) of unlikely clinical 

importance are isolated from clinical cultures.  If environmental contamination is found, 

eliminate the probable mechanisms. 

5.

 

Document policies to identify and respond to water damage.  Such policies should result in 

either repair and drying of wet structural materials within 72 hours, or removal of the wet 

material if drying is unlikely within 72 hours. 

 

Main Results: 

Infection-control strategies and engineering controls, when consistently implemented, are effective in 

preventing opportunistic, environmentally-related infections in immunocompromised populations.  

Adherence to proper use of disinfectants, proper maintenance of medical equipment that uses water 

(e.g., automated endoscope reprocessors and hydrotherapy equipment), water-quality standards for 

hemodialysis, and proper ventilation standards for specialized care environments (i.e., airborne infection 

isolation [AII], protective environment [PE], and operating rooms [ORs]), and prompt management of 

water intrusion into facility structural elements will minimize health-care–associated infection risks and 

reduce the frequency of pseudo-outbreaks.  Routine environmental sampling is not advised except in the 

few situations where sampling is directed by epidemiologic principles and results can be

 

applied 

directly to infection control decisions, and for water quality determinations in hemodialysis. 

 

Reviewers’ Conclusions: 

Continued compliance with existing environmental infection control measures will decrease the risk of 

health-care–associated infections among patients, especially the immunocompromised, and health-care 

workers. 

 
 
 
 
 

background image

 

iii

Centers for Disease Control and Prevention 

Healthcare Infection Control Practices Advisory Committee (HICPAC) 

 

Guidelines for Environmental Infection Control in  

Health-Care Facilities 

 

Table of Contents 

 

Executive Summary.................................................................................................................... 1

 

Part I.  Background Information: Environmental Infection Control in Health-Care 
Facilities....................................................................................................................................... 3

 

A.  Introduction

....................................................................................................................................3

 

B.  Key Terms Used in this Guideline

................................................................................................5

 

C.  Air

....................................................................................................................................................6

 

1.  Modes of Transmission of Airborne Diseases..............................................................................6

 

2.  Airborne Infectious Diseases in Health-Care Facilities................................................................7

 

3.  Heating, Ventilation, and Air Conditioning Systems in Health-Care Facilities .........................13

 

4.  Construction, Renovation, Remediation, Repair, and Demolition .............................................21

 

5.  Environmental Infection-Control Measures for Special Health-Care Settings...........................34

 

6.  Other Aerosol Hazards in Health-Care Facilities .......................................................................40

 

D.  Water

.............................................................................................................................................40

 

1.  Modes of Transmission of Waterborne Diseases .......................................................................40

 

2.  Waterborne Infectious Diseases in Health-Care Facilities .........................................................41

 

3.  Water Systems in Health-Care Facilities....................................................................................46

 

4.  Strategies for Controlling Waterborne Microbial Contamination ..............................................53

 

5.  Cooling Towers and Evaporative Condensers............................................................................57

 

6.  Dialysis Water Quality and Dialysate.........................................................................................59

 

7.  Ice Machines and Ice ..................................................................................................................65

 

8.  Hydrotherapy Tanks and Pools...................................................................................................67

 

9.  Miscellaneous Medical/Dental Equipment Connected to Main Water Systems ........................69

 

E.  Environmental Services

...............................................................................................................71

 

1.  Principles of Cleaning and Disinfecting Environmental Surfaces..............................................71

 

2.  General Cleaning Strategies for Patient-Care Areas...................................................................74

 

3.  Cleaning Strategies for Spills of Blood and Body Substances ...................................................77

 

4.  Carpeting and Cloth Furnishings................................................................................................78

 

5.  Flowers and Plants in Patient-Care Areas ..................................................................................80

 

6.  Pest Control ................................................................................................................................81

 

7.  Special Pathogen Concerns.........................................................................................................82

 

F.  Environmental Sampling

.............................................................................................................88

 

1.  General Principles: Microbiologic Sampling of the Environment .............................................88

 

2.  Air Sampling...............................................................................................................................89

 

3.  Water Sampling ..........................................................................................................................94

 

4.  Environmental Surface Sampling...............................................................................................95

 

G.  Laundry and Bedding

..................................................................................................................98

 

1.  General Information ...................................................................................................................98

 

2.  Epidemiology and General Aspects of Infection Control...........................................................98

 

3.  Collecting, Transporting, and Sorting Contaminated Textiles and Fabrics................................99

 

background image

 

iv 

4.  Parameters of the Laundry Process .......................................................................................... 100

 

5.  Special Laundry Situations....................................................................................................... 102

 

6.  Surgical Gowns, Drapes, and Disposable Fabrics.................................................................... 103

 

7.  Antimicrobial-Impregnated Articles and Consumer Items Bearing Antimicrobial Labeling .. 103

 

8.  Standard Mattresses, Pillows, and Air-Fluidized Beds ............................................................ 104

 

H.  Animals in Health-Care Facilities

............................................................................................ 105

 

1.  General Information ................................................................................................................. 105

 

2.  Animal-Assisted Activities, Animal-Assisted Therapy, and Resident Animals ...................... 106

 

3.  Service Animals ....................................................................................................................... 108

 

4.  Animals as Patients in Human Health-Care Facilities ............................................................. 110

 

5.  Research Animals in Health-Care Facilities ............................................................................ 111

 

I.  Regulated Medical Waste

........................................................................................................... 112

 

1.  Epidemiology ........................................................................................................................... 112

 

2.  Categories of Medical Waste ................................................................................................... 112

 

3.  Management of Regulated Medical Waste in Health-Care Facilities ...................................... 113

 

4.  Treatment of Regulated Medical Waste................................................................................... 113

 

5.  Discharging Blood, Fluids to Sanitary Sewers or Septic Tanks............................................... 116

 

6.  Medical Waste and CJD........................................................................................................... 116

 

Part II.  Recommendations for Environmental Infection Control in Health-Care Facilities
................................................................................................................................................... 117

 

A.  Rationale for Recommendations

.............................................................................................. 117

 

B.  Rating Categories

....................................................................................................................... 117

 

C.  Recommendations—Air

............................................................................................................ 118

 

D.  Recommendations—Water

....................................................................................................... 125

 

E.  Recommendations—Environmental Services

......................................................................... 133

 

F.  Recommendations—Environmental Sampling

....................................................................... 138

 

G.  Recommendations—Laundry and Bedding

............................................................................ 138

 

H.  Recommendations—Animals in Health-Care Facilities

......................................................... 141

 

I.  Recommendations—Regulated Medical Waste

........................................................................ 143

 

Part III.  References................................................................................................................ 145

 

Part IV.  Appendices............................................................................................................... 201

 

Appendix A.  Glossary of Terms

.................................................................................................... 201

 

Appendix B.  Air

.............................................................................................................................. 210

 

1.  Airborne Contaminant Removal .............................................................................................. 210

 

2.  Air Sampling for Aerosols Containing Legionellae................................................................. 210

 

3.  Calculation of Air Sampling Results........................................................................................ 211

 

4.  Ventilation Specifications for Health-Care Facilities............................................................... 212

 

Appendix C.  Water

......................................................................................................................... 220

 

1.  Biofilms.................................................................................................................................... 220

 

2.  Water and Dialysate Sampling Strategies in Dialysis .............................................................. 222

 

3.  Water Sampling Strategies and Culture Techniques for Detecting Legionellae ...................... 223

 

4.  Procedure for Cleaning Cooling Towers and Related Equipment ........................................... 225

 

5.  Maintenance Procedures Used to Decrease Survival and Multiplications of 

Legionella

 spp. in 

Potable-Water Distribution Systems ............................................................................................. 227

 

Appendix D.  Insects and Microorganisms

.................................................................................... 228

 

Appendix E.  Information Resources

............................................................................................. 229

 

Appendix F.  Areas of Future Research

........................................................................................ 230

 

Index—Parts I and IV ............................................................................................................ 231

 

 

background image

 

v

List of Figures, Boxes, and Tables 

 

 

 

Figures

 

 

Figure 1.  Diagram of a ventilation system ..............................................................................................14

 

Figure 2.  Example of positive-pressure room control for protection from airborne environmental 

microbes (PE) ..................................................................................................................................35

 

Figure 3.  Example of negative-pressure room control for airborne infection isolation (AII) .................36

 

Figure 4.  Example of airborne infection isolation (AII) room with anteroom and neutral anteroom .....37

 

Figure 5.  Diagram of a typical air conditioning (induced draft) cooling tower ......................................58

 

Figure 6.  Dialysis water treatment system ..............................................................................................60

 

 

 

 

Boxes 

 

Box 1.  Environmental infection control: performance measures..............................................................2

 

Box 2.  Eight criteria for evaluating the strength of evidence for environmental sources of infection......4

 

Box 3.  Chain of infection components......................................................................................................4

 

Box 4.  Suggested members and functions of a multi-disciplinary coordination team for construction, 

renovation, repair, and demolition projects .....................................................................................24

 

Box 5.  Construction design and function considerations for environmental infection control ...............25

 

Box 6.  Unresolved issues associated with microbiologic air sampling...................................................28

 

Box 7.  Construction/repair projects that require barrier structures .........................................................32

 

Box 8.  Strategy for managing TB patients and preventing airborne transmission in operating rooms...39

 

Box 9.  Recovery and remediation measures for water-related emergencies...........................................52

 

Box 10.  Contingency planning for flooding............................................................................................53

 

Box 11.  Steps in an epidemiologic investigation for legionellosis..........................................................56

 

Box 12.  General steps for cleaning and maintaining ice machines, dispensers, and storage chests .......66

 

Box 13.  Preliminary concerns for conducting air sampling ....................................................................90

 

Box 14.  Selecting an air sampling device ...............................................................................................93

 

Box 15.  Undertaking environmental-surface sampling...........................................................................95

 

Box C.1.  Potential sampling sites for 

Legionella

 spp. in health-care facilities.....................................224

 

Box C.2.  Procedures for collecting and processing environmental specimens for 

Legionella

 spp.......225

 

 

 

Tables

 

 

Table 1.  Clinical and epidemiologic characteristics of aspergillosis.........................................................7

 

Table 2.  Environmental fungal pathogens: entry into and contamination of the health-care facility........8

 

Table 3.  Clinical and epidemiologic characteristics of tuberculosis (TB)...............................................10

 

Table 4.  Microorganisms associated with airborne transmission............................................................13

 

Table 5.  Filtration methods .....................................................................................................................15

 

Table 6.  Engineered specifications for positive- and negative pressure rooms.......................................19

 

Table 7.  Ventilation hazards in health-care facilities that may be associated with increased potential of 

airborne disease transmission ..........................................................................................................22

 

Table 8.  Strategies to reduce dust and moisture intrusion during external demolition and construction 30

 

background image

 

vi 

Table 9.  Infection-control measures for internal construction and repair projects ................................. 32

 

Table 10.  Summary of ventilation specifications in selected areas of health-care facilities................... 39

 

Table 11.  Clinical and epidemiologic characteristics of legionellosis/Legionnaires disease.................. 41

 

Table 12.  

Pseudomonas aeruginosa

 infections in health-care facilities ................................................. 42

 

Table 13.  Other gram-negative bacteria associated with water and moist environments ....................... 43

 

Table 14.  Nontuberculous mycobacteria—environmental vehicles ....................................................... 45

 

Table 15.  Water and point-of-use fixtures as sources and reservoirs of waterborne pathogens ............. 47

 

Table 16.  Water demand in health-care facilities during water disruption emergencies ........................ 50

 

Table 17.  Additional infection-control measures to prevent exposure of high-risk patients to waterborne 

pathogens......................................................................................................................................... 57

 

Table 18.  Microbiologic limits for hemodialysis fluids.......................................................................... 62

 

Table 19.  Factors influencing microbial contamination in hemodialysis systems.................................. 63

 

Table 20.  Microorganisms and their sources in ice and ice machines .................................................... 65

 

Table 21.  Infections associated with use of hydrotherapy equipment .................................................... 67

 

Table 22.  Levels of disinfection by type of microorganism ................................................................... 72

 

Table 23.  Air sampling methods and examples of equipment ................................................................ 91

 

Table 24.  Examples of eluents and diluents for environmental-surface sampling.................................. 96

 

Table 25.  Methods of environmental-surface sampling.......................................................................... 97

 

Table 26.  Examples of diseases associated with zoonotic transmission............................................... 105

 

Table 27.  Microorganisms and biologicals identified as select agents ................................................. 115

 

Table B.1.  Air changes/hour (ACH) and time required for airborne-contaminant removal efficiencies of 

99% and 99.9% ............................................................................................................................. 210

 

Table B.2.  Ventilation requirements for areas affecting patient care in hospitals and outpatient facilities

....................................................................................................................................................... 212

 

Table B.3.  Pressure relationships and ventilation of certain areas of nursing facilities........................ 217

 

Table B.4.  Filter efficiencies for central ventilation and air conditioning systems in general hospitals 

....................................................................................................................................................... 219

 

Table B.5.  Filter efficiencies for central ventilation and air conditioning systems in outpatient facilities

....................................................................................................................................................... 219

 

Table B.6.  Filter efficiencies for central ventilation and air conditioning systems in nursing facilities 

....................................................................................................................................................... 220

 

Table B.7.  Filter efficiencies for central ventilation and air conditioning systems in psychiatric hospitals

....................................................................................................................................................... 220

 

Table D.1.  Microorganisms isolated from arthropods in health-care settings ...................................... 228

 

 

 

background image

 

vii

List of Abbreviations Used in This Publication 

 

AAA

 animal-assisted 

activity 

AAMI 

Association for the Advancement of Medical Instrumentation 

AAT

 animal-assisted 

therapy 

ACGIH

 

American Council of Governmental Industrial Hygienists 

ACH

 

air changes per hour 

ADA

 

Americans with Disabilities Act 

AER

 

automated endoscope reprocessor 

AFB

 acid-fast 

bacilli 

AHA

 

American Hospital Association 

AHJ

 

authorities having jurisdiction 

AIA

 

American Institute of Architects 

AII

 

airborne infection isolation 

AmB

 amphotericin 

ANC

 

absolute neutrophil count 

ANSI

 

American National Standards Institute 

AORN

 

Association of periOperative Registered Nurses 

ASHE

 

American Society for Healthcare Engineering 

ASHRAE

 

American Society of Heating, Refirgeration, and Air-Conditioning Engineers 

BCG

 Bacille 

Calmette-Guérin 

BCYE

 

buffered charcoal yeast extract medium 

BHI

 brain-heart 

infusion 

BMBL

 

CDC/NIH publication “Biosafety in Microbiological and Biomedical Laboratories” 

BOD

 

biological oxygen demand 

BSE

 

bovine spongiform encephalopathy 

BSL

 biosafety 

level 

C

 Centigrade 

CAPD

 

continuous ambulatory peritoneal dialysis 

CCPD

 

continual cycling peritoneal dialysis 

CMAD

 

count median aerodynamic diameter 

CDC

 

U.S. Centers for Disease Control and Prevention 

CFR

 

Code of Federal Regulations 

CFU

 colony-forming 

unit 

CJD

 Creutzfeldt-Jakob 

disease 

cm

 centimeter 

CMS

 

U.S. Centers for Medicare and Medicaid Services 

CPL

 

compliance document (OSHA) 

CT/EC

 

cooling tower/evaporative condenser 

DFA

 

direct fluorescence assay; direct fluorescent antibody 

DHHS

 

U.S. Department of Health and Human Services 

DHBV

 

duck hepatitis B virus 

DNA

 deoxyribonucleic 

acid 

DOP

 dioctylphthalate 

DOT

 

U.S. Department of Transportation 

EC

 

environment of care (JCAHO) 

ELISA

 

enzyme-linked immunosorbent assay 

EPA

 

U.S. Environmental Protection Agency 

ESRD

 

end-stage renal disease 

background image

 

viii

EU

 endotoxin 

unit 

F

 Fahrenheit 

FDA

 

U.S. Food and Drug Administration 

FIFRA

 

Federal Insecticide, Fungicide, and Rodenticide Act 

FRC

 free 

residual 

chlorine 

ft

 foot 

(feet) 

FTC

 

U.S. Federal Trade Commission 

GISA

 glycopeptide 

intermediate 

resistant 

Staphylococcus aureus

 

HBV

 

hepatitis B virus 

HCV

 

hepatitis C virus 

HEPA

 

high efficiency particulate air 

HICPAC

 

Healthcare Infection Control Practices Advisory Committee 

HIV

 human 

immunodeficiency 

virus 

HPV

 

human papilloma virus 

HSCT

 

hematopoietic stem cell transplant 

HVAC

 

heating, ventilation, air conditioning 

ICRA

 

infection control risk assessment 

ICU

 

intensive care unit 

ID

50

 

50% median infectious dose 

IPD

 

intermittent peritoneal dialysis 

JCAHO

 

Joint Commission on Accreditation of Healthcare Organizations 

kg

 kilogram 

L

 liter 

MAC

 

Mycobacterium avium

 complex; also used to denote MacConkey agar 

MDRO

 

multiple-drug resistant organism 

MIC

 

minimum inhibitory concentration 

µm

 micrometer; 

micron 

mL

 milliliter 

min

 minute 

mg

 milligram 

MMAD

 

mass median aerodynamic diameter 

MMWR

 

“Morbidity and Mortality Weekly Report” 

MRSA

 methicillin-resistant 

Staphylococcus aureus

 

MSDS

 

material safety data sheet 

N

 Normal 

NaCl

 sodium 

chloride 

NaOH

 sodium 

hydroxide 

NCID

 

National Center for Infectious Diseases 

NCCDPHP

 

National Center for Chronic Disease Prevention and Health Promotion 

NCCLS

 

National Committee for Clinical Laboratory Standards 

ng

 nanogram 

NICU

 

neonatal intensive care unit 

NIH

 

U.S. National Institutes of Health 

NIOSH

 

National Institute for Occupational Safety and Health 

nm

 nanometer 

NNIS

 

National Nosocomial Infection Surveillance 

NTM

 nontuberculous 

mycobacteria 

OPL

 on-premises 

laundry 

OSHA

 

U.S. Occupational Safety and Health Administration 

Pa

 Pascal 

PCP

 

Pneumocystis carinii

 pneumonia 

background image

 

ix

PCR

 

polymerase chain reaction 

PD

 peritoneal 

dialysis 

PE

 protective 

environment 

PEL

 

permissible exposure limit 

PPE

 

personal protective equipment 

ppm

 parts 

per 

million 

PVC

 polyvinylchloride 

RAPD

 

randomly amplified polymorphic DNA 

RODAC

 

replicate organism direct agar contact 

RSV

 respiratory 

syncytial 

virus 

RO

 reverse 

osmosis 

SARS

 

severe acute respiratory syndrome 

SARS-CoV

 SARS 

coronavirus 

sec

 second 

spp

 species 

SSI

 

surgical site infection 

TB

 tuberculosis 

TLV®-TWA

 

threshold limit value-time weighted average 

TSA

 

tryptic soy agar 

TSB

 

tryptic soy broth 

TSE

 

transmissible spongiform encephalopathy 

U.S.

 United 

States 

USC

 

United States Code 

USDA

 

U.S. Department of Agriculture 

USPS

 

U.S. Postal Service 

UV

 ultraviolet 

UVGI

 

ultraviolet germicidal irradiation 

VAV

 

variable air ventilation 

vCJD

 

variant Creutzfeldt-Jakob disease 

VISA

 

vancomycin intermediate resistant 

Staphylococcus aureus

 

VRE

 vancomycin-resistant 

Enterococcus

 

VRSA

 vancomycin-resistant 

Staphylococcus aureus

 

v/v

 volume/volume 

VZV

 varicella-zoster 

virus 

 

 

 

 

 

Note:  Use of trade names and commercial sources is for identification only and does not imply 
endorsement by the U.S. Department of Health and Human Services.  References to non-CDC 
sites on the Internet are provided as a service to the reader and does not constitute or imply 
endorsement of these organization s or their programs by CDC or the U.S. Department of Health 
and Human Services.  CDC is not responsible for the content of pages found at these sites. 

 

 

background image

 

The following CDC staff member and HICPAC member prepared this report: 

 

Lynne Sehulster, PhD 

Division of Healthcare Quality Promotion 

National Center for Infectious Diseases 

 

Raymond Y.W. Chinn, MD 

HICPAC Advisor 

Sharp Memorial Hospital 

San Diego, California 

 

Disclosure of Relationship:

  Raymond Y.W. Chinn is a private-practice physician and salaried 

employee of Sharp Memorial Hospital in San Diego, California.  Dr. Chinn received no research funds 

from commercial sources either directly, or indirectly through awards made to the hospital, before or 

during the development of these guidelines. 

 

Contributions were made by the following CDC staff members: 

 

Matthew Arduino, DrPH 

Joe Carpenter, PE 

Rodney Donlan, PhD 

Lynne Sehulster, PhD 

Division of Healthcare Quality Promotion 

National Center for Infectious Diseases 

 

David Ashford, DVM, Dsc, MPH 

Richard Besser, MD 

Barry Fields, PhD 

Michael M. McNeil, MBBS, MPH 

Cynthia Whitney, MD, MPH 

Stephanie Wong, DMV, MPH 

Division of Bacterial and Mycotic Diseases 

National Center for Infectious Diseases 

 

Dennis Juranek, DVM, MSC 

Division of Parasitic Diseases 

National Center for Infectious Diseases 

 

Jennifer Cleveland, DDS, MPH 

Division of Oral Health 

National Center for Chronic Disease Prevention and Health Promotion 

 

 

In collaboration with the Healthcare Infection Control Practices Advisory Committee 

(HICPAC) 

background image

 

xi

HICPAC Members, February 2002 

 

Robert A. Weinstein, MD 

Jane D. Siegel, MD 

Chair Co-Chair 

Cook County Hospital 

University of Texas Southwestern Medical Center 

Chicago, IL 

Dallas, TX 

 

Michele L. Pearson, MD 

Raymond Y.W. Chinn, MD 

Executive Secretary 

Sharp Memorial Hospital 

Centers for Disease Control and Prevention 

San Diego, CA 

Atlanta, GA 

 

Alfred DeMaria, Jr., MD 

Elaine L. Larson, RN, PhD 

Massachusetts Department of Public Health 

Columbia University School of Nursing 

Jamaica Plain, MA 

New York, NY 

 

James T. Lee, MD, PhD 

Ramon E. Moncada, MD 

University of Minnesota 

Coronado Physician’s Medical Center 

VA Medical Center 

Coronado, CA 

St. Paul, MN 

 

William A. Rutala, PhD, MPH, CIC 

William E. Scheckler, MD 

University of North Carolina School of  

University of Wisconsin Medical School 

  Medicine 

Madison, WI 

Chapel Hill, NC 

 

Beth H. Stover, RN, CIC 

Marjorie A. Underwood, RN, BSN, CIC 

Kosair Children’s Hospital 

Mt. Diablo Medical Center 

Louisville, KY 

Concord, CA 

 
 

Liaison Members 

 

Loretta L. Fauerbach, MS, CIC 

Sandra L. Fitzler, RN 

Association for Professionals in Infection 

American Health Care Association 

  Control and Epidemiology (APIC) 

Washington, DC 

Washington, DC 

 

Dorothy M. Fogg, RN, BSN, MA 

Stephen F. Jencks, MD, MPH 

Association of periOperative Registered 

U.S. Centers for Medicare and Medicaid 

  Nurses (AORN) 

  Services 

Denver, CO 

Baltimore, MD 

 

Chiu S. Lin, PhD 

James P. Steinberg, MD 

U.S. Food and Drug Administration 

Society for Healthcare Epidemiology of America, 

Rockville, MD 

   Inc. (SHEA) 

 Atlanta, 

GA 

background image

 

xii 

Liaison Members (continued) 

 

Michael L. Tapper, MD 

Advisory Committee for the Elimination of 

  Tuberculosis (ACET) 

New York, NY 

 

 

 

 

Expert Reviewers 

 

Trisha Barrett, RN, MBA, CIC 

Judene Bartley, MS, MPH, CIC 

Alta Bates Medical Center 

Epidemiology Consulting Services, Inc. 

Berkeley, CA 

Beverly Hills, MI 

 

Michael Berry 

Col. Nancy Bjerke, BSN, MA, MEd, MPH, CIC 

University of North Carolina 

  (USAF, Retired) 

Chapel Hill, NC 

Infection Control Associates (ICA) 

 San 

Antonio, 

TX 

 

Walter W. Bond, MS 

Cheryl Carter, RN 

RCSA, Inc. 

University of Iowa Health Center 

Lawrenceville, GA 

Iowa City, IA 

 

Douglas Erickson, FASHE 

Martin S. Favero, PhD 

American Society for Healthcare 

Advanced Sterilization Products, Johnson and 

  Engineering (ASHE) 

  Johnson 

Park Ridge, IL 

Irvine, CA 

 

Richard Miller, MD 

Col. Shannon E. Mills, DDS 

University of Louisville School of Medicine 

HQ USAF / Surgeon General Detail 

Louisville, KY 

Bolin AFB, DC 

 

Gina Pugliese, RN, MS 

Craig E. Rubens, MD, PhD 

Premier Safety Institute 

Children’s Hospital and Medical Center 

Oak Brook, IL 

Seattle, WA 

 

James D. Scott, PE 

Andrew J. Streifel, MPH, REHS 

Michigan Department of Consumer and 

University of Minnesota 

  Industry Services 

Minneapolis, MN 

Lansing, MI 

 

Dale Woodin 

American Society for Healthcare Engineering  

  (ASHE)  

Chicago, IL

background image

 

1

Executive Summary 

 

The 

Guidelines for Environmental Infection Control in Health-Care Facilities

 is a compilation of 

recommendations for the prevention and control of infectious diseases that are associated with health-

care environments.  This document a) revises multiple sections from previous editions of the Centers for 

Disease Control and Prevention [CDC] document titled 

Guideline for Handwashing and Hospital 

Environmental Control

;

1, 2

 b) incorporates discussions of air and water environmental concerns from 

CDC’s 

Guideline for the Prevention of Nosocomial Pneumonia

;

3

 c) consolidates relevant environmental 

infection-control measures from other CDC guidelines;

4–9

  and d) includes two topics not addressed in 

previous CDC guidelines — infection-control concerns related to animals in health-care facilities and 

water quality in hemodialysis settings. 

 

Part I of this report, 

Background Information: Environmental Infection Control in Health-Care 

Facilities

, provides a comprehensive review of the scientific literature.  Attention is given to 

engineering and infection-control concerns during construction, demolition, renovation, and repairs of 

health-care facilities. Use of an infection-control risk assessment is strongly supported before the start of 

these or any other activities expected to generate dust or water aerosols.  Also reviewed in Part I are 

infection-control measures used to recover from catastrophic events (e.g., flooding, sewage spills, loss 

of electricity and ventilation, and disruption of the water supply) and the limited effects of 

environmental surfaces, laundry, plants, animals, medical wastes, cloth furnishings, and carpeting on 

disease transmission in healthcare facilities. 

 

Part II of this guideline, 

Recommendations for Environmental Infection Control in Health-Care 

Facilities

, outlines environmental infection control in health-care facilities, describing measures for 

preventing infections associated with air, water, and other elements of the environment.  These 

recommendations represent the views of different divisions within CDC’s National Center for Infectious 

Diseases (NCID) (e.g., the Division of Healthcare Quality Promotion [DHQP] and the Division of 

Bacterial and Mycotic Diseases [DBMD]) and the consensus of the Healthcare Infection Control 

Practices Advisory Committee (HICPAC), a 12-member group that advises CDC on concerns related to 

the surveillance, prevention, and control of health-care–associated infections, primarily in U.S. health-

care facilities.

10

   In 1999, HICPAC’s infection-control focus was expanded from acute-care hospitals to 

all venues where health care is provided (e.g., outpatient surgical centers, urgent care centers, clinics, 

outpatient dialysis centers, physicians’ offices, and skilled nursing facilities).  The topics addressed in 

this guideline are applicable to the majority of health-care venues in the United States.  This document 

is intended for use primarily by infection-control professionals (ICPs), epidemiologists, employee health 

and safety personnel, information system specialists, administrators, engineers, facility managers, 

environmental service professionals, and architects for health-care facilities. 

 

Key recommendations include a) infection-control impact of ventilation system and water system 

performance; b) establishment of a multidisciplinary team to conduct infection-control risk assessment; 

c) use of dust-control procedures and barriers during construction, repair, renovation, or demolition; d) 

environmental infection-control measures for special care areas with patients at high risk; e) use of 

airborne particle sampling to monitor the effectiveness of air filtration and dust-control measures; f) 

procedures to prevent airborne contamination in operating rooms when infectious tuberculosis [TB] 

patients require surgery; g) guidance regarding appropriate indications for routine culturing of water as 

part of a comprehensive control program for legionellae; h) guidance for recovering from water system 

disruptions, water leaks, and natural disasters [e.g., flooding]; i) infection-control concepts for 

equipment that uses water from main lines [e.g., water systems for hemodialysis, ice machines, 

hydrotherapy equipment, dental unit water lines, and

 

automated endoscope reprocessors]); j) 

environmental surface cleaning and disinfection

 

strategies with

 

respect to antibiotic-resistant 

background image

 

microorganisms; k) infection-control procedures for health-care laundry; l) use of animals in health care 

for activities and therapy; m) managing the presence of service animals in health-care facilities; n) 

infection-control strategies for when animals receive treatment in human health-care facilities; and o) a 

call to reinstate the practice of inactivating amplified cultures and stocks of microorganisms on-site 

during medical waste treatment. 

 

Whenever possible, the recommendations in Part II are based on data from well-designed scientific 

studies.  However, certain of these studies were conducted by using narrowly defined patient 

populations or for specific health-care settings (e.g., hospitals versus long-term care facilities), making 

generalization of findings potentially problematic.  Construction standards for hospitals or other health-

care facilities may not apply to residential home-care units.  Similarly, infection-control measures 

indicated for immunosuppressed patient care are usually not necessary in those facilities where such 

patients are not present.  Other recommendations were derived from knowledge gained during infectious 

disease investigations in health-care facilities, where successful termination of the outbreak was often 

the result of multiple interventions, the majority of which cannot be independently and rigorously 

evaluated.  This is especially true for construction situations involving air or water.   

 

Other recommendations are derived from empiric engineering concepts and may reflect an industry 

standard rather than an evidence-based conclusion.  Where recommendations refer to guidance from the 

American Institute of Architects (AIA), the statements reflect standards intended for new construction 

or renovation.  Existing structures and engineered systems are expected to be in continued compliance 

with the standards in effect at the time of construction or renovation.  Also, in the absence of scientific 

confirmation, certain infection-control recommendations that cannot be rigorously evaluated are based 

on a strong theoretical rationale and suggestive evidence.  Finally, certain recommendations are derived 

from existing federal regulations.  The references and the appendices comprise Parts III and IV of this 

document, respectively. 

 

Infections caused by the microorganisms described in these guidelines are rare events, and the effect of 

these recommendations on infection rates in a facility may not be readily measurable.  Therefore, the 

following steps to measure performance are suggested to evaluate these recommendations (Box 1): 

 

Box 1.  Environmental infection control: performance measures 

 

1.

 

Document whether infection-control personnel are actively involved in all phases of a health-care 
facility’s demolition, construction, and renovation.  Activities should include performing a risk 
assessment of the necessary types of construction barriers, and daily monitoring and documenting 
of the presence of negative airflow within the construction zone or renovation area. 

2.

 

Monitor and document daily the negative airflow in airborne infection isolation (AII) rooms and 
positive airflow in protective environment (PE) rooms, especially when patients are in these rooms. 

3.

 

Perform assays at least once a month by using standard quantitative methods for endotoxin in 
water used to reprocess hemodialyzers, and for heterotrophic and mesophilic bacteria in water 
used to prepare dialysate and for hemodialyzer reprocessing. 

4.

 

Evaluate possible environmental sources (e.g., water, laboratory solutions, or reagents) of specimen 
contamination when nontuberculous mycobacteria (NTM) of unlikely clinical importance are 
isolated from clinical cultures.  If environmental contamination is found, eliminate the probable 
mechanisms. 

5.

 

Document policies to identify and respond to water damage.  Such policies should result in either 
repair and drying of wet structural or porous materials within 72 hours, or removal of the wet 
material if drying is unlikely with 72 hours.

 

 

background image

 

3

Topics outside the scope of this document include a) noninfectious adverse events (e.g., sick building 

syndrome); b) environmental concerns in the home; c) home health care; d) bioterrorism; and e) health-

care–associated foodborne illness.  This document includes only limited discussion of a) 

handwashing/hand hygiene; b) standard precautions; and c) infection-control measures used to prevent 

instrument or equipment contamination during patient care (e.g., preventing waterborne contamination 

of nebulizers or ventilator humidifiers).  These topics are mentioned only if they are important in 

minimizing the transfer of pathogens to and from persons or equipment and the environment.  Although 

the document discusses principles of cleaning and disinfection as they are applied to maintenance of 

environmental surfaces, the full discussion of sterilization and disinfection of medical instruments and 

direct patient-care devices is deferred for inclusion in the 

Guideline for Disinfection and Sterilization in 

Health-Care Facilities

, a document currently under development.  Similarly, the full discussion of hand 

hygiene is available as the 

Guideline for Hand Hygiene in Health-Care Settings: Recommendations of 

the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA 
Hand Hygiene Task Force

.  Where applicable, the 

Guidelines for Environmental Infection Control in 

Health-Care Facilities

 are consistent in content to the drafts available as of October 2002 of both the 

revised 

Guideline for Prevention of Health-Care–Associated Pneumonia

 and 

Guidelines for Preventing 

the Transmission of Mycobacterium tuberculosis in Health-Care Facilities

 

This guideline was prepared by CDC staff members from NCID and the National Center for Chronic 

Disease Prevention and Health Promotion (NCCDPHP) and the designated HICPAC advisor.  

Contributors to this document reviewed predominantly English-language manuscripts identified from 

reference searches using the National Library of Medicine’s MEDLINE, bibliographies of published 

articles, and infection-control textbooks.  Working drafts of the guideline were reviewed by CDC 

scientists, HICPAC committee members, and experts in infection control, engineering, internal 

medicine, infectious diseases, epidemiology, and microbiology.  All recommendations in this guideline 

may not reflect the opinions of all reviewers. 

 

 

Part I.  Background Information: Environmental 
Infection Control in Health-Care Facilities 

 

A.  Introduction 

 

The health-care environment contains a diverse population of microorganisms, but only a few are 

significant pathogens for susceptible humans.  Microorganisms are present in great numbers in moist, 

organic environments, but some also can persist under dry conditions.  Although pathogenic 

microorganisms can be detected in air and water and on fomites, assessing their role in causing infection 

and disease is difficult.

11

   Only a few reports clearly delineate a “cause and effect” with respect to the 

environment and in particular, housekeeping surfaces. 

 

Eight criteria are used to evaluate the strength of evidence for an environmental source or means of 

transmission of infectious agents (Box 2).

11, 12

   Applying these criteria to disease investigations allows 

scientists to assess the contribution of the environment to disease transmission.  An example of this 

application is the identification of a pathogen (e.g., vancomycin-resistant enterococci [VRE]) on an 

environmental surface during an outbreak.  The presence of the pathogen does not establish its causal 

role; its transmission from source to host could be through indirect means (e.g., via hand transferral).

11

   

The surface, therefore, would be considered one of a number of potential reservoirs for the pathogen, 

but not the “de

 

facto” source of exposure.  An understanding of how infection occurs after

 

exposure,

 

background image

 

based on the principles of the “chain of infection,” is also important in evaluating the contribution of the 

environment to health-care–associated disease.

13

   All of the components of the “chain” must be 

operational for infection to occur (Box 3). 

 

Box 2.  Eight criteria for evaluating the strength of evidence for environmental sources of 
infection* + 

 

1.

 

The organism can survive after inoculation onto the fomite. 

2.

 

The organism can be cultured from in-use fomites. 

3.

 

The organism can proliferate in or on the fomite. 

4.

 

Some measure of acquisition of infection cannot be explained by other recognized modes of 
transmission. 

5.

 

Retrospective case-control studies show an association between exposure to the fomite and 
infection. 

6.

 

Prospective case-control studies may be possible when more than one similar type of fomite is in 
use. 

7.

 

Prospective studies allocating exposure to the fomite to a subset of patients show an assication 
between exposure and infection. 

8.

 

Decontamination of the fomite results in the elimination of infection transmission. 

 

 

*  These criteria are listed in order of strength of evidence. 

+  Adapted from references 11 and 12. 

 

Box 3.  Chain of infection components* 

 

1.

 

Adequate number of pathogenic organisms (dose) 

2.

 

Pathogenic organisms of sufficient virulence 

3.

 

A susceptible host 

4.

 

An appropriate mode of transmission or transferal of the organism in sufficient number from 
source to host 

5.

 

The correct portal of entry into the host 

 

*  Adapted from reference 13. 

 

 

The presence of the susceptible host is one of these components that underscores the importance of the 

health-care environment and opportunistic pathogens on fomites and in air and water.  As a result of 

advances in medical technology and therapies (e.g., cytotoxic chemotherapy and transplantation 

medicine), more patients are becoming immunocompromised in the course of treatment and are 

therefore at increased risk for acquiring health-care–associated opportunistic infections.  Trends in 

health-care delivery (e.g., early discharge of patients from acute care facilities) also are changing the 

distribution of patient populations and increasing the number of immunocompromised persons in non-

acute-care hospitals.  According to the American Hospital Association (AHA), in 1998, the number of 

hospitals in the United States totaled 6,021; these hospitals had a total of 1,013,000 beds,

14

 representing 

a 5.5% decrease in the number of acute-care facilities and a 10.2% decrease in the number of beds over 

the 5-year period 1994–1998.

14

 In addition, the total average daily number of patients receiving care in 

U.S. acute-care hospitals in 1998 was 662,000 (65.4%) – 36.5% less than the 1978 average of 

1,042,000.

14

   As the number of acute-care hospitals declines, the length of stay in these facilities is 

concurrently decreasing, particularly for immunocompetent patients.  Those patients remaining in acute-

care facilities are likely to be those requiring extensive medical interventions who therefore at high risk 

for opportunistic infection

background image

 

5

 

The growing population of severely immunocompromised patients is at odds with demands on the 

health-care industry to remain viable in the marketplace; to incorporate modern equipment, new 

diagnostic procedures, and new treatments; and to construct new facilities.  Increasing numbers of 

health-care facilities are likely to be faced with construction in the near future as hospitals consolidate to 

reduce costs, defer care to ambulatory centers and satellite clinics, and try to create more “home-like” 

acute-care settings.  In 1998, approximately 75% of health-care–associated construction projects 

focused on renovation of existing outpatient facilities or the building of such facilities;

15

  the number of 

projects associated with outpatient health care rose by 17% from 1998 through 1999.

16

   An aging 

population is also creating increasing demand for assisted-living facilities and skilled nursing centers.  

Construction of assisted-living facilities in 1998 increased 49% from the previous year, with 138 

projects completed at a cost of $703 million.

16

   Overall, from 1998 to 1999, health-care–associated 

construction costs increased by 28.5%, from $11.56 billion to $14.86 billion.

16 

 

Environmental disturbances associated with construction activities near health-care facilities pose 

airborne and waterborne disease threats risks for the substantial number of patients who are at risk for 

health-care–associated opportunistic infections.  The increasing age of hospitals and other health-care 

facilities is also generating ongoing need for repair and remediation work (e.g., installing wiring for new 

information systems, removing old sinks, and repairing elevator shafts) that can introduce or increase 

contamination of the air and water in patient-care environments.  Aging equipment, deferred 

maintenance, and natural disasters provide additional mechanisms for the entry of environmental 

pathogens into high-risk patient-care areas. 

 

Architects, engineers, construction contractors, environmental health scientists, and industrial hygienists 

historically have directed the design and function of hospitals’ physical plants.  Increasingly, however, 

because of the growth in the number of susceptible patients and the increase in construction projects, the 

involvement of hospital epidemiologists and infection-control professionals is required.  These experts 

help make plans for building, maintaining, and renovating health-care facilities to ensure that the 

adverse impact of the environment on the incidence of health-care–associated infections is minimal.  

The following are examples of adverse outcomes that could have been prevented had such experts been 

involved in the planning process: a) transmission of infections caused by 

Mycobacterium tuberculosis

varicella-zoster virus (VZV), and measles (i.e., rubeola) facilitated by inappropriate air-handling 

systems in health-care facilities;

6

  b) disease outbreaks caused by 

Aspergillus

 spp.,

17–19

  

Mucoraceae

,

20

  

and 

Penicillium

 spp. associated with the absence of environmental controls during periods of health-care 

facility-associated construction;

21

  c) infections and/or colonizations of patients and staff with 

vancomycin-resistant 

Enterococcus faecium

 [VRE] and 

Clostridium difficile

 acquired indirectly from 

contact with organisms present on environmental surfaces in health-care facilities;

22–25

  and d) outbreaks 

and pseudoepidemics of legionellae,

26, 27

  

Pseudomonas aeruginosa

,

28–30

  and the nontuberculous 

mycobacteria (NTM)

31, 32

  linked to water and aqueous solutions used in health-care facilities.  The 

purpose of this guideline is to provide useful information for both health-care professionals and 

engineers in efforts to provide a safe environment in which quality health care may be provided to 

patients.  The recommendations herein provide guidance to minimize the risk for and prevent 

transmission of pathogens in the indoor environment. 

 

 

B.  Key Terms Used in this Guideline 

 

Although Appendix A provides definitions for terms discussed in Part I, several terms that pertain to 

specific patient-care areas and patients who are at risk for health-care–associated opportunistic 

infections are presented here.  Specific engineering parameters for these care areas are discussed more 

background image

 

fully in the text.  

Airborne Infection Isolation (AII)

 refers to the isolation of patients infected with 

organisms spread via airborne droplet nuclei <5 µm in diameter.  This isolation area receives numerous 

air changes per hour (ACH) (>12 ACH for new construction as of 2001; >6 ACH for construction 

before 2001), and is under negative pressure, such that the direction of the airflow is from the outside 

adjacent space (e.g., corridor) into the room.  The air in an AII room is preferably exhausted to the 

outside, but may be recirculated provided that the return air is filtered through a high efficiency 

particulate air (HEPA) filter.  The use of personal respiratory protection is also indicated for persons 

entering these rooms. 

 

Protective Environment (PE)

 is a specialized patient-care area, usually in a hospital, with a positive 

airflow relative to the corridor (i.e., air flows from the room to the outside adjacent space).  The 

combination of HEPA filtration, high numbers of air changes per hour (>12 ACH), and minimal leakage 

of air into the room creates an environment that can safely accommodate patients who have undergone 

allogeneic hematopoietic stem cell transplant (HSCT). 

 

Immunocompromised patients

 are those patients whose immune mechanisms are deficient because of 

immunologic disorders (e.g., human immunodeficiency virus [HIV] infection, congenital immune 

deficiency syndrome, chronic diseases [such as diabetes, cancer, emphysema, and cardiac failure]) or 

immunosuppressive therapy (e.g., radiation, cytotoxic chemotherapy, anti-rejection medication, and 

steroids).  Immunocompromised patients who are identified as 

high-risk patients

 have the greatest risk 

of infection caused by airborne or waterborne microorganisms.  Patients in this subset include those who 

are severely neutropenic for prolonged periods of time (i.e., an absolute neutrophil count [ANC] of <500 

cells/mL), allogeneic HSCT patients, and those who have received intensive chemotherapy (e.g., 

childhood acute myelogenous leukemia patients). 

 

 

C.  Air 

 

1.  Modes of Transmission of Airborne Diseases 

 

A variety of airborne infections in susceptible hosts can result from exposures to clinically significant 

microorganisms released into the air when environmental reservoirs (i.e., soil, water, dust, and decaying 

organic matter) are disturbed.  Once these materials are brought indoors into a health-care facility by 

any of a number of vehicles (e.g., people, air currents, water, construction materials, and equipment), 

the attendant microorganisms can proliferate in various indoor ecological niches and, if subsequently 

disbursed into the air, serve as a source for airborne health-care–associated infections. 

 

Respiratory infections can be acquired from exposure to pathogens contained either in droplets or 

droplet nuclei.  Exposure to microorganisms in droplets (e.g., through aerosolized oral and nasal 

secretions from infected patients

33

) constitutes a form of direct contact transmission.  When droplets are 

produced during a sneeze or cough, a cloud of infectious particles >5 µm in size is expelled, resulting in 

the potential exposure of susceptible persons within 3 feet of the source person.

6

   Examples of 

pathogens spread in this manner are influenza virus, rhinoviruses, adenoviruses, and respiratory 

syncytial virus (RSV).  Because these agents primarily are transmitted directly and because the droplets 

tend to fall out of the air quickly, measures to control air flow in a health-care facility (e.g., use of 

negative pressure rooms) generally are not indicated for preventing the spread of diseases caused by 

these agents.  Strategies to control the spread of these diseases are outlined in another guideline.

 

The spread of airborne infectious diseases via droplet nuclei is a form of indirect transmission.

34

   

Droplet nuclei are the residuals of droplets that, when suspended in air, subsequently dry and produce 

background image

 

7

particles ranging in size from 1–5 µm.  These particles can a) contain potentially viable microorganisms, 

b) be protected by a coat of dry secretions, c) remain suspended indefinitely in air, and d) be transported 

over long distances. The microorganisms in droplet nuclei persist in favorable conditions (e.g., a dry, 

cool atmosphere with little or no direct exposure to sunlight or other sources of radiation).  Pathogenic 

microorganisms that can be spread via droplet nuclei include 

Mycobacterium tuberculosis

, VZV, 

measles virus (i.e., rubeola), and smallpox virus (i.e., variola major).

6

   Several environmental pathogens 

have life-cycle forms that are similar in size to droplet nuclei and may exhibit similar behavior in the 

air.  The spores of 

Aspergillus fumigatus 

have a diameter of 2–3.5 µm, with a settling velocity estimated 

at 0.03 cm/second (or about 1 meter/hour) in still air.  With this enhanced buoyancy, the spores, which 

resist desiccation, can remain airborne indefinitely in air currents and travel far from their source.

35 

 

2.  Airborne Infectious Diseases in Health-Care Facilities 

 

a.  Aspergillosis and Other Fungal Diseases 

Aspergillosis is caused by molds belonging to the genus 

Aspergillus

.  

Aspergillus

 spp. are prototype 

health-care–acquired pathogens associated with dusty or moist environmental conditions.  Clinical and 

epidemiologic aspects of aspergillosis (Table 1) are discussed extensively in another guideline.

3

   

 

 

Table 1.  Clinical and epidemiologic characteristics of aspergillosis 

 

References 

Causative agents 

Aspergillus fumigatus

 (90%–95% of 

Aspergillus

 infections among 

hematopoietic stem cell transplant (HSCT) patients; 

A. flavus, A. niger, A. 

terreus, A. nidulans 

36–43 

Modes of transmission 

Airborne transmission of fungal spores; direct inhalation; direct inoculation 

from environmental sources (rare) 

37 

Activities associated with 

infection 

Construction, renovation, remodeling, repairs, building demolition; rare 

episodes associated with fomites 

44–51 

Clinical syndromes and 

diseases 

Acute invasive:  pneumonia

; ulcerative tracheobronchitis; osteomyelitis; 

abscesses (aspergillomas) of the lungs, brain, liver, spleen, and kidneys; 

thrombosis of deep blood vessels; necrotizing skin ulcers; endophthalmitis; 

and sinusitis 

Chronic invasive

:  chronic pneumonitis 

Hypersensity

:  allergic bronchopulmonary aspergillosis 

Cutaneous

:  primary skin and burn-wound infections 

44, 45, 52–58 

Patient populations at 

greatest risk 

Hematopoietic stem cell transplant patients (HSCT):

  

immunocompromised patients (i.e., those with underlying disease), patients 

undergoing chemotherapy, organ transplant recipients, preterm neonates, 

hemodialysis patients, patients with identifiable immune system deficiencies 

who receive care in general intensive care units (ICUs), and cystic fibrosis 

patients (may be colonized, occasionally become infected) 

36, 59–78 

Factors affecting severity 

and outcomes 

The immune status of the patient and the duration of severe neutropenia  

79, 80 

Occurrence 

Rare and sporadic, but increasing as proportion of immunocompromised 

patients increases; 5% of HSCT patients infected, <5% of solid organ 

transplant recipients infected 

36, 37, 81–88 

Mortality rate 

Rate can be as high as 100% if severe neutropenia persists; 13%–80% 

mortality among leukemia patients 

58, 83, 89, 90 

 

Aspergillus

 spp. are ubiquitous, aerobic fungi that occur in soil, water, and decaying vegetation; the 

organism also survives well in air, dust, and moisture present in health-care facilities.

91–93

   The presence 

of aspergilli in the health-care facility environment is a substantial extrinsic risk factor for opportunistic 

invasive aspergillosis (invasive aspergillosis being the most serious form of the disease).

69, 94

   Site 

renovation and construction can disturb 

Aspergillus

-contaminated dust and produce bursts of airborne 

background image

 

fungal spores.  Increased levels of atmospheric dust and fungal spores have been associated with 

clusters of health-care–acquired infections in immunocompromised patients.

17, 20, 44, 47, 49, 50, 95–98

   

Absorbent building materials (e.g., wallboard) serve as an ideal substrate for the proliferation of this 

organism if they become and remain wet, thereby increasing the numbers of fungal spores in the area.  

Patient-care items, devices, and equipment can become contaminated with 

Aspergillus

 spp. spores and 

serve as sources of infection if stored in such areas.

57 

 

Most cases of aspergillosis are caused by 

Aspergillus fumigatus

, a thermotolerant/thermophilic fungus 

capable of growing over a temperature range from 53.6°F–127.4°F (12°C–53°C); optimal growth occurs 

at approximately 104°F (40°C), a temperature inhibitory to most other saprophytic fungi.

99

   It can use 

cellulose or sugars as carbon sources; because its respiratory process requires an ample supply of 

carbon, decomposing organic matter is an ideal substrate. 

 

Other opportunistic fungi that have been occasionally linked with health-care–associated infections are 

members of the order 

Mucorales

 (e.g., 

Rhizopus

 spp.) and miscellaneous moniliaceous molds (e.g., 

Fusarium

 spp. and 

Penicillium

 spp.) (Table 2).  Many of these fungi can proliferate in moist 

environments (e.g., water-damaged wood and building materials).  Some fungi (e.g., 

Fusarium

 spp. and 

Pseudoallescheria

 spp.) also can be airborne pathogens.

100

   As with aspergillosis, a major risk factor for 

disease caused by any of these pathogens is the host’s severe immunosuppression from either 

underlying disease or immunosuppressive therapy.

101, 102

 

 

Table 2.  Environmental fungal pathogens: entry into and contamination of the health-
care facility 

 

Implicated environmental vehicle 

References 

 

Aspergillus spp. 

 

Improperly functioning ventilation systems 

20, 46, 47, 97, 98, 103, 104 

 Air 

filters

*,+ 

17, 18, 105–107 

 

Air filter frames 

17, 18 

 Window 

air 

conditioners 

96 

 

Backflow of contaminated air 

107 

 

Air exhaust contamination

104 

 

False ceilings 

48, 57, 97, 108 

 

Fibrous insulation and perforated metal ceilings 

66 

 

Acoustic ceiling tiles, plasterboard 

18, 109 

 

Fireproofing material 

48, 49 

 

Damp wood building materials 

49 

 

Opening doors to construction site 

110 

 Construction 

69 

 

Open windows 

20, 108, 111 

 

Disposal conduit door 

68 

 

Hospital vacuum cleaner 

68 

 Elevator 

112 

 Arm 

boards 

57 

 Walls 

113 

 Unit 

kitchen 

114 

 

Food 21 

 Ornamental 

plants 

21 

Mucorales / Rhizopus spp.

 

 

Air filter 

20, 115 

 False 

ceilings 

97 

 Heliport 

115 

Scedosporium spp.

 

 Construction 

116 

background image

 

9

(Table 2. continued) 

 

 

Implicated environmental vehicles 

References 

 

Penicillium spp.

 

 

Rotting cabinet wood, pipe leak 

21 

 Ventilation 

duct 

fiberglass insulation 

112 

 Air 

filters 

105 

 Topical 

anesthetic 

117 

Acremonium spp.

 

 Air 

filters 

105 

Cladosporium spp.

 

 Air 

filters 

105 

Sporothrix

 

 Construction 

(pseudoepidemic) 

118 

 

*.  Pigeons, their droppings and roosts are associated with spread of 

Aspergillus, Cryptococcus,

 and

 Histoplasma

 spp.  There have been at  

       least three outbreaks linked to contamination of the filtering systems from bird droppings

98, 103, 104

   Pigeon mites may gain access into a 

        health-care facility through the ventilation system.

119

 

+.  The American Institute of Architects (AIA) standards stipulate that for new or renovated construction a) exhaust outlets are to be placed 

        >25 feet from air intake systems, b) the bottom of outdoor air intakes for HVAC systems should be 6 feet above ground or 3 feet above 

       roof level, and c) exhaust outlets from contaminated areas are situated above the roof level and arranged to minimize the recirculation of  

       exhausted air back into the building.

120

 

 

 

Infections due 

Cryptococcus neoformans

Histoplasma capsulatum

, or 

Coccidioides immitis

 can occur 

in health-care settings if nearby ground is disturbed and a malfunction of the facility’s air-intake 

components allows these pathogens to enter the ventilation system.  

C. neoformans

 is a yeast usually 4–

8 µm in size.  However, viable particles of <2 µm diameter (and thus permissive to alveolar deposition) 

have been found in soil contaminated with bird droppings, particularly from pigeons.

98, 103, 104, 121

   

H. 

capsulatum

, with the infectious microconidia ranging in size from 2–5 µm, is endemic in the soil of the 

central river valleys of the United States.  Substantial numbers of these infectious particles have been 

associated with chicken coops and the roosts of blackbirds.

98, 103, 104, 122

   Several outbreaks of 

histoplasmosis have been associated with disruption of the environment; construction activities in an 

endemic area may be a potential risk factor for health-care–acquired airborne infection.

123, 124

   

C. 

immitis

, with arthrospores of 3–5 µm diameter, has similar potential, especially in the endemic 

southwestern United States and during seasons of drought followed by heavy rainfall.  After the 1994 

earthquake centered near Northridge, California, the incidence of coccidioidomycosis in the surrounding 

area exceeded the historical norm.

125 

 

Emerging evidence suggests that 

Pneumocystis carinii

, now classified as a fungus, may be spread via 

airborne, person-to-person transmission.

126

   Controlled studies in animals first demonstrated that 

P. 

carinii

 could be spread through the air.

127

   More recent studies in health-care settings have detected 

nucleic acids of 

P. carinii

 in air samples from areas frequented or occupied by 

P. carinii

-infected 

patients but not in control areas that are not occupied by these patients.

128, 129

   Clusters of cases have 

been identified among

 

immunocompromised patients who had contact with a source patient and

 

with

 

each other.  Recent studies have examined the presence of 

P. carinii

 DNA in oropharyngeal washings 

and the nares of infected patients, their direct contacts, and persons with no direct contact.

130, 131

   

Molecular analysis of the DNA by polymerase chain reaction (PCR) provides evidence for airborne 

transmission of 

P. carinii

 from infected patients to direct contacts, but immunocompetent contacts tend 

to become transiently colonized rather than infected.

131

   The role of colonized persons in the spread of 

P. carinii

 pneumonia (PCP) remains to be determined.  At present, specific modifications to ventilation 

systems to control spread of PCP in a health-care facility are not indicated.  Current recommendations 

background image

 

10 

outline isolation procedures to minimize or eliminate contact of immunocompromised patients not on 

PCP prophylaxis with PCP-infected patients.

6, 132 

 

b.  Tuberculosis and Other Bacterial Diseases

 

The bacterium most commonly associated with airborne transmission is 

Mycobacterium tuberculosis

.  A 

comprehensive review of the microbiology and epidemiology of 

M. tuberculosis

 and guidelines for 

tuberculosis (TB) infection control have been published.

4, 133, 134

   A summary of the clinical and 

epidemiologic information from these materials is provided in this guideline (Table 3). 

 

Table 3.  Clinical and epidemiologic characteristics of tuberculosis (TB)* 

Causative agents 

Mycobacterium tuberculosis, M. bovis, M. africanum 

Mode of transmission 

Airborne transmission via droplet nuclei 1–5 µm in diameter 

Patient factors associated with 

infectivity and transmission 

  Disease of the lungs, airways, or larynx; presence of cough or other forceful 

       expiratory measures 

  Presence of acid-fast bacilli (AFB) in the sputum 

  Failure of the patient to cover the mouth and nose when coughing or sneezing 

  Presence of cavitation on chest radiograph 

  Inappropriate or shortened duration of chemotherapy 

Activities associated with 

infections 

  Exposures in relatively small, enclosed spaces 

  Inadequate ventilation resulting in insufficient removal of droplet nuclei 

  Cough-producing procedures done in areas without proper environmental controls 

  Recirculation of air containing infectious droplet nuclei 

  Failure to use respiratory protection when managing open lesions for patients with 

        suspected extrapulmonary TB

135 

Clinical syndromes and disease 

Pulmonary TB

; extrapulmonary TB can affect any organ system or tissue; laryngeal 

TB is highly contagious 

Populations at greatest risk 

  Immunocompromised persons (e.g., HIV-infected persons) 

  Medically underserved persons, urban poor, homeless persons, elderly persons, 

       migrant farm workers, close contacts of known patients 

  Substance abusers, present and former prison inmates 

  Foreign-born persons from areas with high prevalence of TB 

  Health-care workers 

Factors affecting severity and 

outcomes 

  Concentration of droplet nuclei in air, duration of exposure 

  Age at infection 

  Immunosuppression due to therapy or disease, underlying chronic medical 

        conditions, history of malignancies or lesions or the lungs 

Occurrence 

Worldwide; incidence in the United States is 5.6 cases/100,000 population (2001)

136 

Mortality 

930 deaths in the United States (1999)

136 

Chemoprophylaxis / treatment 

Treatment of latent infection includes isoniazid (INH) or rifampin (RIF).

4, 134, 137–139

   

Directly observed therapy (DOT) for active cases as indicated: INH, RIF, 

pyrazinamide (PZA), ethambutol (EMB), streptomycin (SM) in various combinations 

determined by prevalent levels of specific resistance.

4, 134, 137–139

   Consult therapy 

guidelines for specific treatment indications.

139 

*  Material in this table is compiled from references 4, 133–141. 

 

 

M. tuberculosis

 is carried by droplet nuclei generated when persons (primarily adults and adolescents) 

who have pulmonary or laryngeal TB sneeze, cough, speak, or sing;

139

  normal air currents can keep 

these particles airborne for prolonged periods and spread them throughout a room or building.

142

   

However, transmission of TB has occurred from mycobacteria aerosolized during provision of care 

(e.g., wound/lesion care or during handling of infectious peritoneal dialysis fluid) for extrapulmonary 

TB patients.

135, 140

 

 

Gram-positive cocci (i.e., 

Staphylococcus aureus

, group A beta-hemolytic streptococci), also important 

health-care–associated pathogens, are resistant to inactivation by drying and can persist in the 

background image

 

11

environment and on environmental surfaces for extended periods.  These organisms can be shed from 

heavily colonized persons and discharged into the air.  Airborne dispersal of 

S. aureus 

is directly 

associated with the concentration of the bacterium in the anterior nares.

143

   Approximately 10% of 

healthy carriers will disseminate 

S. aureus

 into the air, and some persons become more effective 

disseminators of 

S. aureus

 than others.

144–148

   The dispersal of 

S. aureus

 into air can be exacerbated by 

concurrent viral upper respiratory infection, thereby turning a carrier into a “cloud shedder.”

149

   

Outbreaks of surgical site infections (SSIs) caused by group A beta-hemolytic streptococci have been 

traced to airborne transmission from colonized operating-room personnel to patients.

150–153

   In these 

situations, the strain causing the outbreak was recovered from the air in the operating room

150, 151, 154 

  or 

on settle plates in a room in which the carrier exercised.

151–153

   

S. aureus

 and group A streptococci have 

not been linked to airborne transmission outside of operating rooms, burn units, and neonatal 

nurseries.

155, 156

   Transmission of these agents occurs primarily via contact and droplets.  

 

Other gram-positive bacteria linked to airborne transmission include 

Bacillus

 spp. which are capable of 

sporulation as environmental conditions become less favorable to support their growth.  Outbreaks and 

pseudo-outbreaks have been attributed to 

Bacillus cereus

 in maternity, pediatric, intensive care, and 

bronchoscopy units; many of these episodes were secondary to environmental contamination.

157–160 

  

 

Gram-negative bacteria rarely are associated with episodes of airborne transmission because they 

generally require moist environments for persistence and growth.  The main exception is 

Acinetobacter 

spp., which can withstand the inactivating effects of drying.  In one epidemiologic investigation of 

bloodstream infections among pediatric patients, identical 

Acinetobacter

 spp. were cultured from the 

patients, air, and room air conditioners in a nursery.

161

 

 

Aerosols generated from showers and faucets may potentially contain legionellae and other gram-

negative waterborne bacteria (e.g., 

Pseudomonas aeruginosa

).  Exposure to these organisms is through 

direct inhalation.  However, because water is the source of the organisms and exposure occurs in the 

vicinity of the aerosol, the discussion of the diseases associated with such aerosols and the prevention 

measures used to curtail their spread is discussed in another section of the Guideline (see Part I: Water). 

 

c.  Airborne Viral Diseases 

Some human viruses are transmitted from person to person via droplet aerosols, but very few viruses are 

consistently airborne in transmission (i.e., are routinely suspended in an infective state in air and capable 

of spreading great distances), and health-care–associated outbreaks of airborne viral disease are limited 

to a few agents.  Consequently, infection-control measures used to prevent spread of these viral diseases 

in health-care facilities primarily involve patient isolation, vaccination of susceptible persons, and 

antiviral therapy as appropriate rather than measures to control air flow or quality.

6

   Infections caused 

by VZV frequently are described in health-care facilities.  Health-care–associated airborne outbreaks of 

VZV infections from patients with primary infection and disseminated zoster have been documented; 

patients with localized zoster have, on rare occasions, also served as source patients for outbreaks in 

health-care facilities.

162–166

   VZV infection can be prevented by vaccination, although patients who 

develop a rash within 6 weeks of receiving varicella vaccine or who develop breakthrough varicella 

following exposure should be considered contagious.

167

 

 

Viruses whose major mode of transmission is via droplet contact rarely have caused clusters of 

infections in group settings through airborne routes.  The factors facilitating airborne distribution of 

these viruses in an infective state are unknown, but a presumed requirement is a source patient in the 

early stage of infection who is shedding large numbers of viral particles into the air.  Airborne 

transmission of measles has been documented in health-care facilities.

168–171

   In addition, institutional 

outbreaks of influenza virus infections have occurred predominantly in nursing homes,

172–176

  and less 

frequently in medical and neonatal intensive care units, chronic-care areas, HSCT units, and pediatric 

background image

 

12 

wards.

177–180

   Some evidence supports airborne transmission of influenza viruses by droplet nuclei,

181, 182

  

and case clusters in pediatric wards suggest that droplet nuclei may play a role in transmitting certain 

respiratory pathogens (e.g., adenoviruses and respiratory syncytial virus [RSV]).

177, 183, 184

   Some 

evidence also supports airborne transmission of enteric viruses.  An outbreak of a Norwalk-like virus 

infection involving more than 600 staff personnel over a 3-week period was investigated in a Toronto, 

Ontario hospital in 1985; common sources (e.g., food and water) were ruled out during the 

investigation, leaving airborne spread as the most likely mode of transmission.

185

 

 

Smallpox virus, a potential agent of bioterrorism, is spread predominantly via direct contact with 

infectious droplets, but it also can be associated with airborne transmission.

186, 187

   A German hospital 

study from 1970 documented the ability of this virus to spread over considerable distances and cause 

infection at low doses in a well-vaccinated population; factors potentially facilitating transmission in 

this situation included a patient with cough and an extensive rash, indoor air with low relative humidity, 

and faulty ventilation patterns resulting from hospital design (e.g., open windows).

188

   Smallpox 

patients with extensive rash are more likely to have lesions present on mucous membranes and therefore 

have greater potential to disseminate virus into the air.

188

   In addition to the smallpox transmission in 

Germany, two cases of laboratory-acquired smallpox virus infection in the United Kingdom in 1978 

also were thought to be caused by airborne transmission.

189

  

 

Airborne transmission may play a role in the natural spread of hantaviruses and certain hemorrhagic 

fever viruses (e.g., Ebola, Marburg, and Lassa), but evidence for airborne spread of these agents in 

health-care facilities is inconclusive.

190

   Although hantaviruses can be transmitted when aerosolized 

from rodent excreta,

191, 192

  person-to-person spread of hantavirus infection from source patients has not 

occurred in health-care facilities.

193–195

   Nevertheless, health-care workers are advised to contain 

potentially infectious aerosols and wear National Institute of Occupational Safety and Health (NIOSH) 

approved respiratory protection when working with this agent in laboratories or autopsy suites.

196

   

Lassa virus transmission via aerosols has been demonstrated in the laboratory and incriminated in 

health-care–associated infections in Africa,

197–199

  but airborne spread of this agent in hospitals in 

developed nations likely is inefficient.

200, 201

   Yellow fever is considered to be a viral hemorrhagic fever 

agent with high aerosol infectivity potential, but health-care–associated transmission of this virus has 

not been described.

202

   Viral hemorrhagic fever diseases primarily occur after direct exposure to 

infected blood and body fluids, and the use of standard and droplet precautions prevents transmission 

early in the course of these illnesses.

203, 204

   However, whether these viruses can persist in droplet nuclei 

that might remain after droplet production from coughs or vomiting in the latter stages of illness is 

unknown.

205

   Although the use of a negative-pressure room is not required during the early stages of 

illness, its use might be prudent at the time of hospitalization to avoid the need for subsequent patient 

transfer.  Current CDC guidelines recommend negative-pressure rooms with anterooms for patients with

 

hemorrhagic fever and use of HEPA respirators by persons entering these rooms when the patient has 

prominent cough, vomiting, diarrhea, or hemorrhage.

6, 203

   Face shields or goggles will help to prevent 

mucous-membrane exposure to potentially-aerosolized infectious material in these situations.  If an 

anteroom is not available, portable, industrial-grade high efficiency particulate air (HEPA) filter units 

can be used to provide the equivalent of additional air changes per hour (ACH). 

 
 
 
 
 
 
 
 

background image

 

13

Table 4.  Microorganisms associated with airborne transmission*

 

 

Fungi Bacteria Viruses 

Numerous reports 
in health-care 
facilities 

Aspergillus

 spp.+ 

Mucorales 

(

Rhizopus

 spp.)

97, 115 

Mycobacterium 
tuberculosis

Measles (rubeola) virus

168-170

 

Varicella-zoster virus

162-166 

Atypical, 
occasional reports 

Acremonium

 spp.

105, 206

 

Fusarium

 spp.

102

 

Pseudoallescheria boydii

100

 

Scedosporium

 spp.

116

 

Sporothrix cyanescens

118 

Acinetobacter

 spp.

161

 

Bacillus

 spp.¶

160, 207

 

Brucella

 spp.**

208-211

 

Staphylococcus aureus

148, 156

Group A 

Streptococcus

151 

Smallpox virus (variola)§

188, 189

 

Influenza viruses

181, 182

 

Respiratory syncytial virus

183

 

Adenoviruses

184

 

Norwalk-like virus

185 

Airborne in nature; 
airborne 
transmission in 
health care settings 
not described 

Coccidioides immitis

125

 

Cryptococcus

 spp.

121

 

Histoplasma capsulatum

124 

Coxiella burnetii

 (Q fever)

212 

Hantaviruses

193, 195

 

Lassa virus

205

 

Marburg virus

205

 

Ebola virus

205

 

Crimean-Congo virus

205 

Under investigation 

Pneumocystis carinii

131 

— — 

*  This list excludes microorganisms transmitted from aerosols derived from water. 

+  Refer to the text for references for these disease agents. 

§  Airborne transmission of smallpox is infrequent.  Potential for airborne transmission increases with patients who are effective disseminators 

       present in facilities with low relative humidity in the air and faulty ventilation. 

¶  Documentation of pseudoepidemic during construction. 

**  Airborne transmission documented in the laboratory but not in patient-care areas 

 

 

3.  Heating, Ventilation, and Air Conditioning Systems in Health-Care 
Facilities 

 

a.  Basic Components and Operations

 

Heating, ventilation, and air conditioning (HVAC) systems in health-care facilities are designed to a) 

maintain the indoor air temperature and humidity at comfortable levels for staff, patients, and visitors; 

b) control odors; c) remove contaminated air; d) facilitate air-handling requirements to protect 

susceptible staff and patients from airborne health-care–associated pathogens; and e) minimize the risk 

for transmission of airborne pathogens from infected patients.

35, 120

   An HVAC system includes an 

outside air inlet or intake; filters; humidity modification mechanisms (i.e., humidity control in summer, 

humidification in winter); heating and cooling equipment; fans; ductwork; air exhaust or out-takes; and 

registers, diffusers, or grilles for proper distribution of the air (Figure 1).

213, 214

   Decreased performance 

of healthcare facility HVAC systems, filter inefficiencies, improper installation, and poor maintenance 

can contribute to the spread of health-care–associated airborne infections. 

 

The American Institute of Architects (AIA) has published guidelines for the design and construction of 

new health-care facilities and for renovation of existing facilities.  These AIA guidelines address indoor 

air-quality standards (e.g., ventilation rates, temperature levels, humidity levels, pressure relationships, 

and minimum air changes per hour [ACH]) specific to each zone or area in health-care facilities (e.g., 

operating rooms, laboratories, diagnostic areas, patient-care areas, and support departments).

120

   These 

guidelines represent a consensus document among authorities having jurisdiction (AHJ), governmental 

regulatory agencies (i.e., Department of Health and Human Services  [DHHS]; Department of Labor, 

Occupational Safety and Health Administration [OSHA]), health-care professionals, professional 

organizations (e.g., American Society of Heating, Refrigeration, and Air-Conditioning Engineers 

[ASHRAE], American Society for Healthcare Engineering [ASHE]), and accrediting organizations (i.e., 

Joint Commission on Accreditation of Healthcare Organizations [JCAHO]).  More than 40 state 

agencies that license health-care facilities have either incorporated or adopted

 

by reference these 

background image

 

14 

guidelines

 

into their state standards.  JCAHO, through its surveys, ensures that facilities are in 

compliance with the ventilation guidelines of this standard for new construction and renovation. 

 

Figure 1.  Diagram of a ventilation system* 

 

 

Outdoor air and recirculated air pass through air cleaners (e.g., filter banks) designed to reduce the concentration of airborne 

contaminants.  Air is conditioned for temperature and humidity before it enters the occupied space as supply air.  Infiltration is 

air leakage inward through cracks and interstitial spaces of walls, floors, and ceilings.  Exfiltration is air leakage outward 

through these same cracks and spaces.  Return air is largely exhausted from the system, but a portion is recirculated with fresh, 

incoming air. 

*  Used with permission of the publisher of reference 214 (ASHRAE) 

 

Engineering controls to contain or prevent the spread of airborne contaminants center on a) local 

exhaust ventilation [i.e., source control], b) general ventilation, and c) air cleaning.

4

   General ventilation 

encompasses a) dilution and removal of contaminants via well-mixed air distribution of filtered air, b) 

directing contaminants toward exhaust registers and grilles via uniform, non-mixed airflow patterns, c) 

pressurization of individual spaces relative to all other spaces, and d) pressurization of buildings relative 

to the outdoors and other attached buildings. 

 

A centralized HVAC system operates as follows.  Outdoor air enters the system, where low-efficiency 

or “roughing” filters remove large particulate matter and many microorganisms.  The air enters the 

distribution system for conditioning to appropriate temperature and humidity levels, passes through an 

additional bank of filters for further cleaning, and is delivered to each zone of the building.  After the 

conditioned air is distributed to the designated space, it is withdrawn through a return duct system and 

delivered back to the HVAC unit.  A portion of this “return air” is exhausted to the outside while the 

remainder is mixed with outdoor air for dilution and filtered for removal of contaminants.

215

   Air from 

toilet rooms or other soiled areas is usually exhausted directly to the atmosphere through a separate duct 

exhaust system.  Air from rooms housing tuberculosis patients is exhausted to the outside if possible, or 

passed through a HEPA filter before recirculation.  Ultraviolet germicidal irradiation (UVGI) can be 

used as an adjunct air-cleaning measure, but it cannot replace HEPA filtration. 

 

 

 

background image

 

15

b.  Filtration

 

 

i.  Filter Types and Methods of Filtration 

Filtration, the physical removal of particulates from air, is the first step in achieving acceptable indoor 

air quality.  Filtration is the primary means of cleaning the air.  Five methods of filtration can be used 

(Table 5).  During filtration, outdoor air passes through two filter beds or banks (with efficiencies of 

20%–40% and >90%, respectively) for effective removal of particles 1–5 µm in diameter.

35, 120

   The 

low-to-medium efficiency filters in the first bank have low resistance to airflow, but this feature allows 

some small particulates to pass onto heating and air conditioning coils and into the indoor 

environment.

35

   Incoming air is mixed with recirculated air and reconditioned for temperature and 

humidity before being filtered by the second bank of filters.  The performance of filters with <90% 

efficiency is measured using either the dust-spot test or the weight-arrestance test.

35, 216

 

 

Table 5.  Filtration methods* 

Basic method 

Principle of performance Filtering 

efficiency 

Straining 

Particles in the air are larger than the openings between the 

filter fibers, resulting in gross removal of large particles. 

Low 

Impingement 

Particles collide with filter fibers and remain attached to the 

filter.  Fibers may be coated with adhesive. 

Low 

Interception 

Particles enter into the filter and become entrapped and 

attached to the filter fibers. 

Medium 

Diffusion 

Small particles, moving in erratic motion, collide with filter 

fibers and remain attached. 

High 

Electrostatic 

Particles bearing negative electrostatic charge are attracted to 

the filter with positively charged fibers. 

High 

*  Material in this table was compiled from information in reference 217. 

 

The second filter bank usually consists of high-efficiency filters.  This filtration system is adequate for 

most patient-care areas in ambulatory-care facilities and hospitals, including the operating room 

environment and areas providing central services.

120

   Nursing facilities use 90% dust-spot efficient 

filters as the second bank of filters,

120

  whereas a HEPA filter bank may be indicated for special-care 

areas of hospitals.  HEPA filters are at least 99.97% efficient for removing particles >0.3 µm in 

diameter.  (As a reference, 

Aspergillus

 spores are 2.5–3.0 µm in diameter.)  Examples of care areas 

where HEPA filters are used include PE rooms and those operating rooms designated for orthopedic 

implant procedures.

35

 

 

Maintenance costs associated with HEPA filters are high compared with other types of filters, but use of 

in-line disposable prefilters can increase the life of a HEPA filter by approximately 25%.  Alternatively, 

if a disposable prefilter is followed by a filter that is 90% efficient, the life of the HEPA filter can be 

extended ninefold.  This concept, called progressive filtration, allows HEPA filters in special care areas 

to be used for 

10 years.

213

   Although progressive filtering will extend the mechanical ability of the 

HEPA filter, these filters may absorb chemicals in the environment and later desorb those chemicals, 

thereby necessitating a more frequent replacement program.  HEPA filter efficiency is monitored with 

the dioctylphthalate (DOP) particle test using particles that are 0.3 µm in diameter.

218

 

 

HEPA filters are usually framed with metal, although some older versions have wood frames.  A metal 

frame has no advantage over a properly fitted wood frame with respect to performance, but wood can 

compromise the air quality if it becomes and remains wet, allowing the growth of fungi and bacteria.  

Hospitals are therefore advised to phase out water-damaged or spent wood-framed filter units and 

replace them with metal-framed HEPA filters. 

 

 

background image

 

16 

HEPA filters are usually fixed into the HVAC system; however, portable, industrial grade HEPA units 

are available that can filter air at the rate of 300–800 ft

3

/min.  Portable HEPA filters are used to a) 

temporarily recirculate air in rooms with no general ventilation, b) augment systems that cannot provide 

adequate airflow, and c) provide increased effectiveness in airflow.

4

   Portable HEPA units are useful 

engineering controls that help clean the air when the central HVAC system is undergoing repairs,

219

  but 

these units do not satisfy fresh-air requirements.

214

   The effectiveness of the portable unit for particle 

removal is dependent on a) the configuration of the room, b) the furniture and persons in the room, c) 

the placement of the units relative to the contents and layout of the room, and d) the location of the 

supply and exhaust registers or grilles.  If portable, industrial-grade units are used, they should be 

capable of recirculating all or nearly all of the room air through the HEPA filter, and the unit should be 

designed to achieve the equivalent of >12 ACH.

4

   (An average room has approximately 1,600 ft

3

 of 

airspace.)  The hospital engineering department should be contacted to provide ACH information in the 

event that a portable HEPA filter unit is necessary to augment the existing fixed HVAC system for

 

air 

cleaning. 

 

 

ii.  Filter Maintenance 

Efficiency of the filtration system is dependent on the density of the filters, which can create a drop in 

pressure unless compensated by stronger and more efficient fans, thus maintaining air flow.  For optimal 

performance, filters require monitoring and replacement in accordance with the manufacturer’s 

recommendations and standard preventive maintenance practices.

220

   Upon removal, spent filters can be 

bagged and discarded with the routine solid waste, regardless of their patient-care area location.

221

   

Excess accumulation of dust and particulates increases filter efficiency, requiring more pressure to push 

the air through. The pressure differential across filters is measured by use of manometers or other 

gauges.  A pressure reading that exceeds specifications indicates the need to change the filter.  Filters 

also require regular inspection for other potential causes of decreased performance.  Gaps in and around 

filter banks and heavy soil and debris upstream of poorly maintained filters have been implicated in 

health-care–associated outbreaks of aspergillosis, especially when accompanied by construction 

activities at the facility.

17, 18, 106, 222

 

 

c.  Ultraviolet Germicidal Irradiation (UVGI) 

As a supplemental air-cleaning measure, UVGI is effective in reducing the transmission of airborne 

bacterial and viral infections in hospitals, military housing, and classrooms, but it has only a minimal 

inactivating effect on fungal spores.

223–228

   UVGI is also used in air handling units to prevent or limit 

the growth of vegetative bacteria and fungi.  Most commercially available UV lamps used for 

germicidal purposes are low-pressure mercury vapor lamps that emit radiant energy predominantly at a 

wave-length of 253.7 nm.

229, 230

   Two systems of UVGI have been used in health-care settings – duct 

irradiation and upper-room air irradiation.  In duct irradiation systems, UV lamps are placed inside ducts 

that remove air from rooms to disinfect the air before it is recirculated.  When properly designed, 

installed, and maintained, high levels of UVGI can be attained in the ducts with little or no exposure of 

persons in the rooms.

231, 232

   In upper-room air irradiation, UV lamps are either suspended from the 

ceiling or mounted on the wall.

4

   Upper air UVGI units have two basic designs: a) a “pan” fixture with 

UVGI unshielded above the unit to direct the irradiation upward and b) a fixture with a series of parallel 

plates to columnize the irradiation outward while preventing the light from getting to the eyes of the 

room’s occupants.  The germicidal effect is dependent on air mixing via convection between the room’s 

irradiated upper zone and the lower patient-care zones.

233, 234

 

 

Bacterial inactivation studies using BCG mycobacteria and 

Serratia marcescens

 have estimated the 

effect of UVGI as equivalent to 10 ACH–39 ACH.

235, 236

   Another study, however, suggests that UVGI 

may result in fewer equivalent ACH in the patient-care zone, especially if the mixing of air between 

zones is insufficient.

234

   The use of fans or HVAC systems to generate air movement may increase the 

effectiveness of UVGI if airborne

 

microorganisms are exposed to the light energy for a sufficient

 

length 

background image

 

17

of time.

233, 235, 237–239

   The optimal relationship between ventilation and UVGI is not known. 

 

Because the clinical effectiveness of UV systems may vary, UVGI is not recommended for air 

management prior to air recirculation from airborne isolation rooms.  It is also not recommended as a 

substitute for HEPA filtration, local exhaust of air to the outside, or negative pressure.

4

   The use of UV 

lamps and HEPA filtration in a single unit offers only minimal infection-control benefits over those 

provided by the use of a HEPA filter alone.

240

   Duct systems with UVGI are not recommended as a 

substitute for HEPA filters if the air from isolation rooms must be recirculated to other areas of the 

facility.

4

   Regular maintenance of UVGI systems is crucial and usually consists of keeping the bulbs 

free of dust and replacing old bulbs as necessary.  Safety issues associated with the use of UVGI 

systems are described in other guidelines.

4

 

 

d.  Conditioned Air in Occupied Spaces 

Temperature and humidity are two essential components of conditioned air.  After outside air passes 

through a low- or medium-efficiency filter, the air undergoes conditioning for temperature and humidity 

control before it passes through high-efficiency or HEPA filtration. 

 

 

i.  Temperature 

HVAC systems in health-care facilities are often single-duct or dual-duct systems.

35, 241

   A single-duct 

system distributes cooled air (55°F [12.8°C]) throughout the building and uses thermostatically 

controlled reheat boxes located in the terminal ductwork to warm the air for individual or multiple 

rooms.  The dual-duct system consists of parallel ducts, one with a cold air stream and the other with a 

hot air stream.  A mixing box in each room or group of rooms mixes the two air streams to achieve the 

desired temperature.  Temperature standards are given as either a single temperature or a range, 

depending on the specific health-care zone.  Cool temperature standards (68°F–73°F [20°C–23°C]) 

usually are associated with operating rooms, clean workrooms, and endoscopy suites.

120

   A warmer 

temperature (75°F [24°C]) is needed in areas requiring greater degrees of patient comfort.  Most other 

zones use a temperature range of 70°F–75°F (21°C–24°C).

120

   Temperatures outside of these ranges 

may be needed occasionally in limited areas depending on individual circumstances during patient care 

(e.g., cooler temperatures in operating rooms during specialized operations). 

 

 

ii.  Humidity 

Four measures of humidity are used to quantify different physical properties of the mixture of water 

vapor and air.  The most common of these is relative humidity, which is the ratio of the amount of water 

vapor in the air to the amount of water vapor air can hold at that temperature.

242

   The other measures of 

humidity are specific humidity, dew point, and vapor pressure.

242

 

 

Relative humidity measures the percentage of saturation.  At 100% relative humidity, the air is 

saturated.  For most areas within health-care facilities, the designated comfort range is 30%–60% 

relative humidity.

120, 214

   Relative humidity levels >60%, in addition to being perceived as 

uncomfortable, promote fungal growth.

243

   Humidity levels can be manipulated by either of two 

mechanisms.

244

   In a water-wash unit, water is sprayed and drops are taken up by the filtered air; 

additional heating or cooling of this air sets the humidity levels.  The second mechanism is by means of 

water vapor created from steam and added to filtered air in humidifying boxes.  Reservoir-type 

humidifiers are not allowed in health-care facilities as per AIA guidelines and many state codes.

120

   

Cool-mist humidifiers should be avoided, because they can disseminate aerosols containing allergens 

and microorganisms.

245

   Additionally, the small, personal-use versions of this equipment can be 

difficult to clean. 

 

 

background image

 

18 

 

 

iii.  Ventilation 

The control of air pollutants (e.g., microorganisms, dust, chemicals, and smoke) at the source is the most 

effective way to maintain clean air.  The second most effective means of controlling indoor air pollution 

is through ventilation.  Ventilation rates are voluntary unless a state or local government specifies a 

standard in health-care licensing or health department requirements.  These standards typically apply to 

only the design of a facility, rather than its operation.

220, 246

   Health-care facilities without specific 

ventilation standards should follow the AIA guideline specific to the year in which the building was 

built or the ANSI/ASHRAE Standard 62, 

Ventilation for Acceptable Indoor Air Quality

.

120, 214, 241

 

 

Ventilation guidelines are defined in terms of air volume per minute per occupant and are based on the 

assumption that occupants and their activities are responsible for most of the contaminants in the 

conditioned space.

215

   Most ventilation rates for health-care facilities are expressed as room ACH.  Peak 

efficiency for particle removal in the air space occurs between 12 ACH–15 ACH.

35, 247, 248

   Ventilation 

rates vary among the different patient-care areas of a health-care facility (Appendix B).

120

 

 

Health-care facilities generally use recirculated air.

35, 120, 241, 249, 250

   Fans create sufficient positive 

pressure to force air through the building duct work and adequate negative pressure to evacuate air from 

the conditioned space into the return duct work and/or exhaust, thereby completing the circuit in a 

sealed system (Figure 1).  However, because gaseous contaminants tend to accumulate as the air 

recirculates, a percentage of the recirculated air is exhausted to the outside and replaced by fresh 

outdoor air.  In hospitals, the delivery of filtered air to an occupied space is an engineered system design 

issue, the full discussion of which is beyond the scope of this document. 

 

Hospitals with areas not served by central HVAC systems often use through-the-wall or fan coil air 

conditioning units as the sole source of room ventilation.  AIA guidelines for newly installed systems 

stipulate that through-the-wall fan-coil units be equipped with permanent (i.e., cleanable) or replaceable 

filters with a minimum efficiency of 68% weight arrestance.

120

   These units may be used only as 

recirculating units; all outdoor air requirements must be met by a separate central air handling system 

with proper filtration, with a minimum of two outside air changes in general patient rooms (D. Erickson, 

ASHE, 2000).

120

   If a patient room is equipped with an individual through-the-wall fan coil unit, the 

room should not be used as either AII or as PE.

120

   These requirements, although directed to new 

HVAC installations also are appropriate for existing settings.  Non-central air-handling systems are 

prone to problems associated with excess condensation accumulating in drip pans and improper filter 

maintenance; health-care facilities should clean or replace the filters in these units on a regular basis 

while the patient is out of the room. 

 

Laminar airflow ventilation systems are designed to move air in a single pass, usually through a bank of 

HEPA filters either along a wall or in the ceiling, in a one-way direction through a clean zone with 

parallel streamlines.  Laminar airflow can be directed vertically or horizontally; the unidirectional 

system optimizes airflow and minimizes air turbulence.

63, 241

   Delivery of air at a rate of 0.5 meters per 

second (90 + 20 ft/min) helps to minimize opportunities for microorganism proliferation.

63, 251, 252

   

Laminar airflow systems have been used in PE to help reduce the risk for health-care–associated 

airborne infections (e.g., aspergillosis) in high-risk patients.

63, 93, 253, 254

   However, data that demonstrate 

a survival benefit for patients in PE with laminar airflow are lacking.  Given the high cost of installation 

and apparent lack of benefit, the value of laminar airflow in this setting is questionable.

9, 37 

   Few data 

support the use of laminar airflow systems elsewhere in a hospital.

255

 

 

 

iv.  Pressurization 

Positive and negative pressures refer to a pressure differential between two adjacent air spaces (e.g., 

rooms and hallways).  Air flows away from areas or rooms with positive pressure (pressurized),

 

while 

background image

 

19

air flows into

 

areas with negative pressure (depressurized).  AII rooms are set at negative pressure to 

prevent airborne microorganisms in the room from entering hallways and corridors.  PE rooms housing 

severely neutropenic patients are set at positive pressure to keep airborne pathogens in adjacent spaces 

or corridors from coming into and contaminating the airspace occupied by such high-risk patients.  Self-

closing doors are mandatory for both of these areas to help maintain the correct pressure differential.

4, 6, 

120

   Older health-care facilities may have variable pressure rooms (i.e., rooms in which the ventilation 

can be manually switched between positive and negative pressure).  These rooms are no longer 

permitted in the construction of new facilities or in renovated areas of the facility,

120

  and their use in 

existing facilities has been discouraged because of difficulties in assuring the proper pressure 

differential, especially for the negative pressure setting, and because of the potential for error associated 

with switching the pressure differentials for the room.  Continued use of existing variable pressure 

rooms depends on a partnership between engineering and infection control.  Both positive- and 

negative-pressure rooms should be maintained according to specific engineering specifications (Table 

6). 

 

Table 6.  Engineered specifications for positive- and negative pressure rooms* 

 

Positive pressure areas (e.g., 

protective environments [PE]) 

Negative pressure areas (e.g., 

airborne infection isolation [AII]) 

Pressure differentials 

> +2.5 Pa§ (0.01

 water gauge) 

> -2.5 Pa (0.01

 water gauge) 

Air changes per hour (ACH) 

>12 >12 (for renovation or new construction) 

Filtration efficiency 

Supply: 99.97% @ 0.3 µm DOP¶ 

Return: none required** 

Supply: 90% (dust spot test) 

Return: 99.97% @ 0.3 µm DOP¶ 

^

 

Room airflow direction 

Out to the adjacent area 

In to the room 

Clean-to-dirty airflow in 

room 

Away from the patient (high-risk patient, 

immunosuppressed patient) 

Towards the patient (airborne disease 

patient) 

Ideal pressure differential 

> + 8 Pa 

> - 2.5 Pa 

*  Material in this table was compiled from references 35 and 120.  Table adapted from and used with permission of the publisher of reference  

       35 (Lippincott Williams and Wilkins). 

§  Pa is the abbreviation for Pascal, a metric unit of measurement for pressure based on air velocity; 250 Pa equals 1.0 inch water gauge. 

¶  DOP is the abbreviation for dioctylphthalate particles of 0.3 µm diameter. 

**  If the patient requires both PE and AII, return air should be HEPA-filtered or otherwise exhausted to the outside. 

^

  HEPA filtration of exhaust air from AII rooms should not be required, providing that the exhaust is properly located to prevent re-entry into 

       the building. 

 

Health-care professionals (e.g., infection control, hospital epidemiologists) must perform a risk 

assessment to determine the appropriate number of AII rooms (negative pressure) and/or PE rooms 

(positive pressure) to serve the patient population.  The AIA guidelines require a certain number of AII 

rooms as a minimum, and it is important to refer to the edition under which the building was built for 

appropriate guidance.

120

 

 

In large health-care facilities with central HVAC systems, sealed windows help to ensure the efficient 

operation of the system, especially with respect to creating and maintaining pressure differentials.  

Sealing the windows in PE areas helps minimize the risk of airborne contamination from the outside.  

One outbreak of aspergillosis among immunosuppressed patients in a hospital was attributed in part to 

an open window in the unit during a time when both construction and a fire happened nearby; sealing 

the window prevented further entry of fungal spores into the unit from the outside air.

111

   Additionally, 

all emergency exits (e.g., fire escapes and emergency doors) in PE wards should be kept closed (except 

during emergencies) and equipped with alarms. 

 

e.  Infection Control Impact of HVAC System Maintenance and Repair

 

A failure or malfunction of any component of the HVAC system may subject patients and staff to 

discomfort and exposure to airborne contaminants.  Only limited information is available from formal 

background image

 

20 

studies on the infection-control implications of a complete air-handling system

 

failure or shutdown for

 

maintenance.  Most experience has been derived from infectious disease outbreaks and adverse 

outcomes among high-risk patients when HVAC systems are poorly maintained. (See Table 7 for 

potential ventilation hazards, consequences, and correction measures.) 

 

AIA guidelines prohibit U.S. hospitals and surgical centers from shutting down their HVAC systems for 

purposes other than required maintenance, filter changes, and construction.

120

   Airflow can be reduced; 

however, sufficient supply, return, and exhaust must be provided to maintain required pressure 

relationships when the space is not occupied.  Maintaining these relationships can be accomplished with 

special drives on the air-handling units (i.e., a variable air ventilation [VAV] system). 

 

Microorganisms proliferate in environments wherever air, dust, and water are present, and air-handling 

systems can be ideal environments for microbial growth.

35

   Properly engineered HVAC systems require 

routine maintenance and monitoring to provide acceptable indoor air quality efficiently and to minimize 

conditions that favor the proliferation of health-care–associated pathogens.

35, 249

   Performance 

monitoring of the system includes determining pressure differentials across filters, regular inspection of 

system filters, DOP testing of HEPA filters, testing of low- or medium efficiency filters, and manometer 

tests for positive- and negative-pressure areas in accordance with nationally recognized standards, 

guidelines, and manufacturers’ recommendations.  The use of hand-held, calibrated equipment that can 

provide a numerical reading on a daily basis is preferred for engineering purposes (A.Streifel, 

University of Minnesota, 2000).

256

   Several methods that provide a visual, qualitative measure of 

pressure differentials (i.e., airflow direction) include smoke-tube tests or placing flutter strips, ping-pong 

balls, or tissue in the air stream. 

 

Preventive filter and duct maintenance (e.g., cleaning ductwork vents, replacing filters as needed, and 

properly disposing spent filters into plastic bags immediately upon removal) is important to prevent 

potential exposures of patients and staff during HVAC system shut-down.  The frequency of filter 

inspection and the parameters of this inspection are established by each facility to meet their unique 

needs.  Ductwork in older health-care facilities may have insulation on the interior surfaces that can trap 

contaminants.  This insulation material tends to break down over time to be discharged from the HVAC 

system.  Additionally, a malfunction of the air-intake system can overburden the filtering system and 

permit aerosolization of fungal pathogens.  Keeping the intakes free from bird droppings, especially 

those from pigeons, helps to minimize the concentration of fungal spores entering from the outside.

98

  

 

Accumulation of dust and moisture within HVAC systems increases the risk for spread of health-care–

associated environmental fungi and bacteria.  Clusters of infections caused by 

Aspergillus

 spp., 

P. 

aeruginosa, S. aureus, 

and

 Acinetobacter

 spp. have been linked to poorly maintained and/or 

malfunctioning air conditioning systems.

68, 161, 257, 258

   Efforts to limit excess humidity and moisture in 

the infrastructure and on air-stream surfaces in the HVAC system can minimize the proliferation and 

dispersion of fungal spores and waterborne bacteria throughout indoor air.

259–262

   Within the HVAC 

system, water is present in water-wash units, humidifying boxes, or cooling units.  The dual-duct system 

may also create conditions of high humidity and excess moisture that favor fungal growth in drain pans 

as well as in fibrous insulation material that becomes damp as a result of the humid air passing over the 

hot stream and condensing. 

 

If moisture is present in the HVAC system, periods of stagnation should be avoided.  Bursts of 

organisms can be released upon system start-up, increasing the risk of airborne infection.

206

   Proper 

engineering of the HVAC system is critical to preventing dispersal of airborne organisms.  In one 

hospital, endophthalmitis caused by 

Acremonium kiliense

 infection following cataract extraction in an 

ambulatory surgical center was traced to aerosols derived from the humidifier water in the ventilation 

system.

206

   The organism proliferated because the ventilation system was turned off routinely when the 

background image

 

21

center was not in operation; the air was filtered before humidification, but not afterwards. 

 

Most health-care facilities have contingency plans in case of disruption of HVAC services. These plans 

include back-up power generators that maintain the ventilation system in high-risk areas (e.g., operating 

rooms, intensive-care units, negative- and positive-pressure rooms, transplantation units, and oncology 

units).  Alternative generators are required to engage within 10 seconds of a loss of main power.  If the 

ventilation system is out of service, rendering indoor air stagnant, sufficient time must be allowed to 

clean the air and re-establish the appropriate number of ACH once the HVAC system begins to function 

again.  Air filters may also need to be changed, because reactivation of the system can dislodge 

substantial amounts of dust and create a transient burst of fungal spores. 

 

Duct cleaning in health-care facilities has benefits in terms of system performance, but its usefulness for 

infection control has not been conclusively determined.  Duct cleaning typically involves using 

specialized tools to dislodge dirt and a high-powered vacuum cleaner to clean out debris.

263

   Some duct-

cleaning services also apply chemical biocides or sealants to the inside surfaces of ducts to minimize 

fungal growth and prevent the release of particulate matter.  The U.S. Environmental Protection Agency 

(EPA), however, has concerns with the use of sanitizers and/or disinfectants to treat the surfaces of 

ductwork, because the label indications for most of these products may not specifically include the use 

of the product in HVAC systems.

264

   Further, EPA has not evaluated the potency of disinfectants in 

such applications, nor has the agency examined the potential attendant health and safety risks.  The EPA 

recommends that companies use only those chemical biocides that are registered for use in HVAC 

systems.

264

   Although infrequent cleaning of the exhaust ducts in AII areas has been documented as a 

cause of diminishing negative pressure and a decrease in the air exchange rates,

214

  no data indicate that 

duct cleaning, beyond what is recommended for optimal performance, improves indoor air quality or 

reduces the risk of infection.  Exhaust return systems should be cleaned as part of routine system 

maintenance.  Duct cleaning has not been shown to prevent any health problems,

265

  and EPA studies 

indicate that airborne particulate levels do not increase as a result of dirty air ducts, nor do they diminish 

after cleaning, presumably because much of the dirt inside air ducts adheres to duct surfaces and does 

not enter the conditioned space.

265

   Additional research is needed to determine if air-duct contamination 

can significantly increase the airborne infection risk in general areas of health-care facilities. 

 
 

4.  Construction, Renovation, Remediation, Repair, and Demolition 

 

a.  General Information

 

Environmental disturbances caused by construction and/or renovation and repair activities (e.g., 

disruption of the above-ceiling area, running cables through the ceiling, and structural repairs) in and 

near health-care facilities markedly increase the airborne 

Aspergillus

 spp. spore counts in the indoor air 

of such facilities, thereby increasing the risk for health-care–associated aspergillosis among high-risk 

patients.  Although one case of health-care–associated aspergillosis is often difficult to link to a specific 

environmental exposure, the occurrence of temporarily clustered cases increase the likelihood that an 

environmental source within the facility may be identified and corrected. 

 
 
 
 
 
 
 

background image

 

22 

Table 7.  Ventilation hazards in health-care facilities that may be associated with 
increased potential of airborne disease transmission* 

Problem§ Consequences 

Possible 

solutions 

Water-damaged building materials (18, 

266) 

Water leaks can soak wood, wall board, 

insulation, wall coverings, ceiling tiles, 

and carpeting.  All of these materials 

can provide microbial habitat when wet.  

This is especially true for fungi growing 

on gypsum board. 

1.  Replace water-damaged materials. 

2.  Incorporate fungistatic compounds  

       into building materials in areas at 

       risk for moisture problems. 

3.  Test for all moisture and dry in less 

       than 72 hours.  Replace if the  

       material cannot dry within 72 

       hours. 

Filter bypasses (17) 

Rigorous air filtration requires air flow 

resistance.  Air stream will elude 

filtration if openings are present because 

of filter damage or poor fit. 

1.  Use pressure gauges to ensure that 

       filters are performing at proper  

       static pressure. 

2.  Make ease of installation and  

       maintenance criteria for filter  

       selection. 

3.  Properly train maintenance personnel

       in HVAC concerns. 

4.  Design system with filters down- 

       stream from fans. 

5.  Avoid water on filters or insulation. 

Improper fan setting (267) 

Air must be delivered at design voume 

to maintain pressure balances.  Air flow 

in special vent rooms reverses. 

1.  Routinely monitor air flow and 

       pressure balances throughout  

       critical parts of HVAC system. 

2.  Minimize or avoid using rooms that 

       switch between positive and  

       negative pressure. 

Ductwork disconnections (268) 

Dislodged or leaky supply duct runs can 

spill into and leaky returns may draw 

from hidden areas.  Pressure balance 

will be interrupted, and infectious 

material may be disturbed and entrained 

into hospital air supply. 

1.  Design a ductwork system that is 

       easy to access, maintain, and repair.

2.  Train maintenance personnel to 

       regularly monitor air flow volumes

       and pressure balances throughout 

       the system. 

3.  Test critical areas for appropriate 

       air flow 

Air flow impedance (213) 

Debris, structural failure, or improperly 

adjusted dampers can block duct work 

and prevent designed air flow. 

1.  Design and budget for a duct system

       that is easy to inspect, maintain, and

       repair. 

2.  Alert contractors to use caution when

       working around HVAC systems 

       during the construction phase. 

3.  Regularly clean exhaust grilles. 

4.  Provide monitoring for special  

       ventilation areas. 

Open windows (96, 247) 

Open windows can alter fan-induced 

pressure balance and allow dirty-to-

clean air flow. 

1.  Use sealed windows. 

2.  Design HVAC systems to deliver 

       sufficient outdoor dilution 

       ventilation. 

3.  Ensure that OSHA indoor air quality

       standards are met. 

Dirty window air conditioners (96, 269)  Dirt, moisture, and bird droppings can 

contaminate window air conditioners, 

which can then introduce infectious 

material into hospital rooms. 

1.  Eliminate such devices in plans for 

       new construction. 

2.  Where they must be used, make sure

       that they are routinely cleaned and 

       inspected. 

 

 

 

background image

 

23

Problem§

 

Consequences

 

Possible solutions

 

Inadequate filtration (270) 

Infectious particles may pass through 

filters into vulnerable patient areas. 

1.  Specify appropriate filters during  

       new construction design phase. 

2.  Make sure that HVAC fans are sized

       to overcome pressure demands of 

        filter system. 

3.  Inspect and test filters for proper 

       installation. 

Maintenance disruptions (271) 

Fan shut-offs, dislodged filter cake 

material contaminates downstream air 

supply and drain pans.  This may 

compromise air flow in special 

ventilation areas. 

1.  Budget for a rigorous maintenance 

       schedule when designing a facility.

2.  Design system for easy maintenance.

3.  Ensure communication between 

       engineering and maintenance 

       personnel. 

4.  Institute an ongoing training program

       for all involved staff members. 

Excessive moisture in the HVAC 

system (120) 

Chronically damp internal lining of the 

HVAC system, excessive condensate, 

and drip pans with stagnant water may 

result from this problem. 

1.  Locate duct humidifiers upstream of

       the final filters. 

2.  Identify a means to remove water 

       from the system. 

3.  Monitor humidity; all duct take-offs 

       should be downstream of the  

       humidifiers so that moisture is  

       absorbed completely. 

4.  Use steam humidifiers in the HVAC

       system. 

Duct contamination (18, 272)

 

Debris is released during maintenance 

or cleaning.

 

1.  Provide point-of-use filtration in the

       critical areas. 

2.  Design air-handling systems with 

       insulation of the exterior of the 

       ducts. 

3.  Do not use fibrous sound attenuators.

4.  Decontaminate or encapsulate 

       contamination.

 

*  Reprinted with permission of the publisher of reference 35 (Lippincott Williams and Wilkins). 

§  Numbers in parentheses are reference citations. 

 

 

 

Construction, renovation, repair, and demolition activities in health-care facilities require substantial 

planning and coordination to minimize the risk for airborne infection both during projects and after their 

completion.  Several organizations and experts have endorsed a multi-disciplinary team approach (Box 

4) to coordinate the various stages of construction activities (e.g., project inception, project 

implementation, final walk-through, and completion).

120, 249, 250, 273–276

   Environmental services, 

employee health, engineering, and infection control must be represented in construction planning and 

design meetings should be convened with architects and design engineers.  The number of members and 

disciplines represented is a function of the complexity of a project.  Smaller, less complex projects and 

maintenance may require a minimal number of members beyond the core representation from 

engineering, infection control, environmental services, and the directors of the specialized departments. 

 

 

 

background image

 

24 

Box 4.  Suggested members and functions of a multi-disciplinary coordination team for 
construction, renovation, repair, and demolition projects 

 

 

Members 

 

 

Infection-control personnel, including hospital epidemiologists 

 Laboratory 

personnel 

 

Facility administrators or their designated representatives, facility managers 

 Director 

of 

engineering 

 Risk-management 

personnel 

 

Directors of specialized programs (e.g., transplantation, oncology and ICU* programs) 

 

Employee safety personnel, industrial hygienists, and regulatory affairs personnel 

 

Environmental services personnel 

 

Information systems personnel 

 Construction 

administrators 

or their designated representatives 

 

Architects, design engineers, project managers, and contractors 

 

 

 

 

Functions and responsibilities

 

 

 

Coordinate members’ input in developing a comprehensive project management plan. 

 

Conduct a risk assessment of the project to determine potential hazards to susceptible patients. 

 

Prevent unnecessary exposures of patients, visitors, and staff to infectious agents. 

 

Oversee all infection-control aspects of construction activities. 

 

Establish site-specific infection-control protocols for specialized areas. 

 

Provide education about the infection-control impact of construction to staff and construction 

                   workers. 
 

Ensure compliance with technical standards, contract provisions, and regulations. 

 

Establish a mechanism to address and correct problems quickly. 

 

Develop contingency plans for emergency response to power failures, water supply disruptions, 

                   and fires. 
 

Provide a water-damage management plan (including drying protocols) for handling water 

                   intrusion from floods, leaks, and condensation. 
 

Develop a plan for structural maintenance. 

 

 

*  ICU is intensive care unit.

 

 

 

Education of maintenance and construction workers, health-care staff caring for high-risk patients, and 

persons responsible for controlling indoor air quality heightens awareness that minimizing dust and 

moisture intrusion from construction sites into high-risk patient-care areas helps to maintain a safe 

environment.

120, 250, 271, 275–278

   Visual and printed educational materials should be provided in the 

language spoken by the workers.  Staff and construction workers also need to be aware of the potentially 

catastrophic consequences of dust and moisture intrusion when an HVAC system or water system fails 

during construction or repair; action plans to deal quickly with these emergencies should be developed 

in advance and kept on file.  Incorporation of specific standards into construction contracts may help to 

prevent departures from recommended practices as projects progress.  Establishing specific lines of 

communication is important to address problems (e.g., dust control, indoor air quality, noise levels, and 

vibrations), resolve complaints, and keep projects moving toward completion.  Health-care facility staff 

should develop a mechanism to monitor worker adherence to infection-control guidelines on a daily 

basis in and around the construction site for the duration of the project. 

background image

 

25

 

b.  Preliminary Considerations

 

The three major topics to consider before initiating any construction or repair activity are as follows: a) 

design and function of the new structure or area, b) assessment of environmental risks for airborne 

disease and opportunities for prevention, and c) measures to contain dust and moisture during 

construction or repairs.  A checklist of design and function considerations can help to ensure that a 

planned structure or area can be easily serviced and maintained for environmental infection control (Box 

5) .

17, 250, 273, 275–277

   Specifications for the construction, renovation, remodeling, and maintenance of 

health-care facilities are outlined in the AIA document

Guidelines for Design and Construction of 

Hospitals and Health Care Facilities

.

120, 275

 

 

Box 5.  Construction design and function considerations for environmental infection 
control 

 

 

Location of sinks and dispensers for handwashing products and hand hygiene products 

 

Types of faucets (e.g., aerated vs. non-aerated) 

 Air-handling 

systems 

engineered for optimal performance, easy maintenance, and repair 

 

ACH and pressure differentials to accommodate special patient-care areas 

 

Location of fixed sharps containers 

 

Types of surface finishes (e.g., porous vs. non-porous) 

 

Well-caulked walls with minimal seams 

 

Location of adequate storage and supply areas 

 

Appropriate location of medicine preparations areas (e.g., >3 ft. from a sink) 

 

Appropriate location and type of ice machines (e.g., preferably ice dispensers rather than ice bins) 

 Appropriate 

materials 

for sinks and wall coverings 

 

Appropriate traffic flow (e.g., no “dirty” movement through “clean” areas) 

 

Isolation rooms with anterooms as appropriate 

 

Appropriate flooring (e.g., seamless floors in dialysis units) 

 

Sensible use carpeting (e.g., avoiding use of carpeting in special care areas or areas likely to become 

                   wet)* 
 

Convenient location of soiled utility areas 

 

Properly engineered areas for linen services and solid waste management 

 

Location of main generator to minimize the risk of system failure from flooding or other emergency 

 

Installation guidelines for sheetrock 

 

 

*  Use of carpet cleaning methods (e.g., “bonneting”) that disperse microorganisms into the air  may increase the risk of airborne infection 

among at-risk patients, especially if they are in the vicinity of the cleaning activity.

111

 

 

Proactive strategies can help prevent environmentally mediated airborne infections in health-care 

facilities during demolition, construction, and renovation.  The potential presence of dust and moisture 

and their contribution to health-care–associated infections must be critically evaluated early in the 

planning of any demolition, construction, renovation, and repairs.

120, 250, 251, 273, 274, 276–279

   Consideration 

must extend beyond dust generated by major projects to include dust that can become airborne if 

disturbed during routine maintenance and minor renovation activities (e.g., exposure of ceiling spaces 

for inspection; installation of conduits, cable, or sprinkler systems; rewiring; and structural repairs or 

replacement).

273, 276, 277

   Other projects that can compromise indoor air quality include construction and 

repair jobs that inadvertently allow substantial amounts of raw, unfiltered outdoor air to enter the facility 

(e.g., repair of elevators and elevator shafts) and activities that dampen any structure, area, or item made 

of porous materials or characterized by cracks and crevices (e.g., sink cabinets in need of repair, carpets, 

ceilings, floors, walls, vinyl wall coverings, upholstery, drapes, and countertops).

18, 273, 277

   Molds grow 

and proliferate on these surfaces when they become and remain wet.

21, 120, 250, 266, 270, 272, 280

   Scrubbable 

background image

 

26 

materials are preferred for use in patient-care areas. 

 

Containment measures for dust and/or moisture control are dictated by the location of the construction 

site.  Outdoor demolition and construction require actions to keep dust and moisture out of the facility 

(e.g., sealing windows and vents and keeping doors closed or sealed).  Containment of dust and 

moisture generated from construction inside a facility requires barrier structures (either pre-fabricated or 

constructed of more durable materials as needed) and engineering controls to clean the air in and around 

the construction or repair site. 

 

c.  Infection-Control Risk Assessment

 

An infection-control risk assessment (ICRA) conducted before initiating repairs, demolition, 

construction, or renovation activities can identify potential exposures of susceptible patients to dust and 

moisture and determine the need for dust and moisture containment measures.  This assessment centers 

on the type and extent of the construction or repairs in the work area but may also need to include 

adjacent patient-care areas, supply storage, and areas on levels above and below the proposed project.  

An example of designing an ICRA as a matrix, the policy for performing an ICRA and implementing its 

results, and a sample permit form that streamlines the communication process are available.

281

   

Knowledge of the air flow patterns and pressure differentials helps minimize or eliminate the 

inadvertent dispersion of dust that could contaminate air space, patient-care items, and surfaces.

57, 282, 283

   

A recent aspergillosis outbreak among oncology patients was attributed to depressurization of the 

building housing the HSCT unit while construction was underway in an adjacent building.  Pressure 

readings in the affected building (including 12 of 25 HSCT-patient rooms) ranged from 0.1 Pa–5.8 Pa.  

Unfiltered outdoor air flowed into the building through doors and windows, exposing patients in the 

HSCT unit to fungal spores.

283

   During long-term projects, providing temporary essential services (e.g., 

toilet facilities) and conveniences (e.g., vending machines) to construction workers within the site will 

help to minimize traffic in and out of the area.  The type of barrier systems necessary for the scope of 

the project must be defined.

12, 120, 250, 279, 284

 

 

Depending on the location and extent of the construction, patients may need to be relocated to other 

areas in the facility not affected by construction dust.

51, 285

   Such relocation might be especially prudent 

when construction takes place within units housing immunocompromised patients (e.g., severely 

neutropenic patients and patients on corticosteroid therapy).  Advance assessment of high-risk locations 

and planning for the possible transport of patients to other departments can minimize delays and waiting 

time in hallways.

51

   Although hospitals have provided immunocompromised patients with some form of 

respiratory protection for use outside their rooms, the issue is complex and remains unresolved until 

more research can be done.  Previous guidance on this issue has been inconsistent.

9

   Protective 

respirators (i.e., N95) were well tolerated by patients when used to prevent further cases of construction-

related aspergillosis in a recent outbreak.

283

   The routine use of the N95 respirator by patients, however, 

has not been evaluated for preventing exposure to fungal spores during periods of non-construction.  

Although health-care workers who would be using the N95 respirator for personal respiratory protect 

must be fit-tested, there is no indication that either patients or visitors should undergo fit-testing. 

 

Surveillance activities should augment preventive strategies during construction projects.

3, 4, 20, 110, 286, 287

   

By determining baseline levels of health-care–acquired airborne and waterborne infections, infection-

control staff can monitor changes in infection rates and patterns during and immediately after 

construction, renovations, or repairs.

3

 

 

d.  Air Sampling

 

Air sampling in health-care facilities may be conducted both during periods of construction and on a 

periodic basis to determine indoor air quality, efficacy of dust-control measures, or air-handling system 

performance via parametric monitoring.  Parametric monitoring consists of measuring the physical 

background image

 

27

performance of the HVAC system in accordance with the system manufacturer’s specifications.  A 

periodic assessment of the system (e.g., air flow direction and pressure, ACH, and filter efficiency) can 

give assurance of proper ventilation, especially for special care areas and operating rooms.

288

    

 

Air sampling is used to detect aerosols (i.e., particles or microorganisms).  Particulate sampling (i.e., 

total numbers and size range of particulates) is a practical method for evaluating the infection-control 

performance of the HVAC system, with an emphasis on filter efficiency in removing respirable particles 

(<5 µm in diameter) or larger particles from the air.  Particle size is reported in terms of the mass 

median aerodynamic diameter (MMAD), whereas count median aerodynamic diameter (CMAD) is 

useful with respect to particle concentrations. 

 

Particle counts in a given air space within the health-care facility should be evaluated against counts 

obtained in a comparison area.  Particle counts indoors are commonly compared with the particulate 

levels of the outdoor air.  This approach determines the “rank order” air quality

 

from “dirty” (i.e., the

 

outdoor air) to “clean” (i.e., air filtered through high-efficiency filters [90%–95% filtration]) to 

“cleanest” (i.e., HEPA-filtered air).

288

   Comparisons from one indoor area to another may also provide 

useful information about the magnitude of an indoor air-quality problem.  Making rank-order 

comparisons between clean, highly-filtered areas and dirty areas and/or outdoors is one way to interpret 

sampling results in the absence of air quality and action level standards.

35, 289

 

 

In addition to verifying filter performance, particle counts can help determine if barriers and efforts to 

control dust dispersion from construction are effective.  This type of monitoring is helpful when 

performed at various times and barrier perimeter locations during the project.  Gaps or breaks in the 

barriers’ joints or seals can then be identified and repaired. The American Conference of Governmental 

Industrial Hygienists (ACGIH) has set a threshold limit value-time weighted average (TLV®-TWA) of 

10 mg/m

3

 for nuisance dust that contains no asbestos and <1% crystalline silica.

290

   Alternatively, 

OSHA has set permissible exposure limits (PELs) for inert or nuisance dust as follows: respirable 

fraction at 5 mg/m

3

  and total dust at 15 mg/m

3

.

291

   Although these standards are not measures of a 

bioaerosol, they are used for indoor air quality assessment in occupational settings and may be useful 

criteria in construction areas.  Application of ACGIH guidance to health-care settings has not been 

standardized, but particulate counts in health-care facilities are likely to be well below this threshold 

value and approaching clean-room standards in certain care areas (e.g., operating rooms).

100

 

 

Particle counters and anemometers are used in particulate evaluation.  The anemometer measures air 

flow velocity, which can be used to determine sample volumes.  Particulate sampling usually does not 

require microbiology laboratory services for the reporting of results. 

 

Microbiologic sampling of air in health-care facilities remains controversial because of currently 

unresolved technical limitations and the need for substantial laboratory support (Box 6).  Infection-

control professionals, laboratorians, and engineers should determine if microbiologic and/or particle 

sampling is warranted and assess proposed methods for sampling.  The most significant technical 

limitation of air sampling for airborne fungal agents is the lack of standards linking fungal spore levels 

with infection rates.  Despite this limitation, several health-care institutions have opted to use 

microbiologic sampling when construction projects are anticipated and/or underway in efforts to assess 

the safety of the environment for immunocompromised patients.

35, 289

   Microbiologic air sampling 

should be limited to assays for airborne fungi; of those, the thermotolerant fungi (i.e., those capable of 

growing at 95°F–98.6°F [35°C–37°C]) are of particular concern because of their pathogenicity in 

immunocompromised hosts.

35

   Use of selective media (e.g., Sabouraud dextrose agar and inhibitory 

mold agar) helps with the initial identification of recovered organisms. 

 

Microbiologic sampling for fungal spores performed as part of various airborne disease outbreak 

background image

 

28 

investigations has also been problematic.

18, 49, 106, 111, 112, 289

   The precise source of a fungus is often 

difficult to trace with certainty, and sampling conducted after exposure may neither reflect the 

circumstances that were linked to infection nor distinguish between health-care–acquired and 

community-acquired infections.  Because fungal strains may fluctuate rapidly in the environment, 

health-care–acquired 

Aspergillus

 spp. infection cannot be confirmed or excluded if the infecting strain is 

not found in the health-care setting.

287

   Sensitive molecular typing methods (e.g., randomly amplified 

polymorphic DNA (RAPD) techniques and a more recent DNA fingerprinting technique that detects 

restriction fragment length polymorphisms in fungal genomic DNA) to identify strain differences 

among 

Aspergillus

 spp., however, are becoming increasingly used in epidemiologic investigations of 

health-care–acquired fungal infection (A.Streifel, University of Minnesota, 2000).

68, 110, 286, 287, 292–296

   

During case cluster evaluation, microbiologic

 

sampling may provide an isolate from the environment 

for molecular typing and comparison with patient isolates.  Therefore, it may be prudent for the clinical 

laboratory to save 

Aspergillus

 spp. isolated from colonizations and invasive disease cases among 

patients in PE, oncology, and transplant services for these purposes. 

 

Box 6.  Unresolved issues associated with microbiologic air sampling*

 

 

 

Lack of standards linking fungal spore levels with infection rates (i.e., no safe level of exposure) 

 

Lack of standard protocols for testing (e.g., sampling intervals, number of samples, sampling 

                   locations) 
 Need 

for 

substantial laboratory support 

 

Culture issues (e.g., false negatives, insensitivity, lag time between sampling and recording the 

                   results) 
 

New, complex polymerase chain reaction (PCR) analytical methods 

 

Unknown incubation period for Aspergillus spp. infection 

 

Variability of sampler readings 

 

Sensitivity of the sampler used (i.e., the volumes of air sampled) 

 

Lack of details in the literature about describing sampling circumstances (e.g., unoccupied rooms 

                   vs. ongoing activities in rooms, expected fungal concentrations, and rate of outdoor air 
                   penetration) 
 

Lack of correlation between fungal species and strains from the environment and clinical 

                   specimens 
 

Confounding variables with high-risk patients (e.g., visitors and time spent outside of protective 

                   environment [PE] without respiratory protection) 
 

Need for determination of ideal temperature for incubating fungal cultures (95°F [35°C] is the most 

                   commonly used temperature) 

 

 

*  Material in this box is compiled from references 35, 100, 222, 289, and 297. 

 

Sedimentation methods using settle plates and volumetric sampling methods using solid impactors are 

commonly employed when sampling air for bacteria and fungi.  Settle plates have been used by 

numerous investigators to detect airborne bacteria or to measure air quality during medical procedures 

(e.g., surgery).

17, 60, 97, 151, 161, 287

   Settle plates, because they rely on gravity during sampling, tend to 

select for larger particles and lack sensitivity for respirable particles (e.g., individual fungal spores), 

especially in highly-filtered environments.  Therefore, they are considered impractical for general use.

35, 

289, 298–301

   Settle plates, however, may detect fungi aerosolized during medical procedures (e.g., during 

wound dressing changes), as described in a recent outbreak of aspergillosis among liver transplant 

patients.

302

 

 

The use of slit or sieve impactor samplers capable of collecting large volumes of air in short periods of 

time are needed to detect low numbers of fungal spores in highly filtered areas.

35, 289

   In some 

background image

 

29

outbreaks, aspergillosis cases have occurred when fungal spore concentrations in PE ambient air ranged 

as low as 0.9–2.2 colony-forming units per cubic meter (CFU/m

3

) of air.

18, 94

   On the basis of the 

expected spore counts in the ambient air and the performance parameters of various types of volumetric 

air samplers, investigators of a recent aspergillosis outbreak have suggested that an air volume of at 

least 1000 L (1 m

3

) should be considered when sampling highly filtered areas.

283

   Investigators have 

also suggested limits of 15 CFU/m

3

 for gross colony counts of fungal organisms and <0.1 CFU/m

3

 for 

Aspergillus fumigatus

 and other potentially opportunistic fungi in heavily filtered areas (>12 ACH and 

filtration of >99.97% efficiency).

120

   No correlation of these values with the incidence of health-care–

associated fungal infection rates has been reported. 

 

Air sampling in health-care facilities, whether used to monitor air quality during construction, to verify 

filter efficiency, or to commission new space prior to occupancy, requires careful notation of the 

circumstances of sampling.  Most air sampling is performed under undisturbed conditions.  However, 

when the air is sampled during or after human activity (e.g., walking and vacuuming), a higher number 

of airborne microorganisms likely is detected.

297

   The contribution of human activity to the significance 

of air sampling and its impact on health-care–associated infection rates remain to be defined.  

Comparing microbiologic sampling results from a target area

 

(e.g., an area of construction) to those 

from an unaffected location in the facility can provide information about distribution and concentration 

of potential airborne pathogens.  A comparison of microbial species densities in outdoor air versus 

indoor air has been used to help pinpoint fungal spore bursts.  Fungal spore densities in outdoor air are 

variable, although the degree of variation with the seasons appears to be more dramatic in the United 

States than in Europe.

92, 287, 303 

 

Particulate and microbiologic air sampling have been used when commissioning new HVAC system 

installations; however, such sampling is particularly important for newly constructed or renovated PE or 

operating rooms.  Particulate sampling is used as part of a battery of tests to determine if a new HVAC 

system is performing to specifications for filtration and the proper number of ACH.

268, 288, 304

   

Microbiologic air sampling, however, remains controversial in this application, because no standards for 

comparison purposes have been determined.  If performed, sampling should be limited to determining 

the density of fungal spores per unit volume of air space.  High numbers of spores may indicate 

contamination of air-handling system components prior to installation or a system deficiency when 

culture results are compared with known filter efficiencies and rates of air exchange. 

 

e.  External Demolition and Construction

 

External demolition, planned building implosions, and dirt excavation generate considerable dust and 

debris that can contain airborne microorganisms.  In one study, peak concentrations in outdoor air at 

grade level and HVAC intakes during site excavation averaged 20,000 CFU/m

3

 for all fungi and 500 

CFU/m

3

 for 

Aspergillus fumigatus

, compared with 19 CFU/m

3

 and 4 CFU/m

3

, respectively, in the 

absence of construction.

280

   Many health-care institutions are located in large, urban areas; building 

implosions are becoming a more frequent concern.  Infection-control risk assessment teams, particularly 

those in facilities located in urban renewal areas, would benefit by developing risk management 

strategies for external demolition and construction as a standing policy.  In light of the events of 11 

September 2001, it may be necessary for the team to identify those dust exclusion measures that can be 

implemented rapidly in response to emergency situations (Table 8). Issues to be reviewed prior to 

demolition include a) proximity of the air intake system to the work site, b) adequacy of window seals 

and door seals, c) proximity of areas frequented by immunocompromised patients, and d) location of the 

underground utilities (D. Erickson, ASHE, 2000).

120, 250, 273, 276, 277, 280, 305

 

 

 

 

 

background image

 

30 

Table 8.  Strategies to reduce dust and moisture intrusion during external demolition and 
construction

 

Item Recommendation 

 

Demolition site 

   Shroud the site if possible to reduce environmental  

                                                                               contamination. 
Dust-generating equipment 

   Prior to placing dust-generating equipment, evaluate the 

                                                                               location to ensure that dust produced by the equipment 
                                                                               will not enter the building through open doorways or 
                                                                               windows, or through ventilation air intakes. 
Construction materials storage 

   Locate this storage away from the facility and ventilation air 

                                                                               intakes. 
Adjacent air intakes 

   Seal off affected intakes, if possible, or move if funds permit. 

HVAC system 

   Consult with the facility engineer about pressure differentials 

                                                                               and air recirculation options; keep facility air pressure 
                                                                               positive to outside air. 
Filters 

   Ensure that filters are properly installed; change roughing 

                                                                               filters frequently to prevent dust build-up on high-efficiency 
                                                                               filters. 
Windows 

   Seal and caulk to prevent entry of airborne fungal spores. 

Doors 

   Keep closed as much as possible; do not prop open; seal and 

                                                                               caulk unused doors (i.e., those that are not designated as 
                                                                               emergency exits); use mats with tacky surfaces at outside 
                                                                               entrances. 
Water utilities 

   Note location relative to construction area to prevent intrusion 

                                                                               of dust into water systems.* 
Medical gas piping 

   Ensure that these lines/pipes are insulated during periods of 

                                                                               vibration. 
Rooftops 

   Temporarily close off during active demolition/construction 

                                                                               those rooftop areas that are normally open to the public  
                                                                               (e.g., rooftop atrium). 
Dust generation 

   Provide methods (e.g., misting the area with water) to  

                                                                               minimize dust. 
Immunocompromised patients 

   Use walk-ways protected from demolition/construction sites; 

                                                                               avoid outside areas close to these sites; avoid rooftops. 
Pedestrian traffic 

   Close off entry ways as needed to minimize dust intrusion. 

Truck traffic 

   Reroute if possible, or arrange for frequent street cleaning. 

Education and awareness+ 

   Encourage reporting of hazardous or unsafe incidents  

                                                                               associated with construction. 

 

 

*  Contamination of water pipes during demolition activities has been associated with health-care–associated transmission of 

Legionella

 spp.

305

 

+  When health-care facilities have immunosuppressed patients in their census, telephoning the city building department each month to find  

       out if buildings are scheduled for demolition is prudent. 

 

Minimizing the entry of outside dust into the HVAC system is crucial in reducing the risk for airborne 

contaminants.  Facility engineers should be consulted about the potential impact of shutting down the 

system or increasing the filtration.  Selected air handlers, especially those located close to excavation 

sites, may have to be shut off temporarily to keep from overloading the system with dust and debris.  

Care is needed to avoid significant facility-wide reductions in pressure differentials that may cause the 

building to become negatively pressured relative to the outside.  To prevent excessive particulate 

overload and subsequent reductions in effectiveness of intake air systems that cannot be shut off 

temporarily, air filters must be inspected frequently for proper installation and function.  Excessive dust 

background image

 

31

penetration can be avoided if recirculated air is maximally utilized while outdoor air intakes are shut 

down.  Scheduling demolition and excavation during the winter, when 

Aspergillus

 spp. spores may be 

present in lower numbers, can help, although seasonal variations in spore density differ around the 

world.

92, 287, 303

   Dust control can be managed by misting the dirt and debris during heavy dust-

generating activities.  To decrease the amount of aerosols from excavation

 

and demolition projects, 

nearby windows, especially in areas housing immunocompromised patients, can be sealed and window 

and door frames caulked or weather-stripped to prevent dust intrusion.

50, 301, 306

   Monitoring for 

adherence to these control measures throughout

 

demolition or excavation is crucial.  Diverting 

pedestrian traffic away from the construction sites decreases the amount of dust

 

tracked back into

 

the

 

health-care facility and minimizes exposure of high-risk patients to environmental pathogens.  

Additionally, closing entrances near construction or demolition sites might be beneficial; if this is not 

practical, creating an air lock (i.e., pressurizing the entry way) is another option.

 

 

 

f.  Internal Demolition, Construction, Renovations, and Repairs

 

The focus of a properly implemented infection-control program during interior construction and repairs 

is containment of dust and moisture.  This objective is achieved by a) educating construction workers 

about the importance of control measures; b) preparing the site; c) notifying and issuing advisories for 

staff, patients, and visitors; d) moving staff and patients and relocating patients as needed; e) issuing 

standards of practice and precautions during activities and maintenance; f) monitoring for adherence to 

control measures during construction and providing prompt feedback about lapses in control; g) 

monitoring HVAC performance; h) implementing daily clean-up, terminal cleaning and removal of 

debris upon completion; and i) ensuring the integrity of the water system during and after construction.  

These activities should be coordinated with engineering staff and infection-control professionals. 

 

Physical barriers capable of containing smoke and dust will confine dispersed fungal spores to the 

construction zone.

279, 284, 307, 308

   The specific type of physical barrier required depends on the project’s 

scope and duration and on local fire codes.  Short-term projects that result in minimal dust dispersion 

(e.g., installation of new cables or wiring above ceiling tiles) require only portable plastic enclosures 

with negative pressure and HEPA filtration of the exhaust air from the enclosed work area.  The 

placement of a portable industrial-grade HEPA filter device capable of filtration rate of 300–800 ft

3

/min. 

adjacent to the work area will help to remove fungal spores, but its efficacy is dependent on the supplied 

ACH and size of the area.  If the project is extensive but short-term, dust-abatement, fire-resistant 

plastic curtains (e.g., Visqueen®) may be adequate.  These should be completely airtight and sealed 

from ceiling to floor with overlapping curtains;

276, 277, 309

   holes, tears, or other perforations should be 

repaired promptly with tape.  A portable, industrial-grade HEPA filter unit on continuous operation is 

needed within the contained area, with the filtered air exhausted to the outside of the work zone.  

Patients should not remain in the room when dust-generating activities are performed.  Tools to assist 

the decision-making process regarding selection of barriers based on an ICRA approach are available.

281

 

 

More elaborate barriers are indicated for long-term projects that generate moderate to large amounts of 

dust.  These barrier structures typically consist of rigid, noncombustible walls constructed from sheet 

rock, drywall, plywood, or plaster board and covered with sheet plastic (e.g., Visqueen®).  Barrier 

requirements to prevent the intrusion of dust into patient-care areas include a) installing a plastic dust 

abatement curtain before construction of the rigid barrier; b) sealing and taping all joint edges including 

the top and bottom; c) extending the barrier from floor to floor, which takes into account the space 

[approximately 2–8 ft.] above the finished, lay-down ceiling; and d) fitting or sealing any temporary 

doors connecting the construction zone to the adjacent area.  (See Box 7 for a list of the various 

construction and repair activities that require the use of some type of barrier.) 

 

 

background image

 

32 

Box 7.  Construction/repair projects that require barrier structures* 

 

 

Demolition of walls, wallboard, plaster, ceramic tiles, ceiling tiles, and ceilings 

 

Removal of flooring and carpeting, windows and doors, and casework 

 

Working with sinks and plumbing that could result in aerosolization of water in high-risk areas 

 

Exposure of ceiling spaces for demolition and for installation or rerouting of utility services (e.g., 

                   rewiring, electrical conduction installation, HVAC ductwork, and piping) 
 

Crawling into ceiling spaces for inspection in a manner that may dislodge dust 

 

Demolition, repair, or construction of elevator shafts 

 

Repairing water damage 

 

 

*  Material for this box was compiled from references 120, 250, 273, 276, and 277. 

 

Dust and moisture abatement and control rely primarily on the impermeable barrier containment 

approach; as construction continues, numerous opportunities can lead to dispersion of dust to other areas 

of the health-care facility.  Infection-control measures that augment the use of barrier containment 

should be undertaken (Table 9). 

 

Dust-control measures for clinical laboratories are an essential part of the infection-control strategy 

during hospital construction or renovation.  Use of plastic or solid barriers may be needed if the ICRA 

determines that air flow from construction areas may introduce airborne contaminants into the 

laboratory space.  In one facility, pseudofungemia clusters attributed to 

Aspergillus 

spp. and 

Penicillium

 

spp. were linked to improper air flow patterns and construction projects adjacent to the laboratory; 

intrusion of dust and spores into a biological safety cabinet from construction activity immediately next 

to the cabinet resulted in a cluster of cultures contaminated with 

Aspergillus niger

.

310, 311

   Reportedly, 

no barrier containment was used and the HEPA filtration system was overloaded with dust.  In addition, 

an outbreak of pseudobacteremia caused by 

Bacillus 

spp. occurred in another hospital during 

construction above a storage area for blood culture bottles.

207

   Airborne spread of 

Bacillus

 spp. spores 

resulted in contamination of the bottles’ plastic lids, which were not disinfected or handled with proper 

aseptic technique prior to collection of blood samples. 

 

Table 9.  Infection-control measures for internal construction and repair projects*+ 

Infection-control measure 

Steps for implementation 

Prepare for the project. 

1.  Use a multi-disciplinary team approach to incorporate infection control into the 

       project. 

2.  Conduct the risk assessment and a preliminary walk-through with project 

       managers and staff. 

Educate staff and construction workers. 

1.  Educate staff and construction workers about the importance of adhering to 

       infection-control measures during the project. 

2.  Provide educational materials in the language of the workers. 

3.  Include language in the construction contract requiring construction workers and

       subcontractors to participate in infection-control training. 

Issue hazard and warning notices. 

1.  Post signs to identify construction areas and potential hazards. 

2.  Mark detours requiring pedestrians to avoid the work area. 

Relocate high-risk patients as needed, 

especially if the construction is in or 

adjacent to a PE area. 

1.  Identify target patient populations for relocation based on the risk assessment. 

2.  Arrange for the transfer in advance to avoid delays. 

3.  At-risk patients should wear protective respiratory equipment (e.g., a high- 

       efficiency mask) when outside their PE rooms. 

Establish alternative traffic patterns for 

staff, patients, visitors, and construction 

workers. 

1.  Determine appropriate alternate routes from the risk assessment. 

2.  Designate areas (e.g., hallways, elevators, and entrances/exits) for construction-

       worker use. 

3.  Do not transport patients on the same elevator with construction materials and 

       debris. 

background image

 

33

Infection-control measure 

Steps for implementation 

Erect appropriate barrier containment. 

1.  Use prefabricated plastic units or plastic sheeting for short-term projects that 

       will generate minimal dust. 

2.  Use durable rigid barriers for ongoing, long-term projects. 

Establish proper ventilation. 

1.  Shut off return air vents in the construction zone, if possible, and seal around  

       grilles. 

2.  Exhaust air and dust to the outside, if possible. 

3.  If recirculated air from the construction zone is unavoidable, use a pre-filter and 

       a HEPA filter before the air returns to the HVAC system. 

4.  When vibration-related work is being done that may dislodge dust in the  

       ventilation system or when modifications are made to ductwork serving 

       occupied spaces, install filters on the supply air grilles temporarily. 

5.  Set pressure differentials so that the contained work area is under negative 

       pressure. 

6.  Use air flow monitoring devices to verify the direction of the air pattern. 

7.  Exhaust air and dust to the outside, if possible. 

8.  Monitor temperature, air changes per hour (ACH), and humidity levels  

       (humidity levels should be <65%). 

9.  Use portable, industrial grade HEPA filters in the adjacent area and/or the  

       construction zone for additional ACH. 

10.  Keep windows closed, if possible. 

Control solid debris. 

1.  When replacing filters, place the old filter in a bag prior to transport and dispose

       as a routine solid waste. 

2.  Clean the construction zone daily or more often as needed. 

3.  Designate a removal route for small quantities of solid debris. 

4.  Mist debris and cover disposal carts before transport (i.e., leaving the  

       construction zone). 

5.  Designate an elevator for construction crew use. 

6.  Use window chutes and negative pressure equipment for removal of larger  

       pieces of debris while maintaining pressure differentials in the construction 

       zone. 

7.  Schedule debris removal to periods when patient exposures to dust is minimal. 

Control water damage. 

1.  Make provisions for dry storage of building materials. 

2.  Do not install wet, porous building materials (i.e., sheet rock). 

3.  Replace water-damaged porous building materials if they cannot be completely 

        dried out within 72 hours. 

 

 

 

Control dust in air and on surfaces. 

1.  Monitor the construction area daily for compliance with the infection-control 

       plan. 

2.  Protective outer clothing for construction workers should be removed before 

       entering clean areas. 

3.  Use mats with tacky surfaces within the construction zone at the entry; cover 

       sufficient area so that both feet make contact with the mat while walking  

       through the entry. 

4.  Construct an anteroom as needed where coveralls can be donned and removed. 

5.  Clean the construction zone and all areas used by construction workers with a 

       wet mop. 

6.  If the area is carpeted, vacuum daily with a HEPA-filtered–equipped vacuum. 

7.  Provide temporary essential services (e.g., toilets) and worker conveniences 

       (e.g, vending machines) in the construction zone as appropriate. 

8.  Damp-wipe tools if removed from the construction zone or left in the area. 

9.  Ensure that construction barriers remain well sealed; use particle sampling as 

       needed. 

10.  Ensure that the clinical laboratory is free from dust contamination. 

 

 

 

 

background image

 

34 

Infection-control measure 

Steps for implementation 

Complete the project. 

1.  Flush the main water system to clear dust-contaminated lines. 

2.  Terminally clean the construction zone before the construction barriers are 

       removed. 

3.  Check for visible mold and mildew and eliminate (i.e., decontaminate and  

       remove), if present. 

4.  Verify appropriate ventilation parameters for the new area as needed. 

5.  Do not accept ventilation deficiencies, especially in special care areas. 

6.  Clean or replace HVAC filters using proper dust-containment procedures. 

7.  Remove the barriers and clean the area of any dust generated during this work. 

8.  Ensure that the designated air balances in the operating rooms (OR) and  

       protective environments (PE) are achieved before occupancy. 

9.  Commission the space as indicated, especially in the OR and PE, ensuring that  

       the room’s required engineering specifications are met. 

*  Material in this table includes information from D. Erickson, ASHE, 2000. 

+  Material in this table was compiled from references 19, 51, 67, 80, 106, 120, 250, 266, 273, 276–278, 280, 285, and 309, 312–315. 

 

 

5.  Environmental Infection-Control Measures for Special Health-Care 
Settings 

 

Areas in health-care facilities that require special ventilation include a) operating rooms; b) PE rooms 

used by high-risk, immunocompromised patients; and c) AII rooms for isolation of patients with 

airborne infections (e.g., those caused by 

M. tuberculosis

, VZV, or measles virus).  The number of 

rooms required for PE and AII are determined by a risk assessment of the health-care facility.

6

   

Continuous, visual monitoring of air flow direction is required for new or renovated pressurized 

rooms.

120, 256

 

 

a.  Protective Environments (PE)

 

Although the exact configuration and specifications of PEs might differ among hospitals, these care 

areas for high-risk, immunocompromised patients are designed to minimize fungal spore counts in air 

by maintaining a) filtration of incoming air by using central or point-of-use HEPA filters; b) directed 

room air flow [i.e., from supply on one side of the room, across the patient, and out through the exhaust 

on the opposite side of the room]; c) positive room air pressure of 2.5 Pa [0.01" water gauge] relative to 

the corridor; d) well-sealed rooms; and e) >12 ACH.

44, 120, 251, 254, 316–319

   Air flow rates must be adjusted 

accordingly to ensure sufficient ACH, and these rates vary depending on certain factors (e.g., room air 

leakage area).  For example, to provide >12 ACH in a typical patient room with 0.5 sq. ft. air leakage, 

the air flow rate will be minimally 125 cubic feet/min (cfm).

320, 321

   Higher air flow rates may be 

needed.  A general ventilation diagram for a positive-pressure room is given in Figure 2.  Directed room 

air flow in PE rooms is not laminar; parallel air streams are not generated.  Studies attempting to 

demonstrate patient benefit from laminar air flow in a PE setting are equivocal.

316, 318, 319, 322 - 327

 

 

Air flow direction at the entrances to these areas should be maintained and verified, preferably on a 

daily basis, using either a visual means of indication (e.g., smoke tubes and flutter strips) or 

manometers.  Permanent installation of a visual monitoring device is indicated for new PE construction 

and renovation.

120

   Facility service structures can interfere with the proper unidirectional air flow from 

the patients’ rooms to the adjacent corridor.  In one outbreak investigation, 

Aspergillus 

spp. infections in 

a

 

critical care unit may have been associated with a pneumatic specimen transport system, a textile 

disposal duct system, and central vacuum lines for housekeeping, all of which disrupted proper air flow 

from the patients’ rooms to the outside and allowed entry of fungal spores into the unit (M.McNeil, 

CDC, 2000). 

background image

 

35

Figure 2.  Example of positive-pressure room control for protection from airborne 
environmental microbes (PE)* + § 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*  Stacked black boxes represent patient’s bed.  Long open box with cross-hatch represents supply air.  Open boxes with single, 

        diagonal slashes represent air exhaust registers.  Arrows indicate directions of air flow. 

+  Possible uses include immunocompromised patient rooms (e.g., hematopoietic stem cell transplant or solid organ transplant 

        procedure rooms) and orthopedic operating rooms. 

§  Positive-pressure room engineering features include 

 

  positive pressure (greater supply than exhaust air volume); 

 

  pressure differential range of 2.5–8 Pa (0.01–0.03-in. water gauge), ideal at 8 Pa; 

 

  air flow volume differential >125-cfm supply versus exhaust; 

 

  sealed room, approximately 0.5-sq. ft. leakage; 

 

  clean to dirty air flow; 

 

  monitoring; 

 

  >12 air changes per hour (ACH); and 

 

  return air if refiltered. 

¶  This diagram is a generic illustration of air flow in a typical installation.  Alternative air flow arrangements are recognized. 

       Adapted and used with permission from A. Streifel and the publisher of reference 328 (Penton Media, Inc.) 

 

 

The use of surface fungicide treatments is becoming more common, especially for building materials.

329

   

Copper-based compounds have demonstrated anti-fungal activity and are often applied to wood or paint.  

Copper-8-quinolinolate was used on environmental surfaces contaminated with 

Aspergillus

 spp. to 

control one reported outbreak of aspergillosis.

310

   The compound was also incorporated into the 

fireproofing material of a newly constructed hospital to help decrease the environmental spore 

burden.

316

 

 

b.  Airborne Infection Isolation (AII)

 

Acute-care inpatient facilities need at least one room equipped to house patients with airborne infectious 

disease.  Every health-care facility, including ambulatory and long-term care facilities, should undertake 

an ICRA to identify the need for AII areas.  Once the need is established, the appropriate ventilation 

equipment can be identified.  Air handling systems for this purpose need not be restricted to central 

systems.  Guidelines for the prevention of health-care–acquired TB have been published in response to 

multiple reports of health-care–associated transmission of multi-drug resistant strains.

4, 330

   In reports 

documenting health-care–acquired TB, investigators have noted a failure to comply fully with 

prevention measures in established guidelines.

331 - 345

   These gaps highlight the importance of prompt 

recognition of the disease, isolation of patients, proper treatment, and engineering controls.  AII rooms 

Monitor

Corridor 

Bathroom 

background image

 

36 

are also appropriate for the care and management of smallpox patients.

6

   Environmental infection 

control with respect to smallpox is currently being revisited (see Appendix E). 

 

Salient features of engineering controls for AII areas include a) use of negative pressure rooms with 

close monitoring of air flow direction using manometers or temporary or installed visual indicators [e.g., 

smoke tubes and flutter strips] placed in the room with the door closed; b) minimum 6 ACH for existing 

facilities, >12 ACH for areas under renovation or for new construction; and c) air from negative 

pressure rooms and treatment rooms exhausted directly to the outside if possible.

4, 120, 248

   As with PE, 

airflow rates need to be determined to ensure the proper numbers of ACH.

320, 321

   AII rooms can be 

constructed either with (Figure 3) or without (Figure 4) an anteroom.  When the recirculation of air from 

AII rooms is unavoidable, HEPA filters should be installed in the exhaust duct leading from the room to 

the general ventilation system.  In addition to UVGI fixtures in the room, UVGI can be placed in the 

ducts as an adjunct measure to HEPA filtration, but it can not replace the HEPA filter.

4, 346

   A UVGI 

fixture placed in the upper room, coupled with a minimum of 6 ACH, also provides adequate air 

cleaning.

248

    

 

Figure 3.  Example of negative-pressure room control for airborne infection isolation 
(AII)* + §¶ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*  Stacked black boxes represent patient’s bed.  Long open box with cross-hatch represents supply air.  Open boxes with single, 

       diagonal slashes represent air exhaust registers.  Arrows indicate direction of air flow. 

+  Possible uses include treatment or procedure rooms, bronchoscopy rooms, and autopsy. 

§  Negative-pressure room engineering features include 

 

  negative pressure (greater exhaust than supply air volume); 

 

  pressure differential of 2.5 Pa (0.01-in. water gauge); 

 

  air flow volume differential >125-cfm exhaust versus supply; 

 

  sealed room, approximately 0.5-sq. ft. leakage; 

 

  clean to dirty air flow; 

 

  monitoring; 

 

  >12 air changes per hour (ACH) new or renovation, 6 ACH existing; and 

 

  exhaust to outside or HEPA-filtered if recirculated. 

¶ This diagram is a generic illustration of air flow in a typical installation.  Alternative air flow arrangements are recognized. 

       Adapted and used with permission from A. Streifel and the publisher of reference 328 (Penton Media, Inc.) 

 

 

One of the components of airborne infection isolation is respiratory protection for health-care workers 

and visitors when entering AII rooms.

4, 6, 347

   Recommendations of the type of respiratory protection are 

dependent on the patient’s airborne infection (indicating the need for AII) and the risk of infection to 

Monitor 

Corridor 

Bathroom

background image

 

37

persons entering the AII room.  A more in-depth discussion of respiratory protection in this instance is 

presented in the current isolation guideline;

6

  a revision of this guideline is in development.  Cough-

inducing procedures (e.g., endotracheal intubation and suctioning of known or suspected TB patients, 

diagnostic sputum induction, aerosol treatments, and bronchoscopy) require similar precautions.

348–350 

 

Additional engineering measures are necessary for the management of patients requiring PE (i.e., 

allogeneic HSCT patients) who concurrently have airborne infection.  For this type of patient treatment, 

an anteroom (Figure 4) is required in new construction and renovation as per AIA guidelines.

120

    

 

 

Figure 4.  Example of airborne infection isolation (AII) room with anteroom and neutral 
anteroom* + § 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*  The top diagram indicates air flow patterns when patient with only airborne infectious disease occupies room.  Middle and 

       bottom diagrams indicate recommended air flow patterns when room is occupied by immunocompromised patient with 

       airborne infectious disease.  Stacked black boxes represent patient beds.  Long open boxes with cross-hatches represent 

       supply air.  Open boxes with single, diagonal slashes represent air exhaust registers.  Arrows indicate directions of air flow. 

+  AII isolation room with anteroom engineering features include 

 

  pressure differential of 2.5 Pa (0.01-in. water gauge) measured at the door between patient room and anteroom; 

 

  air flow volume differential >125-cfm. depending on anteroom air flow direction (pressurized versus depressurized); 

Anteroom 

Corridor 

Monitor

Bathroom

AII only 

Anteroom 

Corridor

 

Monitor

Bathroom

Neutral Anteroom 

Monitor

Corridor 

Bathroom

AII and immuno-
compromised 

AII and immuno-
compromised 

ƒ

ƒ

y

background image

 

38 

 

  sealed room with approximately 0.5-sq. ft. leakage; 

 

  clean to dirty air flow 

 

  monitoring; 

 

  >12 air changes per hour (ACH) new or renovation, 6 ACH existing; and 

 

  anteroom air flow patterns.  The small 

ƒ

 in panels 1 and 2 indicate the anteroom is pressurized (supply versus exhaust),  

               while the small 

y

 in panel 3 indicates the anteroom is depressurized (exhaust versus supply). 

§  Used with permission of A. Streifel, University of Minnesota 

 

 

The pressure differential of an anteroom can be positive or negative relative to the patient in the room.

120

   

An anteroom can act as an airlock (Figure 4).  If the anteroom is positive relative to the air space in the 

patient’s room, staff members do not have to mask prior to entry into the anteroom if air is directly 

exhausted to the outside and a minimum of 10 ACH (Figure 4, top diagram).

120

   When an anteroom is 

negative relative to both the AII room and the corridor, health-care workers must mask prior to entering 

the anteroom (Figure 4, bottom diagram).  If an AII

 

room with an anteroom is not available, use of a 

portable, industrial-grade HEPA filter unit may help to increase the number of ACHs while facilitating 

the removal of fungal spores; however, a fresh air source must be present

 

to achieve the proper air 

exchange rate.  Incoming ambient air should receive HEPA filtration. 

 

c.  Operating Rooms

 

Operating room air may contain microorganisms, dust, aerosol, lint, skin squamous epithelial cells, and 

respiratory droplets.  The microbial level in operating room air is directly proportional to the number of 

people moving in the room.

351

   One study documented lower infection rates with coagulase-negative 

staphylococci among patients when operating room traffic during the surgical procedure was limited.

352

   

Therefore, efforts should be made to minimize personnel traffic during operations.  Outbreaks of SSIs 

caused by group A beta-hemolytic streptococci have been traced to airborne transmission from 

colonized operating-room personnel to patients.

150–154

   Several potential health-care–associated 

pathogens (e.g., 

Staphylococcus aureus

 and 

Staphylococcus epidermidis

) and drug-resistant organisms 

have also been recovered from areas adjacent to the surgical field,

353

  but the extent to which the 

presence of bacteria near the surgical field influences the development of postoperative SSIs is not 

clear.

354

    

 

Proper ventilation, humidity (<68%), and temperature control in the operating room is important for the 

comfort of surgical personnel and patients, but also in preventing environmental conditions that 

encourage growth and transmission of microorganisms.

355

   Operating rooms should be maintained at 

positive pressure with respect to corridors and adjacent areas.

356

   Operating rooms typically do not have 

a variable air handling system.  Variable air handling systems are permitted for use in operating rooms 

only if they continue to provide a positive pressure with respect to the corridors and adjacent areas and 

the proper ACHs are maintained when the room is occupied.  Conventional operating-room ventilation 

systems produce a minimum of about 15 ACH of filtered air for thermal control, three (20%) of which 

must be fresh air.

120, 357, 358

   Air should be introduced at the ceiling and exhausted near the floor.

357, 359

 

 

Laminar airflow and UVGI have been suggested as adjunct measures to reduce SSI risk for certain 

operations.  Laminar airflow is designed to move particle-free air over the aseptic operating field at a 

uniform velocity (0.3–0.5 m/sec), sweeping away particles in its path.  This air flow can be directed 

vertically or horizontally, and recirculated air is passed through a HEPA filter.

360–363

   Neither laminar 

airflow nor UV light, however, has been conclusively shown to decrease overall SSI risk.

356, 364–370

 

 

Elective surgery on infectious TB patients should be postponed until such patients have received 

adequate drug therapy.  The use of general anesthesia in TB patients poses infection-control challenges 

because intubation can induce coughing, and the anesthesia breathing circuit apparatus potentially can 

become contaminated.

371

   Although operating room suites at 15 ACH exceed the air exchanges required 

background image

 

39

for TB isolation, the positive air flow relative to the corridor could result in health-care–associated 

transmission of TB to operating-room personnel.  If feasible, intubation and extubation of the TB 

surgical patient should be performed in AII.  AIA currently does not recommend changing pressure 

from positive to negative or setting it to neutral; most facilities lack the capability to do so.

120

   When 

emergency surgery is indicated for a suspected/diagnosed infectious TB patient, taking specific 

infection-control measures is prudent (Box 8). 

 

Box 8.  Strategy for managing TB patients and preventing airborne transmission in 
operating rooms* 

 

1.  If emergency surgery is indicated for a patient with active TB, schedule the TB patient as the last  
       surgical case to provide maximum time for adequate ACH. 
2.  Operating room personnel should use NIOSH-approved N95 respirators without exhalation valves.

347

 

3.  Keep the operating room door closed after the patient is intubated, and allow adequate time for 
       sufficient ACH to remove 99% of airborne particles (Appendix B, Table B.1.): 
 

a)  after the patient is intubated and particularly if intubation produces coughing; 

 

b)  if the door to the operating suite must be opened, and intubation induces coughing in the 

 

       patient; or 

 

c)  after the patient is extubated and suctioned [unless a closed suctioning system is present]. 

4.  Extubate the patient in the operating room or allow the patient to recover in AII rather than in the 
       regular open recovery facilities. 
5.  Temporary use of a portable, industrial grade HEPA filter may expedite removal of airborne 
       contaminants (fresh-air exchange requirements for proper ventilation must still be met).+ 
6.  Breathing circuit filters with 0.1–0.2 µm pore size can be used as an adjunct infection-control 
       measure.

373, 374

 

 

*  Material in this table was compiled from references 4, 347, and 372–374. 

+  The placement of portable HEPA filter units in the operating room must be carefully evaluated for potential disruptions in normal air flow. 

       The portable unit should be turned off while the surgical procedure is underway and turned on following extubation.  Portable HEPA filter  

       units previously placed in construction areas may be used in subsequent patient care, provided that all internal and external surfaces are 

       cleaned and the filter’s performance is verified with appropriate particle testing and is changed, if needed. 

 

Table 10.  Summary of ventilation specifications in selected areas of health-care facilities* 

Specifications 

AII room+ 

PE room 

Critical care 

room§ 

Isolation 

anteroom 

Operating 

room 

Air pressure¶ 

Negative 

Positive 

Positive, negative, 

or neutral 

Positive or 

negative 

Positive 

Room air changes 

>6 ACH (for 

existing rooms); 

>12 ACH (for 

renovation or new 

construction) 

>12 ACH 

>6 ACH 

>10 ACH 

>15 ACH 

Sealed** 

Yes Yes No Yes Yes 

Filtration supply 

90% (dust-spot 

ASHRAE 52.1 

1992) 

99.97%++ >90% >90% 90% 

Recirculation 

No§§ Yes Yes No Yes 

*  Material in this table is compiled from references 35 and 120. 

+  Includes bronchoscopy suites. 

§  Positive pressure and HEPA filters may be preferred in some rooms in intensive care units (ICUs) caring for large numbers of  

       immunocompromised patients. 

¶  Clean-to-dirty: negative to an infectious patient, positive away from an immunocompromised patient. 

**  Minimized infiltration for ventilation control; pertains to windows, closed doors, and surface joints. 

++  Fungal spore filter at point of use (HEPA at 99.97% of 0.3 µm particles). 

background image

 

40 

§§  Recirculated air may be used if the exhaust air is first processed through a HEPA filter. 

¶¶  Table used with permission of the publisher of reference 35 (Lippincott Williams and Wilkins). 

 

 

6.  Other Aerosol Hazards in Health-Care Facilities

 

 

In addition to infectious bioaerosols, several crucial non-infectious, indoor air-quality issues must be 

addressed by health-care facilities.  The presence of sensitizing and allergenic agents and irritants in the 

workplace (e.g., ethylene oxide, glutaraldehyde, formaldehyde, hexachlorophene, and latex allergens

375

is increasing.  Asthma and dermatologic and systemic reactions often result with exposure to these 

chemicals.  Anesthetic gases and aerosolized medications (e.g., ribavirin, pentamidine, and 

aminoglycosides) represent some of the emerging potentially hazardous exposures to health-care 

workers.  Containment of the aerosol at the source is the first level of

 

engineering control, but personal 

protective equipment (e.g., masks, respirators, and glove liners) that distances the worker from the 

hazard also may be needed. 

 

Laser plumes and surgical smoke represent another potential risk for health-care workers.

376–378

   Lasers 

transfer electromagnetic energy into tissues, resulting in the release of a heated plume that includes 

particles, gases, tissue debris, and offensive smells.  One concern is that aerosolized infectious material 

in the laser plume might reach the nasal mucosa of surgeons and adjacent personnel.  Although some 

viruses (i.e., varicella-zoster virus, pseudorabies virus, and herpes simplex virus) do not aerosolize 

efficiently,

379, 380

  other viruses and bacteria (e.g., human papilloma virus [HPV], HIV, coagulase-

negative 

Staphylococcus, Corynebacterium

 spp., 

and Neisseria

 spp.) have been detected in laser 

plumes.

381–387

   The presence of an infectious agent in a laser plume may not, however, be sufficient to 

cause disease from airborne exposure, especially if the normal mode of transmission for the agent is not 

airborne.  No evidence indicated that HIV or hepatitis B virus (HBV) has been transmitted via 

aerosolization and inhalation.

388

 

 

Although continuing studies are needed to fully evaluate the risk of laser plumes to surgical personnel, 

the prevention measures in these other guidelines should be followed: a) NIOSH recommendations,

378

  

b) the 

Recommended Practices for Laser Safety in Practice Settings

 developed by the Association of 

periOperative Registered Nurses [AORN],

389

  c) the assessments of ECRI,

390–392

  and d) the ANSI 

standard.

393

   These guidelines recommend the use of a) respirators (N95 or N100) or full face shields 

and masks,

260

  b) central wall-suction units with in-line filters to collect particulate matter from minimal 

plumes, and c) dedicated mechanical smoke exhaust systems with a high-efficiency filter to remove 

large amounts of laser plume.  Although transmission of TB has occurred as a result of abscess 

management practices that lacked airborne particulate control measures and respiratory protection, use 

of a smoke evacuator or needle aspirator and a high degree of clinical awareness can help protect health-

care workers when excising and draining an extrapulmonary TB abscess.

137

 

 

 

D.  Water 

 

1.  Modes of Transmission of Waterborne Diseases 

 

Moist environments and aqueous solutions in health-care settings have the potential to serve as 

reservoirs for waterborne microorganisms.  Under favorable environmental circumstances (e.g., warm 

temperature and the presence of a source of nutrition), many bacterial and some protozoal 

microorganisms can either proliferate in active growth or remain for long periods in highly stable, 

environmentally resistant (yet infectious) forms.  Modes of transmission for waterborne infections 

background image

 

41

include a) direct contact [e.g., that required for hydrotherapy]; b) ingestion of water [e.g., through 

consuming contaminated ice]; c) indirect-contact transmission [e.g., from an improperly reprocessed 

medical device];

6

 d) inhalation of aerosols dispersed from water sources;

3

  and e) aspiration of 

contaminated water.  The first three modes of transmission are commonly associated with infections 

caused by gram-negative bacteria and nontuberculous mycobacteria (NTM).  Aerosols generated from 

water sources contaminated with 

Legionella 

spp. often serve as the vehicle for introducing legionellae to 

the respiratory tract.

394

 

 

2.  Waterborne Infectious Diseases in Health-Care Facilities 

 

a.  Legionellosis 

Legionellosis is a collective term describing infection produced by 

Legionella

 spp., whereas 

Legionnaires disease is a multi-system illness with pneumonia.

395

   The clinical and epidemiologic 

aspects of these diseases (Table 11) are discussed extensively in another guideline.

3

   Although 

Legionnaires disease is a respiratory infection, infection-control measures intended to prevent health-

care–associated cases center on the quality of water—the principal reservoir for 

Legionella

 spp. 

 

Table 11.  Clinical and epidemiologic characteristics of legionellosis/Legionnaires disease 

 

References 

Causative agent 

Legionella pneumophila

 (90% of infections); 

L. micdadei, L. 

bozemanii, L. dumoffii, L. longbeachii,

 (14 additional species 

can cause infection in humans) 

395–399 

Mode of transmission 

Aspiration of water, direct inhalation or water aerosols 

3, 394–398, 400 

Source of exposure 

Exposure to environmental sources of 

Legionella

 spp. (i.e., 

water or water aerosols) 

31, 33, 401–414 

Clinical syndromes and 

diseases 

Two distinct illnesses: a) Pontiac fever [a milder, influenza-

like illness]; and b) progressive 

pneumonia

 that may be 

accompanied by cardiac, renal, and gastrointestinal 

involvement 

3, 397–399, 415–422 

Populations at greatest 

risk 

Immunosuppressed patients (e.g., transplant patients, cancer 

patients, and patients receiving corticosteroid therapy); 

immunocompromised patients (e.g., surgical patients, 

patients with underlying chronic lung disease, and dialysis 

patients); elderly persons; and patients who smoke 

395–397, 423–433 

Occurrence 

Proportion of community-acquired pneumonia caused by 

Legionella

 spp. ranges from 1%–5%; estimated annual 

incidence among the general population is 8,000–18,000 

cases in the United States; the incidence of health-care–

associated pneumonia (0%–14%) may be underestimated if 

appropriate laboratory diagnostic methods are unavailable. 

396, 397, 434–444 

Mortality rate 

Mortality declined markedly during 1980–1998, from 34% to 

12% for all cases; the mortality rate is higher among persons 

with health-care–associated pneumonia compared with the 

rate among community-acquired pneumonia patients (14% 

for health-care–associated pneumonia versus 10% for 

community-acquired pneumonia [1998 data]). 

395–397, 445 

 

 

Legionella

 spp. are commonly found in various natural and man-made aquatic environments

446, 447

  and 

can enter health-care facility water systems in low or undetectable numbers.

448, 449

   Cooling towers, 

evaporative condensers, heated potable water distribution systems, and locally-produced distilled water 

can provide environments for multiplication of legionellae.

450–454

   In several hospital outbreaks, patients 

have been infected through exposure to contaminated aerosols generated by cooling towers, showers, 

faucets, respiratory therapy equipment, and room-air humidifiers.

401–410, 455

   Factors that enhance 

background image

 

42 

colonization and amplification of legionellae

 

in man-made water environments include a) temperatures 

of 77°F–107.6°F [25°C–42°C],

456–460

  b) stagnation,

461

  c) scale and sediment, 

462

  and d) presence of 

certain free-living aquatic amoebae that can support intracellular growth of legionellae.

462, 463

   The 

bacteria multiply within single-cell protozoa in the environment and within alveolar macrophages in 

humans. 

 

b.  Other Gram-Negative Bacterial Infections 

Other gram-negative bacteria present in potable water also can cause health-care–associated infections.  

Clinically important, opportunistic organisms in tap water include 

Pseudomonas aeruginosa, 

Pseudomonas

 spp., 

Burkholderia cepacia, Ralstonia pickettii, Stenotrophomonas maltophilia

, and

 

Sphingomonas

 spp. (Tables 12 and 13).  Immunocompromised patients are at greatest risk of developing 

infection.  Medical conditions associated with these bacterial agents range from colonization of the 

respiratory and urinary tracts to deep, disseminated infections that can result in pneumonia and 

bloodstream bacteremia.  Colonization by any of these organisms often precedes the development of 

infection.  The use of tap water in medical care (e.g., in direct patient care, as a diluent for solutions, as 

a water source for medical instruments and equipment, and during the final stages of instrument 

disinfection) therefore presents a potential risk for exposure.  Colonized

 

patients also can serve as a 

source of contamination, particularly for moist environments of medical equipment (e.g., ventilators). 

 

In addition to 

Legionella

 spp., 

Pseudomonas aeruginosa

 and 

Pseudomonas 

spp. are among the most 

clinically relevant, gram-negative, health-care–associated pathogens identified from water.  These and 

other gram-negative, non-fermentative bacteria have minimal nutritional requirements (i.e., these 

organisms can grow in distilled water) and can tolerate a variety of physical conditions.  These attributes 

are critical to the success of these organisms as health-care–associated pathogens.  Measures to prevent 

the spread of these organisms and other waterborne, gram-negative bacteria include hand hygiene, glove 

use, barrier precautions, and eliminating potentially contaminated environmental reservoirs.

464, 465

 

 

Table 12.  Pseudomonas aeruginosa infections in health-care facilities 

 

References 

Clinical syndromes and 

diseases 

Septicemia, pneumonia (particularly ventilator-associated), 

chronic respiratory infections among cystic fibrosis patients, 

urinary tract infections, skin and soft-tissue infections (e.g., tissue 

necrosis and hemorrhage), burn-wound infections, folliculitis, 

endocarditis, central nervous system infections (e.g., meningitis 

and abscess), eye infections, and bone and joint infections 

466–503 

Modes of transmission 

Direct contact with water, aerosols; aspiration of water and 

inhalation of water aerosols; and indirect transfer from moist 

environmental surfaces via hands of health-care workers 

28, 502–506 

Environmental sources of 

pseudomonads in health-

care settings 

Potable (tap) water, distilled water, antiseptic solutions 

contaminated with tap water, sinks, hydrotherapy pools, 

whirlpools and whirlpool spas, water baths, lithotripsy therapy 

tanks, dialysis water, eyewash stations, flower vases, and 

endoscopes with residual moisture in the channels 

28, 29, 466, 468, 

507–520 

Environmental sources of 

pseudomonads in the 

community 

Fomites (e.g., drug injection equipment stored in contaminated 

water) 

494, 495 

Populations at greatest risk 

Intensive care unit (ICU) patients (including neonatal ICU), 

transplant patients (organ and hematopoietic stem cell), 

neutropenic patients, burn therapy and hydrotherapy patients, 

patients with malignancies, cystic fibrosis patients, patients with 

underlying medical conditions, and dialysis patients 

28, 466, 467, 472, 

477, 493, 506–508, 

511, 512, 521–526 

 

 

background image

 

43

 

Table 13.  Other gram-negative bacteria associated with water and moist environments 

 

Implicated contaminated environmental vehicle 

References 

 

Burkholderia cepacia 

 

Distilled water 

527 

 Contaminated 

solutions 

and disinfectants 

528, 529 

 Dialysis 

machines 

527 

 Nebulizers 

530–532 

 Water 

baths 

533 

 Intrinsically-contaminated mouthwash* 

534 

 Ventilator 

temperature 

probes 

535 

Stenotrophomonas maltophlia, Sphingomonas spp.

 

 

Distilled water 

536, 537 

 

Contaminated solutions and disinfectants 

529 

 Dialysis 

machines 

527 

 Nebulizers 

530–532 

 Water 

538 

 Ventilator 

temperature 

probes 

539 

Ralstonia pickettii 

 Fentanyl 

solutions 

540 

 Chlorhexidine 

541 

 Distilled 

water 

541 

 

Contaminated respiratory therapy solution 

541, 542 

Serratia marcescens 

 Potable 

water 

543 

 Contaminated 

antiseptics (i.e., benzalkonium chloride 

544–546 

 

       and chlorhexidine) 

 Contaminated 

disinfectants (i.e., quaternary ammonium 

547, 548 

 

       compounds and glutaraldehyde) 

Acinetobacter spp.

 

 Medical 

equipment 

that collects moisture (e.g., mechanical 

549–556 

 

       ventilators, cool mist humidifiers, vaporizers, and mist 

 

       tents) 

 

Room humidifiers 

553, 555 

 Environmental 

surfaces 

557–564 

Enterobacter spp.

 

 Humidifier 

water 

565 

 Intravenous 

fluids 

566–578 

 Unsterilized 

cotton 

swabs 

573 

 Ventilators 

565, 

569 

 

Rubber piping on a suctioning machine 

565, 569 

 Blood 

gas 

analyzers 

570 

 

*  This report describes intrinsic contamination (i.e., occurring during manufacture) prior to use by the health-care facility staff.  All other 

       entries reflect extrinsic sources of contamination. 

 

 

Two additional gram-negative bacterial pathogens that can proliferate in moist environments are 

Acinetobacter

 spp. and 

Enterobacter

 spp.

571, 572

   Members of both genera are responsible for health-

care–associated episodes of colonization, bloodstream infections, pneumonia, and urinary tract 

infections among medically compromised patients, especially those in ICUs and burn therapy units.

566, 

572–583

   Infections caused by 

Acinetobacter

 spp. represent a significant clinical problem.  Average 

infection rates are higher from July through October compared with rates from November through 

June.

584

   Mortality rates associated with 

Acinetobacter

 bacteremia are 17%–52%, and rates as high as 

71% have been reported for pneumonia caused by infection with either 

Acinetobacter

 spp. or 

background image

 

44 

Pseudomonas

 spp.

574–576

   Multi-drug resistance, especially in third generation cephalosporins for 

Enterobacter

 spp., contributes to increased morbidity and mortality.

569, 572

 

 

Patients and health-care workers contribute significantly to the environmental contamination of surfaces 

and equipment with 

Acinetobacter

 spp. and 

Enterobacter

 spp., especially in intensive care areas, 

because of the nature of the medical equipment (e.g., ventilators) and the moisture associated with this 

equipment.

549, 571, 572, 585

   Hand carriage and hand transfer are commonly associated with health-care–

associated transmission of these organisms and for 

S. marcescens

.

586

   

Enterobacter

 spp. are primarily 

spread in this manner among patients by the hands of health-care workers.

567, 587

   

Acinetobacter

 spp. 

have been isolated from the hands of

 

4%–33% of health-care workers in some studies,

585–590

  and

 

transfer of an epidemic strain of 

Acinetobacter

 from patients’ skin to health-care workers’ hands has 

been demonstrated experimentally.

591

   

Acinetobacter

 infections and outbreaks have also been attributed 

to medical equipment and materials (e.g., ventilators, cool mist humidifiers, vaporizers, and mist tents) 

that may have contact with water of uncertain quality (e.g., rinsing a ventilator circuit in tap water).

549–

556

   Strict adherence to hand hygiene helps prevent the spread of both 

Acinetobacter 

spp. and 

Enterobacter

 spp.

577, 592

 

 

Acinetobacter

 spp. have also been detected on dry environmental surfaces (e.g., bed rails, counters, 

sinks, bed cupboards, bedding, floors, telephones, and medical charts) in the vicinity of colonized or 

infected patients; such contamination is especially problematic for surfaces that are frequently 

touched.

557–564

   In two studies, the survival periods of 

Acinetobacter baumannii

 and 

Acinetobacter 

calcoaceticus

 on dry surfaces approximated that for 

S. aureus

 (e.g., 26–27 days).

593, 594

   Because 

Acinetobacter 

spp. may come from numerous sources at any given time, laboratory investigation of 

health-care–associated 

Acinetobacter 

infections should involve techniques to determine biotype, 

antibiotype, plasmid profile, and genomic fingerprinting (i.e., macrorestriction analysis) to accurately 

identify sources and modes of transmission of the organism(s).

595

 

 

c.  Infections and Pseudo-Infections Due to Nontuberculous Mycobacteria 

NTM are acid-fast bacilli (AFB) commonly found in potable water.  NTM include both saprophytic and 

opportunistic organisms.  Many NTM are of low pathogenicity, and some measure of host impairment is 

necessary to enhance clinical disease.

596

   The four most common forms of human disease associated 

with NTM are a) pulmonary disease in adults; b) cervical lymph node disease in children; c) skin, soft 

tissue, and bone infections; and d) disseminated disease in immunocompromised patients.

596, 597

   

Person-to-person acquisition of NTM infection, especially among immunocompetent persons, does not 

appear to occur, and close contacts of patients are not readily infected, despite the high numbers of 

organisms harbored by such patients.

596, 598–600

   NTM are spread via all modes of transmission 

associated with water.  In addition to health-care–associated outbreaks of clinical disease, NTM can 

colonize patients in health-care facilities through consumption of contaminated water or ice or through 

inhalation of aerosols.

601–605

   Colonization following NTM exposure, particularly of the respiratory 

tract, occurs when a patient’s local defense mechanisms are impaired; overt clinical disease does not 

develop.

606

   Patients may have positive sputum cultures in the absence of clinical disease. 

 

Using tap water during patient procedures and specimen collection and in the final steps of instrument 

reprocessing can result in pseudo-outbreaks of NTM contamination.

607– 609

   NTM pseudo-outbreaks of 

Mycobacterium chelonae, M. gordonae,

 and 

M. xenopi

 have been associated with both bronchoscopy 

and gastrointestinal endoscopy when a) tap water is used to provide irrigation to the site or to rinse off 

the viewing tip 

in situ

 or b) the instruments are inappropriately reprocessed with tap water in the final 

steps.

610– 612

 

 

 

background image

 

45

Table 14.  Nontuberculous mycobacteria—environmental vehicles 

 

Vehicles associated with infections or colonizations 

References 

 

Mycobacterium abscessus 

 

Inadequately sterilized medical instruments 

613 

Mycobacterium avium complex (MAC)

 

 Potable 

water 

614–616 

Mycobacterium chelonae 

 

Dialysis, reprocessed dialyzers 

31, 32 

 Inadequately-sterilized 

medical 

instruments, jet injectors 

617, 618 

 

Contaminated solutions 

619, 620 

 Hydrotherapy 

tanks 

621 

Mycobacterium fortuitum 

 

Aerosols from showers or other water sources 

605, 606 

 Ice 

602 

 

Inadequately sterilized medical instruments 

603 

 Hydrotherapy 

tanks 

622 

Mycobacterium marinum 

 Hydrotherapy 

tanks 

623 

Mycobacterium ulcerans 

 Potable 

water 

624 

 

Vehicles associated with pseudo-outbreaks 

References 

 

Mycobacterium chelonae 

 

Potable water used during bronchoscopy and instrument 

610 

 

       reprocessing 

Mycobacterium fortuitum 

 Ice 

607 

Mycobacterium gordonae 

 Deionized 

water 

611 

 Ice 

603 

 

Laboratory solution (intrinsically contaminated) 

625 

 

Potable water ingestion prior to sputum specimen collection 

626 

Mycobacterium kansasii 

 Potable 

water 

627 

Mycobacterium terrae 

 Potable 

water 

608 

Mycobacterium xenopi 

 

Potable water 

609, 612, 627 

 

 

 

NTM can be isolated from both natural and man-made environments.  Numerous studies have identified 

various NTM in municipal water systems and in hospital water systems and storage tanks.

615, 616, 624, 627–

632

   Some NTM species (e.g., 

Mycobacterium xenopi

) can survive in water at 113°F (45°C), and can be 

isolated from hot water taps, which can pose a problem for hospitals that lower the temperature of their 

hot water systems.

627

   Other NTM (e.g., 

Mycobacterium kansasii, M. gordonae, M. fortuitum

, and 

M. 

chelonae

) cannot tolerate high temperatures and are associated more often with cold water lines and 

taps.

629 

 

NTM have a high resistance to chlorine; they can tolerate free chlorine concentrations of 0.05–0.2 mg/L 

(0.05–0.2 ppm) found at the tap.

598, 633, 634

   They are 20–100 times more resistant to chlorine compared 

with coliforms; slow-growing strains of NTM (e.g., 

Mycobacterium avium 

and 

M. kanasii

) appear to be 

background image

 

46 

more resistant to chorine inactivation compared to fast-growing NTM.

635

   Slow-growing NTM species 

have also demonstrated some resistance to formaldehyde and glutaraldehyde, which has posed problems 

for reuse of hemodialyzers.

31

   The ability of NTM to form biofilms at fluid-surface interfaces (e.g., 

interior surfaces of water pipes) contributes to the organisms’ resistance to chemical inactivation and 

provides a microenvironment for growth and proliferation.

636, 637

 

 

d.  Cryptosporidiosis

 

Cryptosporidium parvum

 is a protozoan parasite that causes self-limiting gastroenteritis in normal hosts 

but can cause severe, life-threatening disease in immunocompromised patients.  First recognized as a 

human pathogen in 1976, 

C. parvum

 can be present in natural and finished waters after fecal 

contamination from either human or animal sources.

638–641

 

 

The health risks associated with drinking potable water contaminated with minimal numbers of 

C. 

parvum 

oocysts are unknown.

642

   It remains to be determined if immunosuppressed persons are more 

susceptible to lower doses of oocysts than are immunocompetent persons.  One study demonstrated that 

a median 50% infectious dose (ID

50

) of 132 oocysts of calf origin was sufficient to cause infection 

among healthy volunteers.

643

   In a second study, the same researchers found that oocysts obtained from 

infected foals (newborn horses) were infectious for human volunteers at median ID

50

 of 10 oocysts, 

indicating that different strains or species of 

Cryptosporidium

 may vary in their infectivity for 

humans.

644

   In a small study population of 17 healthy adults with pre-existing antibody to 

C. parvum

the ID

50

 was determined to be 1,880 oocysts, more than 20-fold higher than in seronegative persons.

645

   

These data suggest that pre-existing immunity derived from previous exposures to 

Cryptosporidium

 

offers some protection from infection and illness that ordinarily would result from exposure to low 

numbers of oocysts.

645, 646

 

 

Oocysts, particularly those with thick walls, are environmentally resistant, but their survival under 

natural water conditions is poorly understood.  Under laboratory conditions, some oocysts remain viable 

and infectious in cold (41°F [5°C]) for months.

641

   The prevalence of 

Cryptosporidium

 in the U.S. 

drinking water supply is notable.  Two surveys of approximately 300 surface water supplies revealed 

that 55%–77% of the water samples contained 

Cryptosporidium 

oocysts.

647, 648

   Because the oocysts are 

highly resistant to common disinfectants (e.g., chlorine) used to treat drinking water, filtration of the 

water is important in reducing the risk of waterborne transmission.  Coagulation-floculation and 

sedimentation, when used with filtration, can collectively achieve approximately a 2.5 log

10

 reduction in 

the number of oocysts.

649

   However, outbreaks have been associated with both filtered and unfiltered 

drinking water systems (e.g., the 1993 outbreak in Milwaukee, Wisconsin that affected 400,000 

people).

641, 650–652

   The presence of oocysts in the water is not an absolute indicator that infection will 

occur when the water is consumed, nor does the absence of detectable oocysts guarantee that infection 

will not occur.  Health-care–associated outbreaks of cryptosporidiosis primarily have been described 

among groups of elderly patients and immunocompromised persons.

653

 

 

 

3.  Water Systems in Health-Care Facilities 

 

a.  Basic Components and Point-of-Use Fixtures

 

Treated municipal water enters a health-care facility via the water mains and is distributed throughout 

the building(s) by a network of pipes constructed of galvanized iron, copper, and polyvinylchloride 

(PVC).  The pipe runs should be as short as is practical.  Where recirculation is employed, the pipe runs 

should be insulated and long dead legs avoided in efforts to minimize the potential for water stagnation, 

which favors the proliferation of 

Legionella

 spp. and NTM.  In high-risk applications (e.g., PE areas for 

severely immunosuppressed patients), insulated recirculation loops should be incorporated as a design 

background image

 

47

feature.  Recirculation loops prevent stagnation and insulation maintains return water temperature with 

minimal loss. 

 

Each water service main, branch main, riser, and branch (to a group of fixtures) has a valve and a means 

to reach the valves via an access panel.

120

   Each fixture has a stop valve.  Valves permit the isolation of 

a portion of the water system within a facility during repairs or maintenance.  Vacuum breakers and 

other similar devices in the lines prevent water from back-flowing into the system.  All systems that 

supply water should be evaluated to determine risk for potential back siphonage and cross connections

 

Health-care facilities generate hot water from municipal water using a boiler system.  Hot water heaters 

and storage vessels for such systems should have a drainage facility at the lowest point, and the heating 

element should be located as close as possible to the bottom of the vessel to facilitate mixing and to 

prevent water temperature stratification.  Those hot or cold water systems that incorporate an elevated 

holding tank should be inspected and cleaned annually.  Lids should fit securely to exclude foreign 

materials. 

 

The most common point-of-use fixtures for water in patient-care areas are sinks, faucets, aerators, 

showers, and toilets; eye-wash stations are found primarily in laboratories.  The potential for these 

fixtures to serve as a reservoir for pathogenic microorganisms has long been recognized (Table 15).

509, 

654–656

   Wet surfaces and the production of aerosols facilitate the multiplication and dispersion of 

microbes.  The level of risk associated with aerosol production from point-of-use fixtures varies.  

Aerosols from shower heads and aerators have been linked to a limited number of clusters of gram-

negative bacterial colonizations and infections, including Legionnaires disease, especially in areas 

where immunocompromised patients are present (e.g., surgical ICUs, transplant units, and oncology 

units).

412, 415, 656–659

   In one report, clinical infection was not evident among immunocompetent persons 

(e.g., hospital staff) who used hospital showers when 

Legionella pneumophila

 was present in the water 

system.

660

   Given the infrequency of reported outbreaks associated with faucet aerators, consensus has 

not been reached regarding the disinfection of or removal of these devices from general use.  If 

additional clusters of infections or colonizations occur in high-risk patient-care areas, it may be prudent 

to clean and decontaminate the aerators or to remove them.

658, 659

   ASHRAE recommends cleaning and 

monthly disinfection of aerators in high-risk patient-care areas as part of 

Legionella

 control measures.

661

   

Although aerosols are produced with toilet flushing,

662, 663

  no epidemiologic evidence suggests that 

these aerosols pose a direct infection hazard. 

 

Although not considered a standard point-of-use fixture, decorative fountains are being installed in 

increasing numbers in health-care facilities and other public buildings.  Aerosols from a decorative 

fountain have been associated with transmission of 

Legionella pneumophila

 serogroup 1 infection to a 

small cluster of older adults.

664

   This hotel lobby fountain had been irregularly maintained, and water in 

the fountain may have been heated by submersed lighting, all of which favored the proliferation of 

Legionella

 in the system.

664

   Because of the potential for generations of infectious aerosols, a prudent 

prevention measure is to avoid locating these fixtures in or near high-risk patient-care areas and to 

adhere to written policies for routine fountain maintenance.

120

 

 

Table 15.  Water and point-of-use fixtures as sources and reservoirs of waterborne 
pathogens* 

Reservoir 

Associated 

pathogens 

Transmission 

Strength of 

evidence+ 

Prevention and 

control 

References 

Potable water 

Pseudomonas

, gram-

negative bacteria, 

NTM 

Contact 

Moderate 

Follow public health 

guidelines. 

 

(See Tables 

12–14) 

background image

 

48 

Reservoir 

Associated 

pathogens 

Transmission 

Strength of 

evidence+ 

Prevention and 

control 

References 

Potable water 

Legionella

 Aerosol 

inhalation 

Moderate Provide 

supplemental 

treatment for water. 

(See Table 

11) 

Holy water 

Gram-negative 

bacteria 

Contact 

Low 

Avoid contact with 

severe burn injuries.  

Minimize use among 

immunocompromised 

patients. 

665 

Dialysis water 

Gram-negative 

bacteria 

Contact 

Moderate 

Dialysate should be 

<2,000 cfu/mL; water 

should be <200 cfu/mL. 

2, 527, 666–

668 

Automated 

endoscope 

reprocessors 

and rinse water 

Gram-negative 

bacteria 

Contact 

Moderate 

Use and maintain 

equipment according to 

instructions; eliminate 

residual moisture by 

drying the channels 

(e.g., through alcohol 

rinse and forced air 

drying). 

669–675 

Water baths 

Pseudomonas, 
Burkholderia, 
Acinetobacter

 

Contact 

Moderate 

Add germicide to the 

water; wrap transfusion 

products in protective 

plastic wrap if using the 

bath to modulate the 

temperature of these 

products. 

29, 533, 676, 

677 

Tub immersion 

Pseudomonas, 
Enterobacter, 
Acinetobacter

 

Contact 

Moderate 

Drain and disinfect tub 

after each use; consider 

adding germicide to the 

water; water in large 

hydrotherapy pools 

should be properly 

disinfected and filtered. 

678–683 

Ice and ice 

machines 

NTM, 

Enterobacter, 

Pseudomonas, 
Cryptosporidium 
 
Legionella 

Ingestion, contact 

Moderate 

 

 

 

Low 

Clean periodically; use 

automatic dispenser 

(avoid open chest 

storage compartments 

in patient areas). 

601, 684–687 

Faucet aerators 

Legionella

 

Aerosol inhalation 

Moderate 

Clean and disinfect 

monthly in high-risk 

patient areas; consider 

removing if additional 

infections occur. 

415, 661 

Faucet aerators 

Pseudomonas, 
Acinetobacter, 
Stenotrophomonas, 
Chryseobacterium

 

Contact, droplet 

Low 

No precautions are 

necessary at present in 

immunocompetent 

patient-care areas. 

658, 659, 

688, 689 

Sinks 

Pseudomonas

 Contact, 

droplet 

Moderate 

Use separate sinks for 

handwashing and 

disposal of 

contaminated fluids. 

509, 653, 

685–693 

Showers 

Legionella

 

Aerosol inhalation 

Low 

Provide sponge baths 

for hematopoietic stem 

cell transplant patients; 

avoid shower use for 

immunocompromised 

patients when 

Legionella

 is detected 

in facility water. 

 

656 

background image

 

49

Reservoir

 

Associated 

pathogens

 

Transmission

 

Strength of 

evidence+

 

Prevention and 

control

 

References

 

Dental unit 

water lines 

Pseudomonas, 
Legionella, 
Sphingomonas, 
Acinetobacter

 

Contact 

Low 

Clean water systems 

according to system 

manufacturer’s 

instructions. 

636, 694–696 

Ice baths for 

thermodilution 

catheters 

Ewingella, 
Staphylococcus

 

Contact 

Low 

Use sterile water. 

697, 698 

Decorative 

fountains 

Legionella

 

Aerosol inhalation 

Low 

Perform regular 

maintenance, including 

water disinfection; 

avoid use in or near 

high-risk patient-care 

areas. 

664 

Eyewash 

stations 

Pseudomonas,

 

amoebae, 

Legionella

 

Contact Low 

 

Minimum 

Flush eyewash stations 

weekly; have sterile 

water available for eye 

flushes. 

518, 699, 700 

Toilets Gram-negative 

bacteria 

– Minimum 

Clean 

regularly; 

use 

good hand hygiene. 

662 

Flowers Gram-negative 

bacteria,  

Aspergillus 

– 

Minimum 

Avoid use in intensive 

care units and in 

immunocompromised 

patient-care settings. 

515, 701, 702 

 

*  Modified from reference 654 and used with permission of the publisher (Slack, Inc.) 

+  

Moderate:

 occasional well-described outbreaks.  

Low:

 few well-described outbreaks.  

Minimal:

 actual infections not demonstrated. 

 

b.  Water Temperature and Pressure

 

Hot water temperature is usually measured at the point of use or at the point at which the water line 

enters equipment requiring hot water for proper operation.

120

   Generally, the hot water temperature in 

hospital patient-care areas is no greater than a temperature within the range of 105°F–120°F (40.6°C–

49°C), depending on the AIA guidance issued at the year in which the facility was built.

120

   Hot water 

temperature in patient-care areas of skilled nursing-care facilities is set within a slightly lower range of 

95°F–110°F (35°C–43.3°C) depending on the AIA guidance at the time of facility construction.

120

   

Many states have adopted a  temperature setting in these ranges into their health-care regulations and 

building codes.  ASHRAE, however, has recommended higher settings.

661

   Steam jets or booster heaters 

are usually needed to meet the hot water temperature requirements in certain service areas of the 

hospital (e.g., the kitchen [120°F (49°C)] or the laundry [160°F (71°C)]).

120

   Additionally, water lines 

may need to be heated to a particular temperature specified by manufacturers of specific hospital 

equipment.  Hot-water distribution systems serving patient-care areas are generally operated under 

constant recirculation to provide continuous hot water at each hot-water outlet.

120

   If a facility is or has 

a hemodialysis unit, then continuously circulated, cold treated water is provided to that unit.

120

 

 

To minimize the growth and persistence of gram-negative waterborne bacteria (e.g., thermophilic NTM 

and 

Legionella

 spp.),

627, 703–709

  cold water in health-care facilities should be stored and distributed at 

temperatures below 68°F (20°C); hot water should be stored above 140°F (60°C) and circulated with a 

minimum return temperature of 124°F (51°C),

661

  or the highest temperature specified in state 

regulations and building codes.  If the return temperature setting of 124°F (51°C) is permitted, then 

installation of preset thermostatic mixing valves near the point-of-use can help to prevent scalding.  

Valve maintenance is especially important in preventing valve failure, which can result in scalding.  

New shower systems in large buildings, hospitals, and nursing homes should be designed to permit 

mixing of hot and cold water near the shower head.  The warm water section of pipe between the control 

valve and shower head should be self-draining.  Where buildings can not be retrofitted, other 

background image

 

50 

approaches to minimize the growth of 

Legionella

 spp. include a) periodically increasing the temperature 

to at least 150°F [66°C] at the point of use [i.e., faucets] and b) adding additional chlorine and flushing 

the water.

661, 710, 711

   Systems should be inspected annually to ensure that thermostats are functioning 

properly. 

 

Adequate water pressure ensures sufficient water supplies for a) direct patient care; b) operation of 

water-cooled instruments and equipment [e.g., lasers, computer systems, telecommunications systems, 

and automated endoscope reprocessors

712

]; c) proper function of vacuum suctioning systems; d) indoor 

climate control; and e) fire-protection systems.  Maintaining adequate pressure also helps to ensure the 

integrity of the piping system.

  

 

c.  Infection-Control Impact of Water System Maintenance and Repair

 

Corrective measures for water-system failures have not been studied in well-designed experiments; 

these measures are instead based on empiric engineering and infection-control principles.  Health-care 

facilities can occasionally sustain both intentional cut-offs by the municipal water authority to permit 

new construction project tie-ins and unintentional disruptions in service when a water main breaks as a 

result of aging infrastructure or a construction accident.  Vacuum breakers or other similar devices can 

prevent backflow of water in the facility’s distribution system during water-disruption emergencies.

11

   

To be prepared for such an emergency, all health-care facilities need contingency plans that identify a) 

the total demand for potable water, b) the quantity of replacement water [e.g., bottled water] required for 

a minimum of 24 hours when the water system is down, c) mechanisms for emergency water 

distribution, and 4) procedures for correcting drops in water pressure that affect operation of essential 

devices and equipment that are driven or cooled by a water system [Table 16].

713

 

 

Table 16.  Water demand in health-care facilities during water disruption emergencies 

 

Potable water 

Bottled, sterile water 

Water use needs 

Drinking water 

Handwashing 

Cafeteria services 

Ice 

Manual flushing of toilets 

Patient baths, hygiene 

Hemodialysis 

Hydrotherapy 

Fire prevention (e.g., sprinkler systems) 

Surgery and critical care areas 

Laboratory services 

Laundry and central sterile services* 

Cooling towers+ 

Steam generation 

Surgical scrub 

Emergency surgical procedures 

Pharmaceutical preparations 

Patient-care equipment (e.g., ventilators)§ 

*  Arrange to have a contingency provision of these services from another resource, if possible (e.g., another health-care facility or contractor). 

+  Some cooling towers may use a potable water source, but most units use non-potable water. 

§  This item is included in the table under the assumption that electrical power is available during the water emergency. 

 

 

Detailed, up-to-date plans for hot and cold water piping systems should be readily available for 

maintenance and repair purposes in case of system problems.  Opening potable water systems for repair 

or construction and subjecting systems to water-pressure changes can result in water discoloration and 

dramatic increases in the concentrations of 

Legionella

 spp. and other gram-negative bacteria.  The 

maintenance of a chlorine residual at all points within the piping system also offers some protection 

from entry of contamination to the pipes in the event of inadvertent cross-connection between potable 

and non-potable water lines.  As a minimum preventive measure, ASHRAE recommends a thorough 

flushing of the system.

661

   High-temperature flushing or hyperchlorination may also be appropriate 

background image

 

51

strategies to decrease potentially high concentrations of waterborne organisms.  The decision to pursue 

either of these remediation strategies, however, should be made on a case-by-case basis.  If only a 

portion of the system is involved, high temperature flushing or chlorination can be used on only that 

portion of the system.

661

 

 

When shock decontamination of hot water systems is necessary (e.g., after disruption caused by 

construction and after cross-connections), the hot water temperature should be raised to 160°F–170°F 

(71°C–77°C) and maintained at that level while each outlet around the system is progressively flushed.  

A minimum flush time of 5 minutes has been recommended;

3

  the optimal flush time is not known, 

however, and longer flush times may be necessary.

714

   The number of outlets that can be flushed 

simultaneously depends on the capacity of the water heater and the flow capability of the system.  

Appropriate safety procedures to prevent scalding are essential.  When possible, flushing should be 

performed when the fewest building occupants are present (e.g., during nights and weekends). 

 

When thermal shock treatment is not possible, shock chlorination may serve as an alternative method.

661

   

Experience with this method of decontamination is limited, however, and high levels of free chlorine 

can corrode metals.  Chlorine should be added, preferably overnight, to achieve a free chlorine residual 

of at least 2 mg/L (2 ppm) throughout the system.

661

   This may require chlorination of the water heater 

or tank to levels of 20–50 mg/L (20–50 ppm).  The pH of the water should be maintained at 7.0–8.0.

661

   

After completion of the decontamination, recolonization of the hot water system is likely to occur unless 

proper temperatures are maintained or a procedure such as continuous supplemental chlorination is 

continued. 

 

Interruptions of the water supply and sewage spills are situations that require immediate recovery and 

remediation measures to ensure the health and safety of patients and staff.

715

   When delivery of potable 

water through the municipal distribution system has been disrupted, the public water supplier must issue 

a “boil water” advisory if microbial contamination presents an immediate public health risk to 

customers.  The hospital engineer should oversee the restoration of the water system in the facility and 

clear it for use when appropriate.   Hospitals must maintain a high level of surveillance for waterborne 

disease among patients and staff after the advisory is lifted.

642

   

 

Flooding from either external (e.g., from a hurricane) or internal sources (e.g., a water system break) 

usually results in property damage and a temporary loss of water and sanitation.

716–718

   JCAHO requires 

all hospitals to have plans that address facility response for recovery from both internal and external 

disasters.

713, 719

   The plans are required to discuss a) general emergency preparedness, b) staffing, c) 

regional planning among area hospitals, d) emergency supply of potable water, e) infection control and 

medical services needs, f) climate control, and g) remediation.  The basic principles of structural 

recovery from flooding are similar to those for recovery from sewage contamination (Box 9 and 10).  

Following a major event (e.g., flooding), facilities may elect to conduct microbial sampling of water 

after the system is restored to verify that water quality has been returned to safe levels (<500 CFU/mL, 

heterotrophic plate count).  This approach may help identify point-of-use fixtures that may harbor 

contamination as a result of design or engineering features.

720

   Medical records should be allowed to 

dry and then either photocopied or placed in plastic covers before returning them to the record. 

 

Moisture meters can be used to assess water-damaged structural materials.  If porous structural materials 

for walls have a moisture content of >20% after 72 hours, the affected material should be removed.

266, 

278, 313

   The management of water-damaged structural materials is not strictly limited to major water 

catastrophes (e.g., flooding and sewage intrusions); the same principles are used to evaluate the damage 

from leaking roofs, point-of-use fixtures, and equipment.  Additional sources of moisture include 

condensate on walls from boilers and poorly engineered humidification in HVAC systems.

 

 

background image

 

52 

 

Box 9.  Recovery and remediation measures for water-related emergencies*

 

 

Potable water disruptions 

 

Contingency plan items 

 

Ensure access to plumbing network so that repairs can be easily made. 

 

Provide sufficient potable water, either from bottled sources or truck delivery. 

 

Post advisory notices against consuming tap water, ice, or beverages made with water. 

 

Rope off or bag drinking fountains to designate these as being “out of service” until further notice. 

 

Rinse raw foods as needed in disinfected water. 

 

Disconnect ice machines whenever possible.+ 

 

Postpone laundry services until after the water system is restored. 

Water treatment 

 

Heat water to a rolling boil for >1 minute. 

Remediation of the water system after the “boil water” advisory is rescinded 

 

Flush fixtures (e.g., faucets and drinking fountains) and equipment for several minutes and restart. 

 

Run water softeners through a regeneration cycle. 

 

Drain, disinfect, and refill water storage tanks, if needed. 

 

Change pretreatment filters and disinfect the dialysis water system. 

 

Sewage spills/malfunction 

 

Overall strategy 

 

Move patients and clean/sterile supplies out of the area. 

 

Redirect traffic away from the area. 

 

Close the doors or use plastic sheeting to isolate the area prior to clean-up. 

 

Restore sewage system function first, then the potable water system (if both are malfunctioning). 

 

Remove sewage solids, drain the area, and let dry. 

Remediation of the structure 

 

Hard surfaces:  clean with detergent/disinfectant after the area has been drained. 

 

Carpeting, loose tiles, buckled flooring:  remove and allow the support surface to dry; replace the items; wet down 

                    carpeting with a low-level disinfectant or sanitizer prior to removal to minimize dust dispersion to the air. 

 

Wallboard and other porous structural materials:  remove and replace if they cannot be cleaned and dried within 

                    72 hours.§ 

Furniture

 

 

Hard surface furniture (e.g., metal or plastic furniture):  clean and allow to dry. 

 

Wood furniture:  let dry, sand the wood surface, and reapply varnish. 

 

Cloth furniture:  replace. 

Electrical equipment

 

 

Replace if the item cannot be easily dismantled, cleaned, and reassembled. 

 

*  Material in this box is compiled from references 266, 278, 315, 713, 716–719, 721–729. 

+  Ice machines should always be disconnected from the water source in advance of planned water disruptions. 

§  Moisture meter readings should be <20% moisture content. 

 

 

An exception to these recommendations is made for hemodialysis units where water is further 

treated either by portable water treatment or large-scale water treatment systems usually involving 

reverse osmosis (RO).  In the United States, >97% of dialysis facilities use RO treatment for their 

water.

721

   However, changing pre-treatment filters and disinfecting the system to prevent colonization 

of the RO membrane and microbial contamination down-stream of the pre-treatment filter are prudent 

measures.

  

 

 

 

background image

 

53

Box 10.  Contingency planning for flooding 

 

General emergency preparedness

 

 

Ensure that emergency electrical generators are not located in flood-prone areas of the facility. 

 

Develop alternative strategies for moving patients, water containers, medical records, equipment, and supplies in the 

                    event that the elevators are inoperable. 

 

Establish in advance a centralized base of operations with batteries, flashlights, and cellular phones. 

 

Ensure sufficient supplies of sandbags to place at the entrances and the area around boilers, incinerators, and  

                    generators. 

 

Establish alternative strategies for bringing core employees to the facility if high water prevents travel. 

Staffing Patterns

 

 

Temporarily reassign licensed staff as needed to critical care areas to provide manual ventilation and to perform 

                    vital assessments on patients. 

 

Designate a core group of employees to remain on site to keep all services operational if the facility remains open. 

 

Train all employees in emergency preparedness procedures. 

Regional planning among are facilities for disaster management

 

 

Incorporate community support and involvement (e.g., media alerts, news, and transportation). 

 

Develop in advance strategies for transferring patients, as needed. 

 

Develop strategies for sharing supplies and providing essential services among participating facilities (e.g., central 

                    sterile department services, and laundry services). 

 

Identify sources for emergency provisions (e.g., blood, emergency vehicles, and bottled water). 

Medical services and infection control

 

 

Use alcohol-based hand rubs in general patient-care areas. 

 

Postpone elective surgeries until full services are restored, or transfer these patients to other facilities. 

 

Consider using portable dialysis machines.+ 

 

Provide an adequate supply of tetanus and hepatitis A immunizations for patients and staff. 

Climate control

 

 

Provide adequate water for cooling towers.§ 

 

*  Material in this box was compiled from references 713, 716–719. 

+  Portable dialysis machines require less water  compared to the larger units situated in dialysis settings. 

§  Water for cooling towers may need to be trucked in, especially if the tower uses a potable water source. 

 

 

4.  Strategies for Controlling Waterborne Microbial Contamination

 

 

a.  Supplemental Treatment of Water with Heat and/or Chemicals

 

In addition to using supplemental treatment methods as remediation measures after inadvertent 

contamination of water systems, health-care facilities sometimes use special measures to control 

waterborne microorganisms on a sustained basis.  This decision is most often associated with outbreaks 

of legionellosis and subsequent efforts to control legionellae,

722

  although some facilities have tried 

supplemental measures to better control thermophilic NTM.

627

 

 

The primary disinfectant for both cold and hot water systems is chlorine.  However, chlorine residuals 

are expected to be low, and possibly nonexistent, in hot water tanks because of extended retention time 

in the tank and elevated water temperature.  Flushing, especially that which removes sludge from the 

bottom of the tank, probably provides the most effective treatment of water systems.  Unlike the 

situation for disinfecting cooling towers, no equivalent recommendations have been made for potable 

water systems, although specific intervention strategies have been published.

403, 723

   The principal 

approaches to disinfection of potable systems are heat flushing using temperatures 160°F–170°F (71°–

77°C), hyperchlorination, and physical cleaning of hot-water tanks.

3, 403, 661

   Potable systems are easily 

recolonized and may require continuous intervention (e.g., raising of hot water temperatures or 

continuous chlorination).

403, 711

   Chlorine solutions lose potency over time, thereby rendering the 

stocking of large quantities of chlorine impractical. 

 

background image

 

54 

Some hospitals with hot water systems identified as the source of 

Legionella

 spp. have performed 

emergency decontamination of their systems by pulse (i.e., one-time) thermal disinfection/superheating 

or hyperchlorination.

711, 714, 724, 725

   After either of these procedures, hospitals either maintain their 

heated water with a minimum return temperature of 124°F (51°C) and cold water at <68°F (<20°C) or 

chlorinate their hot water to achieve 1–2 mg/L (1–2 ppm) of free residual chlorine at the tap.

26, 437, 709–711, 

726, 727

   Additional measures (e.g., physical cleaning or replacement of hot-water storage tanks, water 

heaters, faucets, and shower heads) may be required to help eliminate accumulations of scale and 

sediment that protect organisms from the biocidal effects of heat and chlorine.

457, 711

   Alternative 

methods for controlling and eradicating legionellae in water systems (e.g., treating water with chlorine 

dioxide, heavy metal ions [i.e., copper/silver ions], ozone, and UV light) have limited the growth of 

legionellae under laboratory and operating conditions.

728–742

   Further studies on the long-term efficacy 

of these treatments are needed before these methods can be considered standard applications. 

 

Renewed interest in the use of chloramines stems from concerns about adverse health effects associated 

with disinfectants and disinfection by-products.

743

   Monochloramine usage minimizes the formation of 

disinfection by-products, including trihalomethanes and haloacetic acids.  Monochloramine can also 

reach distal points in a water system and can penetrate into bacterial biofilms more effectively than free 

chlorine.

744

   However, monochloramine use is limited to municipal water treatment plants and is 

currently not available to health-care facilities as a supplemental water-treatment approach.  A recent 

study indicated that 90% of Legionnaires disease outbreaks associated with drinking water could have 

been prevented if monochloramine rather than free chlorine has been used for residual disinfection.

745

   

In a retrospective comparison of health-care–associated Legionnaires disease incidence in central Texas 

hospitals, the same research group documented an absence of cases in facilities located in communities 

with monochloramine-treated municipal water.

746

   Additional data are needed regarding the 

effectiveness of using monochloramine before its routine use as a disinfectant in water systems can be 

recommended.  No data have been published regarding the effectiveness of monochloramine installed at 

the level of the health-care facility. 

 

Additional filtration of potable water systems is not routinely necessary.  Filters are used in water lines 

in dialysis units, however, and may be inserted into the lines for specific equipment (e.g., endoscope 

washers and disinfectors) for the purpose of providing bacteria-free water for instrument reprocessing.  

Additionally, an RO unit is usually added to the distribution system leading to PE areas. 

 

b.  Primary Prevention of Legionnaires Disease (No Cases Identified)

 

The primary and secondary environmental infection-control strategies described in this section on the 

guideline pertain to health-care facilities without transplant units.  Infection-control measures specific to 

PE or transplant units (i.e., patient-care areas housing patients at the highest risk for morbidity and 

mortality from 

Legionella

 spp. infection) are described in the subsection titled 

Preventing Legionnaires 

Disease in Protective Environments

 

Health-care facilities use at least two general strategies to prevent health-care–associated legionellosis 

when no cases or only sporadic cases have been detected.  The first is an environmental surveillance 

approach involving periodic culturing of water samples from the hospital’s potable water system to 

monitor for 

Legionella 

spp.

747–750

   If any sample is culture-positive, diagnostic testing is recommended 

for all patients with health-care–associated pneumonia.

748, 749

   In-house testing is recommended for 

facilities with transplant programs as part of a comprehensive treatment/management program.  If >30% 

of the samples are culture-positive for 

Legionella

 spp., decontamination of the facility’s potable water 

system is warranted.

748

   The premise for this approach is that no cases of health-care–associated 

legionellosis can occur if 

Legionella

 spp. are not present in the potable water system, and, conversely, 

cases of health-care–associated legionellosis could potentially occur if 

Legionella

 spp. are cultured

 

from 

the water.

26, 751

   Physicians who are informed that the hospital’s potable water system is culture-positive 

background image

 

55

for 

Legionella 

spp. are more likely to order diagnostic tests for legionellosis. 

 

A potential advantage of the environmental surveillance approach is that periodic culturing of water is 

less costly than routine laboratory diagnostic testing for all patients who have health-care–associated 

pneumonia.  The primary argument against this approach is that, in the absence of cases, the relationship 

between water-culture results and legionellosis risk remains undefined.

3

   

Legionnella

 spp. can be 

present in the water systems of buildings

752

  without being associated with known cases of disease.

437, 707, 

753

   In a study of 84 hospitals in Québec, 68% of the water systems were found to be colonized with 

Legionella

 spp., and 26% were colonized at >30% of sites sampled; cases of Legionnaires disease, 

however, were infrequently reported from these hospitals.

707

  

 

Other factors also argue against environmental surveillance.  Interpretation of results from periodic 

water culturing might be confounded by differing results among the sites sampled in a single water 

system and by fluctuations in the concentration of 

Legionella

 spp. at the same site.

709, 754

   In addition, 

the risk for illness after exposure to a given source might be influenced by several factors other than the 

presence or concentration of organisms, including a) the degree to which contaminated water is 

aerosolized into respirable droplets, b) the proximity of the infectious aerosol to the potential host, c) the 

susceptibility of the host, and d) the virulence properties of the contaminating strain.

755–757

   Thus, data 

are insufficient to assign a level of disease risk even on the basis of the number of colony-forming units 

detected in samples from areas for immunocompetent patients.  Conducting environmental surveillance 

would obligate hospital administrators to initiate water-decontamination programs if 

Legionella

 spp. are 

identified.  Therefore, periodic monitoring of water from the hospital's potable water system and from 

aerosol-producing devices is not widely recommended in facilities that have not experienced cases of 

health-care–associated legionellosis.

661, 758

 

 

The second strategy to prevent and control health-care–associated legionellosis is a clinical approach, in 

which providers maintain a high index of suspicion for legionellosis and order appropriate diagnostic 

tests (i.e., culture, urine antigen, and direct fluorescent antibody [DFA] serology) for patients with 

health-care–associated pneumonia who are at high risk for legionellosis and its complications.

437, 759, 760

   

The testing of autopsy specimens can be included in this strategy should a death resulting from health-

care–associated pneumonia occur.  Identification of one case of definite or two cases of possible health-

care–associated Legionnaires disease should prompt an epidemiologic investigation for a hospital 

source of 

Legionella

 spp., which may involve culturing the facility’s water for 

Legionella

.  Routine 

maintenance of cooling towers, and use of sterile water for the filling and terminal rinsing of 

nebulization devices and ventilation equipment can help to minimize potential sources of contamination.  

Circulating potable water temperatures should match those outlined in the subsection titled 

Water 

Temperature and Pressure

, as permitted by state code. 

 

c.  Secondary prevention of Legionnaires Disease (With Identified Cases) 

The indications for a full-scale environmental investigation to search for and subsequently 

decontaminate identified sources of 

Legionella

 spp. in health-care facilities without transplant units 

have not been clarified; these indications would likely differ depending on the facility.  Case categories 

for health-care–associated Legionnaires disease in facilities without transplant units include definite 

cases (i.e., laboratory-confirmed cases of legionellosis that occur in patients who have been hospitalized 

continuously for >10 days before the onset of illness) and possible cases (i.e., laboratory-confirmed 

infections that occur 2–9 days after hospital admission).

3

   In settings in which as few as one to three 

health-care–associated cases are recognized over several months, intensified surveillance for 

Legionnaires disease has frequently identified numerous additional cases.

405, 408, 432, 453, 739, 759, 760

   This 

finding suggests the need for a low threshold for initiating an investigation after laboratory confirmation 

of cases of health-care–associated legionellosis.  When developing a strategy for responding to such a 

finding, however, infection-control personnel should consider the level of risk for health-care–

background image

 

56 

associated acquisition of, and mortality from, 

Legionella

 spp. infection at their particular facility. 

 

An epidemiologic investigation conducted to determine the source of 

Legionella

 spp. involves several 

important steps (Box 11).  Laboratory assessment is crucial in supporting epidemiologic evidence of a 

link between human illness and a specific environmental source.

761

   Strain determination from subtype 

analysis is most frequently used in these investigations.

410, 762–764

   Once the environmental source is 

established and confirmed with laboratory support, supplemental water treatment strategies can be 

initiated as appropriate.

 

 

Box 11.  Steps in an epidemiologic investigation for legionellosis 

 

 

Review medical and microbiologic records. 

 

Initiate active surveillance to identify all recent or ongoing cases. 

 

Develop a line listing of cases by time, place, and person. 

 

Determine the type of epidemiologic investigation needed for assessing risk factors: 

                    •  Case-control study, 
                    •  Cohort study. 
 

Gather and analyze epidemiologic information: 

                    •  Evaluate risk factors associated with  potential environmental exposures (e.g., showers,  
                           cooling towers, and respiratory-therapy equipment). 
 Collect 

water 

samples: 

                    •  Sample environmental sources implicated by epidemiologic investigation, 

                  •  

Sample other potential source of water aerosols. 

 

Subtype strains of Legionella spp. cultured from both patients and environmental sources. 

 

Review autopsy records and include autopsy specimens in diagnostic testing. 

 

 

The decision to search for hospital environmental sources of 

Legionella

 spp. and the choice of 

procedures to eradicate such contamination are based on several considerations, as follows: a) the 

hospital’s patient population; b) the cost of an environmental investigation and institution of control 

measures to eradicate 

Legionella

 spp. from the water supply;

765–768

  and c) the differential risk, based on 

host factors, for acquiring health-care–associated legionellosis and developing severe and fatal 

infection. 

 

d.  Preventing Legionnaires Disease in Protective Environments 

This subsection outlines infection-control measures applicable to those health-care facilities providing 

care to severely immunocompromised patients.  Indigenous microorganisms in the tap water of these 

facilities may pose problems for such patients.  These measures are designed to prevent the generation 

of potentially infectious aerosols from water and the subsequent exposure of PE patients or other 

immunocompromised patients (e.g., transplant patients) (Table 17).  Infection-control measures that 

address the use of water with medical equipment (e.g., ventilators, nebulizers, and equipment 

humidifiers) are described in other guidelines and publications.

3, 455

 

 

If one case of laboratory-confirmed, health-care–associated Legionnaires disease is identified in a 

patient in a solid-organ transplant program or in PE (i.e., an inpatient in PE for all or part of the 2–10 

days prior to onset of illness) or if two or more laboratory-confirmed cases occur among patients who 

had visited an outpatient PE setting, the hospital should report the cases to the local and state health 

departments.  The hospital should then initiate a thorough epidemiologic and environmental 

investigation to determine the likely environmental sources of 

Legionella

 spp.

9

   The source of 

Legionella

 should be decontaminated or removed.  Isolated cases may be difficult to investigate.  

Because transplant recipients are at substantially higher risk for disease and death from legionellosis 

background image

 

57

compared with other hospitalized patients, periodic culturing for 

Legionella

 spp. in water samples from 

the potable water in the solid-organ transplant and/or PE unit can be performed as part of an overall 

strategy to prevent Legionnaires disease in PE units.

9, 431, 710, 769

   The optimal methodology (i.e., 

frequency and number of sites) for environmental surveillance cultures in PE units has not been 

determined, and the cost-effectiveness of this strategy has not been evaluated.  Because transplant 

recipients are at high risk for Legionnaires disease and because no data are available to determine a safe 

concentration of legionellae organisms in potable water, the goal of environmental surveillance for 

Legionella

 spp. should be to maintain water systems with no detectable organisms.

9, 431

   Culturing for 

legionellae may be used to assess the effectiveness of water treatment or decontamination methods, a 

practice that provides benefits to both patients and health-care workers.

767, 770

 

 

Table 17.  Additional infection-control measures to prevent exposure of high-risk patients 
to waterborne pathogens 

Measures References 

•  Restrict patients from taking showers if the water is contaminated with 

Legionella

 

       spp. 

•  Use water that is not contaminated with 

Legionella

 spp. for patients’ sponge baths. 

•  Provide sterile water for drinking, tooth brushing, or for flushing nasogastric tubes. 

•  Perform supplemental treatment of the water for the unit. 

•  Consider periodic monitoring (i.e., culturing) of the unit water supply for 

       

Legionella

 spp. 

•  Remove shower heads and faucet aerators monthly for cleaning.* 

•  Use a 500–600 ppm (1:100 v/v dilution) solution of sodium hypochlorite to  

       disinfect shower heads and faucet aerators.* 

•  Do not use large-volume room air humidifiers that create aerosols unless these are  

       subjected to cleaning and high-level disinfection daily and filled with distilled 

       water.  

•  Eliminate water-containing bath toys.+ 

•  407, 412, 654, 655, 658 

 

•  9 

•  9, 412 

•  732 

•  9, 431 

 

•  661 

•  661 

 

•  3 

 

 

•  30 

 

*  These measures can be considered in settings where legionellosis cases have occurred.  These measures are not generally recommended in  

        routine patient-care setting.. 

+  These items have been associated with outbreaks of 

Pseudomonas

 

Protecting patient-care devices and instruments from inadvertent tap water contamination during room 

cleaning procedures is also important in any immunocompromised patient-care area.  In a recent 

outbreak of gram-negative bacteremias among open-heart-surgery patients, pressure-monitoring 

equipment that was assembled and left uncovered overnight prior to the next day’s surgeries was 

inadvertently contaminated with mists and splashing water from a hose-disinfectant system used for 

cleaning.

771

 

 

5.  Cooling Towers and Evaporative Condensers 

 

Modern health-care facilities maintain indoor climate control during warm weather by use of cooling 

towers (large facilities) or evaporative condensers (smaller buildings).  A cooling tower is a wet-type, 

evaporative heat transfer device used to discharge to the atmosphere waste heat from a building’s air 

conditioning condensers (Figure 5).

772, 773

   Warm water from air-conditioning condensers is piped to the 

cooling tower where it is sprayed downward into a counter- or cross-current air flow.  To accelerate heat 

transfer to the air, the water passes over the fill, which either breaks water into droplets or causes it to 

spread into a thin film.

772, 773

   Most systems use fans to move air through the tower, although some large 

industrial cooling towers rely on natural draft circulation of air.  The cooled water from the tower is 

piped back to the condenser, where it again picks up heat generated during the process of chilling the 

system’s refrigerant.  The water is cycled back to the cooling tower to be cooled.  Closed-circuit cooling 

towers and evaporative condensers are also evaporative heat-transfer devices.  In these systems, the 

background image

 

58 

process fluid (e.g., water, ethylene glycol/water mixture, oil, or a condensing refrigerant) does not 

directly contact the cooling air, but is contained inside a coil assembly.

661

 

 

Figure 5.  Diagram of a typical air conditioning (induced draft) cooling tower* 

 

 

 

Water temperatures are approximate and may differ substantially according to system use and design.  Warm water from the 

condenser (or chiller) is sprayed downward into a counter- or cross-current air flow.  Water passes over the fill (a component of 

the system designed to increase the surface area of the water exposed to air), and heat from the water is transferred to the air.  

Some of the water becomes aerosolized during this process, although the volume of aerosol discharged to the air can be 

reduced by the placement of a drift eliminator.  Water cooled in the tower returns to the heat source to cool refrigerant from the 

air conditioning unit. 

*  This figure is reprinted with permission of the publisher of reference 773 (Plenum Medical). 

 

Cooling towers and evaporative condensers incorporate inertial stripping devices called drift eliminators 

to remove water droplets generated within the unit.  Although the effectiveness of these eliminators 

varies substantially depending on design and condition, some water droplets in the size range of <5 µm 

will likely leave the unit, and some larger droplets leaving the unit may be reduced to <5 µm by 

evaporation.  Thus, even with proper operation, a cooling tower or evaporative condenser can generate 

and expel respirable water aerosols.  If either the water in the unit’s basin or the make-up water (added 

to replace water lost to evaporation) contains 

Legionella

 spp. or other waterborne microorganisms, these 

organisms can be aerosolized and dispersed from the unit.

774

   Clusters of both Legionnaires disease and 

Pontiac fever have been traced to exposure to infectious water aerosols originating from cooling towers 

and evaporative condensers contaminated with 

Legionella 

spp.  Although most of these outbreaks have 

been community-acquired episodes of pneumonia,

775–782

  health-care–associated Legionnaires disease 

background image

 

59

has been linked to cooling tower aerosol exposure.

404, 405

   Contaminated aerosols from cooling towers 

on hospital premises gained entry to the buildings either through open windows or via air handling 

system intakes located near the tower equipment. 

 

Cooling towers and evaporative condensers provide ideal ecological niches for 

Legionella

 spp.  The 

typical temperature of the water in cooling towers ranges from 85°F–95°F (29°C–35°C), although 

temperatures can be above 120°F (49°C) and below 70°F (21°C) depending on system heat load, 

ambient temperature, and operating strategy.

661

   An Australian study of cooling towers found that 

legionellae colonized or multiplied in towers with basin temperatures above 60.8°F (16°C), and 

multiplication became explosive at temperatures above 73.4°F (23°C).

783

   Water temperature in closed-

circuit cooling towers and evaporative condensers is similar to that in cooling towers.  Considerable 

variation in the piping arrangement occurs.  In addition, stagnant areas or dead legs may be difficult to 

clean or penetrate with biocides. 

 

Several documents address the routine maintenance of cooling towers, evaporative condensers, and 

whirlpool spas.

661, 784–787

   They suggest following manufacturer's recommendations for cleaning and 

biocide treatment of these devices; all health-care facilities should ensure proper maintenance for their 

cooling towers and evaporative condensers, even in the absence of 

Legionella

 spp (Appendix C). 

Because cooling towers and evaporative condensers can be shut down during periods when air 

conditioning is not needed, this maintenance cleaning and treatment should be performed before starting 

up the system for the first time in the warm season.

782

   Emergency decontamination protocols 

describing cleaning procedures and hyperchlorination for cooling towers have been developed for 

towers implicated in the transmission of legionellosis.

786, 787

 

 

 

6.  Dialysis Water Quality and Dialysate

 

 

a.  Rationale for Water Treatment in Hemodialysis

 

Hemodialysis, hemofiltration, and hemodiafiltration require special water-treatment processes to 

prevent adverse patient outcomes of dialysis therapy resulting from improper formulation of dialysate 

with water containing high levels of certain chemical or biological contaminants.  The Association for 

the Advancement of Medical Instrumentation (AAMI) has established chemical and microbiologic 

standards for the water used to prepare dialysate, substitution fluid, or to reprocess hemodialyzers for 

renal replacement therapy.

788–792

   The AAMI standards address: a) equipment and processes used to 

purify water for the preparation of concentrates and dialysate and the reprocessing of dialyzers for 

multiple use and b) the devices used to store and distribute this water.  Future revisions to these 

standards may include hemofiltration and hemodiafiltration

 

Water treatment systems used in hemodialysis employ several physical and/or chemical processes either 

singly or in combination (Figure 6).  These systems may be portable units or large systems that feed 

several rooms.  In the United States, >97% of maintenance hemodialysis facilities use RO alone or in 

combination with deionization.

793

   Many acute-care facilities use portable hemodialysis machines with 

attached portable water treatment systems that use either deionization or RO.  These machines were 

exempted from earlier versions of AAMI recommendations, but given current knowledge about toxic 

exposures to and inflammatory processes in patients new to dialysis, these machines should now come 

into compliance with current AAMI recommendations for hemodialysis water and dialysate quality.

788, 

789

   Previous recommendations were based on the assumption that acute-care patients did not 

experience the same degree of adverse effects from short-term, cumulative exposures to either 

chemicals or microbiologic agents present in hemodialysis fluids compared with the effects encountered 

by patients during chronic, maintenance dialysis.

788, 789

   Additionally, JCAHO is reviewing inpatient 

background image

 

60 

practices and record-keeping for dialysis (acute and maintenance) for adherence to AAMI standards and 

recommended practices. 

 

Figure 6.  Dialysis water treatment system*  

 

 

 

*  See text for description of the placement and function of these components. 

 

 

Neither the water used to prepare dialysate nor the dialysate itself needs to be sterile, but tap water can 

not be used without additional treatment.  Infections caused by rapid-growing NTM (e.g., 

Mycobacterium chelonae

 and 

M. abscessus

) present a potential risk to hemodialysis patients (especially 

those in hemodialyzer reuse programs) if disinfection procedures to inactivate mycobacteria in the water 

(low-level disinfection) and the hemodialyzers (high-level disinfection) are inadequate.

31, 32, 633

   Other 

factors associated with microbial contamination in dialysis systems could involve the water treatment 

system, the water and dialysate distribution systems, and the type of hemodialyzer.

666, 667, 794–799

   

Understanding the various factors and their influence on contamination levels is the key to preventing 

high levels of microbial contamination in dialysis therapy. 

 

In several studies, pyrogenic reactions were demonstrated to have been caused by lipopolysaccharide or 

endotoxin associated with gram-negative bacteria.

794, 800–803

   Early studies demonstrated that parenteral 

exposure to endotoxin at a concentration of 1 ng/kg body weight/hour was the threshold dose for 

producing pyrogenic reactions in humans, and that the relative potencies of endotoxin differ by bacterial 

species.

804, 805

   Gram-negative water bacteria (e.g., 

Pseudomonas

 spp.) have been shown to multiply 

rapidly in a variety of hospital-associated fluids that can be used as supply water for hemodialysis (e.g., 

distilled water, deionized water, RO water, and softened water) and in dialysate (a balanced salt solution 

made with this water).

806

   Several studies have demonstrated that the attack rates of pyrogenic reactions 

are directly associated with the number of bacteria in dialysate.

666, 667, 807

   These studies provided the 

rationale for setting the heterotrophic bacteria standards in the first AAMI hemodialysis guideline at 

<2,000 CFU/mL in dialysate and one log lower (<200 CFU/mL) for the water used to prepare 

dialysate.

668, 788

   If the level of bacterial contamination exceeded 200 CFU/mL in water, this level could 

be amplified in the system and effectively constitute a high inoculum for dialysate at the start of a 

Potable water 

Blending 

valve

Multimedia/ 

sand/depth 

filtration 

Softener Carbon 

adsorption 

 media (2 beds in  

series

)

 

Particulate/ 

µ

m filter 

Reverse 
osmosis

Storage tank and/or 
optional additional 
components: 
deionization tanks 
UV lamp 
ultrafilters 

Product  
water 

background image

 

61

dialysis treatment.

807, 808

   Pyrogenic reactions did not appear to occur when the level of contamination 

was below 2,000 CFU/mL in dialysate unless the source of the endotoxin was exogenous to the dialysis 

system (i.e., present in the community water supply).  Endotoxins in a community water supply have 

been linked to the development of pyrogenic reactions among dialysis patients.

794

  

 

Whether endotoxin actually crosses the dialyzer membrane is controversial.  Several investigators have 

shown that bacteria growing in dialysate-generated products that could cross the dialyzer membrane.

809, 

810

   Gram-negative bacteria growing in dialysate have produced endotoxins that in turn stimulated the 

production of anti-endotoxin antibodies in hemodialysis patients;

801, 811

  these data suggest that bacterial 

endotoxins, although large molecules, cross dialyzer membranes either intact or as fragments.  The use 

of the very permeable membranes known as high-flux membranes (which allow large molecules [e.g., 

β

2

 microglobulin] to traverse the membrane) increases the potential for passage of endotoxins into the 

blood path.  Several studies support this contention.  In one such study, an increase in plasma endotoxin 

concentrations during dialysis was observed when patients were dialyzed against dialysate containing 

10

3

–10

4

 CFU/mL 

Pseudomonas

 spp.

812

   

In vitro

 studies using both radiolabeled lipopolysaccharide and 

biologic assays have demonstrated that biologically active substances derived from bacteria found in 

dialysate can cross a variety of dialyzer membranes.

802, 813–816

   Patients treated with high-flux 

membranes have had higher levels of anti-endotoxin antibodies than subjects or patients treated with 

conventional membranes.

817

   Finally, since 1989, 19%–22% of dialysis centers have reported pyrogenic 

reactions in the absence of septicemia.

818, 819

 

 

Investigations of adverse outcomes among patients using reprocessed dialyzers have demonstrated a 

greater risk for developing pyrogenic reactions when the water used to reprocess these devices 

contained >6 ng/mL endotoxin and >10

4

 CFU/mL bacteria.

820

   In addition to the variability in 

endotoxin assays, host factors also are involved in determining whether a patient will mount a response 

to endotoxin.

803

   Outbreak investigations of pyrogenic reactions and bacteremias associated with 

hemodialyzer reuse have demonstrated that pyrogenic reactions are prevented once the endotoxin level 

in the water used to reprocess the dialyzers is returned to below the AAMI standard level.

821

  

 

Reuse of dialyzers and use of bicarbonate dialysate, high-flux dialyzer membranes, or high-flux dialysis 

may increase the potential for pyrogenic reactions if the water in the dialysis setting does not meet 

standards.

796–798

   Although investigators have been unable to demonstrate endotoxin transfer across 

dialyzer membranes,

803, 822, 823

  the preponderance of reports now supports the ability of endotoxin to 

transfer across at least some high-flux membranes under some operating conditions.  In addition to the 

acute risk of pyrogenic reactions, indirect evidence in increasingly demonstrating that chronic exposure 

to low amounts of endotoxin may play a role in some of the long-term complications of hemodialysis 

therapy.  Patients treated with ultrafiltered dialysate for 5–6 months have demonstrated a decrease in 

serum 

β

2

 microglobulin concentrations and a decrease in markers of an inflammatory response.

824–826

   In 

studies of longer duration, use of microbiologically ultrapure dialysate has been associated with a 

decreased incidence of 

β

2

 microglobulin-associated amyloidosis.

827, 828

 

 

Although patient benefit likely is associated with the use of ultrapure dialysate, no consensus has been 

reached regarding the potential adoption of this as standard in the United States.  Debate continues 

regarding the bacterial and endotoxin limits for dialysate.  As advances in water treatment and 

hemodialysis processes occur, efforts are underway to move improved technology from the 

manufacturer out into the user community.  Cost-benefit studies, however, have not been done, and 

substantially increased costs to implement newer water treatment modalities are anticipated. 

 

To reconcile AAMI documents with current International Organization for Standardization (ISO) 

format, AAMI has determined that its hemodialysis standards will be discussed in the following four 

installments: RD 5 for hemodialysis equipment, RD 62 for product water quality, RD 47 for dialyzer 

background image

 

62 

reprocessing, and RD 52 for dialysate quality.  The Renal Diseases and Dialysis Committee of AAMI is 

expected to finalize and promulgated the dialysate standard pertinent to the user community (RD 52), 

adopting by reference the bacterial and endotoxin limits in product water as currently outlined in the 

AAMI standard that applies to systems manufacturers (RD 62).  At present, the user community should 

continue to observe water quality and dialysate standards as outlined in AAMI RD 5 (Hemodialysis 

Systems, 1992) and AAMI RD 47 (Reuse of Hemodialyzers, 1993) until the new RD 52 standard 

becomes available (Table 18).

789, 791

 

 

Table 18.  Microbiologic limits for hemodialysis fluids*

 

Hemodialysis fluid 

Maximum total heterotrophs 

(CFU/mL)+ 

Maximum endotoxin level 

(EU/mL)§ 

Present standard

 

Product water¶ 

       Used to prepare dialysate 

       Used to reprocess dialyzers 

Dialysate 

 

200 

200 

2,000 

 

No standard 

No standard 

Proposed standard** 

Product water 

Dialysate 

200 

200 

 

*  The material in this table was compiled from references 789 and 791 (ANSI/AAMI standards RD 5-1992 and ANSI/AAMI RD 47-1993). 

+  Colony forming units per milliliter. 

§  Endotoxin units per milliliter. 

¶  Product water presently includes water used to prepare dialysate and water used to reprocess dialyzers. 

**  Dialysate for hemodialysis, RD 52, under development, American National Standards Institute, Association for the Advancement of 

        Medical Instrumentation (AAMI). 

 
 

The current AAMI standard directed at systems manufacturers (RD 62 [Water Treatment Equipment for 

Hemodialysis Applications, 2001]) now specifies that all product water used to prepare dialysate or to 

reprocess dialyzers for multiple use should contain <2 endotoxin units per milliliter (EU/mL).

792

   A 

level of 2 EU/mL was chosen as the upper limit for endotoxin because this level is easily achieved with 

contemporary water treatment systems using RO and/or ultrafiltration.  CDC has advocated monthly 

endotoxin testing along with microbiologic assays of water, because endotoxin activity may not 

correspond to the total heterotrophic plate counts.

829

   Additionally, the current AAMI standard RD 62 

for manufacturers includes action levels for product water.  Because 48 hours can elapse between the 

time of sampling water for microbial contamination and the time when results are received, and because 

bacterial proliferation can be rapid, action levels for microbial counts and endotoxin concentrations are 

reported as 50 CFU/mL and 1 EU/mL, respectively, in this revision of the standard.

792

   These 

recommendations will allow users to initiate corrective action before levels exceed the maximum levels 

established by the standard. 

 

In hemodialysis, the net movement of water is from the blood to the dialysate, although within the 

dialyzer, local movement of water from the dialysate to the blood through the phenomenon of back-

filtration may occur, particularly in dialyzers with highly permeable membranes.

830

   In contrast, 

hemofiltration and hemodiaflltration feature infusion of large volumes of electrolyte solution (20–70 L) 

into the blood.  Increasingly, this electrolyte solution is being prepared on-line from water and 

concentrate.  Because of the large volumes of fluid infused, AAMI considered the necessity of setting 

more stringent requirements for water to be used in this application, but this organization has not yet 

established these because of lack of expert consensus and insufficient experience with on-line therapies 

in the United States.  On-line hemofiltration and hemodiafiltration systems use sequential ultrafiltration 

as the final step in the preparation of infusion fluid.  Several experts from AAMI concur that these 

background image

 

63

point-of-use ultrafiltration systems should be capable of further reducing the bacteria and endotoxin 

burden of solutions prepared from water meeting the requirements of the AAMI standard to a safe level 

for infusion. 

 

b.  Microbial Control Strategies

 

The strategy for controlling massive accumulations of gram-negative water bacteria and NTM in 

dialysis systems primarily involves preventing their growth through proper disinfection of water-

treatment systems and hemodialysis machines.  Gram-negative water bacteria, their associated 

lipopolysaccharides (bacterial endotoxins), and NTM ultimately come from the community water 

supply, and levels of these bacteria can be amplified depending on the water treatment system, dialysate 

distribution system, type of dialysis machine, and method of disinfection (Table 19).

634, 794, 831

   Control 

strategies are designed to reduce levels of microbial contamination in water and dialysis fluid to 

relatively low levels but not to completely eradicate it. 

 

Table 19.  Factors influencing microbial contamination in hemodialysis systems 

Factors Comments 

Water supply

 

Source of community water 

       Ground water 

       Surface water 

 

 

Contains endotoxin and bacteria 

Contains high levels of endotoxin and bacteria 

Water treatment at the dialysis center

 

None 

Filtration 

       Prefilter 

       Absolute filter (depth or membrane filter) 

 

 

       Activated carbon filter 

 

Not recommended 

 

Particulate filter to protect equipment; does not remove microorganisms 

Removes bacteria, however, unless the filter is changed frequently or  

       disinfected, bacteria will accumulate and grow through the filter; acts  

       as a significant reservoir of bacteria and endotoxin 

Removes organics and available chlorine or chloramines; acts as a  

       significant reservoir of bacteria and endotoxin 

Water treatment devices

 

Deionization/ion-exchange softener 

 

       Reverse osmosis (RO) 

 

       Ultraviolet light 

 

       Ultrafilter 

 

Both softeners and deionizers are significant reservoirs of bacteria and do 

       not remove endotoxin. 

Removes bacteria and endotoxin, but must be disinfected; operates at high 

       water pressure 

Kills some bacteria, but there is no residual; ultraviolet-resistant bacteria  

       can develop if the unit is not properly maintained 

Removes bacteria and endotoxin; operates on normal line pressure; can be 

       positioned distal to deionizer; must be disinfected 

Water and dialysate distribution system

 

Distribution pipes 

       Size 

 

       Construction 

 

       Elevation 

 

 

       Storage tanks 

 

 

Oversized diameter and length decrease fluid flow and increase bacterial 

       reservoir for both treated water and centrally-prepared dialysate. 

Rough joints, dead ends, unused branches, and polyvinyl chloride (PVC) 

       piping can act as bacterial reservoirs. 

Outlet taps should be located at the highest elevation to prevent loss of  

       disinfectant; keep a recirculation loop in the system; flush unused ports

       routinely. 

Tanks are undesirable because they act as a reservoir for water bacteria; if 

       tanks are present, they must be routinely scrubbed and disinfected. 

Dialysis machines

 

Single-pass 

 

Recirculating single-pass or recirculating  

       (batch) 

 

Disinfectant should have contact with 

all

 parts of the machine that are 

       exposed to water or dialysis fluid. 

Recirculating pumps and machine design allow for massive contamination  

       levels if not properly disinfected; overnight chemical germicide 

       treatment is recommended. 

 

background image

 

64 

 

Two components of hemodialysis water distribution systems – pipes (particularly those made of 

polyvinyl chloride [PVC]) and storage tanks – can serve as reservoirs of microbial contamination.  

Hemodialysis systems frequently use pipes that are wider and longer than are needed to handle the 

required flow, which slows the fluid velocity and increases both the total fluid volume and the wetted 

surface area of the system.  Gram-negative bacteria in fluids remaining in pipes overnight multiply 

rapidly and colonize the wet surfaces, producing bacterial populations and endotoxin quantities in 

proportion to the volume and surface area.  Such colonization results in formation of protective biofilm 

that is difficult to remove and protects the bacteria from disinfection.

832

   Routine (i.e., monthly), low-

level disinfection of the pipes can help to control bacterial contamination of the distribution system.  

Additional measures to protect pipes from contaminations include a) situating all outlet taps at equal 

elevation and at the highest point of the system so that the disinfectant cannot drain from pipes by 

gravity before adequate contact time has elapsed and b) eliminating rough joints, dead-end pipes, and 

unused branches and taps that can trap fluid and serve as reservoirs of bacteria capable of continuously 

inoculating the entire volume of the system.

800

   Maintain a flow velocity of 3–5 ft/sec. 

 

A storage tank in the distribution system greatly increases the volume of fluid and surface area available 

and can serve as a niche for water bacteria.  Storage tanks are therefore not recommended for use in 

dialysis systems unless they are frequently drained and adequately disinfected, including scrubbing the 

sides of the tank to remove bacterial biofilm.  An ultrafilter should be used distal to the storage tank.

808, 

833

 

 

Microbiologic sampling of dialysis fluids is recommended because gram-negative bacteria can 

proliferate rapidly in water and dialysate in hemodialysis systems; high levels of these organisms place 

patients at risk for pyrogenic reactions or health-care–associated infection.

667, 668, 808

  

 

Health-care facilities are advised to sample dialysis fluids at least monthly using standard microbiologic 

assay methods for waterborne microorganisms.

788, 793, 799, 834–836

   Product water used to prepare dialysate 

and to reprocess hemodialyzers for reuse on the same patient should also be tested for bacterial 

endotoxin on a monthly basis.

792, 829, 837

   (See Appendix C for information about water sampling 

methods for dialysis.) 

 

Cross-contamination of dialysis machines and inadequate disinfection measures can facilitate the spread 

of waterborne organisms to patients.  Steps should be taken to ensure that dialysis equipment is 

performing correctly and that all connectors, lines, and other components are specific for the equipment, 

in good repair, and properly in place.  A recent outbreak of gram-negative bacteremias among dialysis 

patients was attributed to faulty valves in a drain port of the machine that allowed backflow of saline 

used to flush the dialyzer before patient use.

838, 839

   This backflow contaminated the drain priming 

connectors, which contaminated the blood lines and exposed the patients to high concentrations of 

gram-negative bacteria.  Environmental infection control in dialysis settings also includes low-level 

disinfection of housekeeping surfaces and spot decontamination of spills of blood (see Environmental 

Services in Part I of this guideline for further information). 

 

c.  Infection-Control Issues in Peritoneal Dialysis 

Peritoneal dialysis (PD), most commonly administered as continuous ambulatory peritoneal dialysis 

(CAPD) and continual cycling peritoneal dialysis (CCPD), is the third most common treatment for end-

stage renal disease (ESRD) in the United States, accounting for 12% of all dialysis patients.

840

   

Peritonitis is the primary complication of CAPD, with coagulase-negative staphylococci the most 

clinically significant causative organisms.

841

   Other organisms that have been found to produce 

peritonitis include 

Staphylococcus aureus, Mycobacterium fortuitum, M. mucogenicum, 

Stenotrophomonas maltophilia, Burkholderia cepacia, Corynebacterium jeikeium, Candida

 spp., and 

background image

 

65

other fungi.

842–850

   Substantial morbidity is associated with peritoneal dialysis infections.  Removal of 

peritoneal dialysis catheters usually is required for treatment of peritonitis caused by fungi, NTM, or 

other bacteria that are not cleared within the first several days of effective antimicrobial treatment.  

Furthermore, recurrent episodes of peritonitis may lead to fibrosis and loss of the dialysis membrane. 

 

Many reported episodes of peritonitis are associated with exit-site or tunneled catheter infections.  Risk 

factors for the development of peritonitis in PD patients include a) under dialysis, b) immune 

suppression, c) prolonged antimicrobial treatment, d) patient age [more infections occur in younger 

patients and older hospitalized patients], e) length of hospital stay, and f) hypoalbuminemia.

844, 851, 852

   

Concern has been raised about infection risk associated with the use of automated cyclers in both 

inpatient and outpatient settings; however, studies suggest that PD patients who use automated cyclers 

have much lower infection rates.

853

   One study noted that a closed-drainage system reduced the 

incidence of system-related peritonitis among intermittent peritoneal dialysis (IPD) patients from 3.6 to 

1.5 cases/100 patient days.

854

   The association of peritonitis with management of spent dialysate fluids 

requires additional study.  Therefore, ensuring that the tip of the waste line is not submerged beneath the 

water level in a toilet or in a drain is prudent. 

 

7.  Ice Machines and Ice

 

 

Microorganisms may be present in ice, ice-storage chests, and ice-making machines.  The two main 

sources of microorganisms in ice are the potable water from which it is made and a transferral of 

organisms from hands (Table 20).  Ice from contaminated ice machines has been associated with patient 

colonization, blood stream infections, pulmonary and gastrointestinal illnesses, and pseudoinfections.

602, 

603, 683, 684, 854, 855

   Microorganisms in ice can secondarily contaminate clinical specimens and medical 

solutions that require cold temperatures for either transport or holding.

601, 620

   An outbreak of surgical-

site infections was interrupted when sterile ice was used in place of tap water ice to cool cardioplegia 

solutions.

601

 

 

Table 20.  Microorganisms and their sources in ice and ice machines 

 

Sources of microorganisms 

References 

 

From potable water 

 

Legionella

 spp. 

684, 685, 857, 858 

 

Nontuberculous mycobacteria (NTM) 

602, 603, 859 

 

Pseudomonas aeruginosa

 859 

 

Burkholderia cepacia

 859, 

860 

 

Stenotrophomonas maltophilia

 860 

 

Flavobacterium

 spp. 

860 

From fecally-contaminated water

 

 Norwalk 

virus 

861–863 

 

Giardia lamblia

 864 

 

Cryptosporidium parvum

 685 

From hand-transfer of organisms

 

 

Acinetobacter

 spp. 

859 

 Coagulase-negative 

staphylococci 

859 

 

Salmonella enteriditis

 865 

 

Cryptosporidium parvum

 685 

 

 

 

 

background image

 

66 

In a study comparing the microbial populations of hospital ice machines with organisms recovered from 

ice samples gathered from the community, samples from 27 hospital ice machines yielded low numbers 

(<10 CFU/mL) of several potentially opportunistic microorganisms, mainly gram-negative bacilli.

859

   

During the survey period, no health-care–associated infections were attributed to the use of ice.  Ice 

from community sources had higher levels of microbial contamination (75%–95% of 194 samples had 

total heterotrophic plate counts <500 CFU/mL, with the proportion of positive cultures dependent on the 

incubation temperature) and showed evidence of fecal contamination from the source water.

859

   Thus, 

ice machines in health-care settings are no more heavily contaminated compared with ice machines in 

the community.  If the source water for ice in a health-care facility is not fecally contaminated, then ice 

from clean ice machines and chests should pose no increased hazard for immunocompetent patients.  

Some waterborne bacteria found in ice could potentially be a risk to immunocompromised patients if 

they consume ice or drink beverages with ice.  For example, 

Burkholderia cepacia

 in ice could present 

an infection risk for cystic fibrosis patients.

859, 860

   Therefore, protecting immunosuppressed and 

otherwise medically at-risk patients from exposure to tap water and ice potentially contaminated with 

opportunistic pathogens is prudent.

9

   

 

No microbiologic standards for ice, ice-making machines, or ice storage equipment have been 

established, although several investigators have suggested the need for such standards.

859, 866

   Culturing 

of ice machines is not routinely recommended, but it may be useful as part of an epidemiologic 

investigation.

867–869

   Sampling might also help determine the best schedule for cleaning open ice-storage 

chests.  Recommendations for a regular program of maintenance and disinfection have been 

published.

866–869

   Health-care facilities are advised to clean ice-storage chests on a regular basis.  Open 

ice chests may require a more frequent cleaning schedule compared with chests that have covers.   

Portable ice chests and containers require cleaning and low-level disinfection before the addition of ice 

intended for consumption.  Ice-making machines may require less frequent cleaning, but their 

maintenance is important to proper performance.  The manufacturer’s instructions for both the proper 

method of cleaning and/or maintenance should be followed.  These instructions may also recommend an 

EPA-registered disinfectant to ensure chemical potency, materials compatibility, and safety.  In the 

event that instructions and suitable EPA-registered disinfectants are not available for this process, then a 

generic approach to cleaning, disinfecting, and maintaining ice machines and dispensers can be used 

(Box 12). 

 

Ice and ice-making machines also may be contaminated via improper storage or handling of ice by 

patients and/or staff.

684–686, 855–858, 870

   Suggested steps to avoid this means of contamination include a) 

minimizing or avoiding direct hand contact with ice intended for consumption, b) using a hard-surface 

scoop to dispense ice, and c) installing machines that dispense ice directly into portable containers at the 

touch of a control.

687, 869

 

 

 

 

Box 12.  General steps for cleaning and maintaining ice machines, dispensers, and storage 
chests*+ 

 

 

1.  Disconnect unit from power supply. 

 

2.  Remove and discard ice from bin or storage chest. 

 

3.  Allow unit to warm to room temperature. 

 

4.  Disassemble removable parts of machine that make contact with water to make ice. 

 

5.  Thoroughly clean machine and parts with water and detergent. 

 

6.  Dry external surfaces of removable parts before reassembling. 

 

7.  Check for any needed repair. 

 

8.  Replace feeder lines, as appropriate (e.g., when damaged, old, or difficult to clean). 

 

9.  Ensure presence of an air space in tubing leading from water inlet into water distribution system of 

                machine. 

background image

 

67

(Box 12. continued) 

 
 

10.  Inspect for rodent or insect infestations under the unit and treat, as needed. 

 

11.  Check door gaskets (open compartment models) for evidence of leakage or dripping into the  

                storage chest. 
 

12.  Clean the ice-storage chest or bin with fresh water and detergent; rinse with fresh tap water. 

 

13.  Sanitize machine by circulating a 50–100 parts per million (ppm) solution of sodium hypochlorite  

                (i.e., 4–8 mL sodium hypochlorite/gallon of water) through the ice-making and storage systems for 
                2 hours (100 ppm solution), or 4 hours (50 ppm solution). 
 

14.  Drain sodium hypochlorite solutions and flush with fresh tap water. 

 

15.  Allow all surfaces of equipment to dry before returning to service.

 

 

 

*  Material in this box is adapted from reference 869. 

+  These general guidelines should be used only where manufacturer-recommended methods and EPA-registered disinfectants are not 

        available. 

 

8.  Hydrotherapy Tanks and Pools

 

 

a.  General Information 

Hydrotherapy equipment (e.g., pools, whirlpools, whirlpool spas, hot tubs, and physiotherapy tanks) 

traditionally has been used to treat patients with certain medical conditions (e.g., burns,

871, 872

  septic 

ulcers, lesions, amputations,

873

  orthopedic impairments and injuries, arthritis,

874

  and kidney 

lithotripsy).

654

   Wound-care medicine is increasingly moving away from hydrotherapy, however, in 

favor of bedside pulsed-lavage therapy using sterile solutions for cleaning and irrigation.

492, 875–878

   

Several episodes of health-care–associated  infections have been linked to use of hydrotherapy 

equipment (Table 21).  Potential routes of infection include incidental ingestion of the water, sprays and 

aerosols, and direct contact with wounds and intact skin (folliculitis).  Risk factors for infection include 

a) age and sex of the patient, b) underlying medical conditions, c) length of time spent in the 

hydrotherapy water, and d) portals of entry.

879

 

 

Table 21.  Infections associated with use of hydrotherapy equipment 

Microorganisms Medical 

conditions 

References 

Acinetobacter baumanii 

Sepsis 572 

Citrobacter freundii 

Cellulitis 880 

Enterobacter cloacae 

Sepsis 881 

Legionella

 spp. 

Legionellosis 

882 

Mycobacterium abscessus, Mycobacterium 
  fortuitum, Mycobacterium marinum 

Skin ulcers and soft tissue infections 

621–623, 883 

Pseudomonas aeruginosa 

Sepsis, soft tissue infections, folliculitis, and  

   wound infections 

492, 493, 506, 679, 884–888 

Adenovirus, adeno-associated virus 

Conjunctivitis 

889 

 

Infection control for hydrotherapy tanks, pools, or birthing tanks presents unique challenges because 

indigenous microorganisms are always present in the water during treatments.  In addition, some studies 

have found free living amoebae (i.e., 

Naegleria lovaniensis

), which are commonly found in association 

with 

Naegleria fowleri,

 in hospital hydrotherapy pools.

890

   Although hydrotherapy is at times 

appropriate for patients with wounds, burns, or other types of non-intact skin conditions (determined on 

a case-by-case basis), this equipment should not be considered “semi-critical” in accordance with the 

Spaulding classification.

891

   Microbial data to evaluate the risk of infection to patients using 

hydrotherapy pools and birthing tanks are insufficient.  Nevertheless, health-care facilities should 

maintain stringent cleaning and disinfection practices in accordance with the manufacturer’s instructions 

background image

 

68 

and with relevant scientific literature until data supporting more rigorous infection-control measures 

become available.  Factors that should be considered in therapy decisions in this situation would include 

a) availability of alternative aseptic techniques for wound management and b) a risk-benefit analysis of 

using traditional hydrotherapy. 

 

b.  Hydrotherapy Tanks

 

Hydrotherapy tanks (e.g., whirlpools, Hubbard tanks and whirlpool bath tubs) are shallow tanks 

constructed of stainless steel, plexiglass, or tile.  They are closed-cycle water systems with hydrojets to 

circulate, aerate, and agitate the water.  The maximum water temperature range is 50°F–104°F (10°C–

40°C).  The warm water temperature, constant agitation and aeration, and design of the hydrotherapy 

tanks provide ideal conditions for bacterial proliferation if the equipment is not properly maintained, 

cleaned, and disinfected.  The design of the hydrotherapy equipment should be evaluated for potential 

infection-control problems that can be associated with inaccessible surfaces that can be difficult to clean 

and/or remain wet in between uses (i.e., recessed drain plates with fixed grill plates).

887

  Associated 

equipment (e.g., parallel bars, plinths, Hoyer lifts, and wheelchairs) can also be potential reservoirs of 

microorganisms, depending on the materials used in these items (i.e., porous vs. non-porous materials) 

and the surfaces that may become wet during use.  Patients with active skin colonizations and wound 

infections can serve as sources of contamination for the equipment and the water.  Contamination from 

spilled tub water can extend to drains, floors, and walls.

680–683

   Health-care–associated colonization or 

infection can result from exposure to endogenous sources of microorganisms (autoinoculation) or 

exogenous sources (via cross-contamination from other patients previously receiving treatment in the 

unit). 

 

Although some facilities have used tub liners to minimize environmental contamination of the tanks, the 

use of a tub liner does not eliminate the need for cleaning and disinfection.  Draining these small pools 

and tanks after each patient use, thoroughly cleaning with a detergent, and disinfecting according to 

manufacturers’ instructions have reduced bacterial contamination levels in the water from 10

4

 CFU/mL 

to <10 CFU/mL.

892

   A chlorine residual of 15 ppm in the water should be obtained prior to the patient’s 

therapy session (e.g., by adding 15 grams of calcium hypochlorite 70% [e.g., HTH®] per 100 gallons of 

water).

892

   A study of commercial and residential whirlpools found that superchlorination or draining, 

cleaning, disinfection, and refilling of whirlpools markedly reduced densities of 

Pseudomonas 

aeruginosa

 in whirlpool water.

893

   The bacterial populations were rapidly replenished, however, when 

disinfectant concentrations dropped below recommended levels for recreational use (i.e., chlorine at 3.0 

ppm or bromine at 6.0 ppm).  When using chlorine, however, knowing whether the community 

drinking-water system is disinfected with chloramine is important, because municipal utilities adjust the 

pH of the water to the basic side to enhance chloramine formation.  Because chlorine is not very 

effective at pH levels above 8, it may be necessary to re-adjust the pH of the water to a more acidic 

level.

894

  

 

A few reports describe the addition of antiseptic chemicals to hydrotherapy tank water, especially for 

burn patient therapy.

895–897

   One study involving a minimal number of participants demonstrated a 

reduction in the number of 

Pseudomonas

 spp. and other gram-negative bacteria from both patients and 

equipment surfaces when chloramine-T (“chlorazene”) was added to the water.

898

   Chloramine-T has 

not, however, been approved for water treatment in the United States. 

 

c.  Hydrotherapy Pools

 

Hydrotherapy pools typically serve large numbers of patients and are usually heated to 91.4°F–98.6°F 

(31°C–37°C).  The temperature range is more narrow (94°F–96.8°F [35°C–36°C]) for pediatric and 

geriatric patient use.

899

   Because the size of hydrotherapy pools precludes draining after patient use, 

proper management is required to maintain the proper balance of water conditioning (i.e., alkalinity, 

hardness, and temperature) and disinfection.  The most widely used chemicals for disinfection of pools 

background image

 

69

are chlorine and chlorine compounds – calcium hypochlorite, sodium hypochlorite, lithium 

hypochlorite, chloroisocyanurates, and chlorine gas.  Solid and liquid formulations of chlorine 

chemicals are the easiest and safest to use.

900

   Other halogenated compounds have also been used for 

pool-water disinfection, albeit on a limited scale.  Bromine, which forms bactericidal bromamines in the 

presence of ammonia, has limited use because of its association with contact dermatitis.

901

   Iodine does 

not bleach hair, swim suits, or cause eye irritation, but when introduced at proper concentrations, it 

gives water a greenish-yellowish cast.

892

 

 

In practical terms, maintenance of large hydrotherapy pools (e.g., those used for exercise) is similar to 

that for indoor public pools (i.e., continuous filtration, chlorine residuals no less than 0.4 ppm, and pH 

of 7.2–7.6).

902, 903

   Supply pipes and pumps also need to be maintained to eliminate the possibility of 

this equipment serving as a reservoir for waterborne organisms.

904

   Specific standards for chlorine 

residual and pH of the water are addressed in local and state regulations.  Patients who are fecally 

incontinent or who have draining wounds should refrain from using these pools until their condition 

improves. 

 

d.  Birthing Tanks and Other Equipment

 

The use of birthing tanks, whirlpool spas, and whirlpools is a recent addition to obstetrical practice.

905

   

Few studies on the potential risks associated with these pieces of equipment have been conducted.  In 

one study of 32 women, a newborn contracted a 

Pseudomonas

 infection after being birthed in such a 

tank, the strain of which was identical to the organism isolated from the tank water.

906

   Another report 

documented identical strains of 

P. aeruginosa

 isolates from a newborn with sepsis and on the 

environmental surfaces of a tub that the mother used for relaxation while in labor.

907

   Other studies have 

shown  no significant increases in the rates of post-immersion infections among mothers and infants.

908, 

909

 

 

Because the water and the tub surfaces routinely become contaminated with the mother’s skin flora and 

blood during labor and delivery, birthing tanks and other tub equipment must be drained after each 

patient use and the surfaces thoroughly cleaned and disinfected.  Health-care facilities are advised to 

follow the manufacturer’s instructions for selection of disinfection method and chemical germicide.  

The range of chlorine residuals for public whirlpools and whirlpool spas is 2–5 ppm.

910

   Use of an 

inflatable tub is an alternative solution, but this item must be cleaned and disinfected between patients if 

it is not considered a single-use unit. 

 

Recreational tanks and whirlpool spas are increasingly being used as hydrotherapy equipment.  

Although such home equipment appears to be suitable for hydrotherapy, they are neither designed nor 

constructed to function in this capacity.  Additionally, manufacturers generally are not obligated to 

provide the health-care facility with cleaning and disinfecting instructions appropriate for medical 

equipment use, and the U.S. Food and Drug Administration (FDA) does not evaluate recreational 

equipment.  Health-care facilities should therefore carefully evaluate this “off-label” use of home 

equipment before proceeding with a purchase. 

 

 

9.  Miscellaneous Medical/Dental Equipment Connected to Main Water 
Systems

 

 

a.  Automated Endoscope Reprocessors 

The automated endoscopic reprocessor (AER) is classified by the FDA as an accessory for the flexible 

endoscope.

654

   A properly operating AER can provide a more consistent, reliable method of 

decontaminating and terminal reprocessing for endoscopes between patient procedures than manual 

reprocessing methods alone.

911

   An endoscope is generally subjected to high-level disinfection using a 

background image

 

70 

liquid chemical sterilant or a high-level disinfectant.  Because the instrument is a semi-critical device, 

the optimal rinse fluid for a disinfected endoscope would be sterile water.

3

   Sterile water, however, is 

expensive and difficult to produce in sufficient quantities and with adequate quality assurance for 

instrument rinsing in an AER.

912, 913

   Therefore, one option to be used for AERs is rinse water that has 

been passed through filters with a pore size of 0.1–0.2 µm to render the water “bacteria-free.”  These 

filters usually are located in the water line at or near the port where the mains water enters the 

equipment.  The product water (i.e., tap water passing through these filters) in these applications is not 

considered equivalent in microbial quality to that for membrane-filtered water as produced by 

pharmaceutical firms.  Membrane filtration in pharmaceutical applications is intended to ensure the 

microbial quality of polished product water. 

 

Water has been linked to the contamination of flexible fiberoptic endoscopes in the following two 

scenarios: a) rinsing a disinfected endoscope with unfiltered tap water, followed by storage of the 

instrument without drying out the internal channels and b) contamination of AERs from tap water 

inadvertently introduced into the equipment.  In the latter instance, the machine’s water reservoirs and 

fluid circuitry become contaminated with waterborne, heterotrophic bacteria (e.g., 

Pseudomonas 

aeruginosa

 and NTM), which can survive and persist in biofilms attached to these components.

914–917 

   

Colonization of the reservoirs and water lines of the AER becomes problematic if the required cleaning, 

disinfection, and maintenance are not performed on the equipment as recommended by the 

manufacturer.

669, 916, 917

   Use of the 0.1–0.2-µm filter in the water line helps to keep bacterial 

contamination to a minimum,

670, 911, 917

  but filters may fail and allow bacteria to pass through to the 

equipment and then to the instrument undergoing reprocessing.

671–674, 913, 918

   Filters also require 

maintenance for proper performance.

670, 911, 912, 918, 919

   Heightened awareness of the proper disinfection 

of the connectors that hook the instrument to the AER may help to further reduce the potential for 

contaminating endoscopes during reprocessing.

920

   An emerging issue in the field of endoscopy is that 

of the possible role of rinse water monitoring and its potential to help reduce endoscopy/bronchoscopy-

associated infections.

918

 

 

Studies have linked deficiencies in endoscope cleaning and/or disinfecting processes to the incidence of 

post-endoscopic adverse outcomes.

921–924

   Several clusters have been traced to AERs of older designs 

and these were associated with water quality.

675, 914–916

   Regardless of whether manual or automated 

terminal reprocessing is used for endoscopes, the internal channels of the instrument should be dried 

before storage.

925

   The presence of residual moisture in the internal channels encourages the 

proliferation of waterborne microorganisms, some of which may be pathogenic.  One of the most 

frequently used methods employs 70% isopropyl alcohol to flush the internal channels, followed by 

forced air drying of these channels and hanging the endoscope vertically in a protected cabinet; this 

method ensures internal drying of the endoscope, lessens the potential for proliferation of waterborne 

microorganisms,

669, 913, 917, 922, 926, 927

  and is consistent with professional organization guidance for 

endoscope reprocessing.

928

 

 

An additional problem with waterborne microbial contamination of AERs centers on increased 

microbial resistance to alkaline glutaraldehyde, a widely used liquid chemical sterilant/high-level 

disinfectant.

669, 929

   Opportunistic waterborne microorganisms (e.g., 

Mycobacterium chelonae

Methylobacterium

 spp.) have been associated with pseudo-outbreaks and colonization; infection caused 

by these organisms has been associated with procedures conducted in clinical settings (e.g., 

bronchoscopy).

669, 913, 929–931

   Increasing microbial resistance to glutaraldehyde has been attributed to 

improper use of the disinfectant in the equipment, allowing the dilution of glutaraldehyde to fall below 

the manufacturer’s recommended minimal use concentration.

929

 

 

 

 

background image

 

71

b.  Dental Unit Water Lines

 

Dental unit water lines (DUWLs) consist of small-bore plastic tubing that delivers water used for 

general, non-surgical irrigation and as a coolant to dental handpieces, sonic and ultrasonic scalers, and 

air-water syringes; municipal tap water is the source water for these lines.  The presence of biofilms of 

waterborne bacteria and fungi (e.g., 

Legionella

 spp., 

Pseudomonas aeruginosa,

 and NTM) in DUWLs 

has been established.

636, 637, 694, 695, 932– 934

   Biofilms continually release planktonic microorganisms into 

the water, the titers of which can exceed 1

H

10

6

 CFU/mL.

694

   However, scientific evidence indicates that 

immunocompetent persons are only at minimal risk for substantial adverse health effects after contact 

with water from a dental unit.  Nonetheless, exposing patients or dental personnel to water of uncertain 

microbiological quality is not consistent with universally accepted infection-control principles.

935

 

 

In 1993, CDC issued guidelines relative to water quality in a dental setting.  These guidelines 

recommend that all dental instruments that use water (including high-speed handpieces) should be run to 

discharge water for 20–30 seconds after each patient and for several minutes before the start of each 

clinic day.

936

   This practice can help to flush out any patient materials that many have entered the 

turbine, air, or waterlines.

937, 938

   The 1993 guidance also indicated that waterlines be flushed at the 

beginning of the clinic day.  Although these guidelines are designed to help reduce the number of 

microorganisms present in treatment water, they do not address the issue of reducing or preventing 

biofilm formation in the waterlines.  Research published subsequent to the 1993 dental infection control 

guideline suggests that flushing the lines at the beginning of the day has only minimal effect on the 

status of the biofilm in the lines and does not reliably improve the quality of water during dental 

treatment.

939–941

   Updated recommendations on infection-control practices for water line use in dentistry 

will be available in late 2003.

942

 

 

The numbers of microorganisms in water used as coolant or irrigant for non-surgical dental treatment 

should be as low as reasonably achievable and, at a minimum, should meet nationally recognized 

standards for safe drinking water.

935, 943

   Only minimal evidence suggests that water meeting drinking 

water standards poses a health hazard for immunocompetent persons.  The EPA, the American Public 

Health Association (APHA), and the American Water Works Association (AWWA) have set a 

maximum limit of 500 CFU/mL for aerobic, heterotrophic, mesophilic bacteria in drinking water in 

municipal distribution systems.

944, 945

   This standard is achievable, given improvements in water-line 

technology.  Dentists should consult with the manufacturer of their dental unit to determine the best 

equipment and method for maintaining and monitoring good water quality.

935, 946

 

 

 

E.  Environmental Services 

 

1.  Principles of Cleaning and Disinfecting Environmental Surfaces

 

 

Although microbiologically contaminated surfaces can serve as reservoirs of potential pathogens, these 

surfaces generally are not directly associated with transmission of infections to either staff or patients.  

The transferral of microorganisms from environmental surfaces to patients is largely via hand contact 

with the surface.

947, 948

   Although hand hygiene is important to minimize the impact of this transfer, 

cleaning and disinfecting environmental surfaces as appropriate is fundamental in reducing their 

potential contribution to the incidence of healthcare-associated infections. 

 

The principles of cleaning and disinfecting environmental surfaces take into account the intended use of 

the surface or item in patient care.  CDC retains the Spaulding classification for medical and surgical 

instruments, which outlines three categories based on the potential for the instrument to transmit 

infection if the instrument is microbiologically contaminated before use.

949, 950

   These categories are 

background image

 

72 

“critical,” “semicritical,” and “noncritical.”  In 1991, CDC proposed an additional category designated 

“environmental surfaces” to Spaulding’s original classification

951

  to represent surfaces that generally do 

not come into direct contact with patients during care.  Environmental surfaces carry the least risk of 

disease transmission and can be safely decontaminated using less rigorous methods than those used on 

medical instruments and devices.  Environmental surfaces can be further divided into medical 

equipment surfaces (e.g., knobs or handles on hemodialysis machines, x-ray machines, instrument carts, 

and dental units) and housekeeping surfaces (e.g., floors, walls, and tabletops).

951

 

 

The following factors influence the choice of disinfection procedure for environmental surfaces: a) the 

nature of the item to be disinfected, b) the number of microorganisms present, c) the innate resistance of 

those microorganisms to the inactivating effects of the germicide, d) the amount of organic soil present, 

e) the type and concentration of germicide used, f) duration and temperature of germicide contact, and 

g) if using a proprietary product, other specific indications and directions for use.

952, 953

  

 

Cleaning is the necessary first step of any sterilization or disinfection process.  Cleaning is a form of 

decontamination that renders the environmental surface safe to handle or use by removing organic 

matter, salts, and visible soils, all of which interfere with microbial inactivation.

954–960

   The physical 

action of scrubbing with detergents and surfactants and rinsing with water removes large numbers of 

microorganisms from surfaces.

957

   If the surface is not cleaned before the terminal reprocessing 

procedures are started, the success of the sterilization or disinfection process is compromised. 

 

Spaulding proposed three levels of disinfection for the treatment of devices and surfaces that do not 

require sterility for safe use.  These disinfection levels are “high-level,” “intermediate-level,” and “low-

level.”

949, 950

   The basis for these levels is that microorganisms can usually be grouped according to their 

innate resistance to a spectrum of physical or chemical germicidal agents (Table 22).  This information, 

coupled with the instrument/surface classification, determines the appropriate level of terminal 

disinfection for an instrument or surface.

 

 

Table 22.  Levels of disinfection by type of microorganism* 

 Bacteria 

Fungi+ 

Viruses 

Disinfection 

level 

Vegetative 

Tubercle 

bacillus 

Spores  

Lipid and 

medium size 

Nonlipid and 

small size 

High 

+

§ 

+

 

+

¶ 

+

 

+

 

+

 

Intermediate 

+

 

+

 

** 

+

 

+

 

+

++

 

Low 

+

 

– – +

 

+

 

+

 

 

*  Material in this table compiled from references 2 and 951. 

+  This class of microorganisms includes asexual spores but not necessarily chlamydospores or sexual spores. 

§  The “plus” sign indicates that a killing effect can be expected when the normal use-concentrations of chemical disinfectants or pasteurization 

       are properly employed; a “negative” sign indicates little or no killing effect. 

¶  Only with extended exposure times are high-level disinfectant chemicals capable of killing high numbers of bacterial spores in laboratory 

       tests; they are, however, capable of sporicidal activity. 

**  Some intermediate-level disinfectants (e.g., hypochlorites) can exhibit some sporicidal activity; others (e.g., alcohols and phenolics) have 

       no demonstrable sporicidal activity. 

++  Some intermediate-level disinfectants, although they are tuberculocidal, may have limited virucidal activity. 

 

The process of high-level disinfection, an appropriate standard of treatment for heat-sensitive, semi-

critical medical instruments (e.g., flexible, fiberoptic endoscopes), inactivates all vegetative bacteria, 

mycobacteria, viruses, fungi, and some bacterial spores.  High-level disinfection is accomplished with 

powerful, sporicidal chemicals (e.g., glutaraldehyde, peracetic acid, and hydrogen peroxide) that are not 

appropriate for use on housekeeping surfaces.  These liquid chemical sterilants/high-level disinfectants 

background image

 

73

are highly toxic.

961–963

   Use of these chemicals for applications other than those indicated in their label 

instructions (i.e., as immersion chemicals for treating heat-sensitive medical instruments) is not 

appropriate.

964

   Intermediate-level disinfection does not necessarily kill bacterial spores, but it does 

inactivate 

Mycobacterium tuberculosis

 var. 

bovis

, which is substantially more resistant to chemical 

germicides than ordinary vegetative bacteria, fungi, and medium to small viruses (with or without lipid 

envelopes).  Chemical germicides with sufficient potency to achieve intermediate-level disinfection 

include chlorine-containing compounds (e.g., sodium hypochlorite), alcohols, some phenolics, and some 

iodophors.  Low-level disinfection inactivates vegetative bacteria, fungi, enveloped viruses (e.g., human 

immunodeficiency virus [HIV], and influenza viruses), and some non-enveloped viruses (e.g., 

adenoviruses).  Low-level disinfectants include quaternary ammonium compounds, some phenolics, and 

some iodophors.  Sanitizers are agents that reduce the numbers of bacterial contaminants to safe levels 

as judged by public health requirements, and are used in cleaning operations, particularly in food service 

and dairy applications.  Germicidal chemicals that have been approved by FDA as skin antiseptics are 

not appropriate for use as environmental surface disinfectants.

951

 

 

The selection and use of chemical germicides are largely matters of judgment, guided by product label 

instructions, information, and regulations.  Liquid sterilant chemicals and high-level disinfectants 

intended for use on critical and semi-critical medical/dental devices and instruments are regulated 

exclusively by the FDA as a result of recent memoranda of understanding between FDA and the EPA 

that delineates agency authority for chemical germicide regulation.

965, 966

   Environmental surface 

germicides (i.e., primarily intermediate- and low-level disinfectants) are regulated by the EPA and 

labeled with EPA registration numbers.  The labels and technical data or product literature of these 

germicides specify indications for product use and provide claims for the range of antimicrobial activity.  

The EPA requires certain pre-registration laboratory potency tests for these products to support product 

label claims.  EPA verifies (through laboratory testing) manufacturers’ claims to inactivate 

microorganisms for selected products and organisms.  Germicides labeled as “hospital disinfectant” 

have passed the potency tests for activity against three representative microorganisms – 

Pseudomonas 

aeruginosa, Staphylococcus aureus,

 and 

Salmonella cholerae suis

.  Low-level disinfectants are often 

labeled “hospital disinfectant” without a tuberculocidal claim, because they lack the potency to 

inactivate mycobacteria.  Hospital disinfectants with demonstrated potency against mycobacteria (i.e., 

intermediate-level disinfectants) may list “tuberculocidal” on the label as well.  Other claims (e.g., 

“fungicidal,” “pseudomonicidal,” and “virucidal”) may appear on labels of environmental surface 

germicides, but the designations of “tuberculocidal hospital disinfectant” and “hospital disinfectant” 

correlate directly to Spaulding’s assessment of intermediate-level disinfectants and low-level 

disinfectants, respectively.

951

  

 

A common misconception in the use of surface disinfectants in health-care settings relates to the 

underlying purpose for use of proprietary products labeled as a “tuberculocidal” germicide.  Such 

products will not interrupt and prevent the transmission of TB in health-care settings because TB is not 

acquired from environmental surfaces.  The tuberculocidal claim is used as a benchmark by which to 

measure germicidal potency.  Because mycobacteria have the highest intrinsic level of resistance among 

the vegetative bacteria, viruses, and fungi, any germicide with a tuberculocidal claim on the label (i.e., 

an intermediate-level disinfectant) is considered capable of inactivating a broad spectrum of pathogens, 

including much less resistant organisms such the bloodborne pathogens (e.g., hepatitis B virus [HBV], 

hepatitis C virus [HCV], and HIV).  It is this broad spectrum capability, rather than the product’s 

specific potency against mycobacteria, that is the basis for protocols and OSHA regulations indicating 

the appropriateness of using tuberculocidal chemicals for surface disinfection.

967

 

 

 

background image

 

74 

2.  General Cleaning Strategies for Patient-Care Areas

 

 

The number and types of microorganisms present on environmental surfaces are influenced by the 

following factors: a) number of people in the environment, b) amount of activity, c) amount of moisture, 

d) presence of material capable of supporting microbial growth, e) rate at which organisms suspended in 

the air are removed, and f) type of surface and orientation [i.e., horizontal or vertical].

968

   Strategies for 

cleaning and disinfecting surfaces in patient-care areas take into account a) potential for direct patient 

contact, b) degree and frequency of hand contact, and c) potential contamination of the surface with 

body substances or environmental sources of microorganisms (e.g., soil, dust, and water). 

 

a.  Cleaning of Medical Equipment

 

Manufacturers of medical equipment should provide care and maintenance instructions specific to their 

equipment.  These instructions should include information about a) the equipments’ compatibility with 

chemical germicides, b) whether the equipment is water-resistant or can be safely immersed for 

cleaning, and c) how the equipment should be decontaminated if servicing is required.

967

   In the 

absence of manufacturers’ instructions, non-critical medical equipment (e.g., stethoscopes, blood 

pressure cuffs, dialysis machines, and equipment knobs and controls) usually only require cleansing 

followed by low- to intermediate-level disinfection, depending on the nature and degree of 

contamination.  Ethyl alcohol or isopropyl alcohol in concentrations of 60%–90% (v/v) is often used to 

disinfect small surfaces (e.g., rubber stoppers of multiple-dose medication vials, and thermometers)

952, 

969

  and occasionally external surfaces of equipment (e.g., stethoscopes and ventilators).  However, 

alcohol evaporates rapidly, which makes extended contact times difficult to achieve unless items are 

immersed, a factor that precludes its practical use as a large-surface disinfectant.

951

   Alcohol may cause 

discoloration, swelling, hardening, and cracking of rubber and certain plastics after prolonged and 

repeated use and may damage the shellac mounting of lenses in medical equipment.

970

 

 

Barrier protection of surfaces and equipment is useful, especially if these surfaces are a) touched 

frequently by gloved hands during the delivery of patient care, b) likely to become contaminated with 

body substances, or c) difficult to clean.  Impervious-backed paper, aluminum foil, and plastic or fluid-

resistant covers are suitable for use as barrier protection.  An example of this approach is the use of 

plastic wrapping to cover the handle of the operatory light in dental-care settings.

936, 942

   Coverings 

should be removed and discarded while the health-care worker is still gloved.

936, 942

   The health-care 

worker, after ungloving and performing hand hygiene, must cover these surfaces with clean materials 

before the next patient encounter. 

 

b.  Cleaning Housekeeping Surfaces

 

Housekeeping surfaces require regular cleaning and removal of soil and dust.  Dry conditions favor the 

persistence of gram-positive cocci (e.g., coagulase-negative 

Staphylococcus

 spp.) in dust and on 

surfaces, whereas moist, soiled environments favor the growth and persistence of gram-negative 

bacilli.

948, 971, 972

   Fungi are also present on dust and proliferate in moist, fibrous material. 

 

Most, if not all, housekeeping surfaces need to be cleaned only with soap and water or a 

detergent/disinfectant, depending on the nature of the surface and the type and degree of contamination.  

Cleaning and disinfection schedules and methods vary according to the area of the health-care facility, 

type of surface to be cleaned, and the amount and type of soil present.  Disinfectant/detergent 

formulations registered by EPA are used for environmental surface cleaning, but the actual physical 

removal of microorganisms and soil by wiping or scrubbing is probably as important, if not more so, 

than any antimicrobial effect of the cleaning agent used.

973

   Therefore, cost, safety, product-surface 

compatibility, and acceptability by housekeepers can be the main criteria for selecting a registered 

agent.  If using a proprietary detergent/disinfectant, the manufacturers’ instructions for appropriate use 

background image

 

75

of the product should be followed.

974

   Consult the products’ material safety data sheets (MSDS) to 

determine appropriate precautions to prevent hazardous conditions during product application.  Personal 

protective equipment (PPE) used during cleaning and housekeeping procedures should be appropriate to 

the task. 

 

Housekeeping surfaces can be divided into two groups – those with minimal hand-contact (e.g., floors, 

and ceilings) and those with frequent hand-contact (“high touch surfaces”).  The methods, thoroughness, 

and frequency of cleaning and the products used are determined by health-care facility policy.

6

   

However, high-touch housekeeping surfaces in patient-care areas (e.g., doorknobs, bedrails, light 

switches, wall areas around the toilet in the patient’s room, and the edges of privacy curtains) should be 

cleaned and/or disinfected more frequently than surfaces with minimal hand contact.  Infection-control 

practitioners typically use a risk-assessment approach to identify high-touch surfaces and then 

coordinate an appropriate cleaning and disinfecting strategy and schedule with the housekeeping staff. 

 

Horizontal surfaces with infrequent hand contact (e.g., window sills and hard-surface flooring) in 

routine patient-care areas require cleaning on a regular basis, when soiling or spills occur, and when a 

patient is discharged from the facility.

6

   Regular cleaning of surfaces and decontamination, as needed, is 

also advocated to protect potentially exposed workers.

967

   Cleaning of walls, blinds, and window 

curtains is recommended when they are visibly soiled.

972, 973, 975

   Disinfectant fogging is not 

recommended for general infection control in routine patient-care areas.

2, 976

   Further, 

paraformaldehyde, which was once used in this application, is no longer registered by EPA for this 

purpose.  Use of paraformaldehyde in these circumstances requires either registration or an exemption 

issued by EPA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).  Infection 

control, industrial hygienists, and environmental services supervisors should assess the cleaning 

procedures, chemicals used, and the safety issues to determine if a temporary relocation of the patient is 

needed when cleaning in the room. 

 

Extraordinary cleaning and decontamination of floors in health-care settings is unwarranted.  Studies 

have demonstrated that disinfection of floors offers no advantage over regular detergent/water cleaning 

and has minimal or no impact on the occurrence of health-care–associated infections.

947, 948, 977–980

   

Additionally, newly cleaned floors become rapidly recontaminated from airborne microorganisms and 

those transferred from shoes, equipment wheels, and body substances.

971, 975, 981

   Nevertheless, health-

care institutions or contracted cleaning companies may choose to use an EPA-registered 

detergent/disinfectant for cleaning low-touch surfaces (e.g., floors) in patient-care areas because of the 

difficulty that personnel may have in determining if a spill contains blood or body fluids (requiring a 

detergent/disinfectant for clean-up) or when a multi-drug resistant organism is likely to be in the 

environment.  Methods for cleaning non-porous floors include wet mopping and wet vacuuming, dry 

dusting with electrostatic materials, and spray buffing.

973, 982–984

   Methods that produce minimal mists 

and aerosols or dispersion of dust in patient-care areas are preferred.

9, 20, 109, 272

 

 

Part of the cleaning strategy is to minimize contamination of cleaning solutions and cleaning tools.  

Bucket solutions become contaminated almost immediately during cleaning, and continued use of the 

solution transfers increasing numbers of microorganisms to each subsequent surface to be cleaned.

971, 981, 

985

   Cleaning solutions should be replaced frequently.  A variety of “bucket” methods have been devised 

to address the frequency with which cleaning solutions are replaced.

986, 987

   Another source of 

contamination in the cleaning process is the cleaning cloth or mop head, especially if left soaking in 

dirty cleaning solutions.

971, 988–990

   Laundering of cloths and mop heads after use and allowing them to 

dry before re-use can help to minimize the degree of contamination.

990

   A simplified approach to 

cleaning involves replacing soiled cloths and mop heads with clean items each time a bucket of 

detergent/disinfectant is emptied and replaced with fresh, clean solution (B. Stover, Kosair Children’s 

Hospital, 2000).  Disposable cleaning cloths and mop heads are an alternative option, if costs permit. 

background image

 

76 

 

Another reservoir for microorganisms in the cleaning process may be dilute solutions of the detergents 

or disinfectants, especially if the working solution is prepared in a dirty container, stored for long 

periods of time, or prepared incorrectly.

547

   Gram-negative bacilli (e.g., 

Pseudomonas

 spp. and 

Serratia 

marcescens

) have been detected in solutions of some disinfectants (e.g., phenolics and quaternary 

ammonium compounds).

547, 991

   Contemporary EPA registration regulations have helped to minimize 

this problem by asking manufacturers to provide potency data to support label claims for 

detergent/disinfectant properties under real- use conditions (e.g., diluting the product with tap water 

instead of distilled water).  Application of contaminated cleaning solutions, particularly from small-

quantity aerosol spray bottles or with equipment that might generate aerosols during operation, should 

be avoided, especially in high-risk patient areas.

992, 993

   Making sufficient fresh cleaning solution for 

daily cleaning, discarding any remaining solution, and drying out the container will help to minimize the 

degree of bacterial contamination.  Containers that dispense liquid as opposed to spray-nozzle 

dispensers (e.g., quart-sized dishwashing liquid bottles) can be used to apply detergent/disinfectants to 

surfaces and then to cleaning cloths with minimal aerosol generation.  A pre-mixed, “ready-to-use” 

detergent/disinfectant solution may be used if available. 

 

c.  Cleaning Special Care Areas

 

Guidelines have been published regarding cleaning strategies for isolation areas and operating rooms.

6, 7

   

The basic strategies for areas housing immunosuppressed patients include a) wet dusting horizontal 

surfaces daily with cleaning cloths pre-moistened with detergent or an EPA-registered hospital 

disinfectant or disinfectant wipes;

94, 98463

  b) using care when wet dusting equipment and surfaces above 

the patient to avoid patient contact with the detergent/disinfectant; c) avoiding the use of cleaning 

equipment that produces mists or aerosols; d) equipping vacuums with HEPA filters, especially for the 

exhaust, when used in any patient-care area housing immunosuppressed patients;

9, 94, 986

  and e) regular 

cleaning and maintenance of equipment to ensure efficient particle removal.  When preparing the 

cleaning cloths for wet-dusting, freshly prepared solutions of detergents or disinfectants should be used 

rather than cloths that have soaked in such solutions for long periods of time.  Dispersal of 

microorganisms in the air from dust or aerosols is more problematic in these settings than elsewhere in 

health-care facilities.  Vacuum cleaners can serve as dust disseminators if they are not operating 

properly.

994

   Doors to immunosuppressed patients’ rooms should be closed when nearby areas are being 

vacuumed.

9

   Bacterial and fungal contamination of filters in cleaning equipment is inevitable, and these 

filters should be cleaned regularly or replaced as per equipment manufacturer instructions. 

 

Mats with tacky surfaces placed in operating rooms and other patient-care areas only slightly minimize 

the overall degree of contamination of floors and have little impact on the incidence rate of health-care–

associated infection in general.

351, 971, 983

   An exception, however, is the use of tacky mats inside the 

entry ways of cordoned-off construction areas inside the health-care facility; these mats help to 

minimize the intrusion of dust into patient-care areas. 

 

Special precautions for cleaning incubators, mattresses, and other nursery surfaces have been 

recommended to address reports of hyperbilirubinemia in newborns linked to inadequately diluted 

solutions of phenolics and poor ventilation.

995–997

   These medical conditions have not, however, been 

associated with the use of properly prepared solutions of phenolics.  Non-porous housekeeping surfaces 

in neonatal units can be disinfected with properly diluted or pre-mixed phenolics, followed by rinsing 

with clean water.

997

   However, phenolics are not recommended for cleaning infant bassinets and 

incubators during the stay of the infant.  Infants who remain in the nursery for an extended period 

should be moved periodically to freshly cleaned and disinfected bassinets and incubators.

997

   If 

phenolics are used for cleaning bassinets and incubators after they have been vacated, the surfaces 

should be rinsed thoroughly with water and dried before either piece of equipment is reused.  Cleaning 

background image

 

77

and disinfecting protocols should allow for the full contact time specified for the product used.  Bassinet 

mattresses should be replaced, however, if the mattress cover surface is broken.

997

 

 

3.  Cleaning Strategies for Spills of Blood and Body Substances

 

 

Neither HBV, HCV, nor HIV has ever been transmitted from a housekeeping surface (i.e., floors, walls, 

or countertops).  Nonetheless, prompt removal and surface disinfection of an area contaminated by 

either blood or body substances are sound infection-control practices and OSHA requirements.

967

 

 

Studies have demonstrated that HIV is inactivated rapidly after being exposed to commonly used 

chemical germicides at concentrations that are much lower than those used in practice.

998–1003

   HBV is 

readily inactivated with a variety of germicides, including quaternary ammonium compounds.

1004

   

Embalming fluids (e.g., formaldehyde) are also capable of completely inactivating HIV and HBV.

1005, 

1006

   OSHA has revised its regulation for disinfecting spills of blood or other potentially infectious 

material to include proprietary products whose label includes inactivation claims for HBV and HIV, 

provided that such surfaces have not become contaminated with agent(s) or volumes of or 

concentrations of agent(s) for which a higher level of disinfection is recommended.

1007

   These 

registered products are listed in EPA’s List D – 

Registered Antimicrobials Effective Against Hepatitis B 

Virus and Human HIV-1

, which may include products tested against duck hepatitis B virus (DHBV) as a 

surrogate for HBV.

1008, 1009

   Additional lists of interest include EPA’s List C –

Registered Antimicrobials 

Effective Against Human HIV-1

 and EPA’s List E – 

Registered Antimicrobials Effective Against 

Mycobacterium spp., Hepatitis B Virus, and Human HIV-1

 

Sodium hypochlorite solutions are inexpensive and effective broad-spectrum germicidal solutions.

1010, 

1011

   Generic sources of sodium hypochlorite include household chlorine bleach or reagent grade 

chemical.  Concentrations of sodium hypochlorite solutions with a range of 5,000–6,150 ppm (1:10 v/v 

dilution of household bleaches marketed in the United States) to 500–615 ppm (1:100 v/v dilution) free 

chlorine are effective depending on the amount of organic material (e.g., blood, mucus, and urine) 

present on the surface to be cleaned and disinfected.

1010, 1011

   EPA-registered chemical germicides may 

be more compatible with certain materials that could be corroded by repeated exposure to sodium 

hypochlorite, especially the 1:10 dilution.  Appropriate personal protective equipment (e.g., gloves and 

goggles) should be worn when preparing and using hypochlorite solutions or other chemical 

germicides.

967

 

 

Despite laboratory evidence demonstrating adequate potency against bloodborne pathogens (e.g., HIV 

and HBV), many chlorine bleach products available in grocery and chemical-supply stores are not 

registered by the EPA for use as surface disinfectants.  Use of these chlorine products as surface 

disinfectants is considered by the EPA to be an “unregistered use.”  EPA encourages the use of 

registered products because the agency reviews them for safety and performance when the product is 

used according to label instructions.  When unregistered products are used for surface disinfection, users 

do so at their own risk. 

 

Strategies for decontaminating spills of blood and other body fluids differ based on the setting in which 

they occur and the volume of the spill.

1010

   In patient-care areas, workers can manage small spills with 

cleaning and then disinfecting using an intermediate-level germicide or an EPA-registered germicide 

from the EPA List D or E.

967, 1007

   For spills containing large amounts of blood or other body 

substances, workers should first remove visible organic matter with absorbent material (e.g., disposable 

paper towels discarded into leak-proof, properly labeled containment) and then clean and decontaminate 

the area.

1002, 1003, 1012

   If the surface is nonporous and a generic form of a sodium hypochlorite solution is 

used (e.g., household bleach), a 1:100 dilution is appropriate for decontamination assuming that a) the 

background image

 

78 

worker assigned to clean the spill is wearing gloves and other personal protective equipment appropriate 

to the task, b) most of the organic matter of the spill has been removed with absorbent material, and c) 

the surface has been cleaned to remove residual organic matter.  A recent study demonstrated that even 

strong chlorine solutions (i.e., 1:10 dilution of chlorine bleach) may fail to totally inactivate high titers 

of virus in large quantities of blood, but in the absence of blood these disinfectants can achieve complete 

viral inactivation.

1011

   This evidence supports the need to remove most organic matter from a large spill 

before final disinfection of the surface.  Additionally, EPA-registered proprietary disinfectant label 

claims are based on use on a pre-cleaned surface.

951, 954

   

 

Managing spills of blood, body fluids, or other infectious materials in clinical, public health, and 

research laboratories requires more stringent measures because of a) the higher potential risk of disease 

transmission associated with large volumes of blood and body fluids and b) high numbers of 

microorganisms associated with diagnostic cultures.  The use of an intermediate-level germicide for 

routine decontamination in the laboratory is prudent.

954

   Recommended practices for managing large 

spills of concentrated infectious agents in the laboratory include a) confining the contaminated area, b) 

flooding the area with a liquid chemical germicide before cleaning, and c) decontaminating with fresh 

germicidal chemical of at least intermediate-level disinfectant potency.

1010

   A suggested technique when 

flooding the spill with germicide is to lay absorbent material down on the spill and apply sufficient 

germicide to thoroughly wet both the spill and the absorbent material.

1013

   If using a solution of 

household chlorine bleach, a 1:10 dilution is recommended for this purpose.  EPA-registered germicides 

should be used according to the manufacturers’ instructions for use dilution and contact time.  Gloves 

should be worn during the cleaning and decontamination procedures in both clinical and laboratory 

settings.  PPE in such a situation may include the use of respiratory protection (e.g., an N95 respirator) 

if clean-up procedures are expected to generate infectious aerosols.  Protocols for cleaning spills should 

be developed and made available on record as part of good laboratory practice.

1013

   Workers in 

laboratories and in patient-care areas of the facility should receive periodic training in environmental-

surface infection-control strategies and procedures as part of an overall infection-control and safety 

curriculum. 

 

4.  Carpeting and Cloth Furnishings

 

 

a.  Carpeting

 

Carpeting has been used for more than 30 years in both public and patient-care areas of health-care 

facilities.  Advantages of carpeting in patient-care areas include a) its noise-limiting characteristics; b) 

the “humanizing” effect on health care; and c) its contribution to reductions in falls and resultant 

injuries, particularly for the elderly.

1014–1016

   Compared to hard-surface flooring, however, carpeting is 

harder to keep clean, especially after spills of blood and body substances.  It is also harder to push 

equipment with wheels (e.g., wheelchairs, carts, and gurneys) on carpeting. 

 

Several studies have documented the presence of diverse microbial populations, primarily bacteria and 

fungi, in carpeting;

111, 1017–1024

  the variety and number of microorganisms tend to stabilize over time.  

New carpeting quickly becomes colonized, with bacterial growth plateauing after about 4 weeks.

1019

   

Vacuuming and cleaning the carpeting can temporarily reduce the numbers of bacteria, but these 

populations soon rebound and return to pre-cleaning levels.

1019, 1020, 1023

   Bacterial contamination tends 

to increase with higher levels of activity.

1018–1020, 1025

   Soiled carpeting that is or remains damp or wet 

provides an ideal setting for the proliferation and persistence of gram-negative bacteria and fungi.

1026

   

Carpeting that remains damp should be removed, ideally within 72 hours. 

 

Despite the evidence of bacterial growth and persistence in carpeting, only limited epidemiologic 

evidence demonstrates that carpets influence health-care–associated infection rates in areas housing 

background image

 

79

immunocompetent patients.

1023, 1025, 1027

   This guideline, therefore, includes no recommendations against 

the use of carpeting in these areas.  Nonetheless, avoiding the use of carpeting is prudent in areas where 

spills are likely to occur (e.g., laboratories, areas around sinks, and janitor closets) and where patients 

may be at greater risk of infection from airborne environmental pathogens (e.g., HSCT units, burn units, 

ICUs, and ORs).

111, 1028

   An outbreak of aspergillosis in an HSCT unit was recently attributed to carpet 

contamination and a particular method of carpet cleaning.

111

   A window in the unit had been opened 

repeatedly during the time of a nearby building fire, which allowed fungal spore intrusion into the unit.  

After the window was sealed, the carpeting was cleaned using a “bonnet buffing” machine, which 

dispersed 

Aspergillus 

spores into the air.

111

   Wet vacuuming was instituted, replacing the dry cleaning 

method used previously; no additional cases of invasive aspergillosis were identified. 

 

The care setting and the method of carpet cleaning are important factors to consider when attempting to 

minimize or prevent production of aerosols and dispersal of carpet microorganisms into the air.

94, 111

   

Both vacuuming and shampooing or wet cleaning with equipment can disperse microorganisms to the 

air.

111, 994

   Vacuum cleaners should be maintained to minimize dust dispersal in general, and be 

equipped with HEPA filters, especially for use in high-risk patient-care areas.

9, 94, 986

   Some 

formulations of carpet-cleaning chemicals, if applied or used improperly, can be dispersed into the air as 

a fine dust capable of causing respiratory irritation in patients and staff.

1029

   Cleaning equipment, 

especially those that engage in wet cleaning and extraction, can become contaminated with waterborne 

organisms (e.g., 

Pseudomonas aeruginosa

) and serve as a reservoir for these organisms if this 

equipment is not properly maintained.  Substantial numbers of bacteria can then be transferred to 

carpeting during the cleaning process.

1030

   Therefore, keeping the carpet cleaning equipment in good 

repair and allowing such equipment to dry between uses is prudent. 

 

Carpet cleaning should be performed on a regular basis determined by internal policy.  Although spills 

of blood and body substances on non-porous surfaces require prompt spot cleaning using standard 

cleaning procedures and application of chemical germicides,

967

  similar decontamination approaches to 

blood and body substance spills on carpeting can be problematic from a regulatory perspective.

1031

   

Most, if not all, modern carpet brands suitable for public facilities can tolerate the activity of a variety of 

liquid chemical germicides.  However, according to OSHA, carpeting contaminated with blood or other 

potentially infectious materials can not be fully decontaminated.

1032

   Therefore, facilities electing to use 

carpeting for high-activity patient-care areas may choose carpet tiles in areas at high risk for spills.

967, 

1032

   In the event of contamination with blood or other body substances, carpet tiles can be removed, 

discarded, and replaced.  OSHA also acknowledges that only minimal direct skin contact occurs with 

carpeting, and therefore, employers are expected to make reasonable efforts to clean and sanitize 

carpeting using carpet detergent/cleaner products.

1032

 

 

Over the last few years, some carpet manufacturers have treated their products with fungicidal and/or 

bactericidal chemicals.  Although these chemicals may help to reduce the overall numbers of bacteria or 

fungi present in carpet, their use does not preclude the routine care and maintenance of the carpeting.  

Limited evidence suggests that chemically treated carpet may have helped to keep health-care–

associated aspergillosis rates low in one HSCT unit,

111

  but overall, treated carpeting has not been shown 

to prevent the incidence of health-care–associated infections in care areas for immunocompetent 

patients. 

 

b.  Cloth Furnishings

 

Upholstered furniture and furnishings are becoming increasingly common in patient-care areas.  These 

furnishings range from simple cloth chairs in patients’ rooms to a complete decorating scheme that 

gives the interior of the facility more the look of an elegant hotel.

1033

   Even though pathogenic 

microorganisms have been isolated from the surfaces of cloth chairs, no epidemiologic evidence 

suggests that general patient-care areas with cloth furniture pose increased risks of health-care–

background image

 

80 

associated infection compared with areas that contain hard-surfaced furniture.

1034, 1035

   Allergens (e.g., 

dog and cat dander) have been detected in or on cloth furniture in clinics and elsewhere in  hospitals in 

concentrations higher than those found on bed linens.

1034, 1035

   These allergens presumably are 

transferred from the clothing of visitors.  Researchers have therefore suggested that cloth chairs should 

be vacuumed regularly to keep the dust and allergen levels to a minimum.  This recommendation, 

however, has generated concerns that aerosols created from vacuuming could place 

immunocompromised patients or patients with preexisting lung disease (e.g., asthma) at risk for 

development of health-care–associated, environmental airborne disease.

9, 20, 109, 988

   Recovering worn, 

upholstered furniture (especially the seat cushion) with covers that are easily cleaned (e.g., vinyl), or 

replacing the item is prudent; minimizing the use of upholstered furniture and furnishings in any patient-

care areas where immunosuppressed patients are located (e.g., HSCT units) reduces the likelihood of 

disease.

9

 

 

5.  Flowers and Plants in Patient-Care Areas

 

 

Fresh flowers, dried flowers, and potted plants are common items in health-care facilities.  In 1974, 

clinicians isolated an 

Erwinia

 sp. post mortem from a neonate diagnosed with fulminant septicemia, 

meningitis, and respiratory distress syndrome.

1038

   Because 

Erwinia

 spp. are plant pathogens, plants 

brought into the delivery room were suspected to be the source of the bacteria, although the case report 

did not definitively establish a direct link.  Several subsequent studies evaluated the numbers and 

diversity of microorganisms in the vase water of cut flowers.  These studies revealed that high 

concentrations of bacteria, ranging from 10

4

–10

10

 CFU/mL, were often present, especially if the water 

was changed infrequently.

515, 702, 1039

   The major group of microorganisms in flower vase water was 

gram-negative bacteria, with 

Pseudomonas aeruginosa

 the most frequently isolated organism.

515, 702, 1039, 

1040

   

P. aeruginosa

 was also the primary organism directly isolated from chrysanthemums and other 

potted plants.

1041, 1042

   However, flowers in hospitals were not significantly more contaminated with 

bacteria compared with flowers in restaurants or in the home.

702

   Additionally, no differences in the 

diversity and degree of antibiotic resistance of bacteria have been observed in samples isolated from 

hospital flowers versus those obtained from flowers elsewhere.

702

 

 

Despite the diversity and large numbers of bacteria associated with flower-vase water and potted plants, 

minimal or no evidence indicates that the presence of plants in immunocompetent patient-care areas 

poses an increased risk of health-care–associated infection.

515

   In one study involving a limited number 

of surgical patients, no correlation was observed between bacterial isolates from flowers in the area and 

the incidence and etiology of postoperative infections among the patients.

1040

   Similar conclusions were 

reached in a study that examined the bacteria found in potted plants.

1042

   Nonetheless, some precautions 

for general patient-care settings should be implemented, including a) limiting flower and plant care to 

staff with no direct patient contact, b) advising health-care staff to wear gloves when handling plants, c) 

washing hands after handling plants, d) changing vase water every 2 days and discharging the water into 

a sink outside the immediate patient environment, and e) cleaning and disinfecting vases after use.

702

 

 

Some researchers have examined the possibility of adding a chemical germicide to vase water to control 

bacterial populations.  Certain chemicals (e.g., hydrogen peroxide and chlorhexidine) are well tolerated 

by plants.

1040, 1043, 1044

   Use of these chemicals, however, was not evaluated in studies to assess impact on 

health-care–associated infection rates.  Modern florists now have a variety of products available to add 

to vase water to extend the life of cut flowers and to minimize bacterial clouding of the water. 

 

Flowers (fresh and dried) and ornamental plants, however, may serve as a reservoir of 

Aspergillus

 spp., 

and dispersal of conidiospores into the air from this source can occur.

109

   Health-care–associated 

outbreaks of invasive aspergillosis reinforce the importance of maintaining an environment as free of 

background image

 

81

Aspergillus

 spp. spores as possible for patients with severe, prolonged neutropenia.  Potted plants, fresh-

cut flowers, and dried flower arrangements may provide a reservoir for these fungi as well as other 

fungal species (e.g., 

Fusarium

 spp.).

109, 1045, 1046

   Researchers in one study of bacteria and flowers 

suggested that flowers and vase water should be avoided in areas providing care to medically at-risk 

patients (e.g., oncology patients and transplant patients), although this study did not attempt to correlate 

the observations of bacterial populations in the vase water with the incidence of health-care–associated 

infections.

515

   Another study using molecular epidemiology techniques demonstrated identical 

Aspergillus terreus

 types among environmental and clinical specimens isolated from infected patients 

with hematological malignancies.

1046

   Therefore, attempts should be made to exclude flowers and plants 

from areas where immunosuppressed patients are be located (e.g., HSCT units).

9, 1046

 

 

6.  Pest Control

 

 

Cockroaches, flies and maggots, ants, mosquitoes, spiders, mites, midges, and mice are among the 

typical arthropod and vertebrate pest populations found in health-care facilities.  Insects can serve as 

agents for the mechanical transmission of microorganisms, or as active participants in the disease 

transmission process by serving as a vector.

1047–1049

   Arthropods recovered from health-care facilities 

have been shown to carry a wide variety of pathogenic microorganisms.

1050–1056

   Studies have suggested 

that the diversity of microorganisms associated with insects reflects the microbial populations present in 

the indoor health-care environment; some pathogens encountered in insects from hospitals were either 

absent from or present to a lesser degree in insects trapped from residential settings.

1057–1060

   Some of 

the microbial populations associated with insects in hospitals have demonstrated resistance to 

antibiotics.

1048, 1059, 1061–1063

 

 

Insect habitats are characterized by warmth, moisture, and availability of food.

1064

   Insects forage in and 

feed on substrates, including but not limited to food scraps from kitchens/cafeteria, foods in vending 

machines, discharges on dressings either in use or discarded, other forms of human detritis, medical 

wastes, human wastes, and routine solid waste.

1057–1061

   Cockroaches, in particular, have been known to 

feed on fixed sputum smears in laboratories.

1065, 1066

   Both cockroaches and ants are frequently found in 

the laundry, central sterile supply departments, and anywhere in the facility where water or moisture is 

present (e.g., sink traps, drains and janitor closets).  Ants will often find their way into sterile packs of 

items as they forage in a warm, moist environment.

1057

   Cockroaches and other insects frequent loading 

docks and other areas with direct access to the outdoors. 

 

Although insects carry a wide variety of pathogenic microorganisms on their surfaces and in their gut, 

the direct association of insects with disease transmission (apart from vector transmission) is limited, 

especially in health-care settings; the presence of insects in itself likely does not contribute substantially 

to health-care–associated disease transmission in developed countries.  However, outbreaks of infection 

attributed to microorganisms carried by insects may occur because of infestation coupled with breaks in 

standard infection-control practices.

1063

   Studies have been conducted to examine the role of houseflies 

as possible vectors for shigellosis and other forms of diarrheal disease in non-health–care settings.

1046, 

1067

   When control measures aimed at reducing the fly population density were implemented, a 

concomitant reduction in the incidence of diarrheal infections, carriage of 

Shigella

 organisms, and 

mortality caused by diarrhea among infants and young children was observed. 

 

Myiasis is defined as a parasitosis in which the larvae of any of a variety of flies use living or necrotic 

tissue or body substances of the host as a nutritional source.

1068

   Larvae from health-care–acquired 

myiasis have been observed in nares, wounds, eyes, ears, sinuses, and the external urogenital 

structures.

1069–1071

   Patients with this rare condition are typically older adults with underlying medical 

conditions (e.g., diabetes, chronic wounds, and alcoholism) who have a decreased capacity to ward off 

background image

 

82 

the flies.  Persons with underlying conditions who live or travel to tropical regions of the world are 

especially at risk.

1070, 1071

   Cases occur in the summer and early fall months in temperate climates when 

flies are most active.

1071

   An environmental assessment and review of the patient’s history are necessary 

to verify that the source of the myiasis is health-care–acquired and to identify corrective measures.

1069, 

1072

   Simple prevention measures (e.g., installing screens on windows) are important in reducing the 

incidence of myiasis.

1072

 

 

From a public health and hygiene perspective, arthropod and vertebrate pests should be eradicated from 

all indoor environments, including health-care facilities.

1073, 1074

   Modern approaches to institutional 

pest management usually focus on a) eliminating food sources, indoor habitats, and other conditions that 

attract pests; b) excluding pests from the indoor environments; and c) applying pesticides as needed.

1075

   

Sealing windows in modern health-care facilities helps to minimize insect intrusion.  When windows 

need to be opened for ventilation, ensuring that screens are in good repair and closing doors to the 

outside can help with pest control.  Insects should be kept out of all areas of the health-care facility, 

especially ORs and any area where immunosuppressed patients are located.  A pest-control specialist 

with appropriate credentials can provide a regular insect-control program that is tailored to the needs of 

the facility and uses approved chemicals and/or physical methods.  Industrial hygienists can provide 

information on possible adverse reactions of patients and staff to pesticides and suggest alternative 

methods for pest control, as needed. 

 

7.  Special Pathogen Concerns

 

 

a.  Antibiotic-Resistant Gram-Positive Cocci

 

Vancomycin-resistant enterococci (VRE), methicillin-resistant 

Staphylococcus aureus

 (MRSA), and 

S. 

aureus

 with intermediate levels of resistance to glycopeptide antibiotics (vancomycin intermediate 

resistant 

S. aureus

 [VISA] or glycopeptide intermediate resistant 

S. aureus

 [GISA]) represent crucial 

and growing concerns for infection control.  Although the term GISA is technically a more accurate 

description of the strains isolated to date (most of which are classified as having intermediate resistance 

to both vancomycin and teicoplanin), the term “glycopeptide” may not be recognized by many 

clinicians.  Thus, the label of VISA, which emphasizes a change in minimum inhibitory concentration 

(MICs) to vancomycin, is similar to that of VRE and is more meaningful to clinicians.

1076

   According to 

National Nosocomial Infection Surveillance (NNIS) statistics for infections acquired among ICU 

patients in the United States in 1999, 52.3% of infections resulting from 

S. aureus

 were identified as 

MRSA infections, and 25.2% of enterococcal infections were attributed to VRE.  These figures reflect a 

37% and a 43% increase, respectively, since 1994–1998.

1077

 

 

People represent the primary reservoir of 

S. aureus

.

1078

   Although 

S. aureus

 has been isolated from a 

variety of environmental surfaces (e.g., stethoscopes, floors, charts, furniture, dry mops, and 

hydrotherapy tanks), the role of environmental contamination in transmission of this organism in health 

care appears to be minimal.

1079–1082

   

S. aureus

 contamination of surfaces and tanks within burn therapy 

units, however, may be a major factor in the transmission of infection among burn patients.

1083

 

 

Colonized patients are the principal reservoir of VRE, and patients who are immunosuppressed (e.g., 

transplant patients) or otherwise medically at-risk (e.g., ICU patients, cardio-thoracic surgical patients, 

patients previously hospitalized for extended periods, and those having received multi-antimicrobial or 

vancomycin therapy) are at greatest risk for VRE colonization.

1084–1087

   The mechanisms by which 

cross-colonization take place are not well defined, although recent studies have indicated that both 

MRSA and VRE may be transmitted either a) directly from patient to patient, b) indirectly by transient 

carriage on the hands of health-care workers,

1088–1091

 or c) by hand transfer of these gram-positive 

organisms from contaminated environmental surfaces and patient-care equipment.

1084, 1087, 1092–1097

   In 

background image

 

83

one survey, hand carriage of VRE in workers in a long-term care facility ranged from 13%–41%.

1098

   

Many of the environmental surfaces found to be contaminated with VRE in outbreak investigations have 

been those that are touched frequently by the patient or the health-care worker.

1099

   Such high-touch 

surfaces include bedrails, doorknobs, bed linens, gowns, overbed tables, blood pressure cuffs, computer 

table, bedside tables, and various medical equipment.

22, 1087, 1094, 1095, 1100–1102

   Contamination of 

environmental surfaces with VRE generally occurs in clinical laboratories and areas where colonized 

patients are present,

1087, 1092, 1094, 1095, 1103

  but the potential for contamination increases when such patients 

have diarrhea

1087

  or have multiple body-site colonization.

1104

   Additional factors that can be important 

in the dispersion of these pathogens to environmental surfaces are misuse of glove techniques by health-

care workers (especially when cleaning fecal contamination from surfaces) and patient, family, and 

visitor hygiene. 

 

Interest in the importance of environmental reservoirs of VRE increased when laboratory studies 

demonstrated that enterococci can persist in a viable state on dry environmental surfaces for extended 

periods of time (7 days to 4 months)

1099, 1105

  and multiple strains can be identified during extensive 

periods of surveillance.

1104

   VRE can be recovered from inoculated hands of health-care workers (with 

or without gloves) for up to 60 minutes.

22

   The presence of either MRSA, VISA, or VRE on 

environmental surfaces, however, does not mean that patients in the contaminated areas will become 

colonized.  Strict adherence to hand hygiene/handwashing and the proper use of barrier precautions help 

to minimize the potential for spread of these pathogens.  Published recommendations for preventing the 

spread of vancomycin resistance address isolation measures, including patient cohorting and 

management of patient-care items.

5

   Direct patient-care items (e.g., blood pressure cuffs) should be 

disposable whenever possible when used in contact isolation settings for patients with multiply resistant 

microorganisms.

1102

 

 

Careful cleaning of patient rooms and medical equipment contributes substantially to the overall control 

of MRSA, VISA, or VRE transmission.  The major focus of a control program for either VRE or MRSA 

should be the prevention of hand transfer of these organisms.  Routine cleaning and disinfection of the 

housekeeping surfaces (e.g., floors and walls) and patient-care surfaces (e.g., bedrails) should be 

adequate for inactivation of these organisms.  Both MRSA and VRE are susceptible to several EPA-

registered low- and intermediate-level disinfectants (e.g., alcohols, sodium hypochlorite, quaternary 

ammonium compounds, phenolics, and iodophors) at recommended use dilutions for environmental 

surface disinfection.

1103, 1106–1109

   Additionally, both VRE and vancomycin-sensitive enterococci are 

equally sensitive to inactivation by chemical germicides,

1106, 1107, 1109

  and similar observations have been 

made when comparing the germicidal resistance of MRSA to that of either methicillin-sensitive 

S. 

aureus

 (MSSA) or VISA.

1110

   The use of stronger solutions of disinfectants for inactivation of either 

VRE, MRSA, or VISA is not recommended based on the organisms’ resistance to antibiotics.

1110–1112

   

VRE from clinical specimens have exhibited some measure of increased tolerance to heat inactivation in 

temperature ranges <212ºF (<100ºC);

1106, 1113

  however, the clinical significance of these observations is 

unclear because the role of cleaning the surface or item prior to heat treatment was not evaluated.  

Although routine environmental sampling is not recommended, laboratory surveillance of 

environmental surfaces during episodes when VRE contamination is suspected can help determine the 

effectiveness of the cleaning and disinfecting procedures.  Environmental culturing should be approved 

and supervised by the infection-control program in collaboration with the clinical laboratory.

1084, 1087, 1088, 

1092, 1096

 

 

Two cases of wound infections associated with vancomycin-resistant 

Staphylococcus aureus

 (VRSA) 

determined to be resistant by NCCLS standards for sensitivity/resistance testing were identified in 

Michigan and Pennsylvania in 2002.

1114, 1115

   These represented isolated cases, and neither the family 

members nor the health-care providers of these case-patients had evidence of colonization or infection 

with VRSA.  Conventional environmental infection-control measures (i.e., cleaning and then 

background image

 

84 

disinfecting surfaces using EPA-registered disinfectants with label claims for 

S. aureus

) were used 

during the environmental investigation of these two cases;

1110–1112

  however, studies have yet to evaluate 

the potential intrinsic resistance of these VRSA strains to surface disinfectants. 

 

Standard procedures during terminal cleaning and disinfection of surfaces, if performed incorrectly, may 

be inadequate for the elimination of VRE from patient rooms.

1113, 1116–1118

   Given the sensitivity of VRE 

to hospital disinfectants, current disinfecting protocols should be effective if they are diligently carried 

out and properly performed.  Health-care facilities should be sure that housekeeping staff use correct 

procedures for cleaning and disinfecting surfaces in VRE-contaminated areas, which include using 

sufficient amounts of germicide at proper use dilution and allowing adequate contact time.

1118

 

 

b.  Clostridium difficile

 

Clostridium difficile 

is the most frequent etiologic agent for health-care–associated diarrhea.

1119, 1120

  In 

one hospital, 30% of adults who developed health-care–associated diarrhea were positive for 

C. 

difficile

.

1121

   One recent study employing PCR-ribotyping techniques demonstrated that cases of 

C. 

difiicile

-acquired diarrhea occurring in the hospital included patients whose infections were attributed to 

endogenous 

C. difficile

 strains and patients whose illnesses were considered to be health-care–

associated infections.

1122

   Most patients remain asymptomatic after infection, but the organism 

continues to be shed in their stools.  Risk factors for acquiring 

C. difficile

-associated infection include a) 

exposure to antibiotic therapy, particularly with beta-lactam agents;

1123

  b) gastrointestinal procedures 

and surgery;

1124

  c) advanced age; and d) indiscriminate use of antibiotics.

1125–1128

   Of all the measures 

that have been used to prevent the spread of 

C. difficile

-associated diarrhea, the most successful has 

been the restriction of the use of antimicrobial agents.

1129, 1130

 

 

C. difficile

 is an anaerobic, gram-positive bacterium.  Normally fastidious in its vegetative state, it is 

capable of sporulating when environmental conditions no longer support its continued growth.  The 

capacity to form spores enables the organism to persist in the environment (e.g., in soil and on dry 

surfaces) for extended periods of time.  Environmental contamination by this microorganism is well 

known, especially in places where fecal contamination may occur.

1131

   The environment (especially 

housekeeping surfaces) rarely serves as a direct source of infection for patients.

1024, 1132–1136

   However, 

direct exposure to contaminated patient-care items (e.g., rectal thermometers) and high-touch surfaces in 

patients’ bathrooms (e.g., light switches) have been implicated as sources of infection.

1130, 1135, 1136, 1138

  

 

Transfer of the pathogen to the patient via the hands of health-care workers is thought to be the most 

likely mechanism of exposure.

24, 1133, 1139

   Standard isolation techniques intended to minimize enteric 

contamination of patients, health-care–workers’ hands, patient-care items, and environmental surfaces 

have been published.

1140

   Handwashing remains the most effective means of reducing hand 

contamination.  Proper use of gloves is an ancillary measure that helps to further minimize transfer of 

these pathogens from one surface to another. 

 

The degree to which the environment becomes contaminated with 

C. difficile

 spores is proportional to 

the number of patients with 

C. difficile

-associated diarrhea,

24, 1132, 1135

  although asymptomatic, colonized 

patients may also serve as a source of contamination.  Few studies have examined the use of specific 

chemical germicides for the inactivation of 

C. difficile

 spores, and no well-controlled trials have been 

conducted to determine efficacy of surface disinfection and its impact on health-care–associated 

diarrhea.  Some investigators have evaluated the use of chlorine-containing chemicals (e.g., 1,000 ppm 

hypochlorite at recommended use-dilution, 5,000 ppm sodium hypochlorite [1:10 v/v dilution], 1:100 

v/v dilutions of unbuffered hypochlorite, and phosphate-buffered hypochlorite [1,600 ppm]).  One of the 

studies demonstrated that the number of contaminated environmental sites was reduced by half,

1135

  

whereas another two studies demonstrated declines in health-care–associated 

C. difficile

 infections in a 

HSCT unit

1141

  and in two geriatric medical units

1142

  during a period of hypochlorite use.  The presence 

background image

 

85

of confounding factors, however, was acknowledged in one of these studies.

1142

   The recommended 

approach to environmental infection control with respect to 

C. difficile

 is meticulous cleaning followed 

by disinfection using hypochlorite-based germicides as appropriate.

952, 1130, 1143

   However, because no 

EPA-registered surface disinfectants with label claims for inactivation of 

C. difficile

 spores are 

available, the recommendation is based on the best available evidence from the scientific literature. 

 

c.  Respiratory and Enteric Viruses in Pediatric-Care Settings

 

Although the viruses mentioned in this guideline are not unique to the pediatric-care setting in health-

care facilities, their prevalence in these areas, especially during the winter months, is substantial.  

Children (particularly neonates) are more likely to develop infection and substantial clinical disease 

from these agents compared with adults and therefore are more likely to require supportive care during 

their illness. 

 

Common respiratory viruses in pediatric-care areas include rhinoviruses, respiratory syncytial virus 

(RSV), adenoviruses, influenza viruses, and parainfluenza viruses.  Transmission of these viruses occurs 

primarily via direct contact with small-particle aerosols or via hand contamination with respiratory 

secretions that are then transferred to the nose or eyes.  Because transmission primarily requires close 

personal contact, contact precautions are appropriate to interrupt transmission.

6

   Hand contamination 

can occur from direct contact with secretions or indirectly from touching high-touch environmental 

surfaces that have become contaminated with virus from large droplets.  The indirect transfer of virus 

from one persion to other via hand contact with frequently-touched fomites was demonstrated in a study 

using a bacteriophage whose environmental stability approximated that of human viral pathogens (e.g., 

poliovirus and parvovirus).

1144

   The impact of this mode of transmission with respect to human 

respiratory- and enteric viruses is dependent on the ability of these agents to survive on environmental 

surfaces.  Infectious RSV has been recovered from skin, porous surfaces, and non-porous surfaces after 

30 minutes, 1 hour, and 7 hours, respectively.

1145

   Parainfluenza viruses are known to persist for up to 4 

hours on porous surfaces and up to 10 hours on non-porous surfaces.

1146

   Rhinoviruses can persist on 

porous surfaces and non-porous surfaces for approximately 1 and 3 hours respectively; study 

participants in a controlled environment became infected with rhinoviruses after first touching a surface 

with dried secretions and then touching their nasal or conjunctival mucosa.

1147

   Although the efficiency 

of direct transmission of these viruses from surfaces in uncontrolled settings remains to be defined, 

these data underscore the basis for maintaining regular protocols for cleaning and disinfecting of high-

touch surfaces. 

 

The clinically important enteric viruses encountered in pediatric care settings include enteric 

adenovirus, astroviruses, caliciviruses, and rotavirus.  Group A rotavirus is the most common cause of 

infectious diarrhea in infants and children.  Transmission of this virus is primarily fecal-oral, however, 

the role of fecally contaminated surfaces and fomites in rotavirus transmission is unclear.  During one 

epidemiologic investigation of enteric disease among children attending day care, rotavirus 

contamination was detected on 19% of inanimate objects in the center.

1148, 1149

   In an outbreak in a 

pediatric unit, secondary cases of  rotavirus infection clustered in areas where children with rotaviral 

diarrhea were located.

1150

   Astroviruses cause gastroenteritis and diarrhea in newborns and young 

children and can persist on fecally contaminated surfaces for several months during periods of relatively 

low humidity.

1151, 1152

   Outbreaks of small round-structured viruses (i.e., caliciviruses [Norwalk virus 

and Norwalk-like viruses]) can affect both patients and staff, with attack rates of >50%.

1153

   Routes of 

person-to-person transmission include fecal-oral spread and aerosols generated from vomiting.

1154–1156

   

Fecal contamination of surfaces in care settings can spread large amounts of virus to the environment.  

Studies that have attempted to use low- and intermediate-level disinfectants to inactivate rotavirus 

suspended in feces have demonstrated a protective effect of high concentrations of organic matter.

1157, 

1158

   Intermediate-level disinfectants (e.g., alcoholic quaternary ammonium compounds, and chlorine 

solutions) can be effective in inactivating enteric viruses provided that a cleaning step to remove most of 

background image

 

86 

the organic matter precedes terminal disinfection.

1158

   These findings underscore the need for proper 

cleaning and disinfecting procedures where contamination of environmental surfaces with body 

substances is likely.  EPA-registered surface disinfectants with label claims for these viral agents should 

be used in these settings.  Using disposable, protective barrier coverings may help to minimize the 

degree of surface contamination.

936

 

 

d.  Severe Acute Respiratory Syndrome (SARS) Virus

 

In November 2002 an atypical pneumonia of unknown etiology emerged in Asia and subsequently 

developed into an international outbreak of respiratory illness among persons in 29 countries during the 

first six months of 2003.  “Severe acute respiratory syndrome” (SARS) is a viral upper respiratory 

infection associated with a newly described coronavirus (SARS-associated Co-V [SARS-CoV]).  

SARS-CoV is an enveloped RNA virus.  It is present in high titers in respiratory secretions, stool, and 

blood of infected persons.  The modes of transmission determined from epidemiologic investigations 

were primarily forms of direct contact (i.e., large droplet aerosolization and person-to-person contact).  

Respiratory secretions were presumed to be the major source of virus in these situations; airborne 

transmission of virus has not been completely ruled out.  Little is known about the impact of fecal-oral 

transmission and SARS. 

 

The epidemiology of SARS-CoV infection is not completely understood, and therefore recommended 

infection control and prevention measures to contain the spread of SARS will evolve as new 

information becomes available.

1159

   At present there is no indication that established strategies for 

cleaning (i.e., to remove the majority of bioburden) and disinfecting equipment and environmental 

surfaces need to be changed for the environmental infection control of SARS.  In-patient rooms housing 

SARS patients should be cleaned and disinfected at least daily and at the time of patient transfer or 

discharge.  More frequent cleaning and disinfection may be indicated for high-touch surfaces and 

following aerosol-producing procedures (e.g., intubation, bronchoscopy, and sputum production).  

While there are presently no disinfectant products registered by EPA specifically for inactivation of 

SARS-CoV, EPA-registered hospital disinfectants that are equivalent to low- and intermediate-level 

germicides may be used on pre-cleaned, hard, non-porous surfaces in accordance with manufacturer’s 

instructions for environmental surface disinfection.  Monitoring adherence to guidelines established for 

cleaning and disinfection is an important component of environmental infection control to contain the 

spread of SARS. 

 

e.  Creutzfeldt-Jakob Disease (CJD) in Patient-Care Areas

 

Creutzfeldt-Jakob disease (CJD) is a rare, invariably fatal, transmissible spongiform encephalopathy 

(TSE) that occurs worldwide with an average annual incidence of 1 case per million population.

1160–1162

   

CJD is one of several TSEs affecting humans; other diseases in this group include kuru, fatal familial 

insomnia, and Gerstmann-Sträussler-Scheinker syndrome.  A TSE that affects a younger population 

(compared to the age range of CJD cases) has been described primarily in the United Kingdom since 

1996.

1163

   This variant form of CJD (vCJD) is clinically and neuropathologically distinguishable from 

classic CJD; epidemiologic and laboratory evidence suggests a causal association for bovine spongiform 

encephalopathy (BSE [Mad Cow disease]) and vCJD.

1163–1166

  

 

The agent associated with CJD is a prion, which is an abnormal isoform of a normal protein constituent 

of the central nervous system.

1167–1169

   The mechanism by which the normal form of the protein is 

converted to the abnormal, disease-causing prion is unknown.  The tertiary conformation of the 

abnormal prion protein appears to confer a heightened degree of resistance to conventional methods of 

sterilization and disinfection.

1170, 1171

 

 

Although about 90% of CJD cases occur sporadically, a limited number of cases are the result of a 

direct exposure to prion-containing material (usually central nervous system tissue or pituitary 

background image

 

87

hormones) acquired as a result of health care (iatrogenic cases).  These cases have been linked to a) 

pituitary hormone therapy [from human sources as opposed to hormones prepared through the use of 

recombinant technology],

1170–1174

  b) transplants of either dura mater or corneas,

1175–1181

  and c) 

neurosurgical instruments and depth electrodes.

1182–1185

   In the cases involving instruments and depth 

electrodes, conventional cleaning and terminal reprocessing methods of the day failed to fully inactivate 

the contaminating prions and are considered inadequate by today’s standards. 

 

Prion inactivation studies involving whole tissues and tissue homogenates have been conducted to 

determine the parameters of physical and chemical methods of sterilization or disinfection necessary for 

complete inactivation;

1170, 1186–1191

  however, the application of these findings to environmental infection 

control in health-care settings is problematic.  No studies have evaluated the effectiveness of medical 

instrument reprocessing in inactivating prions.  Despite a consensus that abnormal prions display some 

extreme measure of resistance to inactivation by either physical or chemical methods, scientists disagree 

about the exact conditions needed for sterilization.  Inactivation studies utilizing whole tissues present 

extraordinary challenges to any sterilizing method.

1192

   Additionally, the experimental designs of these 

studies preclude the evaluation of surface cleaning as a part of the total approach to pathogen 

inactivation.

951, 1192

 

 

Some researchers have recommended the use of either a 1:2 v/v dilution of sodium hypochorite 

(approximately 20,000 ppm), full-strength sodium hypochlorite (50,000–60,000 ppm), or 1–2 N sodium 

hydroxide (NaOH) for the inactivation of prions on certain surfaces (e.g., those found in the pathology 

laboratory).

1170, 1188

   Although these chemicals may be appropriate for the decontamination of 

laboratory, operating-room, or autopsy-room surfaces that come into contact with central nervous 

system tissue from a known or suspected patient, this approach is not indicated for routine or terminal 

cleaning of a room previously occupied by a CJD patient.  Both chemicals pose hazards for the health-

care worker doing the decontamination.  NaOH is caustic and should not make contact with the skin.  

Sodium hypochlorite solutions (i.e., chlorine bleach) can corrode metals (e.g., aluminum).  MSDS 

information should be consulted when attempting to work with concentrated solutions of either 

chemical.  Currently, no EPA-registered products have label claims for prion inactivation; therefore, this 

guidance is based on the best available evidence from the scientific literature. 

 

Environmental infection-control strategies must based on the principles of the “chain of infection,” 

regardless of the disease of concern.

13

   Although CJD is transmissible, it is not highly contagious.  All 

iatrogenic cases of CJD have been linked to a direct exposure to prion-contaminated central nervous 

system tissue or pituitary hormones.  The six documented iatrogenic cases associated with instruments 

and devices involved neurosurgical instruments and devices that introduced residual contamination 

directly to the recipient’s brain.  No evidence suggests that vCJD has been transmitted iatrogenically or 

that either CJD or vCJD has been transmitted from environmental surfaces (e.g., housekeeping 

surfaces).  Therefore, routine procedures are adequate for terminal cleaning and disinfection of a CJD 

patient’s room.  Additionally, in epidemiologic studies involving highly transfused patients, blood was 

not identified as a source for prion transmission.

1193–1198

   Routine procedures for containing, 

decontaminating, and disinfecting surfaces with blood spills should be adequate for proper infection 

control in these situations.

951, 1199

 

 

Guidance for environmental infection control in ORs and autopsy areas has been published.

1197, 1199

   

Hospitals should develop risk-assessment procedures to identify patients with known or suspected CJD 

in efforts to implement prion-specific infection-control measures for the OR and for instrument 

reprocessing.

1200

   This assessment also should be conducted for older patients undergoing non-lesionous 

neurosurgery when such procedures are being done for diagnosis.  Disposable, impermeable coverings 

should be used during these autopsies and neurosurgeries to minimize surface contamination.  Surfaces 

that have become contaminated with central nervous system tissue or cerebral spinal fluid should be 

background image

 

88 

cleaned and decontaminated by a) removing most of the tissue or body substance with absorbent 

materials, b) wetting the surface with a sodium hypochlorite solution containing >5,000 ppm or a 1 N 

NaOH solution, and c) rinsing thoroughly.

951, 1197–1199, 1201

   The optimum duration of contact exposure in 

these instances is unclear.  Some researchers recommend a 1-hour contact time on the basis of tissue-

inactivation studies,

1197, 1198, 1201

  whereas other reviewers of the subject draw no conclusions from this 

research.

1199

   Factors to consider before cleaning a potentially contaminated surface are a) the degree to 

which gross tissue/body substance contamination can be effectively removed and b) the ease with which 

the surface can be cleaned. 

 

F.  Environmental Sampling

 

 

This portion of Part I addresses the basic principles and methods of sampling environmental surfaces 

and other environmental sources for microorganisms.  The applied strategies of sampling with respect to 

environmental infection control have been discussed in the appropriate preceding subsections. 

 

1.  General Principles: Microbiologic Sampling of the Environment

 

 

Before 1970, U.S. hospitals conducted regularly scheduled culturing of the air and environmental 

surfaces (e.g., floors, walls, and table tops).

1202

   By 1970, CDC and the American Hospital Association 

(AHA) were advocating the discontinuation of routine environmental culturing because rates of health-

care–associated infection had not been associated with levels of general microbial contamination of air 

or environmental surfaces, and because meaningful standards for permissible levels of microbial 

contamination of environmental surfaces or air did not exist.

1203–1205

   During 1970–1975, 25% of U.S. 

hospitals reduced the extent of such routine environmental culturing — a trend that has continued.

1206, 

1207

 

 

Random, undirected sampling (referred to as “routine” in previous guidelines) differs from the current 

practice of targeted sampling for defined purposes.

2, 1204

   Previous recommendations against routine 

sampling were not intended to discourage the use of sampling in which sample collection, culture, and 

interpretation are conducted in accordance with defined protocols.

2

   In this guideline, targeted 

microbiologic sampling connotes a monitoring process that includes a) a written, defined, 

multidisciplinary protocol for sample collection and culturing; b) analysis and interpretation of results 

using scientifically determined or anticipatory baseline values for comparison; and c) expected actions 

based on the results obtained.  Infection control, in conjunction with laboratorians, should assess the 

health-care facility’s capability to conduct sampling and determine when expert consultation and/or 

services are needed. 

 

Microbiologic sampling of air, water, and inanimate surfaces (i.e., environmental sampling) is an 

expensive and time-consuming process that is complicated by many variables in protocol, analysis, and 

interpretation.  It is therefore indicated for only four situations.

1208

   The first is to support an 

investigation of an outbreak of disease or infections when environmental reservoirs or fomites are 

implicated epidemiologically in disease transmission.

161, 1209, 1210

   It is important that such culturing be 

supported by epidemiologic data.  Environmental sampling, as with all laboratory testing, should not be 

conducted if there is no plan for interpreting and acting on the results obtained.

11, 1211, 1212

   Linking 

microorganisms from environmental samples with clinical isolates by molecular epidemiology is crucial 

whenever it is possible to do so. 

 

The second situation for which environmental sampling may be warranted is in research.  Well-designed 

and controlled experimental methods and approaches can provide new information about the spread of 

health-care–associated diseases.

126, 129

   A classic example is the study of environmental microbial 

background image

 

89

contamination that compared health-care–associated infection rates in an old hospital and a new facility 

before and shortly after occupancy.

947

 

 

The third indication for sampling is to monitor a potentially hazardous environmental condition,  

confirm the presence of a hazardous chemical or biological agent, and validate the successful abatement 

of the hazard.  This type of sampling can be used to: a) detect bioaerosols released from the operation of 

health-care equipment (e.g., an ultrasonic cleaner) and determine the success of repairs in containing the 

hazard,

1213

  b) detect the release of an agent of bioterrorism in an indoor environmental setting and 

determine its successful removal or inactivation, and c) sample for industrial hygiene or safety purposes 

(e.g., monitoring a “sick building”). 

 

The fourth indication is for quality assurance to evaluate the effects of a change in infection-control 

practice or to ensure that equipment or systems perform according to specifications and expected 

outcomes.  Any sampling for quality-assurance purposes must follow sound sampling protocols and 

address confounding factors through the use of properly selected controls.  Results from a single 

environmental sample are difficult to interpret in the absence of a frame of reference or perspective.  

Evaluations of a change in infection-control practice are based on the assumption that the effect will be 

measured over a finite period, usually of short duration.  Conducting quality-assurance sampling on an 

extended basis, especially in the absence of an adverse outcome, is usually unjustified.  A possible 

exception might be the use of air sampling during major construction periods to qualitatively detect 

breaks in environmental infection-control measures.  In one study, which began as part of an 

investigation of an outbreak of health-care–associated aspergillosis, airborne concentrations of 

Aspergillus

 spores were measured in efforts to evaluate the effectiveness of sealing hospital doors and 

windows during a period of construction of a nearby building.

50

   Other examples of sampling for 

quality-assurance purposes may include commissioning newly constructed space in special care areas 

(i.e., ORs and units for immunosuppressed patients) or assessing a change in housekeeping practice. 

However, the only types of routine environmental microbiologic sampling recommended as part of a 

quality-assurance program are a) the biological monitoring of sterilization processes by using bacterial 

spores

1214

  and b) the monthly culturing of water used in hemodialysis applications and for the final 

dialysate use dilution.  Some experts also advocate periodic environmental sampling to evaluate the 

microbial/particulate quality for regular maintenance of the air handling system (e.g., filters) and to 

verify that the components of the system meet manufacturer’s specifications (A. Streifel, University of 

Minnesota, 2000).  Certain equipment in health-care settings (e.g., biological safety cabinets) may also 

be monitored with air flow and particulate sampling to determine performance or as part of adherence to 

a certification program; results can then be compared with a predetermined standard of performance.  

These measurements, however, usually do not require microbiologic testing. 

 

2.  Air Sampling

 

 

Biological contaminants occur in the air as aerosols and may include bacteria, fungi, viruses, and 

pollens.

1215, 1216

   Aerosols are characterized as solid or liquid particles suspended in air.  Talking for 5 

minutes and coughing each can produce 3,000 droplet nuclei; sneezing can generate approximately 

40,000 droplets which then evaporate to particles in the size range of 0.5–12 µm.

137, 1217

   Particles in a 

biological aerosol usually vary in size from <1 µm to >50 µm.  These particles may consist of a single, 

unattached organism or may occur in the form of clumps composed of a number of bacteria.  Clumps 

can also include dust and dried organic or inorganic material.  Vegetative forms of bacterial cells and 

viruses may be present in the air in a lesser number than bacterial spores or fungal spores.  Factors that 

determine the survival of microorganisms within a bioaerosol include a) the suspending medium, b) 

temperature, c) relative humidity, d) oxygen sensitivity, and e) exposure to UV or electromagnetic 

radiation.

1215

   Many vegetative cells will not survive for lengthy periods of time in the air unless the 

background image

 

90 

relative humidity and other factors are favorable for survival and the organism is enclosed within some 

protective cover (e.g., dried organic or inorganic matter).

1216

   Pathogens that resist drying (e.g., 

Staphylococcus

 spp., 

Streptococcus

 spp., and fungal spores) can survive for long periods and can be 

carried considerable distances via air and still remain viable.  They may also settle on surfaces and 

become airborne again as secondary aerosols during certain activities (e.g., sweeping and bed 

making).

1216, 1218

 

 

Microbiologic air sampling is used as needed to determine the numbers and types of microorganisms, or 

particulates, in indoor air.

289

   Air sampling for quality control is, however, problematic because of lack 

of uniform air-quality standards.  Although airborne spores of 

Aspergillus

 spp. can pose a risk for 

neutropenic patients, the critical number (i.e., action level) of these spores above which outbreaks of 

aspergillosis would be expected to occur has not been defined.  Health-care professionals considering 

the use of air sampling should keep in mind that the results represent indoor air quality at singular points 

in time, and these may be affected by a variety of factors, including a) indoor traffic, b) visitors entering 

the facility, c) temperature, d) time of day or year, e) relative humidity, f) relative concentration of 

particles or organisms, and g) the performance of the air-handling system components.  To be 

meaningful, air-sampling results must be compared with those obtained from other defined areas, 

conditions, or time periods. 

 

Several preliminary concerns must be addressed when designing a microbiologic air sampling strategy 

(Box 13).  Because the amount of particulate material and bacteria retained in the respiratory system is 

largely dependent on the size of the inhaled particles, particle size should be determined when studying 

airborne microorganisms and their relation to respiratory infections.  Particles >5 µm are efficiently 

trapped in the upper respiratory tract and are removed primarily by ciliary action.

1219

   Particles <5 µm 

in diameter reach the lung, but the greatest retention in the alveoli is of particles 1–2 µm in 

diameter.

1220–1222

  

 

Box 13.  Preliminary concerns for conducting air sampling 

 

 

•  Consider the possible characteristics and conditions of the aerosol, including size range of particles, 

                relative amount of inert material, concentration of microorganisms, and environmental factors. 
 

•  Determine the type of sampling instruments, sampling time, and duration of the sampling program. 

 

•  Determine the number of samples to be taken. 

 

•  Ensure that adequate equipment and supplies are available. 

 

•  Determine the method of assay that will ensure optimal recovery of microorganisms. 

 

•  Select a laboratory that will provide proper microbiologic support. 

 

•  Ensure that samples can be refrigerated if they cannot be assayed in the laboratory promptly. 

 

 

 

Bacteria, fungi, and particulates in air can be identified and quantified with the same methods and 

equipment (Table 23).  The basic methods include a) impingement in liquids, b) impaction on solid 

surfaces, c) sedimentation, d) filtration, e) centrifugation, f) electrostatic precipitation, and g) thermal 

precipitation.

1218

   Of these, impingement in liquids, impaction on solid surfaces, and sedimentation (on 

settle plates) have been used for various air-sampling purposes in health-care settings.

289

  

 

Several instruments are available for sampling airborne bacteria and fungi (Box 14).  Some of the 

samplers are self-contained units requiring only a power supply and the appropriate collecting medium, 

but most require additional auxiliary equipment (e.g., a vacuum pump and an airflow measuring device 

[i.e., a flowmeter or anemometer]).  Sedimentation or depositional methods use settle plates and 

background image

 

91

therefore need no special instruments or equipment.  Selection of an instrument for air sampling requires 

a clear understanding of the type of information desired and the particular determinations that must be 

made (Box 14).  Information may be needed regarding a) one particular organism or all organisms that 

may be present in the air, b) the concentration of viable particles or of viable organisms, c) the change in 

concentration with time, and d) the size distribution of the collected particles.  Before sampling begins, 

decisions should be made regarding whether the results are to be qualitative or quantitative.  Comparing 

quantities of airborne microorganisms to those of outdoor air is also standard operating procedure.  

Infection-control professionals, hospital epidemiologists, industrial hygienists, and laboratory 

supervisors, as part of a multidisciplinary team, should discuss the potential need for microbial air 

sampling to determine if the capacity and expertise to conduct such sampling exists within the facility 

and when it is appropriate to enlist the services of an environmental microbiologist consultant. 

 

Table 23.  Air sampling methods and examples of equipment* 

Method Principle 

Suitable for 

measuring: 

Collection 

media or 

surface 

Rate of 

collection 

(L/min.) 

Auxilliary 

equipment 

needed+ 

Points to 

consider 

Prototype 

samplers§ 

Impingement in 

liquids 

Air drawn 

through a 

small jet and 

directed 

against a 

liquid surface 

Viable 

organisms, and 

concentration 

over time.  

Example use: 

sampling water 

aerosols to 

Legionella

 spp. 

Buffered 

gelatin, 

tryptose 

saline, 

peptone, 

nutrient 

broth 

12.5 Yes 

Antifoaming 

agent may be 

needed.  

Ambient 

temperature 

and humidity  

will influence 

length of 

collection time 

Chemical 

Corps. All 

Glass 

Impinger 

(AGI) 

Impaction on 

solid surfaces 

Air drawn 

into the 

sampler; 

particles 

deposited on 

a dry surface 

Viable 

particles; viable 

organisms (on 

non-nutrient 

surfaces, 

limited to 

organisms that 

resist drying 

and spores); 

size 

measurement, 

and 

concentration 

over time.  

Example use: 

sampling air for 

Aspergillus

 

spp., fungal 

spores 

Dry surface, 

coated 

surfaces, and 

agar 

28 (sieve) 

30–800 

(slit) 

Yes 

Available as 

sieve 

impactors or 

slit impactors.  

Sieve 

impactors can 

be set up to 

measure 

particle size.  

Slit impactors 

have a rotating 

support stage 

for agar plates 

to allow for 

measurement 

of 

concentration 

over time. 

 

Andersen Air 

Sampler 

(sieve 

impactor); 

TDL, 

Cassella MK-

2 (slit 

impactors)

 

Sedimentation 

Particles and 

micro- 

organisms 

settle onto 

surfaces via 

gravity 

Viable 

particles.  

Example uses: 

sampling air for 

bacteria in the 

vicinity of and 

during a 

medical 

procedure; 

general 

measurements 

of microbial air 

quality. 

Nutrient 

media 

(agars) on 

plates or 

slides 

– 

No 

Simple and 

inexpensive; 

best suited for 

qualitative 

sampling; 

significant 

airborne 

fungal spores 

are too 

buoyant to 

settle 

efficiently for 

collection

 

using this

 

method. 

 

 

Settle plates 

background image

 

92 

Method Principle 

Suitable for 

measuring: 

Collection 

media or 

surface 

Rate of 

collection 

(L/min.) 

Auxilliary 

equipment 

needed+ 

Points to 

consider 

Prototype 

samplers§ 

Filtration 

Air drawn 

through a 

filter unit; 

particles 

trapped;  

0.2 µm pore 

size 

Viable 

particles; viable 

organisms (on 

non-nutrient 

surfaces, 

limited to 

spores and 

organisms that 

resist drying); 

concentration 

over time.  

Example use: 

air sampling for 

Aspergillus

 

spp., fungal 

spores, and dust 

Paper, 

cellulose, 

glass wool, 

gelatin foam, 

and 

membrane 

filters 

1–50 Yes 

Filter must be 

agitated first 

in rinse fluid 

to remove and 

disperse 

trapped micro- 

organisms; 

rinse fluid is 

assayed; used 

more for 

sampling dust 

and chemicals. 

       

– 

Centrifugation 

Aerosols 

subjected to 

centrifugal 

force; 

particles 

impacted 

onto a solid 

surface 

Viable 

particles; viable 

organisms (on 

non-nutrient 

surfaces, 

limited to 

spores and 

organisms that 

resist drying); 

concentration 

over time.  

Example use: 

air sampling for 

Aspergillus

 

spp.,  and 

fungal spores 

Coated glass 

or plastic 

slides, and 

agar surfaces 

40–50 Yes 

Calibration is 

difficult and is 

done only by 

the factory; 

relative 

comparison of 

airborne 

contamination 

is its general 

use. 

Biotest RCS 

Plus 

Electrostatic 

precipitation 

Air drawn 

over an 

electro- 

statically  

charged 

surface; 

particles 

become 

charged 

Viable 

particles; viable 

organisms (on 

non-nutrient 

surfaces, 

limited to 

spores and 

organisms that 

resist drying); 

concentration 

over time 

Solid 

collecting 

surfaces 

(glass, and 

agar) 

85 Yes 

High volume 

sampling rate, 

but equipment 

is complex 

and must be 

handled 

carefully; not 

practical for 

use in health-

care settings. 

      – 

Thermal 

precipitation 

Air drawn 

over a 

thermal 

gradient; 

particles 

repelled from 

hot surfaces, 

settle on 

colder 

surfaces 

Size 

measurements 

Glass 

coverslip, 

and electron 

microscope 

grid 

0.003–0.4 Yes 

Determine 

particle size 

by direct 

observation; 

not frequently 

used because 

of complex 

adjustments 

and low 

sampling 

rates. 

       

– 

 

*  Material in this table is compiled from references 289, 1218, 1223, and 1224. 

+  Most samplers require a flow meter or anemometer and a vacuum source as auxiliary equipment. 

§  Trade names listed are for identification purposes only and are not intended as endorsements by the U.S. Public Health Service. 

 

 

 

 

 

background image

 

93

Box 14.  Selecting an air sampling device* 

 

The following factors must be considered when choosing an air sampling instrument: 
 

 

•  Viability and type of the organism to be sampled 

 

•  Compatibility with the selected method of analysis 

 

•  Sensitivity of particles to sampling 

 

•  Assumed concentrations and particle size 

 

•  Whether airborne clumps must be broken (i.e., total viable organism count vs. particle count) 

 

•  Volume of air to be sampled and length of time sampler is to be continuously operated 

 

•  Background contamination 

 

•  Ambient conditions 

 

•  Sampler collection efficiency 

 

•  Effort and skill required to operate sampler 

 

•  Availability and cost of sampler, plus back-up samplers in case of equipment malfunction 

 

•  Availability of auxiliary equipment and utilities (e.g., vacuum pumps, electricity, and water) 

 

 

*  Material in this box is compiled from reference 1218. 

 

Liquid impinger and solid impactor samplers are the most practical for sampling bacteria, particles, and 

fungal spores, because they can sample large volumes of air in relatively short periods of time.

289

   Solid 

impactor units are available as either “slit” or “sieve” designs.  Slit impactors use a rotating disc as 

support for the collecting surface, which allows determinations of concentration over time.  Sieve 

impactors commonly use stages with calibrated holes of different diameters.  Some impactor-type 

samplers use centrifugal force to impact particles onto agar surfaces.  The interior of either device must 

be made sterile to avoid inadvertent contamination from the sampler.  Results obtained from either 

sampling device can be expressed as organisms or particles per unit volume of air (CFU/m

3

). 

 

Sampling for bacteria requires special attention, because bacteria may be present as individual 

organisms, as clumps, or mixed with or adhering to dust or covered with a protective coating of dried 

organic or inorganic substances.  Reports of bacterial concentrations determined by air sampling 

therefore must indicate whether the results represent individual organisms or particles bearing multiple 

cells.  Certain types of samplers (e.g., liquid impingers) will completely or partially disintegrate clumps 

and large particles; the sampling result will therefore reflect the total number of individual organisms 

present in the air. 

 

The task of sizing a bioaerosol is simplified through the use of sieves or slit impactors because these 

samplers will separate the particles and microorganisms into size ranges as the sample is collected.  

These samplers must, however, be calibrated first by sampling aerosols under similar use conditions.

1225

 

 

The use of settle plates (i.e., the sedimentation or depositional method) is not recommended when 

sampling air for fungal spores, because single spores can remain suspended in air indefinitely.

289

   Settle 

plates have been used mainly to sample for particulates and bacteria either in research studies or during 

epidemiologic investigations.

161, 1226–1229

   Results of sedimentation sampling are typically expressed as 

numbers of viable particles or viable bacteria per unit area per the duration of sampling time (i.e., 

CFU/area/time); this method can not quantify the volume of air sampled.  Because the survival of 

microorganisms during air sampling is inversely proportional to the velocity at which the air is taken 

into the sampler,

1215

  one advantage of using a settle plate is its reliance on gravity to bring organisms 

and particles into contact with its surface, thus enhancing the potential for optimal survival of collected 

organisms.  This process, however, takes several hours to complete and may be impractical for some 

situations. 

background image

 

94 

 

Air samplers are designed to meet differing measurement requirements.  Some samplers are better 

suited for one form of measurement than others.  No one type of sampler and assay procedure can be 

used to collect and enumerate 100% of airborne organisms.  The sampler and/or sampling method 

chosen should, however, have an adequate sampling rate to collect a sufficient number of particles in a 

reasonable time period so that a representative sample of air is obtained for biological analysis.  Newer 

analytical techniques for assaying air samples include PCR methods and enzyme-linked immunosorbent 

assays (ELISAs). 

 

3.  Water Sampling

 

 

A detailed discussion of the principles and practices of water sampling has been published.

945

   Water 

sampling in health-care settings is used detect waterborne pathogens of clinical significance or to 

determine the quality of finished water in a facility’s distribution system.  Routine testing of the water in 

a health-care facility is usually not indicated, but sampling in support of outbreak investigations can 

help determine appropriate infection-control measures.  Water-quality assessments in dialysis settings 

have been discussed in this guideline (see Water, Dialysis Water Quality and Dialysate, and Appendix 

C). 

 

Health-care facilities that conduct water sampling should have their samples assayed in a laboratory that 

uses established methods and quality-assurance protocols.  Water specimens are not “static specimens” 

at ambient temperature; potential changes in both numbers and types of microbial populations can occur 

during transport.  Consequently, water samples should be sent to the testing laboratory cold (i.e., at 

approximately 39.2°F [4°C]) and testing should be done as soon as practical after collection (preferably 

within 24 hours). 

 

Because most water sampling in health-care facilities involves the testing of finished water from the 

facility’s distribution system, a reducing agent (i.e., sodium thiosulfate [Na

2

S

2

O

3

]) needs to be added to 

neutralize residual chlorine or other halogen in the collected sample.  If the water contains elevated 

levels of heavy metals, then a chelating agent should be added to the specimen.  The minimum volume 

of water to be collected should be sufficient to complete any and all assays indicated; 100 mL is 

considered a suitable minimum volume.  Sterile collection equipment should always be used. 

 

Sampling from a tap requires flushing of the water line before sample collection.  If the tap is a mixing 

faucet, attachments (e.g., screens and aerators) must be removed, and hot and then cold water must be 

run through the tap before collecting the sample.

945

   If the cleanliness of the tap is questionable, 

disinfection with 500–600 ppm sodium hypochlorite (1:100 v/v dilution of chlorine bleach) and flushing 

the tap should precede sample collection. 

 

Microorganisms in finished or treated water often are physically damaged (“stressed”) to the point that 

growth is limited when assayed under standard conditions.  Such situations lead to false-negative 

readings and misleading assessments of water quality.  Appropriate neutralization of halogens and 

chelation of heavy metals are crucial to the recovery of these organisms.  The choice of recovery media 

and incubation conditions will also affect the assay.  Incubation temperatures should be closer to the 

ambient temperature of the water rather than at 98.6°F (37°C), and recovery media should be formulated 

to provide appropriate concentrations of nutrients to support organisms exhibiting less than rigorous 

growth.

945

   High-nutrient content media (e.g., blood agar and tryptic soy agar [TSA]) may actually 

inhibit the growth of these damaged organisms.  Reduced nutrient media (e.g., diluted peptone and 

R2A) are preferable for recovery of these organisms.

945

 

 

background image

 

95

Use of aerobic, heterotrophic plate counts allows both a qualitative and quantitative measurement for 

water quality.  If bacterial counts in water are expected to be high in number (e.g., during waterborne 

outbreak investigations), assaying small quantities using pour plates or spread plates is appropriate.

945

   

Membrane filtration is used when low-count specimens are expected and larger sampling volumes are 

required (>100 mL).  The sample is filtered through the membrane, and the filter is applied directly 

face-up onto the surface of the agar plate and incubated. 

 

Unlike the testing of potable water supplies for coliforms (which uses standardized test and specimen 

collection parameters and conditions), water sampling to support epidemiologic investigations of 

disease outbreaks may be subjected to modifications dictated by the circumstances present in the 

facility.  Assay methods for waterborne pathogens may also not be standardized.  Therefore, control or 

comparison samples should be included in the experimental design.  Any departure from a standard 

method should be fully documented and should be considered when interpreting results and developing 

strategies.  Assay methods specific for clinically significant waterborne pathogens (e.g., 

Legionella

 spp., 

Aeromonas

 spp, 

Pseudomonas

 spp., and

 Acinetobacter

 spp.) are more complicated and costly compared 

with both methods used to detect coliforms and other standard indicators of water quality. 

 

4.  Environmental Surface Sampling

 

 

Routine environmental-surface sampling (e.g., surveillance cultures) in health-care settings is neither 

cost-effective nor warranted.

951, 1225

   When indicated, surface sampling should be conducted with 

multidisciplinary approval in adherence to carefully considered plans of action and policy (Box 15). 

 

Box 15.  Undertaking environmental-surface sampling* 

 

The following factors should be considered before engaging in environmental-surface sampling: 

 

 

•  Background information from the literature and present activities (i.e., preliminary results from an 

                epidemiologic investigation) 
 

•  Location of surfaces to be sampled 

 

•  Method of sample collection and the appropriate equipment for this task 

 

•  Number of replicate samples needed and which control or comparison samples are required 

 

•  Parameters of the sample assay method and whether the sampling will be qualitative, 

                quantitative, or both 
 

•  An estimate of the maximum allowable microbial numbers or types on the surface(s) sampled 

                (refer to the Spaulding classification for devices and surfaces) 
 

•  Some anticipation of a corrective action plan 

 

 

*  The material in this box is compiled from reference 1214. 

 

Surface sampling is used currently for research, as part of an epidemiologic investigation, or as part of a 

comprehensive approach for specific quality assurance purposes.  As a research tool, surface sampling 

has been used to determine a) potential environmental reservoirs of pathogens,

564, 1230–1232

  b) survival of 

microorganisms on surfaces,

1232, 1233

  and c) the sources of the environmental contamination.

1023

   Some 

or all of these approaches can also be used during outbreak investigations.

1232

   Discussion of surface 

sampling of medical devices and instruments is beyond the scope of this document and is deferred to 

future guidelines on sterilization and disinfection issues. 

 

Meaningful results depend on the selection of appropriate sampling and assay techniques.

1214

   The 

media, reagents, and equipment required for surface sampling are available from any well-equipped 

background image

 

96 

microbiology laboratory and laboratory supplier.  For quantitative assessment of surface organisms, 

non-selective, nutrient-rich agar media and broth (e.g., TSA and brain-heart infusion broth [BHI] with 

or without 5% sheep or rabbit blood supplement) are used for the recovery of aerobic bacteria.  Broth 

media are used with membrane-filtration techniques.  Further sample work-up may require the use of 

selective media for the isolation and enumeration of specific groups of microorganisms.  Examples of 

selective media are MacConkey agar (MAC [selects for gram-negative bacteria]), Cetrimide agar 

(selects for 

Pseudomonas aeruginosa

), or Sabouraud dextrose- and malt extract agars and broths (select 

for fungi).  Qualitative determinations of organisms from surfaces require only the use of selective or 

non-selective broth media. 

 

Effective sampling of surfaces requires moisture, either already present on the surface to be sampled or 

via moistened swabs, sponges, wipes, agar surfaces, or membrane filters.

1214, 1234–1236

    Dilution fluids 

and rinse fluids include various buffers or general purpose broth media (Table 24).  If disinfectant 

residuals are expected on surfaces being sampled, specific neutralizer chemicals should be used in both 

the growth media and the dilution or rinse fluids.  Lists of the neutralizers, the target disinfectant active 

ingredients, and the use concentrations have been published.

1214, 1237

   Alternatively, instead of adding 

neutralizing chemicals to existing culture media (or if the chemical nature of the disinfectant residuals is 

unknown), the use of either a) commercially available media including a variety of specific and non-

specific neutralizers or b) double-strength broth media will facilitate optimal recovery of 

microorganisms.  The inclusion of appropriate control specimens should be included to rule out both 

residual antimicrobial activity from surface disinfectants and potential toxicity caused by the presence 

of neutralizer chemicals carried over into the assay system.

1214

 

 

Table 24.  Examples of eluents and diluents for environmental-surface sampling* + 

Solutions 

Concentration in water 

Ringer 

Peptone water 

Buffered peptone water 

Phosphate-buffered saline 

Sodium chloride (NaCl) 

Calgon Ringer§ 

Thiosulfate Ringer¶ 

Water 

Tryptic soy broth (TSB) 

Brain-heart infusion broth (BHI) supplemented with 0.5% 

    beef extract 

1⁄4 strength 

0.1%–1.0% 

0.067 M phosphate, 0.43% NaCl, 0.1% peptone 

0.02 M phosphate, 0.9% NaCl 

0.25%–0.9% 

1⁄4 strength 

1⁄4 strength 

      

 

      

– 

      

 

*  Material in this table is compiled from references 1214 and 1238. 

+  A surfactant (e.g., polysorbate [i.e., Tween® 80]) may be added to eluents and diluents.  A concentration ranging from 0.01%–0.1% is 

       generally used, depending on the specific application.  Foaming may occur during use. 

§  This solution is used for dissolution of calcium alginate swabs. 

¶  This solution is used for neutralization of residual chlorine. 

 

 

Several methods can be used for collecting environmental surface samples (Table 25).  Specific step-by-

step discussions of each of the methods have been published.

1214, 1239

   For best results, all methods 

should incorporate aseptic techniques, sterile equipment, and sterile recovery media. 

 

 

 

 

 

 

 

background image

 

97

Table 25.  Methods of environmental-surface sampling 

Method 

Suitable for 

appropriate 

surface(s) 

Assay 

technique 

Procedural 

notes 

Points of 

interpretation 

Available 

standards 

References 

Sample/rinse 

Moistened 

swab/rinse 

 

 

 

 

Moistened 

sponge/rinse 

 

 

 

Moistened 

wipe/rinse 

 

Non-absorbent 

surfaces, corners, 

crevices, devices, 

and instruments 

 

 

Large areas and 

housekeeping 

surfaces (e.g., 

floors or walls) 

 

Large areas and 

housekeeping 

surfaces (e.g., 

countertops) 

 

Dilutions; 

qualitative or 

quantitative 

assays 

 

 

Dilutions; 

qualitative or 

quantitative 

assays 

 

Dilutions; 

qualitative or 

quantitative 

assays 

 

Assay multiple 

measures areas 

or devices with 

separate swabs 

 

 

Vigorously rub a 

sterile sponge 

over the surface 

 

 

Use a sterile 

wipe 

 

Report results per 

measured areas or if 

assaying an object, 

per the entire sample 

site 

 

Report results per 

measured area 

 

 

 

Report results per 

measured area 

 

YES

 – food 

industry;  

NO

 – heath 

care 

 

 

YES

 – food 

industry; 

NO

 – health 

care 

 

YES

 – food 

industry; 

NO

 – health 

care 

 

1214, 1239–

1242 

 

 

 

 

1214, 1239–

1242 

 

 

 

1214, 1239–

1242 

Direct 
immersion

 

Small items 

capable of being 

immersed 

Dilutions; 

qualitative or 

quantitative 

assays 

Use membrane 

filtration if rinse 

volume is large 

and anticipated 

microbiological 

concentration is 

low 

Report results per 

item 

NO 

1214 

Containment 

Interior surfaces 

of containers, 

tubes, or bottles 

Dilutions; 

qualitative or 

quantitative 

assays 

Use membrane 

filtration if rinse 

volume is large 

Evaluate both the 

types and numbers 

of microorganisms 

YES

 – food and 

industrial 

applications for 

containers prior 

to fill 

1214 

RODAC*

 

Previously 

cleaned and 

sanitized flat, 

non-absorbent 

surfaces; not 

suitable for 

irregular surfaces 

Direct assay 

Overgrowth 

occurs if used on 

heavily 

contaminated 

surfaces; use 

neutralizers in 

the agar if 

surface 

disinfectant 

residuals are 

present 

Provides direct, 

quantitative results; 

use a minimum of 

15 plates per an 

average hospital 

room 

NO 

1214, 1237, 

1239, 1243, 

1244 

 

*  RODAC stands for “replicate organism direct agar contact.” 

 

Sample/rinse methods are frequently chosen because of their versatility.  However, these sampling 

methods are the most prone to errors caused by manipulation of the swab, gauze pad, or sponge.

1238

   

Additionally, no microbiocidal or microbiostatic agents should be present in any of these items when 

used for sampling.

1238

   Each of the rinse methods requires effective elution of microorganisms from the 

item used to sample the surface.  Thorough mixing of the rinse fluids after elution (e.g., via manual or 

mechanical mixing using a vortex mixer, shaking with or without glass beads, and ultrasonic bath) will 

help to remove and suspend material from the sampling device and break up clumps of organisms for a 

more accurate count.

1238

   In some instances, the item used to sample the surface (e.g., gauze pad and 

sponge) may be immersed in the rinse fluids in a sterile bag and subjected to stomaching.

1238

   This 

technique, however, is suitable only for soft or absorbent items that will not puncture the bag during the 

elution process. 

 

If sampling is conducted as part of an epidemiologic investigation of a disease outbreak, identification 

of isolates to species level is mandatory, and characterization beyond the species level is preferred.

1214

   

When interpreting the results of the sampling, the expected degree of microbial contamination 

background image

 

98 

associated with the various categories of surfaces in the Spaulding classification must be considered.  

Environmental surfaces should be visibly clean; recognized pathogens in numbers sufficient to result in 

secondary transfer to other animate or inanimate surfaces should be absent from the surface being 

sampled.

1214

   Although the interpretation of a sample with positive microbial growth is self-evident, an 

environmental surface sample, especially that obtained from housekeeping surfaces, that shows no 

growth does not represent a “sterile” surface.  Sensitivities of the sampling and assay methods (i.e., level 

of detection) must be taken into account when no-growth samples are encountered.  Properly collected 

control samples will help rule out extraneous contamination of the surface sample. 

 

 

G.  Laundry and Bedding

 

 

1.  General Information

 

 

Laundry in a health-care facility may include bed sheets and blankets, towels, personal clothing, patient 

apparel, uniforms, scrub suits, gowns, and drapes for surgical procedures.

1245

   Although contaminated 

textiles and fabrics in health-care facilities can be a source of substantial numbers of pathogenic 

microorganisms, reports of health-care–associated diseases linked to contaminated fabrics are so few in 

number that the overall risk of disease transmission during the laundry process likely is negligible.  

When the incidence of such events are evaluated in the context of the volume of items laundered in 

health-care settings (estimated to be 5 billion pounds annually in the United States),

1246

  existing control 

measures (e.g., standard precautions) are effective in reducing the risk of disease transmission to  

patients and staff.  Therefore, use of current control measures should be continued to minimize the 

contribution of contaminated laundry to the incidence of health-care–associated infections.  The control 

measures described in this section of the guideline are based on principles of hygiene, common sense, 

and consensus guidance; they pertain to laundry services utilized by health-care facilities, either in-

house or contract, rather than to laundry done in the home. 

 

2.  Epidemiology and General Aspects of Infection Control

 

 

Contaminated textiles and fabrics often contain high numbers of microorganisms from body substances, 

including blood, skin, stool, urine, vomitus, and other body tissues and fluids.  When textiles are heavily 

contaminated with potentially infective body substances, they can contain bacterial loads of 10

6

–10

8

 

CFU/100 cm

2

 of fabric.

1247

   Disease transmission attributed to health-care laundry has involved 

contaminated fabrics that were handled inappropriately (i.e., the shaking of soiled linens).  Bacteria 

(

Salmonella

 spp., 

Bacillus cereus

), viruses (hepatitis B virus [HBV]), fungi (

Microsporum canis

), and 

ectoparasites (scabies) presumably have been transmitted from contaminated textiles and fabrics to 

workers via a) direct contact or b) aerosols of contaminated lint generated from sorting and handling 

contaminated textiles.

1248–1252

   In these events, however, investigations could not rule out the possibility 

that some of these reported infections were acquired from community sources.  Through a combination 

of soil removal, pathogen removal, and pathogen inactivation, contaminated laundry can be rendered 

hygienically clean.  Hygienically clean laundry carries negligible risk to health-care workers and 

patients, provided that the clean textiles, fabric, and clothing are not inadvertently contaminated before 

use. 

 

OSHA defines contaminated laundry as “laundry which has been soiled with blood or other potentially 

infectious materials or may contain sharps.”

967

   The purpose of the laundry portion of the standard is to 

protect the worker from exposure to potentially infectious materials during collection, handling, and 

sorting of contaminated textiles through the use of personal protective equipment, proper work 

practices, containment, labeling, hazard communication, and ergonomics. 

background image

 

99

 

Experts are divided regarding the practice of transporting clothes worn at the workplace to the health-

care worker’s home for laundering.  Although OSHA regulations prohibit home laundering of items that 

are considered personal protective apparel or equipment (e.g., laboratory coats),

967

  experts disagree 

about whether this regulation extends to uniforms and scrub suits that are not contaminated with blood 

or other potentially infectious material.  Health-care facility policies on this matter vary and may be 

inconsistent with recommendations of professional organizations.

1253, 1254

   Uniforms without blood or 

body substance contamination presumably do not differ appreciably from street clothes in the degree 

and microbial nature of soilage.  Home laundering would be expected to remove this level of soil 

adequately.  However, if health-care facilities require the use of uniforms, they should either make 

provisions to launder them or provide information to the employee regarding infection control and 

cleaning guidelines for the item based on the tasks being performed at the facility.   Health-care 

facilities should address the need to provide this service and should determine the frequency for 

laundering these items.  In a recent study examining the microbial contamination of medical students’ 

white coats, the students perceived the coats as “clean” as long as the garments were not visibly 

contaminated with body substances, even after wearing the coats for several weeks.

1255

   The heaviest 

bacterial load was found on the sleeves and the pockets of these garments; the organisms most 

frequently isolated were 

Staphylococcus aureus

, diphtheroids, and 

Acinetobacter

 spp.

1255

   Presumably, 

the sleeves of the coat may make contact with a patient and potentially serve to transfer environmentally 

stable microorganisms among patients.  In this study, however, surveillance was not conducted among 

patients to detect new infections or colonizations.  The students did, however, report that they would 

likely replace their coats more frequently and regularly if clean coats were provided.

1255

   Apart from 

this study, which documents the presence of pathogenic bacteria on health-care facility clothing, reports 

of infections attributed to either the contact with such apparel or with home laundering have been 

rare.

1256, 1257

 

 

Laundry services for health-care facilities are provided either in-house (i.e., on-premise laundry [OPL]), 

co-operatives (i.e., those entities owned and operated by a group of facilities), or by off-site commercial 

laundries.  In the latter, the textiles may be owned by the health-care facility, in which case the 

processor is paid for laundering only.  Alternatively, the textiles may be owned by the processor who is 

paid for every piece laundered on a “rental” fee.  The laundry facility in a health-care setting should be 

designed for efficiency in providing hygienically clean textiles, fabrics, and apparel for patients and 

staff.  Guidelines for laundry construction and operation for health-care facilities, including nursing 

facilities, have been published.

120, 1258

   The design and engineering standards for existing facilities are 

those cited in the AIA edition in effect during the time of the facility’s construction.

120

   A laundry 

facility is usually partitioned into two separate areas - a “dirty” area for receiving and handling the 

soiled laundry and a “clean” area for processing the washed items.

1259

   To minimize the potential for 

recontaminating cleaned laundry with aerosolized contaminated lint, areas receiving contaminated  

textiles should be at negative air pressure relative to the clean areas.

1260–1262

   Laundry areas should have 

handwashing facilities readily available to workers.  Laundry workers should wear appropriate personal 

protective equipment (e.g., gloves and protective garments) while sorting soiled fabrics and textiles.

967

   

Laundry equipment should be used and maintained according to the manufacturer’s instructions to 

prevent microbial contamination of the system.

1250, 1263

   Damp textiles should not be left in machines 

overnight.

1250

 

 

3.  Collecting, Transporting, and Sorting Contaminated Textiles and Fabrics

 

 

The laundry process starts with the removal of used or contaminated textiles, fabrics, and/or clothing 

from the areas where such contamination occurred, including but not limited to patients’ rooms, 

surgical/operating areas, and laboratories.  Handling contaminated laundry with a minimum of agitation 

background image

 

100 

can help prevent the generation of potentially contaminated lint aerosols in patient-care areas.

967, 1259

   

Sorting or rinsing contaminated laundry at the location where contamination occurred is prohibited by 

OSHA.

967

   Contaminated textiles and fabrics are placed into bags or other appropriate containment in 

this location; these bags are then securely tied or otherwise closed to prevent leakage.

967

   Single bags of 

sufficient tensile strength are adequate for containing laundry, but leak-resistant containment is needed 

if the laundry is wet and capable of soaking through a cloth bag.

1264

   Bags containing contaminated 

laundry must be clearly identified with labels, color-coding, or other methods so that health-care 

workers handle these items safely, regardless of whether the laundry is transported within the facility or 

destined for transport to an off-site laundry service.

967

 

 

Typically, contaminated laundry originating in isolation areas of the hospital is segregated and handled 

with special practices; however, few, if any, cases of health-care–associated infection have been linked 

to this source.

1265

   Single-blinded studies have demonstrated that laundry from isolation areas is no 

more heavily contaminated with microorganisms than laundry from elsewhere in the hospital.

1266

   

Therefore, adherence to standard precautions when handling contaminated laundry in isolation areas and 

minimizing agitation of the contaminated items are considered sufficient to prevent the dispersal of 

potentially infectious aerosols.

6

 

 

Contaminated textiles and fabrics in bags can be transported by cart or chute.

1258, 1262

   Laundry chutes 

require proper design, maintenance, and use, because the piston-like action of a laundry bag traveling in 

the chute can propel airborne microbial contaminants throughout the facility.

1267–1269

   Laundry chutes 

should be maintained under negative air pressure to prevent the spread of microorganisms from floor to 

floor.  Loose, contaminated pieces of laundry should not be tossed into chutes, and laundry bags should 

be closed or otherwise secured to prevent the contents from falling out into the chute.

1270

   Health-care 

facilities should determine the point in the laundry process at which textiles and fabrics should be 

sorted.  Sorting after washing minimizes the exposure of laundry workers to infective material in soiled 

fabrics, reduces airborne microbial contamination in the laundry area, and helps to prevent potential 

percutaneous injuries to personnel.

1271

   Sorting laundry before washing protects both the machinery and 

fabrics from hard objects (e.g., needles, syringes, and patients’ property) and reduces the potential for 

recontamination of clean textiles.

1272

   Sorting laundry before washing also allows for customization of 

laundry formulas based on the mix of products in the system and types of soils encountered.  

Additionally, if work flow allows, increasing the amount of segregation by specific product types will 

usually yield the greatest amount of work efficiency during inspection, folding, and pack-making 

operations.

1253

   Protective apparel for the workers and appropriate ventilation can minimize these 

exposures.

967, 1258–1260

   Gloves used for the task of sorting laundry should be of sufficient thickness to 

minimize sharps injuries.

967

   Employee safety personnel and industrial hygienists can help to determine 

the appropriate glove choice. 

 

4.  Parameters of the Laundry Process

 

 

Fabrics, textiles, and clothing used in health-care settings are disinfected during laundering and 

generally rendered free of vegetative pathogens (i.e., hygienically clean), but they are not sterile.

1273

   

Laundering cycles consist of flush, main wash, bleaching, rinsing, and souring.

1274

   Cleaned wet 

textiles, fabrics, and clothing are then dried, pressed as needed, and prepared (e.g., folded and packaged) 

for distribution back to the facility.  Clean linens provided by an off-site laundry must be packaged prior 

to transport to prevent inadvertent contamination from dust and dirt during loading, delivery, and 

unloading.  Functional packaging of laundry can be achieved in several ways, including a) placing clean 

linen in a hamper lined with a previously unused liner, which is then closed or covered; b) placing clean 

linen in a properly cleaned cart and covering the cart with disposable material or a properly cleaned 

reusable textile material that can be secured to the cart; and c) wrapping individual bundles of clean 

background image

 

101

textiles in plastic or other suitable material and sealing or taping the bundles. 

 

The antimicrobial action of the  laundering process results from a combination of mechanical, thermal,  

and chemical factors.

1271, 1275, 1276

   Dilution and agitation in water remove substantial quantities of 

microorganisms.  Soaps and detergents function to suspend soils and also exhibit some microbiocidal 

properties.  Hot water provides an effective means of destroying microorganisms.

1277

   A temperature of 

at least 160°F (71°C) for a minimum of 25 minutes is commonly recommended for hot-water washing.

2

   

Water of this temperature can be provided by steam jet or separate booster heater.

120

   The use of 

chlorine bleach assures an extra margin of safety.

1278, 1279

   A total available chlorine residual of 50–150 

ppm is usually achieved during the bleach cycle.

1277

   Chlorine bleach becomes activated at water 

temperatures of 135°F–145°F (57.2°C–62.7°C).  The last of the series of rinse cycles is the addition of a 

mild acid (i.e., sour) to neutralize any alkalinity in the water supply, soap, or detergent.  The rapid shift 

in pH from approximately 12 to 5 is an effective means to inactivate some microorganisms.

1247

   

Effective removal of residual alkali from fabrics is an important measure in reducing the risk for skin 

reactions among patients. 

 

Chlorine bleach is an economical, broad-spectrum chemical germicide that enhances the effectiveness 

of the laundering process.  Chlorine bleach is not, however, an appropriate laundry additive for all 

fabrics.  Traditionally, bleach was not recommended for laundering flame-retardant fabrics, linens, and 

clothing because its use diminished the flame-retardant properties of the treated fabric.

1273

   However, 

some modern-day flame retardant fabrics can now tolerate chlorine bleach.  Flame-retardant fabrics, 

whether topically treated or inherently flame retardant, should be thoroughly rinsed during the rinse 

cycles, because detergent residues are capable of supporting combustion.  Chlorine alternatives (e.g., 

activated oxygen-based laundry detergents) provide added benefits for fabric and color safety in 

addition to antimicrobial activity.  Studies comparing the antimicrobial potencies of chlorine bleach and 

oxygen-based bleach are needed.  Oxygen-based bleach and detergents used in health-care settings 

should be registered by EPA to ensure adequate disinfection of laundry.  Health-care workers should 

note the cleaning instructions of textiles, fabrics, drapes, and clothing to identify special laundering 

requirements and appropriate hygienic cleaning options.

1278

 

 

Although hot-water washing is an effective laundry disinfection method, the cost can be substantial.  

Laundries are typically the largest users of hot water in hospitals.  They consume 50%–75% of the total 

hot water,

1280

  representing an average of 10%–15% of the energy used by a hospital.  Several studies 

have demonstrated that lower water temperatures of 71°F–77°F (22°C–25°C) can reduce microbial 

contamination when the cycling of the washer, the wash detergent, and the amount of laundry additive 

are carefully monitored and controlled.

1247, 1281–1285

   Low-temperature laundry cycles rely heavily on the 

presence of chlorine- or oxygen-activated bleach to reduce the levels of microbial contamination.  The 

selection of hot- or cold-water laundry cycles may be dictated by state health-care facility licensing 

standards or by other regulation.  Regardless of whether hot or cold water is used for washing, the 

temperatures reached in drying and especially during ironing provide additional significant 

microbiocidal action.

1247

   Dryer temperatures and cycle times are dictated by the materials in the 

fabrics.  Man-made fibers (i.e., polyester and polyester blends) require shorter times and lower 

temperatures. 

 

After washing, cleaned and dried textiles, fabrics, and clothing are pressed, folded, and packaged for 

transport, distribution, and storage by methods that ensure their cleanliness until use.

2

   State regulations 

and/or accrediting standards may dictate the procedures for this activity.  Clean/sterile and contaminated 

textiles should be transported from the laundry to the health-care facility in vehicles (e.g., trucks, vans, 

and carts) that allow for separation of clean/sterile and contaminated items.  Clean/sterile textiles and 

contaminated textiles may be transported in the same vehicle, provided that the use of physical barriers 

and/or space separation can be verified to be effective in protecting the clean/sterile items from 

background image

 

102 

contamination.  Clean, uncovered/unwrapped textiles stored in a clean location for short periods of time 

(e.g., uncovered and used within a few hours) have not been demonstrated to contribute to increased 

levels of health-care–acquired infection.  Such textiles can be stored in convenient places for use during 

the provision of care, provided that the textiles can be maintained dry and free from soil and body-

substance contamination. 

 

In the absence of microbiologic standards for laundered textiles, no rationale exists for routine 

microbiologic sampling of cleaned health-care textiles and fabrics.

1286

   Sampling may be used as part of 

an outbreak investigation if epidemiologic evidence suggests that textiles, fabrics, or clothing are a 

suspected vehicle for disease transmission.  Sampling techniques include aseptically macerating the 

fabric into pieces and adding these to broth media or using contact plates (RODAC plates) for direct 

surface sampling.

1271, 1286

   When evaluating the disinfecting properties of the laundering process 

specifically, placing pieces of fabric between two membrane filters may help to minimize the 

contribution of the physical removal of microorganisms.

1287

 

 

Washing machines and dryers in residential-care settings are more likely to be consumer items rather 

than the commercial, heavy-duty, large volume units typically found in hospitals and other institutional 

health-care settings.  Although all washing machines and dryers in health-care settings must be properly 

maintained for performance according to the manufacturer’s instructions, questions have been raised 

about the need to disinfect washers and dryers in residential-care settings.  Disinfection of the tubs and 

tumblers of these machines is unnecessary when proper laundry procedures are followed; these 

procedures involve a) the physical removal of bulk solids (e.g., feces) before the wash/dry cycle and b) 

proper use of temperature, detergent, and laundry additives.  Infection has not been linked to laundry 

procedures in residential-care facilities, even when consumer versions of detergents and laundry 

additives are used. 

 

5.  Special Laundry Situations

 

 

Some textile items (e.g., surgical drapes and reusable gowns) must be sterilized before use and therefore 

require steam autoclaving after laundering.

7

   Although the American Academy of Pediatrics in previous 

guidelines recommended autoclaving for linens in neonatal intensive care units (NICUs), studies on the 

microbial quality of routinely cleaned NICU linen have not identified any increased risk for infection 

among the neonates receiving care.

1288

   Consequently, hygienically clean linens are suitable for use in 

this setting.

997

   The use of sterile linens in burn therapy units remains unresolved. 

 

Coated or laminated fabrics are often used in the manufacture of PPE.  When these items become 

contaminated with blood or other body substances, the manufacturer’s instructions for decontamination 

and cleaning take into account the compatibility of the rubber backing with the chemical germicides or 

detergents used in the process.  The directions for decontaminating these items should be followed as 

indicated; the item should be discarded when the backing develops surface cracks. 

 

Dry cleaning, a cleaning process that utilizes organic solvents (e.g., perchloroethylene) for soil removal, 

is an alternative means of cleaning fabrics that might be damaged in conventional laundering and 

detergent washing.  Several studies, however, have shown that dry cleaning alone is relatively 

ineffective in reducing the numbers of bacteria and viruses on contaminated linens;

1289, 1290

  microbial 

populations are significantly reduced only when dry-cleaned articles are heat pressed.  Dry cleaning 

should therefore not be considered a routine option for health-care facility laundry and should be 

reserved for those circumstances in which fabrics can not be safely cleaned with water and detergent.

1291

 

 

 

background image

 

103

6.  Surgical Gowns, Drapes, and Disposable Fabrics

 

 

An issue of recent concern involves the use of disposable (i.e., single use) versus reusable (i.e., multiple 

use) surgical attire and fabrics in health-care settings.

1292

   Regardless of the material used to 

manufacture gowns and drapes, these items must be resistant to liquid and microbial penetration.

7, 1293–

1297

   Surgical gowns and drapes must be registered with FDA to demonstrate their safety and 

effectiveness.  Repellency and pore size of the fabric contribute to gown performance, but performance 

capability can be influenced by the item’s design and construction.

1298, 1299

   Reinforced gowns (i.e., 

gowns with double-layered fabric) generally are more resistant to liquid strike-through.

1300, 1301

   

Reinforced gowns may, however, be less comfortable.   Guidelines for selection and use of barrier 

materials for surgical gowns and drapes have been published.

1302

   When selecting a barrier product, 

repellency level and type of barrier should be compatible for the exposure expected.

967

   However, data 

are limited regarding the association between gown or drape characteristics and risk for surgical site 

infections.

7, 1303

   Health-care facilities must ensure optimal protection of patients and health-care 

workers.  Not all fabric items in health care lend themselves to single-use.  Facilities exploring options 

for gowns and drapes should consider the expense of disposable items and the impact on the facility’s 

waste-management costs once these items are discarded.  Costs associated with the use of durable goods 

involve the fabric or textile items; staff expenses to collect, sort, clean, and package the laundry; and 

energy costs to operate the laundry if on-site or the costs to contract with an outside service.

1304, 1305

 

 

7.  Antimicrobial-Impregnated Articles and Consumer Items Bearing 
Antimicrobial Labeling

 

 

Manufacturers are increasingly incorporating antibacterial or antimicrobial chemicals into consumer and 

health-care items.  Some consumer products bearing labels that indicate treatment with antimicrobial 

chemicals have included pens, cutting boards, toys, household cleaners, hand lotions, cat litter, soaps, 

cotton swabs, toothbrushes, and cosmetics.  The “antibacterial” label on household cleaning products, in 

particular, gives consumers the impression that the products perform “better” than comparable products 

without this labeling, when in fact all household cleaners have antibacterial properties. 

 

In the health-care setting, treated items may include children’s pajamas, mattresses, and bed linens with 

label claims of antimicrobial properties.  These claims require careful evaluation to determine whether 

they pertain to the use of antimicrobial chemicals as preservatives for the fabric or other components or 

whether they imply a health claim.

1306, 1307

   No evidence is available to suggest that use of these 

products will make consumers and patients healthier or prevent disease.  No data support the use of 

these items as part of a sound infection-control strategy, and therefore, the additional expense of 

replacing a facility’s bedding and sheets with these treated products is unwarranted. 

 

EPA has reaffirmed its position that manufacturers who make public health claims for articles 

containing antimicrobial chemicals must provide evidence to support those claims as part of the 

registration process.

1308

   Current EPA regulations outlined in the Treated Articles Exemption of the 

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) require manufacturers to register  both the 

antimicrobial chemical used in or on the product and the finished product itself if a public health claim 

is maintained for the item.  The exemption applies to the use of antimicrobial chemicals for the purpose 

of preserving the integrity of the product’s raw material(s).  The U.S. Federal Trade Commission (FTC) 

is evaluating manufacturer advertising of products with antimicrobial claims.

1309

 

 

 

 

background image

 

104 

8.  Standard Mattresses, Pillows, and Air-Fluidized Beds

 

 

Standard mattresses and pillows can become contaminated with body substances during patient care if 

the integrity of the covers of these items is compromised.  The practice of sticking needles into the 

mattress should be avoided.  A mattress cover is generally a fitted, protective material, the purpose of 

which is to prevent the mattress from becoming contaminated with body fluids and substances.  A linen 

sheet placed on the mattress is not considered a mattress cover.  Patches for tears and holes in mattress 

covers do not provide an impermeable surface over the mattress.  Mattress covers should be replaced 

when torn; the mattress should be replaced if it is visibly stained.  Wet mattresses, in particular, can be a 

substantial environmental source of microorganisms.  Infections and colonizations caused by 

Acinetobacter

 spp., MRSA, and 

Pseudomonas aeruginosa

 have been described, especially among burn 

patients.

1310–1315

   In these reports, the removal of wet mattresses was an effective infection-control 

measure.  Efforts were made to ensure that pads and covers were cleaned and disinfected between 

patients using disinfectant products compatible with mattress-cover materials to ensure that these covers 

remained impermeable to fluids.

1310–1314

   Pillows and their covers should be easily cleanable, preferably 

in a hot water laundry cycle.

1315

   These should be laundered between patients or if contaminated with 

body substances. 

 

Air-fluidized beds are used for the care of patients immobilized for extended periods of time because of 

therapy or injury (e.g., pain, decubitus ulcers, and burns).

1316

   These specialized beds consist of a base 

unit filled with microsphere beads fluidized by warm, dry air flowing upward from a diffuser located at 

the bottom of the unit.  A porous, polyester filter sheet separates the patient from direct contact with the 

beads but allows body fluids to pass through to the beads.  Moist beads aggregate into clumps which 

settle to the bottom where they are removed as part of routine bed maintenance. 

 

Because the beads become contaminated with the patient’s body substances, concerns have been raised 

about the potential for these beds to serve as an environmental source of pathogens.  Certain pathogens 

(e.g., 

Enterococcus 

spp., 

Serratia marcescens, Staphylococcus aureus

, and 

Streptococcus fecalis

) have 

been recovered either from the microsphere beads or the polyester sheet after cleaning.

1317, 1318

   Reports 

of cross-contamination of patients, however, are few.

1318

   Nevertheless, routine maintenance and 

between-patient decontamination procedures can minimize potential risks to patients.  Regular removal 

of bead clumps, coupled with the warm, dry air of the bed, can help to minimize bacterial growth in the 

unit.

1319–1321

   Beads are decontaminated between patients by high heat (113°F–194°F [45°C–90°C], 

depending on the manufacturer’s specifications) for at least 1 hour; this procedure is particularly 

important for the inactivation of 

Enterococcus

 spp. which are relatively resistant to heat.

1322, 1323

   The 

polyester filter sheet requires regular changing and thorough cleaning and disinfection, especially 

between patients.

1317, 1318, 1322, 1323

 

 

Microbial contamination of the air space in the immediate vicinity of a properly maintained air-fluidized 

bed is similar to that found in air around conventional bedding, despite the air flow out of the base unit 

and around the patient.

1320, 1324, 1325

   An operational air-fluidized bed can, however, interfere with proper 

pressure differentials, especially in negative-pressure rooms;

1326

  the effect varies with the location of 

the bed relative to the room’s configuration and supply and exhaust vent locations.  Use of an air-

fluidized bed in a negative-pressure room requires consultation with a facility engineer to determine 

appropriate placement of the bed. 

 

 

 

 

 

background image

 

105

H.  Animals in Health-Care Facilities

 

 

1.  General Information

 

 

Animals in health-care facilities traditionally have been limited to laboratories and research areas. 

However, their presence in patient-care areas is now more frequent, both in acute-care and long-term 

care settings, prompting consideration for the potential transmission of zoonotic pathogens from animals 

to humans in these settings.  Although dogs and cats may be commonly encountered in health-care 

settings, other animals (e.g., fish, birds, non-human primates, rabbits, rodents, and reptiles) also can be 

present as research, resident, or service animals.  These animals can serve as sources of zoonotic 

pathogens that could potentially infect patients and health-care workers (Table 26).

1327–1340

   Animals 

potentially can serve as reservoirs for antibiotic-resistant microorganisms, which can be introduced to 

the health-care setting while the animal is present.  VRE have been isolated from both farm animals and 

pets,

1341

  and a cat in a geriatric care center was found to be colonized with MRSA.

1342

  

 

Table 26.  Examples of diseases associated with zoonotic transmission*+ 

Infectious disease 

Cats 

Dogs 

Fish 

Birds Rabbits Reptiles§ Primates Rodents§

Virus

 

 

 

 

 

 

 

 

 

Lymphocytic choriomeningitis 

 

 

 

 

 

 

 

+

¶ 

Rabies 

+

 

+

 

 

 

 

 

 

 

Bacteria

 

 

 

 

 

 

 

 

 

Campylobacteriosis 

+

 

+

 

 

 

 

+

 

+

 

+

 

Capnocytophaga canimorsus

 

infection

  

+

 

+

 

 

 

 

 

 

 

Cat scratch disease (

Bartonella 

     henselae

+

 

 

 

 

 

 

 

 

Leptospirosis 

+

 

 

 

 

 

 

+

 

+

 

Mycobacteriosis 

 

 

+

 

+

 

 

 

 

 

Pasteurellosis 

+

 

+

 

 

 

+

 

 

 

 

Plague 

+

 

 

 

+

 

 

 

+

 

+

 

Psittacosis  

 

 

+

 

 

 

 

 

Q fever (

Coxiella burnetti

+

 

 

 

 

 

 

 

 

Rat bite fever (

Spirrillum minus, 

     Streptobacillus monliformis

 

 

 

 

 

 

 

+

 

Salmonellosis 

+

 

+

 

 

+

 

+

 

+

 

+

 

+

 

Tularemia 

+

 

 

 

 

+

 

 

 

+

 

Yersiniosis 

 

 

 

 

+

 

+

 

+

 

+

 

Parasites

 

 

 

 

 

 

 

 

 

Ancylostomiasis 

+

 

+

 

 

 

 

 

+

 

 

Cryptosporidiosis 

+

 

 

 

 

 

 

 

 

Giardiasis 

+

 

+

 

 

 

 

 

+

 

 

Toxocariasis 

+

 

+

 

 

 

 

 

+

 

 

Toxoplasmosis 

+

 

+

 

 

 

 

 

+

 

 

Fungi

 

 

 

 

 

 

 

 

 

Blastomycosis 

 

+

 

 

 

 

 

 

 

Dermatophytosis  

+

 

 

 

+

 

 

+

 

+

 

 

*  Material in this table is adapted from reference 1331 and used with permission of the publisher (Lippincott Williams and Wilkins). 

+  This table does not include vectorborne diseases. 

§  Reptiles include lizards, snakes, and turtles.  Rodents include hamsters, mice, and rats. 
¶  The 

+

 symbol indicates that the pathogen associated with the infection has been isolated from animals and is considered to pose potential  

       risk to humans. 

 

background image

 

106 

Zoonoses can be transmitted from animals to humans either directly or indirectly via bites, scratches, 

aerosols, ectoparasites, accidental ingestion, or contact with contaminated soil, food, water, or 

unpasteurized milk.

1331, 1332, 1343–1345 

   Colonization and hand transferral of pathogens acquired from pets 

in health-care workers’ homes represent potential sources and modes of transmission of zoonotic 

pathogens in health-care settings.  An outbreak of infections caused by a yeast (

Malassezia 

pachydermatis

) among newborns was traced to transfer of the yeast from the hands of health-care 

workers with pet dogs at home.

1346

   In addition, an outbreak of ringworm in a NICU caused by 

Microsporum canis

 was associated with a nurse and her cat,

1347

  and an outbreak of 

Rhodococcus 

(Gordona) bronchialis

 sternal SSIs after coronary-artery bypass surgery was traced to a colonized nurse 

whose dogs were culture-positive for the organism.

1348

   In the latter outbreak, whether the dogs were 

the sole source of the organism and whether other environmental reservoirs contributed to the outbreak 

are unknown.  Nonetheless, limited data indicate that outbreaks of infectious disease have occurred as a 

result of contact with animals in areas housing immunocompetent patients.  However, the low frequency 

of outbreaks may result from a) the relatively limited presence of the animals in health-care facilities 

and b) the immunocompetency of the patients involved in the encounters.  Formal scientific studies to 

evaluate potential risks of transmission of zoonoses in health-care settings outside of the laboratory are 

lacking. 

 

2.  Animal-Assisted Activities, Animal-Assisted Therapy, and Resident 
Animals

 

 

Animal-Assisted Activities (AAA) are those programs that enhance the patients’ quality of life.  These 

programs allow patients to visit animals in either a common, central location in the facility or in 

individual patient rooms.  A group session with the animals enhances opportunities for ambulatory 

patients and facility residents to interact with caregivers, family members, and volunteers.

1349–1351

   

Alternatively, allowing the animals access to individual rooms provides the same opportunity to non-

ambulatory patients and patients for whom privacy or dignity issues are a consideration.  The decision 

to allow this access to patients’ rooms should be made on a case-by-case basis, with the consultation and 

consent of the attending physician and nursing staff. 

 

Animal-Assisted Therapy (AAT) is a goal-directed intervention that incorporates an animal into the 

treatment process provided by a credentialed therapist.

1330, 1331

   The concept for AAT arose from the 

observation that some patients with pets at home recover from surgical and medical procedures more 

rapidly than patients without pets.

1352, 1353

   Contact with animals is considered beneficial for enhancing 

wellness in certain patient populations (e.g., children, the elderly, and extended-care hospitalized 

patients).

1349, 1354–1357

   However, evidence supporting this benefit is largely derived from anecdotal 

reports and observations of patient/animal interactions.

1357–1359

   Guidelines for establishing AAT 

programs are available for facilities considering this option.

1360

 

 

The incorporation of non-human primates into an AAA or AAT program is not encouraged because of 

concerns regarding potential disease transmission from and unpredictable behavior of these animals.

1361, 

1362

   Animals participating in either AAA or AAT sessions should be in good health and up-to-date with 

recommended immunizations and prophylactic medications (e.g., heartworm prevention) as determined 

by a licensed veterinarian based on local needs and recommendations.  Regular re-evaluation of the 

animal’s health and behavior status is essential.

1360

   Animals should be routinely screened for enteric 

parasites and/or have evidence of a recently completed antihelminthic regimen.

1363

   They should also be 

free of ectoparasites (e.g., fleas and ticks) and should have no sutures, open wounds, or obvious 

dermatologic lesions that could be associated with bacterial, fungal, or viral infections or parasitic 

infestations.  Incorporating young animals (i.e., those aged <1 year) into these programs is not 

encouraged because of issues regarding unpredictable behavior and elimination control.  Additionally, 

background image

 

107

the immune systems of very young puppies and kittens is not completely developed, thereby placing the 

health of these animals at risk.  Animals should be clean and well-groomed.  The visits must be 

supervised by persons who know the animals and their behavior.  Animal handlers should be trained in 

these activities and receive site-specific orientation to ensure that they work efficiently with the staff in 

the specific health-care environment.

1360

   Additionally, animal handlers should be in good health.

1360

  

 

The most important infection-control measure to prevent potential disease transmission is strict 

enforcement of hand-hygiene measures (e.g., using either soap and water or an alcohol-based hand rub) 

for all patients, staff, and residents after handling the animals.

1355, 1364

   Care should also be taken to 

avoid direct contact with animal urine or feces.  Clean-up of these substances from environmental 

surfaces requires gloves and the use of leak-resistant plastic bags to discard absorbent material used in 

the process.

2

   The area must be cleaned after visits according to standard cleaning procedures. 

 

The American Academy of Allergy, Asthma, and Immunology estimates that dog or cat allergies occur 

in approximately 15% of the population.

1365

   Minimizing contact with animal saliva, dander, and/or 

urine helps to mitigate allergic responses.

1365–1367

   Some facilities may not allow animal visitation for 

patients with a) underlying asthma, b) known allergies to cat or dog hair, c) respiratory allergies of 

unknown etiology, and d) immunosuppressive disorders.  Hair shedding can be minimized by processes 

that remove dead hair (e.g., grooming) and that prevent the shedding of dead hair (e.g., therapy capes 

for dogs).  Allergens can be minimized by bathing therapy animals within 24 hours of a visit.

1333, 1368

 

 

Animal therapists and handlers must take precautions to prevent animal bites.  Common pathogens 

associated with animal bites include 

Capnocytophaga canimorsus, Pasteurella

 spp., 

Staphylococcus

 

spp., and 

Streptococcus 

spp.  Selecting well-behaved and well-trained animals for these programs 

greatly decreases the incidence of bites.  Rodents, exotic species, wild/domestic animals (i.e., wolf-dog 

hybrids), and wild animals whose behavior is unpredictable should be excluded from AAA or AAT 

programs.  A well-trained animal handler should be able to recognize stress in the animal and to 

determine when to terminate a session to minimize risk.  When an animal bites a person during AAA or 

AAT, the animal is to be permanently removed from the program.  If a bite does occur, the wound must 

be cleansed immediately and monitored for subsequent infection.  Most infections can be treated with 

antibiotics, and antibiotics often are prescribed prophylactically in these situations. 

 

The health-care facility’s infection-control staff should participate actively in planning for and 

coordinating AAA and AAT sessions.  Many facilities do not offer AAA or AAT programs for severely 

immunocompromised patients (e.g., HSCT patients and patients on corticosteroid therapy).

1339

   The 

question of whether family pets or companion animals can visit terminally-ill HSCT patients or other 

severely immunosuppressed patients is best handled on a case-by-case basis, although animals should 

not be brought into the HSCT unit or any other unit housing severely immunosuppressed patients.  An 

in-depth discussion of this issue is presented elsewhere.

1366

 

 

Immunocompromised patients who have been discharged from a health-care facility may be at higher 

risk for acquiring some pet-related zoonoses.  Although guidelines have been developed to minimize the 

risk of disease transmission to HIV-infected patients,

8

  these recommendations may be applicable for 

patients with other immunosuppressive disorders.  In addition to handwashing or hand hygiene, these 

recommendations include avoiding contact with a) animal feces and soiled litter box materials, b) 

animals with diarrhea, c) very young animals (i.e., dogs <6 months of age and cats <1 year of age), and 

d) exotic animals and reptiles.

8

   Pets or companion animals with diarrhea should receive veterinary care 

to resolve their condition. 

 

Many health-care facilities are adopting more home-like environments for residential-care or extended-

stay patients in acute-care settings, and resident animals are one element of this approach.

1369

   One 

background image

 

108 

concept, the “Eden Alternative,” incorporates children, plants, and animals (e.g., dogs, cats, fish, birds, 

rabbits, and rodents) into the daily care setting.

1370, 1371

   The concept of working with resident animals 

has not been scientifically evaluated.  Several issues beyond the benefits of therapy must be considered 

before embarking on such a program, including a) whether the animals will come into direct contact 

with patients and/or be allowed to roam freely in the facility; b) how the staff will provide care for the 

animals; c) the management of patients’ or residents’ allergies, asthma, and phobias; d) precautionary 

measures to prevent bites and scratches; and e) measures to properly manage the disposal of animal 

feces and urine, thereby preventing environmental contamination by zoonotic microorganisms (e.g.,  

Toxoplasma

 spp.

, Toxocara

 spp., and 

Ancylostoma

 spp.).

1372, 1373

   Few data document a link between 

health-care–acquired infection rates and frequency of cleaning fish tanks or rodent cages.  Skin 

infections caused by

 Mycobacterium marinum

 have been described among persons who have fish 

aquariums at home.

1374, 1375

   Nevertheless, immunocompromised patients should avoid direct contact 

with fish tanks and cages and the aerosols that these items produce.  Further, fish tanks should be kept 

clean on a regular basis as determined by facility policy, and this task should be performed by gloved 

staff members who are not responsible for patient care.  The use of the infection-control risk assessment 

can help determine whether a fish tank poses a risk for patient or resident safety and health in these 

situations.  No evidence, however, links the incidence of health-care–acquired infections among 

immunocompetent patients or residents with the presence of a properly cleaned and maintained fish 

tank, even in dining areas.  As a general preventive measure, resident animal programs are advised to 

restrict animals from a) food preparation kitchens, b) laundries, c) central sterile supply and any storage 

areas for clean supplies, and d) medication preparation areas.  Resident-animal programs in acute-care 

facilities should not allow the animals into the isolation areas, protective environments, ORs, or any area 

where immunocompromised patients are housed.  Patients and staff routinely should wash their hands or 

use waterless, alcohol-based hand-hygiene products after contact with animals. 

 

3.  Service Animals

 

 

Although this section provides an overview about service animals in health-care settings, it cannot 

address every situation or question that may arise (see Appendix E - Information Resources).  A service 

animal is any animal individually trained to do work or perform tasks for the benefit of a person with a 

disability.

1366, 1376

   A service animal is not considered a pet but rather an animal trained to provide 

assistance to a person because of a disability.  Title III of the “Americans with Disabilities Act” (ADA) 

of 1990 mandates that persons with disabilities accompanied by service animals be allowed access with 

their service animals into places of public accommodation, including restaurants, public transportation, 

schools, and health-care facilities.

1366, 1376

   In health-care facilities, a person with a disability requiring a 

service animal may be an employee, a visitor, or a patient. 

 

An overview of the subject of service animals and their presence in health-care facilities has been 

published.

1366

   No evidence suggests that animals pose a more significant risk of transmitting infection 

than people; therefore, service animals should not be excluded from such areas, unless an individual 

patient’s situation or a particular animal poses greater risk that cannot be mitigated through reasonable 

measures.  If health-care personnel, visitors, and patients are permitted to enter care areas (e.g., in-

patient rooms, some ICUs, and public areas) without taking additional precautions to prevent 

transmission of infectious agents (e.g., donning gloves, gowns, or masks), a clean, healthy, well-

behaved service animal should be allowed access with its handler.

1366

   Similarly, if 

immunocompromised patients are able to receive visitors without using protective garments or 

equipment, an exclusion of service animals from this area would not be justified.

1366

 

 

Because health-care facilities are covered by the ADA or the Rehabilitation Act, a person with a 

disability may be accompanied by a service animal within the facility unless the animal’s presence or 

background image

 

109

behavior creates a fundamental alteration in the nature of a facility’s services in a particular area or a 

direct threat to other persons in a particular area.

1366

   A “direct threat” is defined as a significant risk to 

the health or safety of others that cannot be mitigated or eliminated by modifying policies, practices, or 

procedures.

1376

   The determination that a service animal poses a direct threat in any particular health-

care setting must be based on an individualized assessment of the service animal, the patient, and the 

health-care situation.  When evaluating risk in such situations, health-care personnel should consider the 

nature of the risk (including duration and severity); the probability that injury will occur; and whether 

reasonable modifications of policies, practices, or procedures will mitigate the risk (J. Wodatch, U.S. 

Department of Justice, 2000).  The person with a disability should contribute to the risk-assessment 

process as part of a pre-procedure health-care provider/patient conference. 

 

Excluding a service animal from an OR or similar special care areas (e.g., burn units, some ICUs, PE 

units, and any other area containing equipment critical for life support) is appropriate if these areas are 

considered to have “restricted access” with regards to the general public.  General infection-control 

measures that dictate such limited access include a) the area is required to meet environmental criteria to 

minimize the risk of disease transmission, b) strict attention to hand hygiene and absence of 

dermatologic conditions, and c) barrier protective measures [e.g., using gloves, wearing gowns and 

masks] are indicated for persons in the affected space.  No infection-control measures regarding the use 

of barrier precautions could be reasonably imposed on the service animal.  Excluding a service animal 

that becomes threatening because of a perceived danger to its handler during treatment also is 

appropriate; however, exclusion of such an animal must be based on the actual behavior of the particular 

animal, not on speculation about how the animal might behave. 

 

Another issue regarding service animals is whether to permit persons with disabilities to be 

accompanied by their service animals during all phases of their stay in the health-care facility.  Health-

care personnel should discuss all aspects of anticipatory care with the patient who uses a service animal.  

Health-care personnel may not exclude a service animal because health-care staff may be able to 

perform the same services that the service animal does (e.g., retrieving dropped items and guiding an 

otherwise ambulatory person to the restroom).  Similarly, health-care personnel can not exclude service 

animals because the health-care staff perceive a lack of need for the service animal during the person’s 

stay in the health-care facility.  A person with a disability is entitled to independent access (i.e., to be 

accompanied by a service animal unless the animal poses a direct threat or a fundamental alteration in 

the nature of services); “need” for the animal is not a valid factor in either analysis.  For some forms of 

care (e.g., ambulation as physical therapy following total hip replacement or knee replacement), the 

service animal should not be used in place of a credentialed health-care worker who directly provides 

therapy.  However, service animals need not be restricted from being in the presence of its handler 

during this time; in addition, rehabilitation and discharge planning should incorporate the patient’s 

future use of the animal.  The health-care personnel and the patient with a disability should discuss both 

the possible need for the service animal to be separated from its handler for a period of time during non-

emergency care and an alternate plan of care for the service animal in the event the patient is unable or 

unwilling to provide that care.  This plan might include family members taking the animal out of the 

facility several times a day for exercise and elimination, the animal staying with relatives, or boarding 

off-site.  Care of the service animal, however, remains the obligation of the person with the disability, 

not the health-care staff. 

 

Although animals potentially carry zoonotic pathogens transmissible to man, the risk is minimal with a 

healthy, clean, vaccinated, well-behaved, and well-trained service animal, the most common of which 

are dogs and cats.  No reports have been published regarding infectious disease that affects humans 

originating in service dogs.  Standard cleaning procedures are sufficient following occupation of an area 

by a service animal.

1366

   Clean-up of spills of animal urine, feces, or other body substances can be 

accomplished with blood/body substance procedures outlined in the Environmental Services section of 

background image

 

110 

this guideline.  No special bathing procedures are required prior to a service animal accompanying its 

handler into a health-care facility. 

 

Providing access to exotic animals (e.g., reptiles and non-human primates) that are used as service 

animals is problematic.  Concerns about these animals are discussed in two published reviews.

1331, 1366

   

Because some of these animals exhibit high-risk behaviors that may increase the potential for zoonotic 

disease transmission (e.g., herpes B infection), providing health-care facility access to nonhuman 

primates used as service animals is discouraged, especially if these animals might come into contact 

with the general public.

1361, 1362

   Health-care administrators should consult the Americans with 

Disabilities Act for guidance when developing policies about service animals in their facilities.

1366, 1376

 

 

Requiring documentation for access of a service animal to an area generally accessible to the public 

would impose a burden on a person with a disability.  When health-care workers are not certain that an 

animal is a service animal, they may ask the person who has the animal if it is a service animal required 

because of a disability; however, no certification or other documentation of service animal status can be 

required.

1377

 

 

4.  Animals as Patients in Human Health-Care Facilities

 

 

The potential for direct and indirect transmission of zoonoses must be considered when rooms and 

equipment in human health-care facilities are used for the medical or surgical treatment or diagnosis of 

animals.

1378

   Inquiries should be made to veterinary medical professionals to determine an appropriate 

facility and equipment to care for an animal. 

 

The central issue associated with providing medical or surgical care to animals in human health-care 

facilities is whether cross-contamination occurs between the animal patient and the human health-care 

workers and/or human patients.  The fundamental principles of infection control and aseptic practice 

should differ only minimally, if at all, between veterinary medicine and human medicine.  Health-care–

associated infections can and have occurred in both patients and workers in veterinary medical facilities 

when lapses in infection-control procedures are evident.

1379–1384

   Further, veterinary patients can be at 

risk for acquiring infection from veterinary health-care workers if proper precautions are not taken.

1385

  

 

The issue of providing care to veterinary patients in human health-care facilities can be divided into the 

following three areas of infection-control concerns: a) whether the room/area used for animal care can 

be made safe for human patients, b) whether the medical/surgical instruments used on animals can be 

subsequently used on human patients, and c) which disinfecting or sterilizing procedures need to be 

done for these purposes.  Studies addressing these concerns are lacking.  However, with respect to 

disinfection or sterilization in veterinary settings, only minimal evidence suggests that zoonotic 

microbial pathogens are unusually resistant to inactivation by chemical or physical agents (with the 

exception of prions).  Ample evidence supports the contrary observation (i.e., that pathogens from 

human- and animal sources are similar in their relative instrinsic resistance to inactivation).

1386–1391

   

Further, no evidence suggests that zoonotic pathogens behave differently from human pathogens with 

respect to ventilation.  Despite this knowledge, an aesthetic and sociologic perception that animal care 

must remain separate from human care persists.  Health-care facilities, however, are increasingly faced 

with requests from the veterinary medical community for access to human health-care facilities for 

reasons that are largely economical (e.g., costs of acquiring sophisticated diagnostic technology and 

complex medical instruments).  If hospital guidelines allow treatment of animals, alternate veterinary 

resources (including veterinary hospitals, clinics, and universities) should be exhausted before using 

human health-care settings.  Additionally, the hospital’s public/media relations should be notified of the 

situation.  The goal is to develop policies and procedures to proactively and positively discuss and 

background image

 

111

disclose this activity to the general public. 

 

An infection-control risk assessment (ICRA) must be undertaken to evaluate the circumstances specific 

to providing care to animals in a human health-care facility.  Individual hospital policies and guidelines 

should be reviewed before any animal treatment is considered in such facilities.  Animals treated in 

human health-care facilities should be under the direct care and supervision of a licensed veterinarian; 

they also should be free of known infectious diseases, ectoparasites, and other external contaminants 

(e.g., soil, urine, and feces).  Measures should be taken to avoid treating animals with a known or 

suspected zoonotic disease in a human health-care setting (e.g., lambs being treated for Q fever). 

 

If human health-care facilities must be used for animal treatment or diagnostics, the following general 

infection-control actions are suggested: a) whenever possible, the use of ORs or other rooms used for 

invasive procedures should be avoided [e.g., cardiac catheterization labs and invasive nuclear medicine 

areas]; b) when all other space options are exhausted and use of the aforementioned rooms is 

unavoidable, the procedure should be scheduled late in the day as the last procedure for that particular 

area such that patients are not present in the department/unit/area; c) environmental surfaces should be 

thoroughly cleaned and disinfected using procedures discussed in the Environmental Services portion of 

this guideline after the animal is removed from the care area; d) sufficient time should be allowed for 

ACH to help prevent allergic reactions by human patients [Table B.1. in Appendix B]; e) only 

disposable equipment or equipment that can be thoroughly and easily cleaned, disinfected, or sterilized 

should be used; f) when medical or surgical instruments, especially those invasive instruments that are 

difficult to clean [e.g., endoscopes], are used on animals, these instruments should be reserved for future 

use only on animals; and g) standard precautions should be followed. 

 

5.  Research Animals in Health-Care Facilities

 

 

The risk of acquiring a zoonotic infection from research animals has decreased in recent years because 

many small laboratory animals (e.g., mice, rats, and rabbits) come from quality stock and have defined 

microbiologic profiles.

1392

   Larger animals (e.g., nonhuman primates) are still obtained frequently from 

the wild and may harbor pathogens transmissible to humans.  Primates, in particular, benefit from 

vaccinations to protect their health during the research period provided the vaccination does not 

interfere with the study of the particular agent.  Animals serving as models for human disease studies 

pose some risk for transmission of infection to laboratory or health-care workers from percutaneous or 

mucosal exposure.  Exposures can occur either through a) direct contact with an infected animal or its 

body substances and secretions or b) indirect contact with infectious material on equipment, 

instruments, surfaces, or supplies.

1392

   Uncontained aerosols generated during laboratory procedures can 

also transmit infection. 

 

Infection-control measures to prevent transmission of zoonotic infections from research animals are 

largely derived from the following basic laboratory safety principles: a) purchasing pathogen-free 

animals, b) quarantining incoming animals to detect any zoonotic pathogens, c) treating infected 

animals or removing them from the facility, d) vaccinating animal carriers and high-risk contacts if 

possible, e) using specialized containment caging or facilities, and f) using protective clothing and 

equipment [e.g., gloves, face shields, gowns, and masks].

1392

   An excellent resource for detailed 

discussion of these safety measures has been published.

1013

 

 

The animal research unit within a health-care facility should be engineered to provide a) adequate 

containment of animals and pathogens; b) daily decontamination and transport of equipment and waste; 

c) proper ventilation and air filtration, which prevents recirculation of the air in the unit to other areas of 

the facility; and d) negative air pressure in the animal rooms relative to the corridors.  To ensure 

background image

 

112 

adequate security and containment, no through traffic to other areas of the health-care facility should 

flow through this unit; access should be restricted to animal-care staff, researchers, environmental 

services, maintenance, and security personnel. 

 

Occupational health programs for animal-care staff, researchers, and maintenance staff should take into 

consideration the animals’ natural pathogens and research pathogens.  Components of such programs 

include a) prophylactic vaccines, b) TB skin testing when primates are used, c) baseline serums, and d) 

hearing and respiratory testing.  Work practices, PPE, and engineering controls specific for each of the 

four animal biosafety levels have been published.

1013, 1393

   The facility’s occupational or employee 

health clinic should be aware of the appropriate post-exposure procedures involving zoonoses and have 

available the appropriate post-exposure biologicals and medications. 

 

Animal-research-area staff should also develop standard operating procedures for a) daily animal 

husbandry [e.g., protection of the employee while facilitating animal welfare]; b) pathogen containment 

and decontamination; c) management, cleaning, disinfecting and/or sterilizing equipment and 

instruments; and d) employee training for laboratory safety and safety procedures specific to animal 

research worksites.

1013

   The federal Animal Welfare Act of 1966 and its amendments serve as the 

regulatory basis for ensuring animal welfare in research.

1394, 1395

 

 

 

I.  Regulated Medical Waste

 

 

1.  Epidemiology

 

 

No epidemiologic evidence suggests that most of the solid- or liquid wastes from hospitals, other health-

care facilities, or clinical/research laboratories is any more infective than residential waste.  Several 

studies have compared the microbial load and the diversity of microorganisms in residential wastes and 

wastes obtained from a variety of health-care settings.

1399–1402

   Although hospital wastes had a greater 

number of different bacterial species compared with residential waste, wastes from residences were 

more heavily contaminated.

1397, 1398

   Moreover, no epidemiologic evidence suggests that traditional 

waste-disposal practices of health-care facilities (whereby clinical and microbiological wastes were 

decontaminated on site before leaving the facility) have caused disease in either the health-care setting 

or the general community.

1400, 1401

   This statement excludes, however, sharps injuries sustained during 

or immediately after the delivery of patient care before the sharp is “discarded.”   Therefore, identifying 

wastes for which handling and disposal precautions are indicated is largely a matter of judgment about 

the relative risk of disease transmission, because no reasonable standards on which to base these 

determinations have been developed.  Aesthetic and emotional considerations (originating during the 

early years of the HIV epidemic) have, however, figured into the development of treatment and disposal 

policies, particularly for pathology and anatomy wastes and sharps.

1402–1405

   Public concerns have 

resulted in the promulgation of federal, state, and local rules and regulations regarding medical waste 

management and disposal.

1406–1414

 

 

2.  Categories of Medical Waste

 

 

Precisely defining medical waste on the basis of quantity and type of etiologic agents present is virtually 

impossible.  The most practical approach to medical waste management is to identify wastes that 

represent a sufficient potential risk of causing infection during handling and disposal and for which 

some precautions likely are prudent.

2

   Health-care facility medical wastes targeted for handling and 

disposal precautions include microbiology laboratory waste (e.g., microbiologic cultures and stocks of 

microorganisms), pathology and anatomy waste, blood specimens from clinics and laboratories, blood 

background image

 

113

products, and other body-fluid specimens.

2

   Moreover, the risk of either injury or infection from certain 

sharp items (e.g., needles and scalpel blades) contaminated with blood also must be considered.  

Although any item that has had contact with blood, exudates, or secretions may be potentially infective, 

treating all such waste as infective is neither practical nor necessary.  Federal, state, and local guidelines 

and regulations specify the categories of medical waste that are subject to regulation and outline the 

requirements associated with treatment and disposal.  The categorization of these wastes has generated 

the term “regulated medical waste.”  This term emphasizes the role of regulation in defining the actual 

material and as an alternative to “infectious waste,” given the lack of evidence of this type of waste’s 

infectivity.  State regulations also address the degree or amount of contamination (e.g., blood-soaked 

gauze) that defines the discarded item as a regulated medical waste.  The EPA’s 

Manual for Infectious 

Waste Management

 identifies and categorizes other specific types of waste generated in health-care 

facilities with research laboratories that also require handling precautions.

1406

  

 

3.  Management of Regulated Medical Waste in Health-Care Facilities

 

 

Medical wastes require careful disposal and containment before collection and consolidation for 

treatment.  OSHA has dictated initial measures for discarding regulated medical-waste items.  These 

measures are designed to protect the workers who generate medical wastes and who manage the wastes 

from point of generation to disposal.

967

   A single, leak-resistant biohazard bag is usually adequate for 

containment of regulated medical wastes, provided the bag is sturdy and the waste can be discarded 

without contaminating the bag’s exterior.  The contamination or puncturing of the bag requires 

placement into a second biohazard bag.  All bags should be securely closed for disposal.  Puncture-

resistant containers located at the point of use (e.g., sharps containers) are used as containment for 

discarded slides or tubes with small amounts of blood, scalpel blades, needles and syringes, and unused 

sterile sharps.

967

   To prevent needlestick injuries, needles and other contaminated sharps should not be 

recapped, purposefully bent, or broken by hand.  CDC has published general guidelines for handling 

sharps.

6, 1415

   Health-care facilities may need additional precautions to prevent the production of 

aerosols during the handling of blood-contaminated items for certain rare diseases or conditions (e.g., 

Lassa fever and Ebola virus infection).

203

  

 

Transporting and storing regulated medical wastes within the health-care facility prior to terminal 

treatment is often necessary.  Both federal and state regulations address the safe transport and storage of 

on- and off-site regulated medical wastes.

1406–1408

   Health-care facilities are instructed to dispose 

medical wastes regularly to avoid accumulation.  Medical wastes requiring storage should be kept in 

labeled, leak-proof, puncture-resistant containers under conditions that minimize or prevent foul odors.  

The storage area should be well ventilated and be inaccessible to pests.  Any facility that generates 

regulated medical wastes should have a regulated medical waste management plan to ensure health and 

environmental safety as per federal, state, and local regulations. 

 

4.  Treatment of Regulated Medical Waste

 

 

Regulated medical wastes are treated or decontaminated to reduce the microbial load in or on the waste 

and to render the by-products safe for further handling and disposal.  From a microbiologic standpoint, 

waste need not be rendered “sterile” because the treated waste will not be deposited in a sterile site.  In 

addition, waste need not be subjected to the same reprocessing standards as are surgical instruments.  

Historically, treatment methods involved steam-sterilization (i.e., autoclaving), incineration, or 

interment (for anatomy wastes).  Alternative treatment methods developed in recent years include 

chemical disinfection, grinding/shredding/disinfection methods, energy-based technologies (e.g., 

microwave or radiowave treatments), and disinfection/encapsulation methods.

1409

   State medical waste 

regulations specify appropriate treatment methods for each category of regulated medical waste. 

background image

 

114 

 

Of all the categories comprising regulated medical waste, microbiologic wastes (e.g., untreated cultures, 

stocks, and amplified microbial populations) pose the greatest potential for infectious disease 

transmission, and sharps pose the greatest risk for injuries.  Untreated stocks and cultures of 

microorganisms are subsets of the clinical laboratory or microbiologic waste stream.  If the 

microorganism must be grown and amplified in culture to high concentration to permit work with the 

specimen, this item should be considered for on-site decontamination, preferably within the laboratory 

unit.  Historically, this was accomplished effectively by either autoclaving (steam sterilization) or 

incineration.  If steam sterilization in the health-care facility is used for waste treatment, exposure of the 

waste for up to 90 minutes at 250°F (121°C) in a autoclave (depending on the size of the load and type 

container) may be necessary to ensure an adequate decontamination cycle.

1416–1418

   After steam 

sterilization, the residue can be safely handled and discarded with all other nonhazardous solid waste in 

accordance with state solid-waste disposal regulations.  On-site incineration is another treatment option 

for microbiologic, pathologic, and anatomic waste, provided the incinerator is engineered to burn these 

wastes completely and stay within EPA emissions standards.

1410

   Improper incineration of waste with 

high moisture and low energy content (e.g., pathology waste) can lead to emission problems.  State 

medical-waste regulatory programs identify acceptable methods for inactivating amplified stocks and 

cultures of microorganisms, some of which may employ technology rather than steam sterilization or 

incineration. 

 

Concerns have been raised about the ability of modern health-care facilities to inactivate microbiologic 

wastes on-site, given that many of these institutions have decommissioned their laboratory autoclaves.  

Current laboratory guidelines for working with infectious microorganisms at biosafety level (BSL) 3 

recommend that all laboratory waste be decontaminated before disposal by an approved method, 

preferably within the laboratory.

1013

   These same guidelines recommend that all materials removed 

from a BSL 4 laboratory (unless they are biological materials that are to remain viable) are to be 

decontaminated before they leave the laboratory.

1013

   Recent federal regulations for laboratories that 

handle certain biological agents known as “select agents” (i.e., those that have the potential to pose a 

severe threat to public health and safety) require these agents (and those obtained from a clinical 

specimen intended for diagnostic, reference, or verification purposes) to be destroyed on-site before 

disposal.

1412

   Although recommendations for laboratory waste disposal from BSL 1 or 2 laboratories 

(e.g., most health-care clinical and diagnostic laboratories) allow for these materials to be 

decontaminated off-site before disposal, on-site decontamination by a known effective method is 

preferred to reduce the potential of exposure during the handling of infectious material. 

 

A recent outbreak of TB among workers in a regional medical-waste treatment facility in the United 

States demonstrated the hazards associated with aerosolized microbiologic wastes.

1419, 1420

   The facility 

received diagnostic cultures of 

Mycobacterium tuberculosis

 from several different health-care facilities 

before these cultures were chemically disinfected; this facility treated this waste with a 

grinding/shredding process that generated aerosols from the material. 

1419, 1420

   Several operational 

deficiencies facilitated the release of aerosols and exposed workers to airborne 

M. tuberculosis

.  Among 

the suggested control measures was that health-care facilities perform on-site decontamination of 

laboratory waste containing live cultures of microorganisms before release of the waste to a waste 

management company.

1419, 1420

   This measure is supported by recommendations found in the CDC/NIH 

guideline for laboratory workers.

1013

   This outbreak demonstrates the need to avoid the use of any 

medical-waste treatment method or technology that can aerosolize pathogens from live cultures and 

stocks (especially those of airborne microorganisms) unless aerosols can be effectively contained and 

workers can be equipped with proper PPE.

1419–1421

   Safe laboratory practices, including those addressing 

waste management, have been published.

1013, 1422

 

 

In an era when local, state, and federal health-care facilities and laboratories are developing bioterrorism 

background image

 

115

response strategies and capabilities, the need to reinstate in-laboratory capacity to destroy cultures and 

stocks of microorganisms becomes a relevant issue.

1423

   Recent federal regulations require health-care 

facility laboratories to maintain the capability of destroying discarded cultures and stocks on-site if these 

laboratories isolate from a clinical specimen any microorganism or toxin identified as a “select agent” 

from a clinical specimen (Table 27).

1412, 1413

   As an alternative, isolated cultures of select agents can be 

transferred to a facility registered to accept these agents in accordance with federal regulations.

1412

   

State medical waste regulations can, however, complicate or completely prevent this transfer if these 

cultures are determined to be medical waste, because most states regulate the inter-facility transfer of 

untreated medical wastes. 

 

Table 27.  Microorganisms and biologicals identified as select agents*+ 

HHS Non-overlap select agents and toxins (42 CFR Part 73 §73.4) 

Viruses 

Crimean-Congo hemorrhagic fever virus; Ebola viruses; Cercopithecine herpesvirus 1 (herpes B 

virus); Lassa fever virus; Marburg virus; monkeypox virus; South American hemorrhagic fever 

viruses (Junin, Machupo, Sabia, Flexal, Guanarito); tick-borne encephalitis complex (flavi) 

viruses (Central European tick-borne encephalitis, Far Eastern tick-borne encephalitis [Russian 

spring and summer encephalitis, Kyasnaur Forest disease, Omsk hemorrhagic fever]); variola 

major virus (smallpox virus); and variola minor virus (alastrim) 

Exclusions¶ 

Vaccine strain of Junin virus (Candid. #1) 

Bacteria 

Rickettsia prowazekii, R. rickettsii, Yersinia pestis

 

Fungi 

Coccidioides posadasii 

Toxins 

Abrin; conotoxins; diacetoxyscirpenol; ricin; saxitoxin; Shiga-like ribosome inactivating 

proteins; tetrodotoxin 

Exclusions¶ 

The following toxins (in purified form or in combinations of pure and impure forms) if the 

aggregate amount under the control of a principal investigator does not, at any time, exceed the 

amount specified:  100 mg of abrin; 100 mg of conotoxins; 1,000 mg of diacetoxyscirpenol; 100 

mg of ricin; 100 mg of saxitoxin; 100 mg of Shiga-like ribosome inactivating proteins; or 100 

mg of tetrodotoxin 

Genetic elements, 

recombinant nucleic 

acids, and recombinant 

organisms¶ 

•  Select agent viral nucleic acids (synthetic or naturally-derived, contiguous or fragmented, in 

       host chromosomes or in expression vectors) that can encode infectious and/or replication 

       competent forms of any of the select agent viruses; 

•  Nucleic acids (synthetic or naturally-derived) that encode for the functional form(s) of any of

       the toxins listed in this table if the nucleic acids: a) are in a vector or host chromosome;  

       b) can be expressed 

in vivo

 or 

in vitro

; or c) are in a vector or host chromosome and can be 

       expressed 

in vivo

 or 

in vitro

•  Viruses, bacteria, fungi, and toxins listed in this table that have been genetically modified. 

High consequence livestock pathogens and toxins/select agents (overlap agents) (42 CFR Part 73 §73.5 and 
USDA regulation 9 CFR Part 121) 

Viruses 

Eastern equine encephalitis virus; Nipah and Hendra complex viruses; Rift Valley fever virus; 

Venezuelan equine encephalitis virus 

Exclusions¶ 

MP-12 vaccine strain of Rift Valley fever virus; TC-83 vaccine strain of Venezuelan equine 

encephalitis virus 

Bacteria 

Bacillus anthracis; Brucella abortus, B. melitensis, B. suis; Burkholderia mallei

 (formerly 

Pseudomonas mallei

), 

B. pseudomallei

 (formerly

 P. pseudomallei

); botulinum neurotoxin-

producing species of 

Clostridium; Coxiella burnetii; Francisella tularensis

 

Fungi 

Coccidioides immitis

 

Toxins 

Botulinum neurotoxins; 

Clostridium perfringens

 epsilon toxin; Shigatoxin; staphylococcal 

enterotoxins; T-2 toxin 

Exclusions¶ 

The following toxins (in purified form or in combinations of pure and impure forms) if the 

aggregate amount under the control of a principal investigator does not, at any time, exceed the 

amount specified: 0.5 mg of botulinum neurotoxins; 100 mg of 

Clostridium perfringens

 epsilon 

toxin; 100 mg of Shigatoxin; 5 mg of staphylococcal enterotoxins; or 1,000 mg of T-2 toxin 

 

 

 

 

background image

 

116 

High consequence livestock pathogens and toxins/select agents (overlap agents) (42 CFR Part 73 §73.5 and 
USDA regulation 9 CFR Part 121) (continued) 

Genetic elements, 

recombinant nucleic 

acids, and recombinant 

organisms¶ 

•  Select agent viral nuclei acids (synthetic or naturally derived, contiguous or fragmented, in  

       host chromosomes or in expression vectors) thatcan encode infectious and/or replication 

       competent forms of any of the select agent viruses; 

•  Nucleic acids (synthetic or naturally derived) that encode for the functional form(s) of any of 

       the toxins listed in this table if the nucleic acids: a) are in a vector or host chromosome; 

       b) can be expressed 

in vivo

 or 

in vitro

; or c) are in a vector or host chromosome and can be 

       expressed 

in vivo

 or 

in vitro

•  Viruses, bacteria, fungi, and toxins listed in this table that have been genetically modified 

 

*  Material in this table is compiled from references 1412, 1413, and 1424.  Reference 1424 also contains lists of select agents that include 

       plant pathogens and pathogens affecting livestock. 

+  42 CFR 73 §§73.4 and 73.5 do not include any select agent or toxin that is in its naturally-occurring environment, provided it has not been 

       intentionally introduced, cultivated, collected, or otherwise extracted from its natural source.  These sections also do not include non-viable 

       select agent organisms or nonfunctional toxins.  This list of select agents is current as of 3 October 2003 and is subject to change pending  

       the final adoption of 42 CFR Part 73. 

¶  These table entries are listed in reference 1412 and 1413, but were not included in reference 1424. 

 

 

5.  Discharging Blood, Fluids to Sanitary Sewers or Septic Tanks

 

 

The contents of all vessels that contain more than a few milliliters of blood remaining after laboratory 

procedures, suction fluids, or bulk blood can either be inactivated in accordance with state-approved 

treatment technologies or carefully poured down a utility sink drain or toilet.

1414

   State regulations may 

dictate the maximum volume allowable for discharge of blood/body fluids to the sanitary sewer.  No 

evidence indicates that bloodborne diseases have been transmitted from contact with raw or treated 

sewage.  Many bloodborne pathogens, particularly bloodborne viruses, are not stable in the environment 

for long periods of time;

1425, 1426

  therefore, the discharge of small quantities of blood and other body 

fluids to the sanitary sewer is considered a safe method of disposing of these waste materials.

1414

   The 

following factors increase the likelihood that bloodborne pathogens will be inactivated in the disposal 

process: a) dilution of the discharged materials with water; b) inactivation of pathogens resulting from 

exposure to cleaning chemicals, disinfectants, and other chemicals in raw sewage; and c) effectiveness 

of sewage treatment in inactivating any residual bloodborne pathogens that reach the treatment facility.  

Small amounts of blood and other body fluids should not affect the functioning of a municipal sewer 

system.  However, large quantities of these fluids, with their high protein content, might interfere with 

the biological oxygen demand (BOD) of the system.  Local municipal sewage treatment restrictions may 

dictate that an alternative method of bulk fluid disposal be selected.  State regulations may dictate what 

quantity constitutes a small amount of blood or body fluids. 

 

Although concerns have been raised about the discharge of blood and other body fluids to a septic tank 

system, no evidence suggests that septic tanks have transmitted bloodborne infections.  A properly 

functioning septic system is adequate for inactivating bloodborne pathogens.  System manufacturers’ 

instructions specify what materials may be discharged to the septic tank without jeopardizing its proper 

operation. 

 

6.  Medical Waste and CJD

 

 

Concerns also have been raised about the need for special handling and treatment procedures for wastes 

generated during the care of patients with CJD or other transmissible spongiform encephalopathies 

(TSEs).  Prions, the agents that cause TSEs, have significant resistance to inactivation by a variety of 

physical, chemical, or gaseous methods.

1427

   No epidemiologic evidence, however, links acquisition of 

CJD with medical-waste disposal practices.  Although handling neurologic tissue for pathologic 

examination and autopsy materials with care, using barrier precautions, and following specific 

background image

 

117

procedures for the autopsy are prudent measures,

1197

  employing extraordinary measures once the 

materials are discarded is unnecessary.  Regulated medical wastes generated during the care of the CJD 

patient can be managed using the same strategies as wastes generated during the care of other patients.  

After decontamination, these wastes may then be disposed in a sanitary landfill or discharged to the 

sanitary sewer, as appropriate. 

 

 

Part II.  Recommendations for Environmental 
Infection Control in Health-Care Facilities

 

 

A.  Rationale for Recommendations

 

 

As in previous CDC guidelines, each recommendation is categorized on the basis of existing scientific 

data, theoretic rationale, applicability, and possible economic benefit.  The recommendations are 

evidence-based wherever possible.  However, certain recommendations are derived from empiric 

infection-control or engineering principles, theoretic rationale, or from experience gained from events 

that cannot be readily studied (e.g., floods). 

 

The HICPAC system for categorizing recommendations has been modified to include a category for 

engineering standards and actions required by state or federal regulations.  Guidelines and standards 

published by the American Institute of Architects (AIA), American Society of Heating, Refrigeration, 

and Air-Conditioning Engineers (ASHRAE), and the Association for the Advancement in Medical 

Instrumentation (AAMI) form the basis of certain recommendations.  These standards reflect a 

consensus of expert opinions and extensive consultation with agencies of the U.S. Department of Health 

and Human Services.  Compliance with these standards is usually voluntary.  However, state and federal 

governments often adopt these standards as regulations.  For example, the standards from AIA regarding 

construction and design of new or renovated health-care facilities, have been adopted by reference by 

>40 states.  Certain recommendations have two category ratings (e.g., Categories IA and IC or 

Categories IB and IC), indicating the recommendation is evidence-based as well as a standard or 

regulation. 

 

B.  Rating Categories

 

 

Recommendations are rated according to the following categories: 

 

 

Category IA.

  Strongly recommended for implementation and strongly supported by well-

designed experimental, clinical, or epidemiologic studies. 

 

Category IB.  

Strongly recommended for implementation and supported by certain 

experimental, clinical, or epidemiologic studies and a strong theoretical rationale. 

 

Category IC.

  Required by state or federal regulation, or representing an established association 

standard.  (Note: Abbreviations for governing agencies and regulatory citations are listed, where 

appropriate.  Recommendations from regulations adopted at state levels are also noted.  

Recommendations from AIA guidelines cite the appropriate sections of the standard). 

 

Category II.

  Suggested for implementation and supported by suggestive clinical or 

epidemiologic studies, or a theoretical rationale. 

 

Unresolved Issue.

  No recommendation is offered.  No consensus or insufficient evidence 

exists regarding efficacy. 

background image

 

 

118 

 

 

C.  Recommendations—Air

 

 

I. 

Air-Handling Systems in Health-Care Facilities

 

A.  Use AIA guidelines as minimum standards where state or local regulations are not in place 

for design and construction of ventilation systems in new or renovated health-care facilities.  

Ensure that existing structures continue to meet the specifications in effect at the time of 

construction.

120

     

Category IC

    

(AIA: 1.1.A, 5.4)

 

B.  Monitor ventilation systems in accordance with engineers’ and manufacturers’ 

recommendations to ensure preventive engineering, optimal performance for removal of 

particulates, and elimination of excess moisture.

18, 35, 106, 120, 220, 222, 333, 336

     

Category IB, IC

    

(AIA: 7.2, 7.31.D, 8.31.D, 9.31.D, 10.31.D, 11.31.D, EPA guidance)

 

1. 

Ensure that heating, ventilation, air conditioning (HVAC) filters are properly installed 

and maintained to prevent air leakages and dust overloads.

17, 18, 106, 222

     

Category IB 

2. 

Monitor areas with special ventilation requirements (e.g., AII or PE) for ACH, 

filtration, and pressure differentials.

21, 120, 249, 250, 273–275, 277, 333–344

     

Category IB, IC

    

(AIA: 7.2.C7, 7.2.D6)

 

a. 

Develop and implement a maintenance schedule for ACH, pressure 

differentials, and filtration efficiencies using facility-specific data as part of the 

multidisciplinary risk assessment.  Take into account the age and reliability of 

the system. 

b. 

Document these parameters, especially the pressure differentials. 

3. 

Engineer humidity controls into the HVAC system and monitor the controls to ensure 

proper moisture removal.

120

     

Category  IC

    

(AIA: 7.31.D9)

 

a. 

Locate duct humidifiers upstream from the final filters. 

b. 

Incorporate a water-removal mechanism into the system. 

c. 

Locate all duct takeoffs sufficiently down-stream from the humidifier so that 

moisture is completely absorbed. 

4. 

Incorporate steam humidifiers, if possible, to reduce potential for microbial 

proliferation within the system, and avoid use of cool mist humidifiers.     

Category II

 

5. 

Ensure that air intakes and exhaust outlets are located properly in construction of new 

facilities and renovation of existing facilities.

3, 120

     

Category IC

    

(AIA: 7.31.D3, 8.31.D3, 

9.31.D3, 10.31.D3, 11.31.D3)

 

a. 

Locate exhaust outlets >25 ft. from air-intake systems. 

b. 

Locate outdoor air intakes >6 ft. above ground or >3 ft. above roof level. 

c. 

Locate exhaust outlets from contaminated areas above roof level to minimize 

recirculation of exhausted air. 

6. 

Maintain air intakes and inspect filters periodically to ensure proper operation.

3, 120, 249, 

250, 273–275, 277

     

Category IC 

   

(AIA: 7.31.D8)

 

7. 

Bag dust-filled filters immediately upon removal to prevent dispersion of dust and 

fungal spores during transport within the facility.

106, 221

     

Category IB

 

a. 

Seal or close the bag containing the discarded filter. 

b. 

Discard spent filters as regular solid waste, regardless of the area from which 

they were removed.

221

 

8. 

Remove bird roosts and nests near air intakes to prevent mites and fungal spores from 

entering the ventilation system.

3, 98, 119

     

Category IB

 

9. 

Prevent dust accumulation by cleaning air-duct grilles in accordance with facility-

specific procedures and schedules when rooms are not occupied by patients.

21, 120, 249, 

250, 273–275, 277

     

Category IC, II

     

(AIA: 7.31.D10)

 

background image

 

 

119

10.  Periodically measure output to monitor system function; clean ventilation ducts as 

part of routine HVAC maintenance to ensure optimum performance.

120, 263, 264

     

Category II

    

(AIA: 7.31.D10)

 

C.  Use portable, industrial-grade HEPA filter units capable of filtration rates in the range of 

300–800 ft

3

/min. to augment removal of respirable particles as needed.

219

     

Category II

 

1. 

Select portable HEPA filters that can recirculate all or nearly all of the room air and 

provide the equivalent of >12 ACH.

4

     

Category II

 

2. 

Portable HEPA filter units previously placed in construction zones can be used later 

in patient-care areas, provided all internal and external surfaces are cleaned, and the 

filter’s performance verified by appropriate particle testing.     

Category II

 

3. 

Situate portable HEPA units with the advice of facility engineers to ensure that all 

room air is filtered.

4

     

Category II

 

4. 

Ensure that fresh-air requirements for the area are met.

214, 219

     

Category II

 

D.  Follow appropriate procedures for use of areas with through-the-wall ventilation units.

120

     

Category IC

    

(AIA: 8.31.D1, 8.31.D8, 9.31.D23, 10.31.D18, 11.31.D15)

 

1. 

Do not use such areas as PE rooms.

120

     

Category IC

    

(AIA: 7.2.D3)

 

2. 

Do not use a room with a through-the-wall ventilation unit as an AII room unless it 

can be demonstrated that all required AII engineering controls required are met.

4, 120

     

Category IC

    

(AIA: 7.2.C3)

 

E. 

Conduct an infection-control risk assessment (ICRA) and provide an adequate number of 

AII and PE rooms (if required) or other areas to meet the needs of the patient population.

4, 6, 

9, 18, 19, 69, 94, 120, 142, 331–334, 336–338 

     

Category IA, IC

    

(AIA: 7.2.C, 7.2.D)

 

F. 

When UVGI is used as a supplemental engineering control, install fixtures 1) on the wall 

near the ceiling or suspended from the ceiling as an upper air unit; 2) in the air-return duct 

of an AII room; or 3) in designated enclosed areas or booths for sputum induction.

4

     

Category II

 

G.  Seal windows in buildings with centralized HVAC systems and especially with PE areas.

35, 

111, 120 

     

Category IB, IC

    

(AIA: 7.2.D3)

 

H.  Keep emergency doors and exits from PE rooms closed except during an emergency; equip 

emergency doors and exits with alarms.     

Category II

 

I. 

Develop a contingency plan for backup capacity in the event of a general power failure.

713

     

Category IC

    

(Joint Commission on Accreditation of Healthcare Organizations [JCAHO]: Environment of Care [EC] 

1.4)

 

1. 

Emphasize restoration of proper air quality and ventilation conditions in AII rooms, 

PE rooms, operating rooms, emergency departments, and intensive care units.

120, 713

     

Category IC

    

(AIA: 1.5.A1; JCAHO: EC 1.4)

 

2. 

Deploy infection-control procedures to protect occupants until power and systems 

functions are restored.

6, 120, 713

     

Category IC

    

(AIA: 5.1, 5.2; JCAHO: EC 1.4)

 

J. 

Do not shut down HVAC systems in patient-care areas except for maintenance, repair, 

testing of emergency backup capacity, or new construction.

120, 206

     

Category IB, IC

    

(AIA: 

5.1, 5.2.B, C)

 

1. 

Coordinate HVAC system maintenance with infection-control staff to allow for 

relocation of immunocompromised patients if necessary.

120

     

Category IC

    

(AIA: 5.1, 

5.2)

 

2. 

Provide backup emergency power and air-handling and pressurization systems to 

maintain filtration, constant ACH, and pressure differentials in PE rooms, AII rooms, 

operating rooms, and other critical-care areas.

9, 120, 278

     

Category IC

    

(AIA: 1.5, 5.1, 5.2)

 

3. 

For areas not served by installed emergency ventilation and backup systems, use 

portable units and monitor ventilation parameters and patients in those areas.

219

     

Category II

 

4. 

Coordinate system startups with infection-control staff to protect patients in PE rooms 

from bursts of fungal spores.

9, 35, 120, 278

     

Category IC

    

(AIA: 5.1, 5.2)

 

background image

 

 

120 

5. 

Allow sufficient time for ACH to clean the air once the system is operational 

(Appendix B, Table B.1).

4, 120

     

Category IC

    

(AIA: 5.1, 5.2)

 

K.  HVAC systems serving offices and administration areas may be shut down for energy 

conservation purposes, but the shutdown must not alter or adversely affect pressure 

differentials maintained in laboratories or critical-care areas with specific ventilation 

requirements (i.e., PE rooms, AII rooms, operating rooms).     

Category II

 

L. 

Whenever possible, avoid inactivating or shutting down the entire HVAC system at one 

time, especially in acute-care facilities.     

Category II

 

M.  Whenever feasible, design and install fixed backup ventilation systems for new or renovated 

construction for PE rooms, AII rooms, operating rooms, and other critical care areas 

identified by ICRA.

120

     

Category IC

    

(AIA: 1.5.A1)

 

 
II.

 

Construction, Renovation, Remediation, Repair, and Demolition

 

A.  Establish a multidisciplinary team that includes infection-control staff to coordinate 

demolition, construction, and renovation projects and consider proactive preventive 

measures at the inception; produce and maintain summary statements of the team’s 

activities.

17, 19, 20, 97, 109, 120, 249, 250, 273–277

     

Category IB, IC

    

(AIA: 5.1)

 

B.  Educate both the construction team and the health-care staff in immunocompromised 

patient-care areas regarding the airborne infection risks associated with construction 

projects, dispersal of fungal spores during such activities, and methods to control the 

dissemination of fungal spores.

3, 249, 250, 273–277, 1428–1432

     

Category IB

 

C.  Incorporate mandatory adherence agreements for infection control into construction 

contracts, with penalties for noncompliance and mechanisms to ensure timely correction of 

problems.

3, 120, 249, 273–277

     

Category IC

    

(AIA: 5.1)

 

D.  Establish and maintain surveillance for airborne environmental disease (e.g., aspergillosis) 

as appropriate during construction, renovation, repair, and demolition activities to ensure 

the health and safety of immunocompromised patients.

3, 64, 65, 79

     

Category IB

 

1. 

Using active surveillance, monitor for airborne fungal infections in 

immunocompromised patients.

3, 9, 64, 65

     

Category IB

 

2. 

Periodically review the facility’s microbiologic, histopathologic, and postmortem data 

to identify additional cases.

3, 9, 64, 65

     

Category IB

 

3. 

If cases of aspergillosis or other health-care–associated airborne fungal infections 

occur, aggressively pursue the diagnosis with tissue biopsies and cultures as feasible.

3, 

64, 65, 79, 249, 273–277

     

Category IB

 

E. 

Implement infection-control measures relevant to construction, renovation, maintenance, 

demolition, and repair.

96, 97, 120, 276, 277

     

Category IB, IC

    

(AIA: 5.1, 5.2)

 

1. 

Before the project gets underway, perform an ICRA to define the scope of the project 

and the need for barrier measures.

96, 97, 120, 249, 273–277  

     

Category IB, IC

    

(AIA: 5.1)

 

a. 

Determine if immunocompromised patients may be at risk for exposure to 

fungal spores from dust generated during the project.

20, 109, 273–275, 277

 

b. 

Develop a contingency plan to prevent such exposures.

20, 109, 273–275, 277

 

2. 

Implement infection-control measures for external demolition and construction 

activities.

50, 249, 273–277, 283

     

Category IB

 

a. 

Determine if the facility can operate temporarily on recirculated air; if feasible, 

seal off adjacent air intakes. 

b. 

If this is not possible or practical, check the low-efficiency (roughing) filter 

banks frequently and replace as needed to avoid buildup of particulates. 

c. 

Seal windows and reduce wherever possible other sources of outside air 

intrusion (e.g., open doors in stairwells and corridors), especially in PE areas. 

3. 

Avoid damaging the underground water distribution system (i.e., buried pipes) to 

prevent soil and dust contamination of the water.

120, 305

     

Category IB, IC

    

(AIA: 5.1)

 

background image

 

 

121

4. 

Implement infection-control measures for internal construction activities.

20, 49, 97, 120, 

249, 273–277

     

Category IB, IC

    

(AIA: 5.1, 5.2)

 

a. 

Construct barriers to prevent dust from construction areas from entering 

patient-care areas; ensure that barriers are impermeable to fungal spores and in 

compliance with local fire codes.

20, 49, 97, 120, 284, 312, 713, 1431

 

b. 

Block and seal off return air vents if rigid barriers are used for containment.

120, 

276, 277

  

c. 

Implement dust control measures on surfaces and by diverting pedestrian traffic 

away from work zones.

20, 49, 97, 120

 

d. 

Relocate patients whose rooms are adjacent to work zones, depending upon 

their immune status, the scope of the project, the potential for generation of 

dust or water aerosols, and the methods used to control these aerosols.

49, 120, 281

 

5. 

Perform those engineering and work-site related infection-control measures as needed 

for internal construction, repairs, and renovations:

20, 49, 97, 109, 120, 312

     

Category IB, IC 

   

(AIA: 5.1, 5.2)

 

a. 

Ensure proper operation of the air-handling system in the affected area after 

erection of barriers and before the room or area is set to negative pressure.

49, 69, 

276, 278

     

Category IB

 

b. 

Create and maintain negative air pressure in work zones adjacent to patient-care 

areas and ensure that required engineering controls are maintained.

20, 49, 97, 109, 120, 

312

 

c. 

Monitor negative air flow inside rigid barriers.

120, 281

 

d. 

Monitor barriers and ensure the integrity of the construction barriers; repair 

gaps or breaks in barrier joints.

120, 284, 307, 312

 

e. 

Seal windows in work zones if practical; use window chutes for disposal of 

large pieces of debris as needed, but ensure that the negative pressure 

differential for the area is maintained.

20, 120, 273

 

f. 

Direct pedestrian traffic from construction zones away from patient-care areas 

to minimize the dispersion of dust.

20, 49, 97, 109, 111, 120, 273–277

 

g. 

Provide construction crews with 1) designated entrances, corridors, and 

elevators whenever practical; 2) essential services [e.g., toilet facilities], and 

convenience services [e.g., vending machines]; 3) protective clothing [e.g., 

coveralls, footgear, and headgear] for travel to patient-care areas; and 4) a space 

or anteroom for changing clothing and storing equipment.

120, 249, 273–277 

  

h. 

Clean work zones and their entrances daily by 1) wet-wiping tools and tool 

carts before their removal from the work zone; 2) placing mats with tacky 

surfaces inside the entrance; and 3) covering debris and securing this covering 

before removing debris from the work zone.

120, 249, 273–277

 

i. 

In patient-care areas, for major repairs that include removal of ceiling tiles and 

disruption of the space above the false ceiling, use plastic sheets or 

prefabricated plastic units to contain dust; use a negative pressure system 

within this enclosure to remove dust; and either pass air through an industrial 

grade, portable HEPA filter capable of filtration rates ranging from 300–800 

ft

3

/min., or exhaust air directly to the outside.

49, 276, 277, 281, 309

  

j. 

Upon completion of the project, clean the work zone according to facility 

procedures, and install barrier curtains to contain dust and debris before 

removal of rigid barriers.

20, 97, 120, 249, 273–277 

  

k. 

Flush the water system to clear sediment from pipes to minimize waterborne 

microorganism proliferation.

120, 305

  

l. 

Restore appropriate ACH, humidity, and pressure differential; clean or replace 

air filters; dispose of spent filters.

35, 106, 221, 278 

  

background image

 

 

122 

F. 

Use airborne-particle sampling as a tool to evaluate barrier integrity.

35, 100

     

Category II 

 

G.  Commission the HVAC system for newly constructed health-care facilities and renovated 

spaces before occupancy and use, with emphasis on ensuring proper ventilation for 

operating rooms, AII rooms, and PE areas.

100, 120, 288, 304

     

Category IC

    

(AIA: 5.1; ASHRAE: 1-

1996)

 

H. 

No recommendation is offered

 on routine microbiologic air sampling before, during, or 

after construction or before or during occupancy of areas housing immunocompromised 

patients.

17, 20, 49, 97, 109, 272, 1433

     

Unresolved issue

 

I. 

If a case of health-care–acquired aspergillosis or other opportunistic environmental airborne 

fungal disease occurs during or immediately after construction, implement appropriate 

follow-up measures.

20, 55, 62, 77, 94, 95

     

Category IB

 

1. 

Review pressure differential monitoring documentation to verify that pressure 

differentials in the construction zone and in PE rooms were appropriate for their 

settings.

94, 95, 120

     

Category IB, IC

    

(AIA: 5.1)

 

2. 

Implement corrective engineering measures to restore proper pressure differentials as 

needed.

94, 95, 120

     

Category IB, IC

    

(AIA: 5.1)

 

3. 

Conduct a prospective search for additional cases and intensify retrospective 

epidemiologic review of the hospital’s medical and laboratory records.

3, 20, 62, 63, 104

     

Category IB

 

4. 

If there is no evidence of ongoing transmission, continue routine maintenance in the 

area to prevent health-care–acquired fungal disease.

3, 55

     

Category IB

 

J. 

If there is epidemiologic evidence of ongoing transmission of fungal disease, conduct an 

environmental assessment to determine and eliminate the source.

3, 96, 97, 109, 111, 115, 249, 273–277

     

Category IB

 

1. 

Collect environmental samples from potential sources of airborne fungal spores, 

preferably using a high-volume air sampler rather than settle plates.

3, 18, 44, 48, 49, 97, 106, 

111, 112, 115, 249, 254, 273–277, 292, 312

     

Category IB

 

2. 

If either an environmental source of airborne fungi or an engineering problem with 

filtration or pressure differentials is identified, promptly perform corrective measures 

to eliminate the source and route of entry.

96, 97

     

Category IB

 

3. 

Use an EPA-registered anti-fungal biocide (e.g., copper-8-quinolinolate) for 

decontaminating structural materials.

50, 277, 312, 329

     

Category IB

 

4. 

If an environmental source of airborne fungi is not identified, review infection control 

measures, including engineering controls, to identify potential areas for correction or 

improvement.

73, 117

     

Category IB

 

5. 

If possible, perform molecular subtyping of 

Aspergillus

 spp. isolated from patients 

and the environment to establish strain identities.

252, 293–296

     

Category II

 

K.  If air-supply systems to high-risk areas (e.g., PE rooms) are not optimal, use portable, 

industrial-grade HEPA filters on a temporary basis until rooms with optimal air-handling 

systems become available.

3, 120, 273–277 

     

Category II

 

 

III.  Infection-Control and Ventilation Requirements for PE Rooms

 

A.  Minimize exposures of severely immunocompromised patients (e.g., solid organ transplant 

patients or allogeneic neutropenic patients) to activities that might cause aerosolization of 

fungal spores (e.g., vacuuming or disruption of ceiling tiles).

9, 20, 109, 272

     

Category IB

 

B.  Minimize the length of time that immunocompromised patients in PE are outside their 

rooms for diagnostic procedures and other activities.

9, 283

     

Category IB

 

C.  Provide respiratory protection for severely immunocompromised patients when they must 

leave PE for diagnostic studies and other activities; consult the most recent revision of 

CDC’s 

Guidelines for Prevention of Health-Care–Associated Pneumonia

 for information 

regarding the appropriate type of respiratory protection.

3, 9

     

Category II

 

background image

 

 

123

D.  Incorporate ventilation engineering specifications and dust-controlling processes into the 

planning and construction of new PE units.     

Category IB, IC

 

1. 

Install central or point-of-use HEPA filters for supply (incoming) air.

3, 18, 20, 44, 99–104, 

120, 254, 316–318, 1432, 1434

     

Category IB, IC

    

(AIA: 5.1, 5.2, 7.2.D)

 

2. 

Ensure that rooms are well sealed by 1) properly constructing windows, doors, and 

intake and exhaust ports; 2) maintaining ceilings that are smooth and free of fissures, 

open joints, and crevices; 3) sealing walls above and below the ceiling, and 4) 

monitoring for leakage and making necessary repairs.

3, 111, 120, 317, 318  

     

Category IB, 

IC

    

(AIA: 7.2.D3)

 

3. 

Ventilate the room to maintain >12 ACH.

3, 9, 120, 241, 317, 318

     

Category IC

    

(AIA: 7.2.D)

 

4. 

Locate air supply and exhaust grilles so that clean, filtered air enters from one side of 

the room, flows across the patient’s bed, and exits from the opposite side of the 

room.

3, 120, 317, 318

     

Category IC

    

(AIA: 7.31.D1)

 

5. 

Maintain positive room air pressure (>2.5 Pa [0.01-inch water gauge]) in relation to 

the corridor.

3, 35, 120, 317, 318

     

Category IB, IC

    

(AIA: Table 7.2)

 

6. 

Maintain airflow patterns and monitor these on a daily basis by using permanently 

installed visual means of detecting airflow in new or renovated construction, or using 

other visual methods (e.g., flutter strips, or smoke tubes) in existing PE units.   

Document the monitoring results.

120, 273

     

Category IC  

  

(AIA: 7.2.D6)

 

7. 

Install self-closing devices on all room exit doors in protective environments.

120 

     

Category IC

    

(AIA: 7.2.D4)

 

E. 

Do not use laminar air flow systems in newly constructed PE rooms.

316, 318

     

Category II

 

F. 

Take measures to protect immunocompromised patients who would benefit from a PE room 

and who also have an airborne infectious disease (e.g., acute VZV infection or 

tuberculosis). 

1. 

Ensure that the patient’s room is designed to maintain positive pressure. 

2. 

Use an anteroom to ensure appropriate air balance relationships and provide 

independent exhaust of contaminated air to the outside, or place a HEPA filter in the 

exhaust duct if the return air must be recirculated.

120, 317

     

Category IC

    

(AIA: 7.2.D1, 

A7.2.D)

 

3. 

If an anteroom is not available, place the patient in AII and use portable, industrial-

grade HEPA filters to enhance filtration of spores in the room.

219

     

Category II

 

G.  Maintain backup ventilation equipment (e.g., portable units for fans or filters) for 

emergency provision of ventilation requirements for PE areas and take immediate steps to 

restore the fixed ventilation system function.

9, 120, 278 

     

Category IC

    

(AIA: 5.1)

 

 

IV.  Infection-Control and Ventilation Requirements for AII Rooms

 

A.  Incorporate certain specifications into the planning, and construction or renovation of AII 

units.

4, 107, 120, 317, 318

     

Category IB, IC

 

1. 

Maintain continuous negative air pressure (2.5 Pa [0.01-inch water gauge]) in relation 

to the air pressure in the corridor;  monitor air pressure periodically, preferably daily, 

with audible manometers or smoke tubes at the door (for existing AII rooms) or with 

a permanently installed visual monitoring mechanism.  Document the results of 

monitoring.

120, 317, 318

     

Category IB, IC

    

(AIA: 7.2.C7, Table 7.2)

 

2. 

Ensure that rooms are well-sealed by properly constructing windows, doors, and air-

intake and exhaust ports; when monitoring indicates air leakage, locate the leak and 

make necessary repairs.

120, 317, 318

     

Category IB, IC

    

(AIA: 7.2.C3)

 

3. 

Install self-closing devices on all AII room exit doors.

120

     

Category IC

    

(AIA: 7.2.C4)

 

4. 

Provide ventilation to ensure >12 ACH for renovated rooms and new rooms, and >6 

ACH for existing AII rooms.

4, 107, 120

     

Category IC

    

(AIA: Table 7.2)

 

background image

 

 

124 

5. 

Direct exhaust air to the outside, away from air-intake and populated areas.  If this is 

not practical, air from the room can be recirculated after passing through a HEPA 

filter.

4, 120

     

Category IC

    

(AIA: Table 7.2)

 

B.  Where supplemental engineering controls for air cleaning are indicated from a risk 

assessment of the AII area, install UVGI units in the exhaust air ducts of the HVAC system 

to supplement HEPA filtration or install UVGI fixtures on or near the ceiling to irradiate 

upper room air.

4

     

Category II

 

C.  Implement environmental infection-control measures for persons with known or suspected 

airborne infectious diseases. 

1. 

Use AII rooms for patients with or suspected of having an airborne infection who also 

require cough-inducing procedures, or use an enclosed booth that is engineered to 

provide 1) >12 ACH; 2) air supply and exhaust rate sufficient to maintain a 2.5 Pa 

[0.01-inch water gauge] negative pressure difference with respect to all surrounding 

spaces with an exhaust rate of >50 ft

3

/min.; and 3) air exhausted directly outside away 

from air intakes and traffic or exhausted after HEPA filtration prior to recirculation.

4, 

120, 348–350

     

Category IB, IC

    

(AIA: 7.15.E, 7.31.D23, 9.10, Table 7.2)

 

2. 

Although airborne spread of viral hemorrhagic fever (VHF) has not been documented 

in a health-care setting, prudence dictates placing a VHF patient in an AII room, 

preferably with an anteroom to reduce the risk of occupational exposure to 

aerosolized infectious material in blood, vomitus, liquid stool, and respiratory 

secretions present in large amounts during the end stage of a patient’s illness.

202–204

     

Category II

 

a. 

If an anteroom is not available, use portable, industrial-grade HEPA filters in 

the patient’s room to provide additional ACH equivalents for removing 

airborne particulates. 

b. 

Ensure that health-care workers wear face shields or goggles with appropriate 

respirators when entering the rooms of VHF patients with prominent cough, 

vomiting, diarrhea, or hemorrhage.

203

 

3. 

Place smallpox patients in negative pressure rooms at the onset of their illness, 

preferably using a room with an anteroom if available.

6

     

Category II

 

D. 

No recommendation is offered

 regarding negative pressure or isolation rooms for patients 

with 

Pneumocystis carinii

 pneumonia.

126, 131, 132

     

Unresolved issue

 

E. 

Maintain back-up ventilation equipment (e.g., portable units for fans or filters) for 

emergency provision of ventilation requirements for AII rooms and take immediate steps to 

restore the fixed ventilation system function.

4, 120, 278

     

Category IC

    

(AIA: 5.1)

 

 

V. 

Infection-Control and Ventilation Requirements for Operating Rooms

 

A.  Implement environmental infection-control and ventilation measures for operating rooms. 

1. Maintain 

positive-pressure ventilation with respect to corridors and adjacent areas.

7, 

120, 356

     

Category IB, IC

    

(AIA: Table 7.2)

 

2. Maintain 

>15 ACH, of which >3 ACH should be fresh air.

120, 357, 358

     

Category IC

    

(AIA: Table 7.2)

 

3.

  

Filter all recirculated and fresh air through the appropriate filters, providing 90% 

efficiency (dust-spot testing) at a minimum.

120, 362 

     

Category IC

    

(AIA: Table 7.3)

 

4. 

In rooms not engineered for horizontal laminar airflow, introduce air at the ceiling 

and exhaust air near the floor.

120, 357, 359

     

Category IC

    

(AIA: 7.31.D4)

 

5. 

Do not use UV lights to prevent surgical-site infections.

356, 364–370

     

Category IB

 

6. 

Keep operating room doors closed except for the passage of equipment, personnel, 

and patients, and limit entry to essential personnel.

351, 352

     

Category IB

 

B.  Follow precautionary procedures for TB patients who also require emergency surgery.

4, 347, 

371

     

Category IB, IC

 

background image

 

 

125

1. 

Use an N95 respirator approved by the National Institute for Occupational Safety and 

Health (NIOSH) without exhalation valves in the operating room.

347, 372

     

Category 

IC

    

(Occupational Safety and Health Administration [OSHA]; 29 Code of Federal Regulations [CFR] 

1910.134,139)

 

2. 

Intubate the patient in either the AII room or the operating room; if intubating the 

patient in the operating room, do not allow the doors to open until 99% of the 

airborne contaminants are removed (Appendix B, Table B.1).

4, 358

     

Category IB

 

3. 

When anesthetizing a patient with confirmed or suspected TB, place a bacterial filter 

between the anesthesia circuit and patient’s airway to prevent contamination of 

anesthesia equipment or discharge of tubercle bacilli into the ambient air.

371, 373

     

Category IB

 

4. 

Extubate and allow the patient to recover in an AII room.

4, 358

     

Category IB

 

5. 

If the patient has to be extubated in the operating room, allow adequate time for ACH 

to clean 99% of airborne particles from the air (Appendix B, Table B.1) because 

extubation is a cough-producing procedure.

4, 358

    

Category IB

 

C.  Use portable, industrial-grade HEPA filters temporarily for supplemental air cleaning 

during intubation and extubation for infectious TB patients who require surgery.

4, 219, 358

     

Category II

 

1. 

Position the units appropriately so that all room air passes through the filter; obtain 

engineering consultation to determine the appropriate placement of the unit.

4

     

Category II

 

2. 

Switch the portable unit off during the surgical procedure.     

Category II

 

3. 

Provide fresh air as per ventilation standards for operating rooms; portable units do 

not meet the requirements for the number of fresh ACH.

120, 215, 219

     

Category II

 

D.  If possible, schedule infectious TB patients as the last surgical cases of the day to maximize 

the time available for removal of airborne contamination.     

Category II

 

E. 

No recommendation is offered

 for performing orthopedic implant operations in rooms 

supplied with laminar airflow.

362, 364

     

Unresolved issue

 

F. Maintain 

backup 

ventilation 

equipment (e.g., portable units for fans or filters) for 

emergency provision of ventilation requirements for operating rooms, and take immediate 

steps to restore the fixed ventilation system function.

68, 120, 278,372

     

Category IB, IC

    

(AIA: 

5.1)

 

 

VI.  Other Potential Infectious Aerosol Hazards in Health-Care Facilities

 

A.  In settings where surgical lasers are used, wear appropriate personal protective equipment, 

including N95 or N100 respirators, to minimize exposure to laser plumes.

347, 378, 389

     

Category IC

    

(OSHA; 29 CFR 1910.134,139)

 

B.  Use central wall suction units with in-line filters to evacuate minimal laser plumes.

378, 382, 386, 

389 

     

Category II

 

C.  Use a mechanical smoke evacuation system with a high-efficiency filter to manage the 

generation of large amounts of laser plume, when ablating tissue infected with human 

papilloma virus (HPV) or performing procedures on a patient with extrapulmonary TB.

4, 382, 

389– 392

     

Category II

 

 

 

D.  Recommendations—Water

 

 

I. 

Controlling the Spread of Waterborne Microoganisms

 

A.  Practice hand hygiene to prevent the hand transfer of waterborne pathogens, and use barrier 

precautions (e.g., gloves) as defined by other guidelines.

6, 464, 577, 586, 592, 1364

     

Category IA

 

background image

 

 

126 

B.  Eliminate contaminated water or fluid environmental reservoirs (e.g., in equipment or 

solutions) wherever possible.

464, 465

     

Category IB

 

C.  Clean and disinfect sinks and wash basins on a regular basis by using an EPA-registered 

product as set by facility policies.     

Category II

 

D.  Evaluate for possible environmental sources (e.g., potable water) of specimen 

contamination when waterborne microorganisms (e.g., NTM) of unlikely clinical 

importance are isolated from clinical cultures (e.g., specimens collected aseptically from 

sterile sites or, if post-procedural, colonization occurs after use of tap water in patient 

care).

607, 610–612

     

Category IB

 

E. 

Avoid placing decorative fountains and fish tanks in patient-care areas; ensure disinfection 

and fountain maintenance if decorative fountains are used in the public areas of the health-

care facility.

664

     

Category IB

 

 

II. 

Routine Prevention of Waterborne Microbial Contamination Within the Distribution 
System

 

A.  Maintain hot water temperature at the return at the highest temperature allowable by state 

regulations or codes, preferably >124°F (>51°C), and maintain cold water temperature at 

<68°F (<20°C).

3, 661

     

Category IC

    

(States; ASHRAE: 12:2000)

 

B.  If the hot water temperature can be maintained at >124°F (>51°C), explore engineering 

options (e.g., install preset thermostatic valves in point-of-use fixtures) to help minimize the 

risk of scalding.

661

     

Category II

 

C.  When state regulations or codes do not allow hot water temperatures above the range of 

105°F–120°F (40.6°C–49°C) for hospitals or 95°F–110°F (35°C–43.3°C) for nursing care 

facilities or when buildings cannot be retrofitted for thermostatic mixing valves, follow 

either of these alternative preventive measures to minimize the growth of 

Legionella

 spp. in 

water systems.     

Category II

 

1. 

Periodically increase the hot water temperature to >150°F (>66°C) at the point of 

use.

661

     

Category II

  

2. 

Alternatively, chlorinate the water and then flush it through the system.

661, 710, 711

     

Category II

 

D.  Maintain constant recirculation in hot-water distribution systems serving patient-care 

areas.

120

     

Category IC

    

(AIA: 7.31.E.3)

 

 

III.  Remediation Strategies for Distribution System Repair or Emergencies

 

A.  Whenever possible, disconnect the ice machine before planned water disruptions.     

Category II

 

B.  Prepare a contingency plan to estimate water demands for the entire facility in advance of 

significant water disruptions (i.e., those expected to result in extensive and heavy microbial 

or chemical contamination of the potable water), sewage intrusion, or flooding.

713, 719

     

Category IC

    

(JCAHO: EC 1.4)

 

C.  When a significant water disruption or an emergency occurs, adhere to any advisory to boil 

water issued by the municipal water utility.

642

     

Category IB, IC

    

(Municipal order)

 

1. 

Alert patients, families, staff, and visitors not to consume water from drinking 

fountains, ice, or drinks made from municipal tap water, while the advisory is in 

effect, unless the water has been disinfected (e.g., by bringing to a rolling boil for >1 

minute).

642

     

Category IB, IC

    

(Municipal order)

 

2. 

After the advisory is lifted, run faucets and drinking fountains at full flow for >5 

minutes, or use high-temperature water flushing or chlorination.

642, 661

     

Category IC, 

II

    

(Municipal order; ASHRAE 12:2000)

 

D.  Maintain a high level of surveillance for waterborne disease among patients after a boil 

water advisory is lifted.     

Category II

 

background image

 

 

127

E. 

Corrective decontamination of the hot water system might be necessary after a disruption in 

service or a cross-connection with sewer lines has occurred. 

1. 

Decontaminate the system when the fewest occupants are present in the building (e.g., 

nights or weekends).

3, 661

     Category IC

    

(ASHRAE: 12:2000)

 

2. 

If using high-temperature decontamination, raise the hot-water temperature to 160°F–

170°F (71°C–77°C) and maintain that level while progressively flushing each outlet 

around the system for >5 minutes.

3, 661

     

Category IC

    

(ASHRAE: 12:2000)

 

3. 

If using chlorination, add enough chlorine, preferably overnight, to achieve a free 

chlorine residual of >2 mg/L (>2 ppm) throughout the system.

661 

     

Category IC

    

(ASHRAE: 12:2000)

 

a. 

Flush each outlet until chlorine odor is detected. 

b. 

Maintain the elevated chlorine concentration in the system for >2 hrs (but <24 

hrs). 

4. 

Use a very thorough flushing of the water system instead of chlorination if a highly 

chlorine-resistant microorganism (e.g., 

Cryptosporidium

 spp.) is suspected as the 

water contaminant.      

Category II

 

F. 

Flush and restart equipment and fixtures according to manufacturers’ instructions.     

Category II

 

G.  Change the pretreatment filter and disinfect the dialysis water system with an EPA-

registered product to prevent colonization of the reverse osmosis membrane and 

downstream microbial contamination.

721

     

Category II

 

H.  Run water softeners through a regeneration cycle to restore their capacity and function.     

Category II

 

I. 

If the facility has a water-holding reservoir or water-storage tank, consult the facility 

engineer or local health department to determine whether this equipment needs to be 

drained, disinfected with an EPA-registered product, and refilled.     

Category II

 

J. 

Implement facility management procedures to manage a sewage system failure or flooding 

(e.g., arranging with other health-care facilities for temporary transfer of patients or 

provision of services), and establish communications with the local municipal water utility 

and the local health department to ensure that advisories are received in a timely manner 

upon release.

713, 719

     

Category IC

    

(JCAHO: EC 1.4; Municipal order)

 

K.  Implement infection-control measures during sewage intrusion, flooding, or other water-

related emergencies. 

1. 

Relocate patients and clean or sterilize supplies from affected areas.     

Category II

 

2. 

If hands are not visibly soiled or contaminated with proteinaceous material, include 

an alcohol-based hand rub in the hand hygiene process 1) before performing invasive 

procedures; 2) before and after each patient contact; and 3) whenever hand hygiene is 

indicated.

1364

     

Category II

 

3. 

If hands are visibly soiled or contaminated with proteinaceous material, use soap and 

bottled water for handwashing.

1364

     

Category II

 

4. 

If the potable water system is not affected by flooding or sewage contamination, 

process surgical instruments for sterilization according to standard procedures.     

Category II

 

5. 

Contact the manufacturer of the automated endoscope reprocessor (AER) for specific 

instructions on the use of this equipment during a water advisory.     

Category II

 

L. 

Remediate the facility after sewage intrusion, flooding, or other water-related emergencies. 

1. 

Close off affected areas during cleanup procedures.     

Category II

 

2. 

Ensure that the sewage system is fully functional before beginning remediation so 

contaminated solids and standing water can be removed.     

Category II

 

background image

 

 

128 

3. 

If hard-surface equipment, floors, and walls remain in good repair, ensure that these 

are dry within 72 hours; clean with detergent according to standard cleaning 

procedures.     

Category II

 

4. 

Clean wood furniture and materials (if still in good repair); allow them to dry 

thoroughly before restoring varnish or other surface coatings.     

Category II

 

5. 

Contain dust and debris during remediation and repair as outlined in air 

recommendations (Air: II G 4, 5).     

Category II

 

M.  Regardless of the original source of water damage (e.g., flooding versus water leaks from 

point-of-use fixtures or roofs), remove wet, absorbent structural items (e.g., carpeting, 

wallboard, and wallpaper) and cloth furnishings if they cannot be easily and thoroughly 

cleaned and dried within 72 hours (e.g., moisture content <20% as determined by moisture 

meter readings); replace with new materials as soon as the underlying structure is declared 

by the facility engineer to be thoroughly dry.

18, 266, 278, 1026

     

Category IB

 

 

IV.  Additional Engineering Measures as Indicated by Epidemiologic Investigation for 

Controlling Waterborne, Health-Care–Associated Legionnaires Disease

 

A.  When using a pulse or one-time decontamination method, superheat the water by flushing 

each outlet for >5 minutes with water at 160°F–170°F (71°C–77°C) or hyperchlorinate the 

system by flushing all outlets for >5 minutes with water containing >2 mg/L (>2 ppm) free 

residual chlorine using a chlorine-based product registered by the EPA for water treatment 

(e.g., sodium hypochlorite [chlorine bleach]).

661, 711, 714, 724, 764, 766

     

Category IB

    

(ASHRAE: 

12:2000)

 

B.  After a pulse treatment, maintain both the heated water temperature at the return and the 

cold water temperature as per the recommendation (Water: IIA) wherever practical and 

permitted by state codes, or chlorinate heated water to achieve 1–2 mg/L (1–2 ppm) free 

residual chlorine at the tap using a chlorine-based product registered by the EPA for water 

treatment (e.g., sodium hypochlorite [bleach]).

26, 437, 661, 709, 726, 727

     

Category IC

    

(States; 

ASHRAE: 12:2000)

 

C.  Explore engineering or educational options (e.g., install preset thermostatic mixing valves 

in point-of-use fixtures or post warning signs at each outlet) to minimize the risk of scalding 

for patients, visitors, and staff.      

Category II

 

D. 

No recommendation is offered

 for treating water in the facility’s distribution system with 

chlorine dioxide, heavy-metal ions (e.g., copper or silver), monochloramine, ozone, or UV 

light.

728–746

     

Unresolved issue

 

 

V. 

General Infection-Control Strategies for Preventing Legionnaires Disease 

A.  Conduct an infection-control risk assessment of the facility to determine if patients at risk or 

severely immunocompromised patients are present.

3, 431, 432

     

Category IB

 

B.  Implement general strategies for detecting and preventing Legionnaires disease in facilities 

that do not provide care for severely immunocompromised patients (i.e., facilities that do 

not have HSCT or solid organ transplant programs).

3, 431, 432

     

Category IB

 

1. 

Establish a surveillance process to detect health-care–associated Legionnaires 

disease.

3, 431, 432

     

Category IB

 

2. 

Inform health-care personnel (e.g., infection control, physicians, patient-care staff, 

and engineering) regarding the potential for Legionnaires disease to occur and 

measures to prevent and control health-care–associated legionellosis.

437, 759

     

Category IB

 

3. 

Establish mechanisms to provide clinicians with laboratory tests (e.g., culture, urine 

antigen, direct fluorescence assay [DFA], and serology) for the diagnosis of 

Legionnaires disease.

3, 431

     

Category IB

 

background image

 

 

129

C.  Maintain a high index of suspicion for health-care–associated Legionnaires disease, and 

perform laboratory diagnostic tests for legionellosis on suspected cases, especially in 

patients at risk who do not require a PE for care (e.g., patients receiving systemic steroids; 

patients aged >65 years; or patients with chronic underlying disease [e.g., diabetes mellitus, 

congestive heart failure, or chronic obstructive lung disease]).

3, 395, 417, 423–425, 432, 435, 437, 453

     

Category IA

 

D.  Periodically review the availability and clinicians’ use of laboratory diagnostic tests for 

Legionnaires disease in the facility; if clinicians’ use of the tests on patients with diagnosed 

or suspected pneumonia is limited, implement measures (e.g., an educational campaign) to 

enhance clinicians’ use of the test(s).

453

     

Category IB 

E. 

If one case of laboratory-confirmed, health-care–associated Legionnaires disease is 

identified, or if two or more cases of laboratory-suspected, health-care–associated 

Legionnaires disease occur during a 6-month period, certain activities should be initiated.

405, 

408, 431, 453, 739, 759

     

Category IB

 

1. 

Report the cases to the state and local health departments where required.     

Category 

IC

    

(States)

 

2. 

If the facility does not treat severely immunocompromised patients, conduct an 

epidemiologic investigation, including retrospective review of microbiologic, 

serologic, and postmortem data to look for previously unidentified cases of health-

care–associated Legionnaires disease, and begin intensive prospective surveillance for 

additional cases.

3, 405, 408, 431, 453, 739, 759

     

Category IB

 

3. 

If no evidence of continued health-care–associated transmission exists, continue 

intensive prospective surveillance for >2 months after the initiation of surveillance.

3, 

405, 408, 431, 453, 739, 759

     

Category IB

 

F. 

If there is evidence of continued health-care–associated transmission (i.e., an outbreak), 

conduct an environmental assessment to determine the source of 

Legionella 

spp.

403–410, 455

     

Category IB

 

1. 

Collect water samples from potential aerosolized water sources (Appendix C).

1209

     

Category IB

 

2. 

Save and subtype isolates of 

Legionella 

spp. obtained from patients and the 

environment.

403–410, 453, 763, 764

     

Category IB

 

3. 

If a source is identified, promptly institute water system decontamination measures 

per recommendations (see Water IV).

766, 767

     

Category IB

 

4. If 

Legionella

 spp. are detected in >1cultures (e.g., conducted at 2-week intervals 

during 3 months), reassess the control measures, modify them accordingly, and repeat 

the decontamination procedures; consider intensive use of techniques used for initial 

decontamination, or a combination of superheating and hyperchlorination.

3, 767, 768

     

Category IB

 

G.  If an environmental source is not identified during a Legionnaires disease outbreak, 

continue surveillance for new cases for >2 months.  Either defer decontamination pending 

identification of the source of 

Legionella

 spp., or proceed with decontamination of the 

hospital's water distribution system, with special attention to areas involved in the outbreak.     

Category II

 

H. 

No recommendation is offered

 regarding routine culturing of water systems in health-care 

facilities that do not have patient-care areas (i.e., PE or transplant units) for persons at high 

risk for 

Legionella

 spp. infection.

26, 453, 707, 709, 714, 747, 753

     

Unresolved issue

 

I. 

No recommendation is offered

 regarding the removal of faucet aerators in areas for 

immunocompetent patients.     

Unresolved issue

 

J. 

Keep adequate records of all infection-control measures and environmental test results for 

potable water systems.     

Category II

 

 

background image

 

 

130 

VI.  Preventing Legionnaires Disease in Protective Environments and Transplant Units

 

A.  When implementing strategies for preventing Legionnaires disease among severely 

immunosuppressed patients housed in facilities with HSCT or solid-organ transplant 

programs, incorporate these specific surveillance and epidemiologic measures in addition to 

the steps previously outlined (Water: V and Appendix C). 

1. 

Maintain a high index of suspicion for legionellosis in transplant patients even when 

environmental surveillance cultures do not yield legionellae.

430, 431

     

Category IB

 

2. 

If a case occurs in a severely immunocompromised patient, or if severely 

immunocompromised patients are present in high-risk areas of the hospital (e.g., PE 

or transplant units) and cases are identified elsewhere in the facility, conduct a 

combined epidemiologic and environmental investigation to determine the source of 

Legionella

 spp.

431, 767

     

Category IB

 

B.  Implement culture strategies and potable water and fixture treatment measures in addition to 

those previously outlined (Water: V).     

Category II

 

1. 

Depending on state regulations on potable water temperature in public buildings,

725

 

hospitals housing patients at risk for health-care–associated legionellosis should either 

maintain heated water with a minimum return temperature of >124°F [>51°C] and 

cold water at <68°F [<20°C]), or chlorinate heated water to achieve 1–2 mg/L (1–2 

ppm) of free residual chlorine at the tap.

26, 441, 661, 709–711, 726, 727

     

Category II

 

2. 

Periodic culturing for legionellae in potable water samples from HSCT or solid-organ 

transplant units can be performed as part of a comprehensive strategy to prevent 

Legionnaires disease in these units.

9, 431, 710, 769

     

Category II

 

3. 

No recommendation is offered

 regarding the optimal methodology (i.e., frequency 

or number of sites) for environmental surveillance cultures in HSCT or solid organ 

transplant units.     

Unresolved issue

 

4. 

In areas with patients at risk, when 

Legionella

 spp. are not detectable in unit water, 

remove, clean, and disinfect shower heads and tap aerators monthly by using a 

chlorine-based, EPA-registered product.  If an EPA-registered chlorine disinfectant is 

not available, use a chlorine bleach solution (500–615 ppm [1:100 v/v dilution]).

661, 745

     

Category II

 

C. If 

Legionella

 spp. are determined to be present in the water of a transplant unit, implement 

certain measures until 

Legionella

 spp. are no longer detected by culture. 

1. 

Decontaminate the water supply as outlined previously (Water: IV).

3, 9, 661, 766, 767

     

Category IB

 

2. 

Do not use water from the faucets in patient-care rooms to avoid creating infectious 

aerosols.

9, 412

     

Category IB

 

3. 

Restrict severely immunocompromised patients from taking showers.

9, 412

     

Category 

IB

 

4. 

Use water that is not contaminated with 

Legionella 

spp. for HSCT patients’ sponge 

baths.

9, 412

     

Category IB

 

5. 

Provide patients with sterile water for tooth brushing, drinking, and for flushing 

nasogastric tubing during legionellosis outbreaks.

9, 412

     

Category IB

 

D.  Do not use large-volume room air humidifiers that create aerosols (e.g., by Venturi 

principle, ultrasound, or spinning disk) unless they are subjected to high-level disinfection 

and filled only with sterile water.

3, 9, 402, 455

     

Category IB

 

 

VII.  Cooling Towers and Evaporative Condensers

 

A.  When planning construction of new health-care facilities, locate cooling towers so that the 

drift is directed away from the air-intake system, and design the towers to minimize the 

volume of aerosol drift.

404, 661, 786

     

Category IC

    

(ASHRAE: 12:2000)

 

background image

 

 

131

B.  Implement infection-control procedures for operational cooling towers.

404, 661, 784

     

Category IC

     

(ASHRAE: 12:2000)

 

1. 

Install drift eliminators.

404, 661, 784

     

Category IC

    

(ASHRAE: 12:2000)

 

2. 

Use an effective EPA-registered biocide on a regular basis.

661

     

Category IC

    

(ASHRAE: 12:2000)

 

3. 

Maintain towers according to manufacturers’ recommendations, and keep detailed 

maintenance and infection control records, including environmental test results from 

legionellosis outbreak investigations.

661

     

Category IC

    

(ASHRAE: 12:2000)

 

C.  If cooling towers or evaporative condensers are implicated in health-care–associated 

legionellosis, decontaminate the cooling-tower system.

404, 405, 786, 787

      

Category IB

 

 

VIII.  Dialysis Water Quality and Dialysate 

A.  Adhere to current AAMI standards for quality assurance performance of devices and 

equipment used to treat, store, and distribute water in hemodialysis centers (both acute and 

maintenance [chronic] settings) and for the preparation of concentrates and dialysate.

31, 32, 

666–668, 789, 791, 800, 807, 809, 1454, 1455 

     

Category IA, IC

    

(AAMI: ANSI/AAMI RD5:1992, ANSI/AAMI RD 

47:1993)

 

B. 

No recommendation is offered

 regarding whether more stringent requirements for water 

quality should be imposed in hemofiltration and hemodiafiltration.     

Unresolved issue

 

C.  Conduct microbiological testing specific to water in dialysis settings.

789, 791, 792, 834, 835

     

Category IAIC

    

(AAMI: ANSI/AAMI RD 5: 1992, ANSI/AAMI RD 47: 1993, ANSI/AAMI RD 62:2001)

 

1. 

Perform bacteriologic assays of water and dialysis fluids at least once a month and 

during outbreaks using standard quantitative methods.

792, 834, 835

     

Category IA, IC

    

(AAMI: ANSI/AAMI RD 62:2001)

 

a. 

Assay for heterotrophic, mesophilic bacteria (e.g., 

Pseudomonas 

spp). 

b. 

Do not use nutrient-rich media (e.g., blood agar or chocolate agar). 

2. 

In conjunction with microbiological testing, perform endotoxin testing on product 

water used to reprocess dialyzers for multiple use.

789, 791, 806, 811, 816, 829 

     

Category IA, 

IC

    

(AAMI: ANSI/AAMI RD 5:1992, ANSI/AAMI RD 47:1993)

 

3. 

Ensure that water does not exceed the limits for microbial counts and endotoxin 

concentrations outlined in Table 18.

789, 791, 800

     

Category IA, IC

    

(AAMI: ANSI/AAMI RD 

5:1992, ANSI/AAMI RD 47:1993)

 

D.  Disinfect water distribution systems in dialysis settings on a regular schedule.  Monthly 

disinfection is recommended.

666–668, 792, 800

     

Category IA, IC

    

(AAMI: ANSI/AAMI RD62:2001)

 

E. 

Whenever practical, design and engineer water systems in dialysis settings to avoid 

incorporating joints, dead-end pipes, and unused branches and taps that can harbor 

bacteria.

666–668, 792, 800

     

Category IA, IC

    

(AAMI: ANSI/AAMI RD62:2001)

 

F. 

When storage tanks are used in dialysis systems, they should be routinely drained, 

disinfected with an EPA-registered product, and fitted with an ultrafilter or pyrogenic filter 

(membrane filter with a pore size sufficient to remove small particles and molecules >1 

kilodalton) installed in the water line distal to the storage tank.

792

     

Category IC

    

(AAMI: 

ANSI/AAMI RD62:2001)

 

 

IX.  Ice Machines and Ice

 

A.  Do not handle ice directly by hand, and wash hands before obtaining ice.     

Category II

 

B.  Use a smooth-surface ice scoop to dispense ice.

680, 863

     

Category II

 

1. 

Keep the ice scoop on a chain short enough the scoop cannot touch the floor, or keep 

the scoop on a clean, hard surface when not in use.

680, 863

     

Category II

 

2. 

Do not store the ice scoop in the ice bin.     

Category II

 

C.  Do not store pharmaceuticals or medical solutions on ice intended for consumption; use 

sterile ice to keep medical solutions cold, or use equipment specifically manufactured for 

this purpose.

600, 863

     

Category IB

 

background image

 

 

132 

D.  Machines that dispense ice are preferred to those that require ice to be removed from bins or 

chests with a scoop.

687, 869

     

Category II

 

E. 

Limit access to ice-storage chests, and keep the container doors closed except when 

removing ice.

863

     

Category II

 

F. 

Clean, disinfect, and maintain ice-storage chests on a regular basis.     

Category II

 

1. 

Follow the manufacturer’s instructions for cleaning.     

Category II

 

2. 

Use an EPA-registered disinfectant suitable for use on ice machines, dispensers, or 

storage chests in accordance with label instructions.      

Category II

 

3. 

If instructions and EPA-registered disinfectants suitable for use on ice machines are 

not available, use a general cleaning/disinfecting regimen as outlined in Box 12.

863

     

Category II

 

4. 

Flush and clean the ice machines and dispensers if they have not been disconnected 

before anticipated lengthy water disruptions.     

Category II

 

G.  Install proper air gaps where the condensate lines meet the waste lines.     

Category II

 

H.  Conduct microbiologic sampling of ice, ice chests, and ice-making machines and dispensers 

where indicated during an epidemiologic investigation.

861–863

     

Category IB

 

 

X. 

Hydrotherapy Tanks and Pools

 

A.  Drain and clean hydrotherapy equipment (e.g., Hubbard tanks, tubs, whirlpools, whirlpool 

spas, or birthing tanks) after each patient’s use, and disinfect equipment surfaces and 

components by using an EPA-registered product in accordance with the manufacturer’s 

instructions.     

Category II

 

B.  In the absence of an EPA-registered product for water treatment, add sodium hypochlorite 

to the water: 

1. 

Maintain a 15-ppm chlorine residual in the water of small hydrotherapy tanks, 

Hubbard tanks, and tubs.

889

     

Category II

 

2. 

Maintain a 2–5 ppm chlorine residual in the water of whirlpools and whirlpool 

spas.

905

     

Category II

 

3. 

If the pH of the municipal water is in the basic range (e.g., when chloramine is used 

as the primary drinking water disinfectant in the community), consult the facility 

engineer regarding the possible need to adjust the pH of the water to a more acid level 

before disinfection, to enhance the biocidal activity of chlorine.

894

     

Category II

 

C.  Clean and disinfect hydrotherapy equipment after using tub liners.     

Category II

 

D.  Clean and disinfect inflatable tubs unless they are single-use equipment.      

Category II

 

E. 

No recommendation is offered

 regarding the use of antiseptic chemicals (e.g., chloramine-

T) in the water during hydrotherapy sessions.     

Unresolved issue

 

F. 

Conduct a risk assessment of patients prior to their use of large hydrotherapy pools, 

deferring patients with draining wounds or fecal incontinence from pool use until their 

condition resolves.  

   Category II

 

G.  For large hydrotherapy pools, use pH and chlorine residual levels appropriate for an indoor 

pool as provided by local and state health agencies.     

Category IC

    

(States)

 

H. 

No recommendation is offered

 regarding the use in health care of whirlpools or spa 

equipment manufactured for home or recreational use.     

Unresolved issue

 

 

XI.  Miscellaneous Medical Equipment Connected to Water Systems

 

A.  Clean, disinfect, and maintain AER equipment according to the manufacturer’s instructions 

and relevant scientific literature to prevent inadvertent contamination of endoscopes and 

bronchoscopes with waterborne microorganisms.

911–915

     

Category IB

 

1. 

To rinse disinfected endoscopes and bronchoscopes, use water of the highest quality 

practical for the system’s engineering and design (e.g., sterile water or 

background image

 

 

133

bacteriologically-filtered water [water filtered through 0.1–0.2-µm filters]).

912, 914, 915, 

918

     

Category IB

 

2. 

Dry the internal channels of the reprocessed endoscope or bronchoscope using a 

proven method (e.g., 70% alcohol followed by forced-air treatment) to lessen the 

potential for the proliferation of waterborne microorganisms and to help prevent 

biofilm formation.

671, 921, 923, 925, 928

     

Category IB

 

B.  Use water that meets nationally recognized standards set by the EPA for drinking water 

(<500 CFU/mL for heterotrophic plate count) for routine dental treatment output water.

935, 

936, 943, 944

     

Category IB, IC   

 

(EPA: 40 CFR 1 Part 141, Subpart G).

 

C.  Take precautions to prevent waterborne contamination of dental unit water lines and 

instruments. 

1. 

After each patient, discharge water and air for a minimum of 20–30 seconds from any 

dental device connected to the dental water system that enters the patient’s mouth 

(e.g., handpieces, ultrasonic scalers, and air/water syringe).

936, 937

     

Category II

 

2. 

Consult with dental water-line manufacturers to 1) determine suitable methods and 

equipment to obtain the recommended water quality; and 2) determine appropriate 

methods for monitoring the water to ensure quality is maintained.

936, 946

     

Category II

 

3. 

Consult with the dental unit manufacturer on the need for periodic maintenance of 

anti-retraction mechanisms.

937, 946

     

Category IB

 

 

 

E.  Recommendations—Environmental Services

 

 

I. 

Cleaning and Disinfecting Strategies for Environmental Surfaces in Patient-Care Areas

 

A.  Select EPA-registered disinfectants, if available, and use them in accordance with the 

manufacturer’s instructions.

2, 974, 983

      

Category IB, IC

    

(EPA: 7 United States Code [USC] § 136 et 

seq)

 

B.  Do not use high-level disinfectants/liquid chemical sterilants for disinfection of either 

noncritical instrument/devices or any environmental surfaces; such use is counter to label 

instructions for these toxic chemicals.

951, 952, 961–964

     

Category IB, IC

    

(FDA: 21 CFR 801.5, 

807.87.e)

 

C.  Follow manufacturers’ instructions for cleaning and maintaining noncritical medical 

equipment.     

Category II

 

D.  In the absence of a manufacturer’s cleaning instructions, follow certain procedures. 

1. 

Clean noncritical medical equipment surfaces with a detergent/disinfectant.  This may 

be followed with an application of an EPA-registered hospital disinfectant with or 

without a tuberculocidal claim (depending on the nature of the surface and the degree 

of contamination), in accordance with disinfectant label instructions.

952

     

Category II

 

2. 

Do not use alcohol to disinfect large environmental surfaces.

951

     

Category II

 

3. 

Use barrier protective coverings as appropriate for noncritical equipment surfaces that 

are 1) touched frequently with gloved hands during the delivery of patient care; 2) 

likely to become contaminated with blood or body substances; or 3) difficult to clean 

(e.g., computer keyboards).

936

     

Category II

 

E. 

Keep housekeeping surfaces (e.g., floors, walls, and tabletops) visibly clean on a regular 

basis and clean up spills promptly.

954

     

Category II

 

1. 

Use a one-step process and an EPA-registered hospital disinfectant/detergent 

designed for general housekeeping purposes in patient-care areas when 1) uncertainty 

exists as to the nature of the soil on these surfaces [e.g., blood or body fluid 

contamination versus routine dust or dirt]; or 2) uncertainty exists regarding the 

presence or absence of multi-drug resistant organisms on such surfaces.

952, 983, 986, 987

     

Category II

 

background image

 

 

134 

2. 

Detergent and water are adequate for cleaning surfaces in nonpatient-care areas (e.g., 

administrative offices).     

Category II

 

3. 

Clean and disinfect high-touch surfaces (e.g., doorknobs, bed rails, light switches, and 

surfaces in and around toilets in patients’ rooms) on a more frequent schedule than 

minimal touch housekeeping surfaces.     

Category II

 

4. 

Clean walls, blinds, and window curtains in patient-care areas when they are visibly 

dusty or soiled.

2, 971, 972, 982

     

Category II

 

F. 

Do not perform disinfectant fogging in patient-care areas.

2, 976

     

Category IB

 

G.  Avoid large-surface cleaning methods that produce mists or aerosols or disperse dust in 

patient-care areas.

9, 20, 109, 272

     

Category IB

 

H.  Follow proper procedures for effective use of mops, cloths, and solutions.     

Category II

 

1. 

Prepare cleaning solutions daily or as needed, and replace with fresh solution 

frequently according to facility policies and procedures.

986, 987 

     

Category II

 

2. 

Change the mop head at the beginning of the day and also as required by facility 

policy, or after cleaning up large spills of blood or other body substances.     

Category 

II

 

3. 

Clean mops and cloths after use and allow to dry before reuse; or use single-use, 

disposable mop heads and cloths.

971, 988–990

     

Category II

 

I. 

After the last surgical procedure of the day or night, wet vacuum or mop operating room 

floors with a single-use mop and an EPA-registered hospital disinfectant.

7

      

Category IB

 

J. 

Do not use mats with tacky surfaces at the entrance to operating rooms or infection-control 

suites.

7

     

 Category IB

 

K.  Use appropriate dusting methods for patient-care areas designated for immunocompromised 

patients (e.g., HSCT patients):

9, 94, 986

     

Category IB

 

1. 

Wet-dust horizontal surfaces daily by moistening a cloth with a small amount of an 

EPA-registered hospital detergent/disinfectant.

9, 94, 986

     

Category IB

 

2. 

Avoid dusting methods that disperse dust (e.g., feather-dusting).

94

     

Category IB

 

L. 

Keep vacuums in good repair, and equip vacuums with HEPA filters for use in areas with 

patients at risk.

9, 94, 986, 994

     

Category IB

 

M.  Close the doors of immunocompromised patients’ rooms when vacuuming, waxing, or 

buffing corridor floors to minimize exposure to airborne dust.

9, 94, 994

     

Category IB

 

N.  When performing low- or intermediate-level disinfection of environmental surfaces in 

nurseries and neonatal units, avoid unnecessary exposure of neonates to disinfectant 

residues on environmental surfaces by using EPA-registered disinfectants in accordance 

with manufacturers’ instructions and safety advisories.

974, 995–997

     

Category IB, IC

    

(EPA: 7 

USC § 136 et seq.)

 

1. 

Do not use phenolics or any other chemical germicide to disinfect bassinets or 

incubators during an infant’s stay.

952, 995–997

     

Category IB

 

2. 

Rinse disinfectant-treated surfaces, especially those treated with phenolics, with 

water.

995–997

     

Category IB

 

O.  When using phenolic disinfectants in neonatal units, prepare solutions to correct 

concentrations in accordance with manufacturers’ instructions, or use premixed 

formulations.

974, 995–997

      

Category IB, IC

    

(EPA: 7 USC § 136 et seq.)

 

 

II. 

Cleaning Spills of Blood and Body Substances 

A.  Promptly clean and decontaminate spills of blood or other potentially infectious 

materials.

967, 998–1004

     

Category IB, IC

    

(OSHA: 29 CFR 1910.1030 §d.4.ii.A)

 

B.  Follow proper procedures for site decontamination of spills of blood or blood-containing 

body fluids.

967, 998–1004

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.ii.A)

 

1. 

Use protective gloves and other PPE appropriate for this task.

967

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.3.i, ii)

 

background image

 

 

135

2. 

If the spill contains large amounts of blood or body fluids, clean the visible matter  

with disposable absorbent material, and discard the contaminated materials in 

appropriate, labeled containment.

967, 1002, 1003, 1010, 1012

     

Category IC

    

(OSHA: 29 CFR 

1910.1030 § d.4.iii.B)

 

3. 

Swab the area with a cloth or paper towels moderately wetted with disinfectant, and 

allow the surface to dry.

967, 1010

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.ii.A)

 

C.  Use EPA-registered hospital disinfectants labeled tuberculocidal or registered germicides on 

the EPA Lists D and E (products with specific label claims for HIV or hepatitis B virus 

[HBV]) in accordance with label instructions to decontaminate spills of blood and other 

body fluids.

967, 1007, 1010

     

Category IC

    

(OSHA 29 CFR 1910.1030 § d.4.ii.A memorandum 2/28/97; 

compliance document CPL 2-2.44D [11/99])

 

D.  An EPA-registered sodium hypochlorite product is preferred, but if such products are not 

available, generic versions of sodium hypochlorite solutions (e.g., household chlorine 

bleach) may be used. 

1. 

Use a 1:100 dilution (500–615 ppm available chlorine) to decontaminate nonporous 

surfaces after cleaning a spill of either blood or body fluids in patient-care 

settings.

1010, 1011

     

Category II

 

2. 

If a spill involves large amounts of blood or body fluids, or if a blood or culture spill 

occurs in the laboratory, use a 1:10 dilution (5,000–6,150 ppm available chlorine) for 

the first application of germicide before cleaning.

954, 1010

      

Category II

 

 

III.  Carpeting and Cloth Furnishings

 

A.  Vacuum carpeting in public areas of health-care facilities and in general patient-care areas 

regularly with well-maintained equipment designed to minimize dust dispersion.

986

      

Category II

 

B.  Periodically perform a thorough, deep cleaning of carpeting as determined by facility policy 

by using a method that minimizes the production of aerosols and leaves little or no 

residue.

111

      

Category II

 

C.  Avoid use of carpeting in high-traffic zones in patient-care areas or where spills are likely 

(e.g., burn therapy units, operating rooms, laboratories, and intensive care units).

111, 1023, 1028

     

Category IB

 

D.  Follow proper procedures for managing spills on carpeting. 

1. 

Spot-clean blood or body substance spills promptly.

967, 1010, 1011, 1032

     

Category IC  

  

(OSHA: 29 CFR 1910.1030 § d.4.ii.A, interpretation)

 

2. 

If a spill occurs on carpet tiles, replace any tiles contaminated by blood and body 

fluids or body substances.

1032

     

Category IC

    

(OSHA 29 CFR 1910.1030 § d.4.ii interpretation)

 

E. 

Thoroughly dry wet carpeting to prevent the growth of fungi; replace carpeting that remains 

wet after 72 hours.

9, 1026

     

Category IB

 

F. 

No recommendation is offered

 regarding the routine use of fungicidal or bactericidal 

treatments for carpeting in public areas of a health-care facility or in general patient-care 

areas.

     Unresolved issue

 

G.  Do not use carpeting in hallways and patient rooms in areas housing immunosuppressed 

patients (e.g., PE areas).

9, 111

     

Category IB

 

H.  Avoid the use of upholstered furniture and furnishings in high-risk patient-care areas and in 

areas with increased potential for body substance contamination (e.g., pediatrics units).

9

     

Category II 

I. 

No recommendation is offered

 regarding whether upholstered furniture and furnishings 

should be avoided in general patient-care areas.     

Unresolved issue

 

J. 

Maintain upholstered furniture in good repair.     

Category II

 

1. 

Maintain the surface integrity of the upholstery by repairing tears and holes.     

Category II

 

background image

 

 

136 

2. 

If upholstered furniture in a patient’s room requires cleaning to remove visible soil or 

body substance contamination, move that item to a maintenance area where it can be 

adequately cleaned with a process appropriate for the type of upholstery and the 

nature of the soil.     

Category II

 

 

IV.  Flowers and Plants in Patient-Care Areas

 

A.  Flowers and potted plants need not be restricted from areas for immunocompetent 

patients.

515, 702, 1040, 1042

     

Category II

 

B.  Designate care and maintenance of flowers and potted plants to staff not directly involved 

with patient care.

702

     

Category II

 

C.  If plant or flower care by patient-care staff is unavoidable, instruct the staff to wear gloves 

when handling the plants and flowers and perform hand hygiene after glove removal.

702

     

Category II

 

D. 

Do not allow fresh or dried flowers, or potted plants in patient-care areas for 

immunosuppressed patients.

9, 109, 515, 1046

     

Category II

 

 

V. Pest 

Control

 

A.  Develop pest-control strategies, with emphasis on kitchens, cafeterias, laundries, central 

sterile supply areas, operating rooms, loading docks, construction activities, and other areas 

prone to infestations.

1050, 1072, 1075

     

Category II

 

B.  Install screens on all windows that open to the outside; keep screens in good repair.

1072

     

Category IB

 

C.  Contract for routine pest control service by a credentialed pest-control specialist who will 

tailor the application to the needs of a health-care facility.

1075

     

Category II 

D.  Place laboratory specimens (e.g., fixed sputum smears) in covered containers for overnight 

storage.

1065, 1066

     

Category II

 

 

VI. Special 

Pathogens 

A.  Use appropriate hand hygiene, PPE (e.g., gloves), and isolation precautions during cleaning 

and disinfecting procedures.

5, 952, 1130, 1364

     

Category IB

 

B.  Use standard cleaning and disinfection protocols to control environmental contamination 

with antibiotic-resistant gram-positive cocci (e.g., methicillin-resistant 

Staphylococcus 

aureus

, vancomycin intermediate-resistant 

Staphylococcus aureus

, or vancomycin-resistant 

Enterococcus

 [VRE] ).

5, 1116–1118

     

Category IB

 

1. 

Pay close attention to cleaning and disinfection of high-touch surfaces in patient-care 

areas (e.g., bed rails, carts, bedside commodes, bedrails, doorknobs, or faucet 

handles).

5, 1116–1118

     

Category IB

 

2. 

Ensure compliance by housekeeping staff with cleaning and disinfection procedures.

5, 

1116–1118

     

Category IB

 

3. 

Use EPA-registered hospital disinfectants appropriate for the surface to be disinfected 

(e.g., either low- or intermediate-level disinfection) as specified by the manufacturers’ 

instructions.

974, 1106–1110, 1118

     

Category IB, IC 

   

(EPA: 7 USC § 136 et seq.)

 

4. 

When contact precautions are indicated for patient care, use disposable patient-care 

items (e.g., blood pressure cuffs) whenever possible to minimize cross-contamination 

with multiple-resistant microorganisms.

1102

     

Category IB

 

5. 

Follow these same surface cleaning and disinfecting measures for managing the 

environment of VRSA patients.

1110, 1116–1118

     

Category II

 

C.  Environmental-surface culturing can be used to verify the efficacy of hospital policies and 

procedures before and after cleaning and disinfecting rooms that house patients with VRE.

5, 

1084, 1087, 1088, 1092, 1096

     

Category II 

background image

 

 

137

1. 

Obtain prior approval from infection-control staff and the clinical laboratory before 

performing environmental surface culturing.     

Category II

 

2. 

Infection-control staff, with clinical laboratory consultation, must supervise all 

environmental culturing.     

Category II

 

D.  Thoroughly clean and disinfect environmental and medical equipment surfaces on a regular 

basis using EPA-registered disinfectants in accordance with manufacturers’ instructions.

952, 

974, 1130, 1143

     

Category IB, IC

    

(EPA: 7 USC § 136 et seq.)

 

E. 

Advise families, visitors, and patients about the importance of hand hygiene to minimize the 

spread of body substance contamination (e.g., respiratory secretions or fecal matter) to 

surfaces.

952

     

Category II

 

F. 

Do not use high-level disinfectants (i.e., liquid chemical sterilants) on environmental 

surfaces; such use is inconsistent with label instructions and because of the toxicity of the 

chemicals.

2, 951, 952, 964

     

Category IC    

(FDA: 21 CFR 801.5, 807.87.e)

 

G.  Because no EPA-registered products are specific for inactivating 

Clostridium difficile

 

spores, use hypochlorite-based products for disinfection of environmental surfaces in those 

patient-care areas where surveillance and epidemiology indicate ongoing transmission of 

C. 

difficile

.

952, 1130, 1141

      

Category II

 

H. 

No recommendation is offered

 regarding the use of specific EPA-registered hospital 

disinfectants with respect to environmental control of 

C. difficile

.     

Unresolved issue

 

I. 

Apply standard cleaning and disinfection procedures to control environmental 

contamination with respiratory and enteric viruses in pediatric-care units and care areas for 

immunocompromised patients.

986, 1158

     

Category IC

    

(EPA: 7 USC § 136 et seq.)

 

J. 

Clean surfaces that have been contaminated with body substances; perform low- to 

intermediate-level disinfection on cleaned surfaces with an EPA-registered disinfectant in 

accordance with the manufacturer’s instructions.

967, 974, 1158

     

Category IC

    

(OSHA: 29 CFR 

1910.1030 § d.4.ii.A; EPA: 7 USC § 136 et seq.)

 

K.  Use disposable barrier coverings as appropriate to minimize surface contamination.     

Category II

 

L. 

Develop and maintain cleaning and disinfection procedures to control environmental 

contamination with agents of Creutzfeldt-Jakob disease (CJD), for which no EPA-registered 

product exists.     

Category II

 

1. 

In the absence of contamination with central nervous system tissue, extraordinary 

measures (e.g., use of 2N sodium hydroxide [NaOH] or applying full-strength sodium 

hypochlorite) are not needed for routine cleaning or terminal disinfection of a room 

housing a confirmed or suspected CJD patient.

951, 1199

     

Category II

 

2. 

After removing gross tissue from the surface, use either 1N NaOH or a sodium 

hypochlorite solution containing approximately 10,000–20,000 ppm available 

chlorine (dilutions of 1:5 to 1:3 v/v, respectively, of U.S. household chlorine bleach; 

contact the manufacturers of commercially available sodium hypochlorite products 

for advice) to decontaminate operating room or autopsy surfaces with central nervous 

system or cerebral spinal fluid contamination from a diagnosed or suspected CJD 

patient.

951, 1170, 1188, 1191, 1197–1199, 1201 

     

Category II

 

a. 

The contact time for the chemical used during this process should be 30 min–1 

hour.

1191, 1197, 1201

 

b. 

Blot up the chemical with absorbent material and rinse the treated surface 

thoroughly with water. 

c. 

Discard the used, absorbent material into appropriate waste containment. 

3. 

Use disposable, impervious covers to minimize body substance contamination to 

autopsy tables and surfaces.

1197, 1201

     

Category IB

 

background image

 

 

138 

M.  Use standard procedures for containment, cleaning, and decontamination of blood spills on 

surfaces as previously described (Environmental Services: II).

967

     

Category IC

    

(OSHA: 29 

CFR 1910.1030 §d.4.ii.A)

 

1. 

Wear PPE appropriate for a surface decontamination and cleaning task.

967, 1199

     

Category IC

    

(OSHA 29 CFR 1910.1030 §d.3.i, ii)

 

2. 

Discard used PPE by using routine disposal procedures or decontaminate reusable 

PPE as appropriate.

967, 1199

     

Category IC

    

(OSHA 29 CFR 1910.1030 §d.3.viii)

 

 

 

F.  Recommendations—Environmental Sampling

 

 

I. General 

Information

 

A.  Do not conduct random, undirected microbiologic sampling of air, water, and 

environmental surfaces in health-care facilities.

2, 1214

     

Category IB

 

B.  When indicated, conduct microbiologic sampling as part of an epidemiologic investigation 

or during assessment of hazardous environmental conditions to detect contamination and 

verify abatement of a hazard.

2, 1214

     

Category IB

 

C.  Limit microbiologic sampling for quality assurance purposes to 1) biological monitoring of 

sterilization processes; 2) monthly cultures of water and dialysate in hemodialysis units; and 

3) short-term evaluation of the impact of infection-control measures or changes in infection-

control protocols.

2, 1214

     

Category IB

 

 

II. 

Air, Water, and Environmental-Surface Sampling

 

A.  When conducting any form of environmental sampling, identify existing comparative 

standards and fully document departures from standard methods.

945, 1214, 1223, 1224, 1238

     

Category II

 

B.  Select a high-volume air sampling device if anticipated levels of microbial airborne 

contamination are expected to be low.

290, 1218, 1223, 1224

     

Category II

 

C.  Do not use settle plates to quantify the concentration of airborne fungal spores.

290

     

Category II

 

D.  When sampling water, choose growth media and incubation conditions that will facilitate 

the recovery of waterborne organisms.

945

     

Category II 

E. 

When using a sample/rinse method for sampling an environmental surface, develop and 

document a procedure for manipulating the swab, gauze, or sponge in a reproducible 

manner so that results are comparable.

1238

     

Category II 

F. 

When environmental samples and patient specimens are available for comparison, perform 

the laboratory analysis on the recovered microorganisms down to the species level at a 

minimum and beyond the species level if possible.

1214

     

Category II

 

 

 

G.  Recommendations—Laundry and Bedding

 

 

I. Employer 

Responsibilities

 

A.  Employers must launder workers’ personal protective garments or uniforms that are 

contaminated with blood or other potentially infectious materials.

967

     

Category IC

    

(OSHA: 

29 CFR 1910.1030 § d.3.iv)

 

 

 

 

 

background image

 

 

139

II. 

Laundry Facilities and Equipment

 

A.  Maintain the receiving area for contaminated textiles at negative pressure compared with 

the clean areas of the laundry in accordance with AIA construction standards in effect 

during the time of facility construction.

120, 1260–1262

     

Category IC

    

(AIA: 7.23.B1, B2)

 

B.  Ensure that laundry areas have handwashing facilities and products and appropriate PPE 

available for workers.

120, 967

     

Category IC

    (

AIA: 7.23.D4; OSHA: 29 CFR 1910.1030 § d.2.iii)

 

C.  Use and maintain laundry equipment according to manufacturers’ instructions.

1250, 1263

     

Category II

 

D.  Do not leave damp textiles or fabrics in machines overnight.

1250

     

Category II

 

E. 

Disinfection of washing and drying machines in residential care is not needed as long as 

gross soil is removed before washing and proper washing and drying procedures are used.     

Category II

 

 

III.  Routine Handling of Contaminated Laundry

 

A.  Handle contaminated textiles and fabrics with minimum agitation to avoid contamination of 

air, surfaces, and persons.

6, 967, 1258, 1259

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.iv)

 

B.  Bag or otherwise contain contaminated textiles and fabrics at the point of use.

967

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.iv)

 

1. 

Do not sort or prerinse contaminated textiles or fabrics in patient-care areas.

967

     

Category IC

    

(OSHA: 29 CFR 1910.1030 §d.4.iv)

 

2. 

Use leak-resistant containment for textiles and fabrics contaminated with blood or 

body substances.

967, 1258

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.iv)

 

3. 

Identify bags or containers for contaminated textiles with labels, color coding, or 

other alternative means of communication as appropriate.

967

     

Category IC

    

(OSHA: 

29 CFR 1910.1030 § d.4.iv)

 

C.  Covers are not needed on contaminated textile hampers in patient-care areas.     

Category II

 

D.  If laundry chutes are used, ensure that they are properly designed, maintained, and used in a 

manner to minimize dispersion of aerosols from contaminated laundry.

1253, 1267–1270

     

Category IC

    

(AAMI: ANSI/AAMI ST65:2000)

 

1. 

Ensure that laundry bags are closed before tossing the filled bag into the chute.     

Category II

 

2. 

Do not place loose items in the chute.     

Category II

 

E. 

Establish a facility policy to determine when textiles or fabrics should be sorted in the 

laundry facility (i.e., before or after washing).

1271, 1272

     

Category II

 

 

IV. Laundry 

Process

 

A.  If hot-water laundry cycles are used, wash with detergent in water >160°F (>71°C) for >25 

minutes.

2, 120

     

Category IC

    

(AIA: 7.31.E3)

 

B. 

No recommendation is offered

 regarding a hot-water temperature setting and cycle 

duration for items laundered in residence-style health-care facilities.     

Unresolved issue

 

C.  Follow fabric-care instructions and special laundering requirements for items used in the 

facility.

1278

     

Category II

 

D.  Choose chemicals suitable for low-temperature washing at proper use concentration if low-

temperature (<160°F [<71°C]) laundry cycles are used.

1247, 1281–1285

     

Category II

 

E. 

Package, transport, and store clean textiles and fabrics by methods that will ensure their 

cleanliness and protect them from dust and soil during interfacility loading, transport, and 

unloading.

2

     

Category II

 

 

V. 

Microbiologic Sampling of Textiles

 

A.  Do not conduct routine microbiological sampling of clean textiles.

2, 1286

     

Category IB

 

background image

 

 

140 

B.  Use microbiological sampling during outbreak investigations if epidemiologic evidence 

suggests a role for health-care textiles and clothing in disease transmission.

1286

     

Category 

IB

 

 

VI.  Special Laundry Situations

 

A.  Use sterilized textiles, surgical drapes, and gowns for situations requiring sterility in patient 

care.

7

     

Category IB

 

B.  Use hygienically clean textiles (i.e., laundered, but not sterilized) in neonatal intensive care 

units.

997, 1288

     

Category IB

 

C.  Follow manufacturers’ recommendations for cleaning fabric products including those with 

coated or laminated surfaces.     

Category II

 

D.  Do not use dry cleaning for routine laundering in health-care facilities.

1289–1291

     

Category 

II

 

E. 

Use caution when considering the use of antimicrobial mattresses, textiles, and clothing as 

replacements for standard bedding and other fabric items;  EPA has not approved public 

health claims asserting protection against human pathogens for treated articles.

1306

     

Category II 

F. 

No recommendation is offered

 regarding using disposable fabrics and textiles versus 

durable goods.  

Unresolved issue

 

 

VII.  Mattresses and Pillows

 

A.  Keep mattresses dry; discard them if they become and remain wet or stained, particularly in 

burn units.

1310–1315

     

Category IB

 

B.  Clean and disinfect mattress covers using EPA-registered disinfectants, if available, that are 

compatible with the cover materials to prevent the development of tears, cracks, or holes in 

the cover.

1310–1315

     

Category IB

 

C.  Maintain the integrity of mattress and pillow covers.     

Category II

 

1. 

Replace mattress and pillow covers if they become torn or otherwise in need of repair.     

Category II

 

2. 

Do not stick needles into the mattress through the cover.     

Category II

 

D.  Clean and disinfect moisture-resistant mattress covers between patients using an EPA-

registered product, if available.

1310–1315

     

Category IB

 

E. 

If using a mattress cover completely made of fabric, change these covers and launder 

between patients.

1310–1315

     

Category IB

 

F. 

Launder pillow covers and washable pillows in the hot-water cycle between patients or 

when they become contaminated with body substances.

1315

     

Category IB

 

 

VIII. Air-Fluidized Beds

 

A.  Follow manufacturers’ instructions for bed maintenance and decontamination.     

Category 

II

 

B.  Change the polyester filter sheet at least weekly or as indicated by the manufacturer.

1317, 1318, 

1322, 1323

     

Category II

 

C.  Clean and disinfect the polyester filter sheet thoroughly, especially between patients, using 

an EPA-registered product, if available.

1317, 1318, 1322, 1323

     

Category IB

 

D.  Consult the facility engineer to determine the proper location of air-fluidized beds in 

negative-pressure rooms.

1326

     

Category II

 

 

 

 

 

 

background image

 

 

141

H.  Recommendations—Animals in Health-Care Facilities 

 

I. 

General Infection-Control Measures for Animal Encounters

 

A.  Minimize contact with animal saliva, dander, urine, and feces.

1365–1367

     

Category II 

B.  Practice hand hygiene after any animal contact.

2, 1364

     

Category IB

 

1. 

Wash hands with soap and water, especially if hands are visibly soiled.

1364

     

Category IB

 

2. 

Use either soap and water or alcohol-based hand rubs when hands are not visibly 

soiled.

1364

     

Category IB

 

 

II. 

Animal-Assisted Activities, Animal-Assisted Therapy, and Resident Animal Programs

 

A.  Avoid selection of nonhuman primates and reptiles in animal-assisted activities, animal- 

assisted therapy, or resident animal programs.

1360–1362

     

Category IB

 

B.  Enroll animals that are fully vaccinated for zoonotic diseases and that are healthy, clean, 

well-groomed, and negative for enteric parasites or otherwise have completed recent 

antihelminthic treatment under the regular care of a veterinarian.

1349, 1360

      

Category II

 

C.  Enroll animals that are trained with the assistance or under the direction of individuals who 

are experienced in this field.

1360

     

Category II 

D.  Ensure that animals are handled by persons trained in providing activities or therapies 

safely, and who know the animals’ health status and behavior traits.

1349, 1360

     

Category II

 

E. 

Take prompt action when an incident of biting or scratching by an animal occurs during an 

animal-assisted activity or therapy. 

1. 

Remove the animal permanently from these programs.

1360

     

Category II

 

2. 

Report the incident promptly to appropriate authorities (e.g., infection-control staff, 

animal program coordinator, or local animal control).

1360

     

Category II

 

3. 

Promptly clean and treat scratches, bites, or other accidental breaks in the skin.     

Category II

 

F. 

Perform an ICRA and work actively with the animal handler prior to conducting an animal-

assisted activity or therapy to determine if the session should be held in a public area of the 

facility or in individual patient rooms. 

1349, 1360

     

Category II

 

G.  Take precautions to mitigate allergic responses to animals.     

Category II

 

1. 

Minimize shedding of animal dander by bathing animals <24 hours before a visit.

1360

     

Category II

 

2. 

Groom animals to remove loose hair before a visit, or using a therapy animal cape.

1358

     

Category II

 

H.  Use routine cleaning protocols for housekeeping surfaces after therapy sessions.     

Category II

 

I. 

Restrict resident animals, including fish in fish tanks, from access to or placement in 

patient-care areas, food preparation areas, dining areas, laundry, central sterile supply areas, 

sterile and clean supply storage areas, medication preparation areas, operating rooms, 

isolation areas, and PE areas.     

Category II

 

J. 

Establish a facility policy for regular cleaning of fish tanks, rodent cages, bird cages, and 

any other animal dwellings and assign this cleaning task to a nonpatient-care staff member; 

avoid splashing tank water or contaminating environmental surfaces with animal bedding.     

Category II

 

 

III.  Protective Measures for Immunocompromised Patients

 

A.  Advise patients to avoid contact with animal feces and body fluids such as saliva, urine, or 

solid litter box material.

8

     

Category II

 

background image

 

 

142 

B.  Promptly clean and treat scratches, bites, or other wounds that break the skin.

8

     Category 

II

 

C.  Advise patients to avoid direct or indirect contact with reptiles.

1340

       

Category IB

 

D.  Conduct a case-by-case assessment to determine if animal-assisted activities or animal-

assisted therapy programs are appropriate for immunocompromised patients.

1349

     

Category 

II

 

E. 

No recommendation is offered

 regarding permitting pet visits to terminally ill 

immunosuppressed patients outside their PE units.     

Unresolved issue

 

 

IV. Service 

Animals

 

A.  Avoid providing access to nonhuman primates and reptiles as service animals.

1340, 1362

     

Category IB

 

B.  Allow service animals access to the facility in accordance with the Americans with 

Disabilities Act of 1990, unless the presence of the animal creates a direct threat to other 

persons or a fundamental alteration in the nature of services.

1366, 1376

     

Category IC

    

(U.S. 

Department of Justice: 28 CFR § 36.302)

 

C.  When a decision must be made regarding a service animal’s access to any particular area of 

the health-care facility, evaluate the service animal, the patient, and the health-care situation 

on a case-by-case basis to determine whether significant risk of harm exists and whether 

reasonable modifications in policies and procedures will mitigate this risk.

1376

      

Category 

IC

    

(Justice: 28 CFR § 36.208 and App.B)

 

D.  If a patient must be separated from his or her service animal while in the health-care facility 

1) ascertain from the person what arrangements have been made for supervision or care of 

the animal during this period of separation; and 2) make appropriate arrangements to 

address the patient’s needs in the absence of the service animal.    

Category II

 

 

V. 

Animals as Patients in Human Health-Care Facilities

 

A.  Develop health-care facility policies to address the treatment of animals in human health-

care facilities. 

1. 

Use the multidisciplinary team approach to policy development, including public 

media relations in order to disclose and discuss these activities.     

Category II 

2.

 

Exhaust all veterinary facility, equipment, and instrument options before undertaking 

the procedure.     

Category II

 

3. 

Ensure that the care of the animal is supervised by a licensed veterinarian.     

Category II

 

B.  When animals are treated in human health-care facilities, avoid treating animals in 

operating rooms or other patient-care areas where invasive procedures are performed (e.g., 

cardiac catheterization laboratories, or invasive nuclear medicine areas).     

Category II

 

C.  Schedule the animal procedure for the last case of the day for the area, at a time when 

human patients are not scheduled to be in the vicinity.     

Category II

 

D. Adhere 

strictly

 to standard precautions.     

Category II

 

E. 

Clean and disinfect environmental surfaces thoroughly using an EPA-registered product in 

the room after the animal is removed.     

Category II

 

F. 

Allow sufficient ACH to clean the air and help remove airborne dander, microorganisms, 

and allergens [Appendix B, Table B.1.]).     

Category II

 

G.  Clean and disinfect using EPA-registered products or sterilize equipment that has been in 

contact with animals, or use disposable equipment.     

Category II

 

H.  If reusable medical or surgical instruments are used in an animal procedure, restrict future 

use of these instruments to animals only.     

Category II

 

 

 

background image

 

 

143

VI.  Research Animals in Health-Care Facilities

 

A.  Use animals obtained from quality stock, or quarantine incoming animals to detect zoonotic 

diseases.     

Category II

 

B.  Treat sick animals or remove them from the facility.     

Category II

 

C.  Provide prophylactic vaccinations, as available, to animal handlers and contacts at high risk.     

Category II

 

D.  Ensure proper ventilation through appropriate facility design and location.

1395

     

Category 

IC

    

(U.S. Department of Agriculture [USDA]: 7 USC 2131)

 

1. 

Keep animal rooms at negative pressure relative to corridors.

1395

     

Category IC   

 

(USDA: 7 USC 2131)

 

2. 

Prevent air in animal rooms from recirculating elsewhere in the health-care 

facility.

1395

     

Category IC

    

(USDA: 7 USC 2131)

 

E. 

Keep doors to animal research rooms closed.     

Category II

 

F. 

Restrict access to animal facilities to essential personnel.     

Category II

 

G.  Establish employee occupational health programs specific to the animal research facility, 

and coordinate management of postexposure procedures specific for zoonoses with 

occupational health clinics in the health-care facility.

1013, 1378

     

Category IC

    

(U.S. Department 

of Health and Human Services [DHHS]: BMBL; OSHA: 29 CFR 1910.1030.132-139)

 

H.  Document standard operating procedures for the unit.

1013

     

Category IC

    

(DHHS: BMBL)

 

I. 

Conduct routine employee training on worker safety issues relevant to the animal research 

facility (e.g., working safely with animals and animal handling).

1013, 1393

     

Category IC

    

(DHHS: BMBL; OSHA: 29 CFR 1910.1030.132-139)

 

J. 

Use precautions to prevent the development of animal-induced asthma in animal 

workers.

1013

     

Category IC   

 

(DHHS: BMBL)

 

 

 

I.  Recommendations—Regulated Medical Waste

 

 

I. 

Categories of Regulated Medical Waste

 

A.  Designate the following as major categories of medical waste that require special handling 

and disposal precautions: 1) microbiology laboratory wastes [e.g., cultures and stocks of 

microorganisms]; 2) bulk blood, blood products, blood, and bloody body fluid specimens; 

3)  pathology and anatomy waste; and 4) sharps [e.g., needles and scalpels].

2

     

Category II

 

B.  Consult federal, state, and local regulations to determine if other waste items are considered 

regulated medical wastes.

967, 1407, 1408

     

Category IC

    

(States; Authorities having jurisdiction [AHJ]; 

OSHA: 29 CFR 1910.1030 §g.2.1; U.S. Department of Transportation [DOT]: 49 CFR 171-180; U.S. Postal Service: CO23.8)

 

 

II. 

Disposal Plan for Regulated Medical Wastes

 

A.  Develop a plan for the collection, handling, predisposal treatment, and terminal disposal of 

regulated medical wastes.

967, 1409

     

Category IC

     

(States; AHJ; OSHA: 29 CFR 1910.1030 §g.2.i;)

 

B.  Designate a person or persons to be responsible for establishing, monitoring, reviewing, and 

administering the plan.     

Category II

 

 

III.  Handling, Transporting, and Storing Regulated Medical Wastes

 

A.  Inform personnel involved in the handling and disposal of potentially infective waste of the 

possible health and safety hazards; ensure that they are trained in appropriate handling and 

disposal methods.

967

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § g.2.i)

 

B.  Manage the handling and disposal of regulated medical wastes generated in isolation areas 

by using the same methods as for regulated medical wastes from other patient-care areas.

2

     

Category II

 

C.  Use proper sharps disposal strategies.

967

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.4.iii.A)

 

background image

 

 

144 

1. 

Use a sharps container capable of maintaining its impermeability after waste 

treatment to avoid subsequent physical injuries during final disposal.

967

     

Category 

IC

    

(OSHA: 29 CFR 1910.1030 § d.4.iii.A)

 

2. 

Place disposable syringes with needles, including sterile sharps that are being 

discarded, scalpel blades, and other sharp items into puncture-resistant containers 

located as close as practical to the point of use.

967

     

Category IC

    

(OSHA: 29 CFR 

1910.1030 § d.4.iii.A)

 

3. 

Do not bend, recap, or break used syringe needles before discarding them into a 

container.

6, 967, 1415

     

Category IC

    

(OSHA: 29 CFR 1910.1030 § d.2.vii and § d.2.vii.A)

 

D.  Store regulated medical wastes awaiting treatment in a properly ventilated area that is 

inaccessible to vertebrate pests; use waste containers that prevent the development of 

noxious odors.     

Category IC

    

(States; AHJ)

 

E. 

If treatment options are not available at the site where the medical waste is generated, 

transport regulated medical wastes in closed, impervious containers to the on-site treatment 

location or to another facility for treatment as appropriate.     

Category IC

    

(States; AHJ)

 

 

IV.  Treatment and Disposal of Regulated Medical Wastes

 

A.  Treat regulated medical wastes by using a method (e.g., steam sterilization, incineration, 

interment, or an alternative treatment technology) approved by the appropriate authority 

having jurisdiction (AHJ) (e.g., states, Indian Health Service [IHS], Veterans Affairs [VA]) 

before disposal in a sanitary landfill.     

Category IC

    

(States, AHJ)

 

B.  Follow precautions for treating microbiological wastes (e.g., amplified cultures and stocks 

of microorganisms).

1013

     

Category IC

    

(DHHS: BMBL)

 

1. 

Biosafety level 4 laboratories must inactivate microbiological wastes in the laboratory 

by using an approved inactivation method (e.g., autoclaving) before transport to and 

disposal in a sanitary landfill.

1013

     

Category IC

    

(DHHS: BMBL)

 

2. 

Biosafety level 3 laboratories must inactivate microbiological wastes in the laboratory 

by using an approved inactivation method (e.g., autoclaving) or incinerate them at the 

facility before transport to and disposal in a sanitary landfill.

1013

     

Category IC

    

(DHHS: BMBL)

 

C.  Biosafety levels 1 and 2 laboratories should develop strategies to inactivate amplified 

microbial cultures and stocks onsite by using an approved inactivation method (e.g., 

autoclaving) instead of packaging and shipping untreated wastes to an offsite facility for 

treatment and disposal.

1013, 1419–1421

     

Category II

 

D.  Laboratories that isolate select agents from clinical specimens must comply with federal 

regulations for the receipt, transfer, management, and appropriate disposal of these 

agents.

1412

     

Category IC

    

(DHHS: 42 CFR 73 § 73.6)

 

E. 

Sanitary sewers may be used for the safe disposal of blood, suctioned fluids, ground tissues, 

excretions, and secretions, provided that local sewage discharge requirements are met and 

that the state has declared this to be an acceptable method of disposal.

1414

     

Category II

 

 

V. 

Special Precautions for Wastes Generated During Care of Patients with Rare Diseases

 

A.  When discarding items contaminated with blood and body fluids from VHF patients, 

contain these regulated medical wastes with minimal agitation during handling.

6, 203

     

Category II

 

B.  Manage properly contained wastes from areas providing care to VHF patients in accordance 

with recommendations for other isolation areas (Regulated Medical Waste: III B).

2, 6, 203

     

Category II

 

C.  Decontaminate bulk blood and body fluids from VHF patients using approved inactivation 

methods (e.g., autoclaving or chemical treatment) before disposal.

6, 203

     

Category IC, II

    

(States; AHJ)

 

background image

 

 

145

D.  When discarding regulated medical waste generated during the routine (i.e., non-surgical) 

care of CJD patients, contain these wastes and decontaminate them using approved 

inactivation methods (e.g., autoclaving or incineration) appropriate for the medical waste 

category (e.g., blood, sharps, pathological waste).

2, 6, 948, 1199

     

Category IC, II

    

(States; AHJ)

 

E. 

Incinerate medical wastes (e.g., central nervous system tissues or contaminated disposable 

materials) from brain autopsy or biopsy procedures of diagnosed or suspected CJD 

patients.

1197, 1201

     

Category IB

 

 

 

Part III.  References

 

 

 

Note:  The bold item in parentheses indicated the citation number or the location of this reference 
listed in the MMWR version of this guideline.

 

 

1.

 

Simmons BP.  Guideline for hospital environmental control.  Atlanta, GA: U.S. Department of Health and 

Human Services, Public Health Service, Centers for Disease Control, 1981. 

2.

 

(270)

  Garner JS, Favero MS.  Guideline for handwashing and hospital environmental control.  Atlanta, GA: 

U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, 1985. 

Document No. 99–1117 (Also available at

 

Infect Control 1986; 7: 231–43.) 

3.

 

(27)

  CDC. Guidelines for prevention of nosocomial pneumonia.  MMWR 1997;46(No. RR-1):1–79. 

4.

 

(34)

  CDC.  Guidelines for preventing the transmission of 

Mycobacterium tuberculosis

 in health-care 

facilities.  MMWR 1994;43(No. RR-13):1–132. 

5.

 

(318)

  CDC.  Recommendations for preventing the spread of vancomycin resistance.  Recommendations of 

the Hospital Infection Control Practices Advisory Committee (HICPAC).

  

MMWR 1995;44(No. RR-12):1–

13. 

6.

 

(36)

  Garner JS, Hospital Infection Control Practices Advisory Committee.  Guideline for isolation 

precautions in hospitals. Infect Control Hosp Epidemiol 1996;17:53–80. 

7.

 

(114)

  Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Hospital Infection Control Practices 

Advisory Committee.  Guideline for prevention of surgical site infection, 1999. Infect Control Hosp 

Epidemiol 1999;20:247–80. 

8.

 

(396)

  CDC.  USPHS/IDSA guidelines for the prevention of opportunistic infections in persons infected with 

human immunodeficiency virus.  MMWR 1999;48(No. RR-10):1–66. 

9.

 

(37, Appendix; 5)

  CDC.  CDC/IDSA/ASBMT guidelines for the prevention of opportunistic infections in 

hematopoietic stem cell transplant recipients.  MMWR 2000;49(No. RR-10):1–128. 

10.

 

Garner JS.  The CDC Hospital Infection Control Practice Advisory Committee.  Am J Infect Control 

1993;21:160–2. 

11.

 

Bennett JV, Brachman PS, eds.  The inanimate environment.  In: Rhame FS. Hospital Infections, 4

th

 ed.  

Philadelphia, PA: Lippincott-Raven, 1998;299–324. 

12.

 

Weber DJ, Rutala WA.  Environmental issues and nosocomial infections.  In: Wenzel RP, ed. Prevention and 

control of nosocomial infections, 3

rd

 ed.  Baltimore, MD: Williams & Wilkins,1997;491–514. 

13.

 

Greene VW.  Microbiological contamination control in hospitals.  Hospitals JAHA 1969;43:78–88. 

14.

 

American Hospital Association.  Hospital statistics, 2000 ed.Historical trends in utilization, personnel, and 

finances for selected years from 1946 through 1998 [Table].  Chicago, IL: Health Forum LLC, 2000;2–3. 

15.

 

McKee B.  Neither bust nor boom.  Architecture 1998. Available at:  

www.britannica.com/bcom/magazine/article/0,5744,39579,00.html 

16.

 

Croswell CL.  Better, not bigger: construction costs soar on wings of patient demand, construction and design 

survey finds.  Mod Healthc 1999;29:23–6, 28–34, 36–8. 

17.

 

(9) 

 Sarubbi FA Jr, Kopf BB, Wilson NO, McGinnis MR, Rutala WA.  Increased recovery of 

Aspergillus 

flavus

 from respiratory specimens during hospital construction.  Am Rev Respir Dis 1982;125:33–8. 

18.

 

(2)

  Arnow PM, Sadigh MC, Weil D, Chudy R.  Endemic and epidemic aspergillosis associated with 

inhospital replication of 

Aspergillus

 organisms.  J Infect Dis 1991;164:998–1002. 

background image

 

 

146 

19.

 

(38)

  Flynn PM, Williams BG, Hethrington SV, Williams BF, Giannini MA, Pearson TA. 

Aspergillus terreus

 

during hospital renovation [letter].  Infect Control Hosp Epidemiol 1993;14:363–5. 

20.

 

(48)

  Weems JJ Jr, Davis BJ, Tablan OC, Kaufman L, Martone WJ.  Construction activity: an independent 

risk factor for invasive aspergillosis and zygomycosis in patients with hematologic malignancy.  Infect 

Control 1987;8:71–5. 

21.

 

(10)

  Streifel AJ, Stevens PP, Rhame FS.  In-hospital source of airborne 

Penicillium

 species spores.  J Clin 

Microbiol 1987;25:1–4. 

22.

 

Noskin GA, Stosor V, Cooper J, Peterson L.  Recovery of vancomycin-resistant enterococci on fingertips and 

environmental surfaces.  Infect Control Hosp Epidemiol 1995;16:577–81. 

23.

 

Manian FA, Meyer L, Jenne J.  

Clostridium difficile

 contamination of blood pressure cuffs: a call for a closer 

look at gloving practices in the era of universal precautions.  Infect Control Hosp Epidemiol 1996;17:180–2. 

24.

 

McFarland LV, Mulligan NE, Kwok RYY, et al.  Nosocomial acquisition of 

Clostridium difficile

 infection.  N 

Engl J Med 1989;320:204–10. 

25.

 

Nath SK, Thomely JH, Kelly M, et al.  A sustained outbreak of 

Clostridium difficile

 in a general hospital: 

persistence of a toxigenic clone in four units.  Infect Control Hosp Epidemiol 1994;15:382–9. 

26.

 

(165)

  Johnson JT, Yu VL, Best MG, et al.  Nosocomial legionellosis in surgical patients with head and neck 

cancer: implications for epidemiological reservoir and mode of transmission.  Lancet 1985;2:298–300. 

27.

 

Blatt SP, Parkinson MD, Pace E, et al.  Nosocomial Legionnaires' disease: aspiration as a primary mode of 

disease acquisition.  Am J Med 1993;95:16–22 

28.

 

Bert F, Maubec E, Bruneau B, Berry P, Lambert-Zechovsky N.  Multi-resistant 

Pseudomonas aeruginosa 

associated with contaminated tap-water in a neurosurgery intensive care unit.  J Hosp Infect 1998;39:53–62. 

29.

 

Muyldermans G, de Smet F, Perrard D, et al.  Neonatal infections with 

Pseudomonas aeruginosa

 associated 

with a water-bath used to thaw fresh frozen plasma.  J Hosp Infect 1998;39:309–14. 

30.

 

Buttery JP, Alabaster SJ, Heine FG, et al.  Multi-resistant 

Pseudomonas aeruginosa

 outbreak in a pediatric 

oncology ward related to bath toys.  Pediatr Infect Dis J 1998;17:509–13. 

31.

 

(224)

  Bolan G, Reingold AL, Carson LA, et al.  Infections with 

Mycobacterium chelonae

 in patients 

receiving dialysis and using processed hemodialyzers.  J Infect Dis 1985;152:1013–9. 

32.

 

(225)

   Lowry PW, Beck-Sague CM, Bland LA, et al.  

Mycobacterium chelonae

 infection among patients 

receiving high-flux dialysis in a hemodialysis clinic in California.  J Infect Dis 1990;161:85–90. 

33.

 

Schaal KP.  Medical and microbiological problems arising from airborne infection in hospitals.  J Hosp Infect 

1991;18 (Suppl A):451–9. 

34.

 

Osterholm MT, Hedberg CW, Moore KA.  Epidemiology of infectious diseases.  In: Mandell GL, Bennett JE, 

Dolin R, eds. Principles and practice of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 

2000;156–67. 

35.

 

(3)

  Streifel AJ.  Design and maintenance of hospital ventilation systems and prevention of airborne 

nosocomial infections.  In: Mayhall CG, ed. Hospital epidemiology and infection control, 2

nd

 ed.   

Philadelphia, PA: Lippincott Williams & Wilkins, 1999:1211–21. 

36.

 

Bodey GP, Vartivarian S.  Aspergillosis.  Eur J Clin Microbiol Infect Dis 1989;8:413–37. 

37.

 

Latgé JP.  

Aspergillus fumigatus

 and aspergillosis.  Clin Microbiol Rev 1999;12:310–50. 

38.

 

Derouin F.  Special issue on aspergillosis.  Pathol Biol 1990;42:625–736. 

39.

 

Dixon DD, Walsh TJ.  Human pathogenesis.  In:  Bennett JW, Klich MA, eds. 

Aspergillus

, biology and 

industrial application. Boston, MA: Butterworth-Heinemann,1992;249–67. 

40.

 

Kurup VP, Kumar A.  Immunodiagnosis of aspergillosis.  Clin Microbiol Rev 1991;4:439–56. 

41.

 

Latgé JP, Paris S, Sarfati J, et al.  Infectivity of 

Aspergillus fumigatus

.  In:  Vanden Bossche H, Stevens DA, 

Odds FC, eds  Host-Fungus Interplay.  Bethesda, MD: National Foundation for Infectious Diseases, 1997;99–

110. 

42.

 

Schaffner A.  Host defense in aspergillosis.  In: Bennett E, Hay RJ, Peterson PK, eds. New Strategies in 

Fungal Disease. Edinburgh, United Kingdom: Churchill Livingstone, 1992;98–112. 

43.

 

Vanden Bossche H, Mackenzie DWR, Cauwenbergh G, eds.  

Aspergillus

 and aspergillosis.  New York, NY: 

Plenum Press, 1988. 

44.

 

(82)

  Sherertz RJ, Belani A, Kramer BS, et al.  Impact of air filtration on nosocomial 

Aspergillus

 infections: 

unique risk of bone marrow transplant recipients.  Am J Med 1987;83:709–18. 

45.

 

Young RC, Bennett JE, Vogel CL, Carbone PP, DeVita VT.  Aspergillosis: the spectrum of the disease in 98 

patients.  Medicine 1970;49:147–73. 

46.

 

Rhame FS.  Lessons from the Roswell Park bone marrow transplant aspergillosis outbreak.  Infect Control 

1985;6:345–6. 

background image

 

 

147

47.

 

Rotsein C, Cummings KM, Tidings J, et al.  An outbreak of invasive aspergillosis among allogeneic bone 

marrow transplants: a case-control study. Infect Control 1985;6:347–55. 

48.

 

(83)

  Aisner J, Schimpff SC, Bennett JE, Young VM, Wiernik PH.  Aspergillus infections in cancer patients: 

association with fireproofing materials in a new hospital.  JAMA 1976;235:411–2. 

49.

 

(64)

  Arnow PM, Anderson RL, Mainous PD, Smith EJ.  Pulmonary aspergillosis during hospital renovation.  

Am Rev Respir Dis 1978;118:49–53. 

50.

 

(61)

  Streifel AJ, Lauer JL, Vesley D, Juni B, Rhame FS.  

Aspergillus fumigatus

 and other thermotolerant 

fungi generated by hospital building demolition.  Appl Environ Microbiol 1983;46:375–8. 

51.

 

Hopkins CC, Weber DJ, Rubin RH.  Invasive aspergillosis infection: possible non-ward common source 

within the hospital environment.  J Hosp Infect 1989;13:19–25. 

52.

 

Denning DW.  Invasive aspergillosis.  Clin Infect Dis 1998;26:781–805. 

53.

 

Manuel RJ, Kibbler CC.  The epidemiology and prevention of invasive aspergillosis.  J Hosp Infect 

1998;39:95–109. 

54.

 

Kennedy HF, Simpson EM, Wilson N, Richardson MD, Michie JR.  

Aspergillus flavus

 endocarditis in a child 

with neuroblastoma.  J Infect 1998;36:126–7. 

55.

 

(75)

  McCarty JM, Flam MS, Pullen G, Jones R, Kassel SH.  Outbreak of primary cutaneous aspergillosis 

related to intravenous arm boards.  J Pediatr 1986;108(Pt.1):721–4. 

56.

 

Goldberg B, Eversmann WW, Eitzen EM Jr.  Invasive aspergillosis of the hand.  J Hand Surg 1982;7:38–42. 

57.

 

Grossman ME, Fithian EC, Behrens C, Bissinger J, Fracaro M, Neu HC.  Primary cutaneous aspergillosis in 

six leukemic children.  J Am Acad Dermatol 1985;12:313–8. 

58.

 

Panke TW, McManus AT, Spebar MJ.  Infection of a burn wound by 

Aspergillus niger

: gross appearance 

simulating ecthyma gangrenosa.  Am J Clin Pathol 1979;72:230–2. 

59.

 

Fraser DW, Ward JL, Ajello L, Plikaytis BD.  Aspergillosis and other systemic mycoses: the growing 

problem.  JAMA 1979;242:1631–5. 

60.

 

Iwen PC, Reed EC, Armitage JO, et al.  Nosocomial invasive aspergillosis in lymphoma patients treated with 

bone marrow or peripheral stem cell transplants.  Infect Control Hosp Epidemiol 1993;14:131–9. 

61.

 

Cordonnier C, Bernaudin JF, Bierling P, Huet Y, Vernant JP.  Pulmonary complications occurring after 

allogeneic bone marrow transplantation: a study of 130 consecutively transplanted patients.  Cancer 1986;58: 

1047–54. 

62.

 

(76)

  Klimowski LL, Rotstein C, Cummings KM.  Incidence of nosocomial aspergillosis in patients with 

leukemia over a twenty-year period.  Infect Control Hosp Epidemiol 1989;10:299–305. 

63.

 

(79)

  Walmsley S, Devi S, King S, Schneider R, Richardson S, Ford-Jones L.  Invasive 

Aspergillus

 infections 

in a pediatric hospital: a ten-year review.  Pediatr Infect Dis 1993;12:673–82. 

64.

 

(57)

  Pannuti CS, Gingrich RD, Pfaller MA, Wenzel RP.  Nosocomial pneumonia in adult patients undergoing 

bone marrow transplantation: a 9-year study.  J Clin Oncol 1991;9:77–84. 

65.

 

(58)

  Wingard JR, Beals SU, Santos GW, Mertz WG, Saral R.

  Aspergillus

 infections in bone marrow 

transplant recipients.  Bone Marrow Transplant 1987;2:175–81. 

66.

 

Humphreys H, Johnson EM, Warnock DW, Willatts SM, Winter RJ, Speller DCE.  An outbreak of 

aspergillosis in a general ITU.  J Hosp Infect 1991;18:167–77. 

67.

 

Sessa A, Meroni M, Battini G, et al.  Nosocomial outbreak of 

Aspergillus fumigatus

 infection among patients 

in a renal unit?  Nephrol Dial Transplant 1996;11:1322–4. 

68.

 

(134)

  Anderson K, Morris G, Kennedy H, et al.  Aspergillosis in immunocompromised pediatric patients: 

associations with building hygiene, design, and indoor air.  Thorax 1996;51:256–61. 

69.

 

(39)

  Tabbara KF, al Jabarti A.  Hospital construction-associated outbreak of ocular aspergillosis after cataract 

surgery.  Ophthalmology 1998;105:522–26. 

70.

 

Ferre A, Domingo P, Alonso C, Franquet T, Gurgui M, Verger G.  Invasive pulmonary aspergillosis: A study 

of 33 cases.  Med Clin (Barc) 1998;110:421–5.  (Spanish) 

71.

 

Ewig S, Paar WD, Pakos E et al.  Nosocomial ventilator-associated pneumonias caused by 

Aspergillus 

fumigatus

 in non-immunosuppressed, non-neutropenic patients.  Pneumologie 1998;52:85–90.  (German) 

72.

 

Singer S, Singer D, Ruchel R, Mergeryan H, Schmidt U, Harms K.  Outbreak of systemic aspergillosis in a 

neonatal intensive care unit. Mycoses 1998;41:223–7. 

73.

 

(88)

  Allo MD, Miller J, Townsend T, Tan C.  Primary cutaneous aspergillosis associated with Hickman 

intravenous catheters.  N Engl J Med 1987;317:1105–8. 

74.

 

Boon AP, Adams DH, Buckels J, McMaster P.  Cerebral aspergillosis in liver transplantation.  J Clin Pathol 

1990;43:114–8. 

background image

 

 

148 

75.

 

Pla MP, Berenguer J, Arzuaga JA, Banares R, Polo JR, Bouza E.  Surgical wound infection by 

Aspergillus 

fumigatus

 in liver transplant recipients.  Diagn Microbiol Infect Dis 1992;15:703–6. 

76.

 

Kanj SS, Welty-Wolf K, Madden J, et al.  Fungal infections in lung and heart-lung transplant recipients: 

report of 9 cases and review of the literature.  Medicine 1996;75:142–56. 

77.

 

(77)

  Pfundstein J.  

Aspergillus

 infection among solid organ transplant recipients: a case study.  J Transpl 

Coord 1997;7:187–9. 

78.

 

Brenier-Pinchart MP, Lebeau B, Devouassoux G, et al.  

Aspergillus

 and lung transplant recipients: a 

mycologic and molecular epidemiologic study.  J Heart Lung Transplant 1998;17:972–9. 

79.

 

(59)

  Gerson SL, Talbot GH, Hurwitz S, Strom B, Lusk EJ, Cassileth PA.  Prolonged granulocytopenia: the 

major risk factor for invasive pulmonary aspergillosis in patients with leukemia.  Ann Intern Med 

1984;100:345–51. 

80.

 

Weber SF, Peacock JE Jr, Do KA, Cruz JM, Powell BL, Capizzi RL.  Interaction of granulocytopenia and 

construction activity as risk factors for nosocomial invasive filamentous fungal disease in patients with 

hematologic disorders.  Infect Control Hosp Epidemiol 1990;11:235–42. 

81.

 

Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL.  The epidemiological features of invasive 

mycotic infections in the San Francisco Bay area, 1992–1993: results of population-based laboratory active 

surveillance. Clin Infect Dis 1998;27:1138–47. 

82.

 

McNeil MM, Nash SL, Hajjeh RA, Conn LA, Plikaytis BD.  Trends in mortality due to invasive mycoses in 

the United States [abstract].  In:  Program & Abstracts of the International Conference on Emerging Infectious 

Diseases.  Atlanta, GA, 1998.  Abstract No. S7.3. 

83.

 

Wald A, Leisenring W, van Burik JA, Bowden RA.  Epidemiology of 

Aspergillus

 infections in a large cohort 

of patients undergoing bone marrow transplantation.  J Infect Dis 1997;175:1459–66. 

84.

 

Gurwith MJ, Stinson EB, Remington JS.  

Aspergillus

 infection complicating cardiac transplantation: Report of 

five cases.  Arch Intern Med 1971;128:541–5. 

85.

 

Weiland D, Ferguson RM, Peterson PK, Snover DC, Simmons RL, Najarian JS.  Aspergillosis in 25 renal 

transplant patients.  Ann Surg 1983;198:622–9. 

86.

 

Hofflin JM, Potasman I, Baldwin JC, Oyster PE, Stinson EB, Remington JS.  Infectious complications in heart 

transplant recipients receiving cyclosporine and corticosteroids.  Ann Intern Med 1987;106:209–16. 

87.

 

Schulman LL, Smith CR, Drusin R, Rose EA, Enson Y, Reemtsma K.  Respiratory complications of cardiac 

transplantation.  Am J Med Sci 1988;296:1–10. 

88.

 

Gustafson TL, Schaffner W, Lavely GB, Stratton CW, Johnson HK, Hutcheson RH.  Invasive aspergillosis in 

renal transplant recipients: correlation with corticosteroid therapy.  J Infect Dis 1983;148:230–8. 

89.

 

Denning DW, Stevens DA.  Antifungal and surgical treatment of invasive aspergillosis: review of 2121 

published cases.  Rev Infect Dis 1990;12:1147–201. 

90.

 

Weinberger M, Elattaar I, Marshall D, et al.  Patterns of infection in patients with aplastic anemia and the 

emergence of 

Aspergillus

 as a major cause of death.  Medicine 1992;71:24–43. 

91.

 

Noble WC, Clayton YM.  Fungi in the air of hospital wards.  J Gen Microbiol 1963;32:397–402. 

92.

 

Solomon WR, Burge HP, Boise JR.  Airborne 

Aspergillus fumigatus

 levels outside and within a large clinical 

center.  J Allergy Clin Immunol 1978;62:56–60. 

93.

 

Streifel AJ, Rhame FS.  Hospital air filamentous fungal spore and particle counts in a specially designed 

hospital.  In: Indoor Air ‘93: Proceedings of the Sixth International Conference on Indoor Air and Climate, 

Vol. 4.  Helsinki, Finland:161–5. 

94.

 

(40)

  Rhame FS, Streifel AJ, Kersey JH Jr, McGlave PB.  Extrinsic risk factors for pneumonia in the patient at 

high risk for infection.  Am J Med 1984;76(5A):42–52. 

95.

 

(78)

  Rhame FS, Streifel A, Stevens P, et al.  Endemic 

Aspergillus 

airborne spore levels are a major risk factor 

for aspergillosis in bone marrow transplant patients [abstract].  In:  Abstracts of the 25

th

 Interscience 

Conference on Antimicrobial Agents and Chemotherapy 1985. Abstract No. 147. 

96.

 

(60)

 Lentino JR, Rosenkranz MA, Michaels JA, Kurup VP, Rose HD, Rytel MW.  Nosocomial aspergillosis: a 

retrospective review of airborne disease secondary to road construction and contaminated air conditioners.  

Am J Epidemiol 1982;116:430–7. 

97.

 

(49)

  Krasinski K, Holzman RS, Hanna B, Greco MA, Graff M, Bhogal M.  Nosocomial fungal infection 

during hospital renovation.  Infect Control 1985;6:278–82. 

98.

 

(29)

 Gage AA, Dean DC, Schimert G, Minsley N.  

Aspergillus

 infection after cardiac surgery.  Arch Surg 

1970;101:384–87. 

background image

 

 

149

99.

 

(95)

  Siegler L, Kennedy MJ.  

Aspergillus

Fusarium

, and other opportunistic moniliaceous fungi.  In: Murray 

PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of clinical microbiology, 7

th

 ed.  

Washington, DC: American Society for Microbiology Press, 1999;1212–41. 

100.

 

(70)

  Overberger PA, Wadowsky RM, Schaper MM.  Evaluation of airborne particulates and fungi during 

hospital renovation.  Am Ind Hyg Assoc J 1995;56:706–12. 

101.

 

(96)

  Breton P, Germaud P, Morin O, Audoin AF, Milpied N, Harousseau JL.  Unusual pulmonary mycoses 

in patients with hematologic disease.  Rev Pneumol Clin 1998;54:253–7. (French) 

102.

 

(97)

  Guarro J, Nucci M, Akiti T, Gené J, Barreiro MDGC, Gonçalves RT.  Fungemia due to 

Fusarium 

sacchari

 in an immunosuppressed patient.  J Clin Microbiol 2000;38:419–21. 

103.

 

(98)

  Burton JR, Zachery JB, Bessin R, et al.  Aspergillosis in four renal transplant patients: diagnosis and 

effective treatment with amphotericin B.  Ann Intern Med 1972;77:383–8. 

104.

 

(80)

  Kyriakides GK, Zinneman HHA, Hall WH, et al.  Immunologic monitoring and aspergillosis in renal 

transplant patients.  Am J Surg 1976;131:246–52. 

105.

 

Simmons RB, Price DL, Noble JA, Crow SA, Ahearn DG.  Fungal colonization of air filters from hospitals.  

Am Ind Hyg Assoc J 1997;58:900–4. 

106.

 

(4)

  Pittet D, Huguenin T, Dharan S, et al.  Unusual case of lethal pulmonary aspergillosis in patients with 

chronic obstructive pulmonary disease.  Am J Respir Crit Care Med 1996;154(2 Pt 1):541–4. 

107.

 

(104)

  Mahoney DH Jr, Steuber CP, Starling KA, Barrett FF, Goldberg J, Fernbach DJ.  An outbreak of 

aspergillosis in children with acute leukemia.  J Pediatr 1979;95:70–2. 

108.

 

Ruutu P, Valtonen V, Tiitanen L, et al.  An outbreak of invasive aspergillosis in a hematologic unit.  Scand 

J Infect Dis 1987;19:347–51. 

109.

 

(51)

  Walsh TJ, Dixon DM.  Nosocomial aspergillosis: environmental microbiology, hospital epidemiology, 

diagnosis, and treatment.  Eur J Epidemiol 1989;5:131–42. 

110.

 

Buffington J, Reporter R, Lasker BA, et al.  Investigation of an epidemic of invasive aspergillosis: utility of 

molecular typing with the use of random amplified polymorphic DNA probes.  Pediatr Infect Dis J 

1994;13:386–93. 

111.

 

44)

  Gerson SL, Parker P, Jacobs MR, Creger R, Lazarus HM.  Aspergillosis due to carpet contamination 

[letter].  Infect Control Hosp Epidemiol 1994;15:221–3. 

112.

 

(84)

  Fox BC, Chamberlin L, Kulich P, Rae EJ, Webster LR.  Heavy contamination of operating room air 

by 

Penicillium

 species: identification of the source and attempts at decontamination.  Am J Infect Control 

1990;18:300–6. 

113.

 

Chazalet V, Debeaupuis J-P, Sarfati J, et al.  Molecular typing of environmental and patient isolates of 

Aspergillus fumigatus

 from various hospital settings.  J Clin Microbiol 1998;36:1494–500. 

114.

 

Loudon KW, Coke AP, Burnie JP, Shaw AJ, Oppenheim BA, Morris CQ.  Kitchens as a source of 

Aspergillus niger

 infection.  J Hosp Infect 1996;32:191–8. 

115.

 

(81)

  Abzug MJ, Gardner S, Glode MP, Cymanski M, Roe MH, Odom LF.  Heliport-associated nosocomial 

mucormycoses [letter].  Infect Control Hosp Epidemiol 1992;13:325–6. 

116.

 

Alvarez M, Lopez Ponga B, Rayon C, et al.  Nosocomial outbreak caused by 

Scedosporium prolificans 

(inflatum

): four fatal cases in leukemic patients.  J Clin Microbiol 1995;33:3290–5. 

117.

 

(89)

  Schleupner CJ, Hamilton JR.  A pseudoepidemic of pulmonary fungal infections related to fiberoptic 

bronchoscopy.  Infect Control 1980;1:38–42. 

118.

 

Jackson L, Klotz SA, Normand RE.  A pseudoepidemic of 

Sporothrix cyanescens

 pneumonia occurring 

during renovation of a bronchoscopy suite.  J Med Vet Mycol 1990;28:455–9. 

119.

 

(30)

  Vargo JA, Ginsberg MM, Mizrahi M.  Human infestation by the pigeon mite: a case report.  Am J 

Infect Control 1983;11:24–5. 

120.

 

(1)

  American Institute of Architects.  Guidelines for design and construction of hospital and health care 

facilities, 2001.  Washington, DC: American Institute of Architects Press, 2001. 

121.

 

Diamond RD.  

Cryptococcus neoformans

.  In: Mandell GL, Bennett JE, Dolin R, eds. Principles and 

practice of Infectious Diseases, 5

th

 Ed. Philadelphia, PA: Churchill Livingstone, 2000;2707–18. 

122.

 

Deepe GS Jr.  

Histoplasma capsulatum

.  In: Mandell GL, Bennett JE, Dolin R. eds. Principles and practice 

of Infectious Diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;2718–33. 

123.

 

Brodsky AL, Gregg MB, Loewenstein MS, et al.  Outbreak of histoplasmosis associated with the 1970 earth 

day activities.  Am J Med 1973;54:333–42. 

124.

 

Ward JI, Weeks M, Allen D, et al.  Acute histoplasmosis: clinical, epidemiologic, and serologic findings of 

an outbreak associated with exposure to a fallen tree.  Am J Med 1979;66:587–95. 

background image

 

 

150 

125.

 

Galgiani JN.  Coccidioidomycoses.  In: Remington JS, Swartz MN, eds.  Current clinical topics in 

infectious disease. Malden, MA: Blackwell Science, 1997;188–204. 

126.

 

(111)

  Gerberding JL.  Nosocomial transmission of opportunistic infections.  Infect Control Hosp Epidemiol 

1998;19:574–7. 

127.

 

Hughes WT.  Natural mode of acquisition for de novo infection with 

Pneumocystis carinii

.  J Infect Dis 

1982;145:842–8. 

128.

 

Olsson M, Sukura A, Lindberg LA, et al.  Detections of 

Pneumocystis carinii

 DNA by filtration of air.  

Scand J Infect Dis 1996;28:279–82. 

129.

 

Bartlett MS, Vermund SH, Jacobs R, et al.  Detection of 

Pneumocystis carinii

 DNA in air samples: likely 

environmental risk to susceptible persons.  J Clin Microbiol 1997;35:2511–3. 

130.

 

Lundgren B, Elvin K, Rothman LP, Ljungstrom I, Lidman C, Lundgren JD.  Transmission of 

Pneumocystis 

carinii

 from patients to hospital staff. Thorax 1997;52:422–4. 

131.

 

(112)

  Vargas SL, Ponce CA, Gigliotti F, et al.  Transmission of 

Pneumocystis carinii

 DNA from a patient 

with

 P. carinii

 pneumonia to immunocompetent contact health care workers.  J Clin Microbiol 

2000;38:1536–8. 

132.

 

(113)

  Walzer PD.  

Pneumocystis carinii

.  In: Mandell GL, Bennett JE, Dolin R. eds.  Principles and 

practice of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;2781–95. 

133.

 

CDC.  Screening for tuberculosis and tuberculosis infection in high-risk populations: recommendations of 

the Advisory Committee for Elimination of Tuberculosis.  MMWR 1995;44(No. RR-11):18–34. 

134.

 

CDC.  Targeted tuberculin testing and treatment of latent tuberculosis infection.  MMWR 2000;49(No. RR-

6):1–51. 

135.

 

D’Agata EMC, Wise S, Stewart A, Lefkowitz LB Jr.  Nosocomial transmission of 

Mycobacterium 

tuberculosis

 from an extrapulmonary site.  Infect Control Hosp Epidemiol 2001;22:10–2. 

136.

 

CDC.  Summary of notifiable diseases, United States 2001.  MMWR 2001;50(53):1–108. 

137.

 

Haas DW.  

Mycobacterium tuberculosis

.  In: Mandell GL, Bennett JE, Dolin R. eds. Principles and practice 

of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;2576–607. 

138.

 

American Public Health Association.  Tuberculosis.  In: Chin J, ed. Control of communicable diseases 

manual, 17

th

 ed. Washington, DC: American Public Health Association Press, 2000:521–30. 

139.

 

American Thoracic Society/CDC.  Treatment of tuberculosis.  Am J Respir Crit Care Med 2003;167:603–

62. 

140.

 

Matlow AG, Jarrison A, Monteath A, Roach P, Balfe JW.  Nosocomial transmission of tuberculosis (TB) 

associated with care of an infant with peritoneal TB.  Infect Control Hosp Epidemiol 2000;21:222–3. 

141.

 

Jensen PA.  Airborne

 Mycobacterium

 spp.  In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, 

Walter MV, eds. Manual of environmental microbiology. Washington, DC: American Society for 

Microbiology Press, 1997;676–81. 

142.

 

(41)

  Wells WF.  Aerodynamics of droplet nuclei.  In: Airborne contagion and air hygiene.  Cambridge, 

MA: Harvard University Press,1955;13–9. 

143.

 

White A.  Relation between quantitative nasal cultures and dissemination of staphylococci.  J Lab Clin Med 

1961;58:273–7. 

144.

 

Huijsmans-Evers AG.  Results of routine tests for the detection of dispersers of 

Staphylococcus aureus.

  

Arch Chir Neerl 1978;30:141–50. 

145.

 

Boyce JM, Opal SM, Potter-Bynoe G, Medeiros AA.  Spread of methicillin-resistant 

Staphylococcus aureus

 

in a hospital after exposure to a healthcare worker with chronic sinusitis.  Clin Infect Dis 1993;17:496–504. 

146.

 

Hambraeus A, Sanderson HF.  The control of ventilation of airborne bacterial transfer between hospital 

patients, and its assessment by means of a particle tracer.  3.  Studies with an airborne-particle tracer in an 

isolation ward for burned patients.  J Hyg (Lond) 1972;70:299–312. 

147.

 

Nakashima AK, Allen JR, Martone WJ, et al.  Epidemic bullous impetigo in a nursery due to a nasal carrier 

of 

Staphylococcus aureus

: role of epidemiology and control measures.  Infect Control 1984;5:326–31. 

148.

 

Bethune DW, Blowers R, Parker M, Pask EA.  Dispersal of 

Staphylococcus aureus

 by patients and surgical 

staff.  Lancet 1965;1:480–3. 

149.

 

Sherertz RJ, Reagan DR, Hampton KD, et al.  A cloud adult: the 

Staphylococcus aureus

 — virus interaction 

revisited.  Ann Intern Med 1996;124:539–47. 

150.

 

Gryska PF, O’Dea AE.  Postoperative streptococcal wound infection: the anatomy of an epidemic.  JAMA 

1970;213:1189–91. 

151.

 

Stamm WE, Feeley JC, Facklam RR.  Wound infection due to group A 

Streptococcus

 traced to a vaginal 

carrier.  J Infect Dis 1978;138:287–92. 

background image

 

 

151

152.

 

Berkelman RL, Martin D, Graham DR.  Streptococcal wound infection caused by a vaginal carrier.  JAMA 

1982;247:2680–2. 

153.

 

McIntyre DM.  An epidemic of 

Streptococcus pyrogenes

 puerpural and postoperative sepsis with an 

unusual site — the anus.  Am J Obstet Gynecol 1968;101:308–14. 

154.

 

Gaynes RP, Horan TC.  Surveillance of nosocomial infections.  In: Mayhall CG, ed. Hospital epidemiology 

and infection control, 2

nd

 ed. Philadelphia, PA: Lippincott Williams & Wilkins, 1999;1285–318. 

155.

 

Wenzel RP, Veazey JM Jr, Townsend TR.  Role of the inanimate environment in hospital-acquired 

infections.  In: Cundy KR, Ball W, eds.  Infection control in healthcare facilities: microbiological 

surveillance. Baltimore, MD: University Park Press, 1977;71–98. 

156.

 

Mortimer EA Jr, Wolinsky E, Gonzaga AJ, Rammelkamp CH Jr.  Role of airborne transmission in 

staphylococcal infections.  Br Med J 1966;5483:319–22. 

157.

 

Youngs ER, Roberts C, Kramer JM, Gilbert RJ.  Dissemination of 

Bacillus cereus

 in a maternity unit.  J 

Infect 1985;10:228–32. 

158.

 

Richardson AJ, Rothburn MM, Roberts C.  Pseudo-outbreak of 

Bacillus

 species: related to fiberoptic 

bronchoscopy.  J Hosp Infect 1986;7:208–10. 

159.

 

Bryce EA, Smith JA, Tweeddale M, Andruschak BJ, Maxwell MR.  Dissemination of 

Bacillus cereus

 in an 

intensive care unit.  Infect Control Hosp Epidemiol 1993;14:459–62. 

160.

 

Lie PY-F, Ke S-C, Chen S-L.  Use of pulsed-field gel electrophoresis to investigate a pseudo-outbreak of 

Bacillus cereus

 in a pediatric unit.  J Clin Microbiol 1997;35:1533–5. 

161.

 

McDonald LC, Walker M, Carson L, et al.  Outbreak of 

Acinetobacter

 spp. bloodstream infections in a 

nursery associated with contaminated aerosols and air conditioners.  Pediatr Infect Dis J 1998;17:716–22. 

162.

 

Leclair JM, Zaia JA, Levin MJ, Congdon RG, Goldmann DA.  Airborne transmission of chickenpox in a 

hospital.  N Engl J Med 1980;302:450–3. 

163.

 

Gustafson TL, Lavely GB, Brawner ERJ, Hutcheson RHJ, Wright PF, Schaffner W.  An outbreak of 

airborne nosocomial varicella.  Pediatrics 1982;70:550–6. 

164.

 

Josephson A, Gombert ME.  Airborne transmission of nosocomial varicella from localized zoster.  J Infect 

Dis 1988;158:238–41. 

165.

 

Sawyer MJ, Chamberlin CJ, Wu YN, Aintablian N, Wallace MR.  Detection of varicella-zoster virus DNA 

in air samples from hospital rooms.  J Infect Dis 1994;169:91–4. 

166.

 

Menkhaus NA, Lamphear B, Linnemann CC.  Airborne transmission of varicella-zoster virus in hospitals.  

Lancet 1990;226:1315. 

167.

 

CDC.  Prevention of varicella: recommendations of the advisory committee on immunization practices 

(ACIP).  MMWR 1996;45(No. RR-11):1–36. 

168.

 

Davis RM, Orenstein WA, Frank JAJ, et al.  Transmission of measles in medical settings: 1980 through 

1984.  JAMA 1986;255:1295–8. 

169.

 

Watkins NM, Smith RPJ, St Germain DL, Mackay DN.  Measles infection in a hopsital setting.  Am J 

Infect Control 1987;15:201–6. 

170.

 

Revera ME, Mason WH, Ross LA, Wright HT Jr.  Nosocomial measles infection in a pediatric hospital 

during a community-wide epidemic.  J Pediatr 1991;119:183–6. 

171.

 

Atkinson WL, Markowitz LE, Adams NC, Seastrom GR.  Transmission of measles in medical settings — 

United States, 1985–1989.  Am J Med 1991;91(suppl):320S–4S. 

172.

 

Patriarca PA, Weber JA, Parker RA, et al.  Efficacy of influenza vaccine in nursing homes: reduction in 

illness and complications during influenza A (H3N2) epidemics.  JAMA 1985;253:1136–9. 

173.

 

Arden NH, Patriarca PA, Fasano MB, et al.  The roles of vaccination and amantadine prophylaxis in 

controlling an outbreak of influenza A (H3N2) in a nursing home.  Arch Intern Med 1988;148:865–8. 

174.

 

CDC.  Influenza A outbreaks — Louisiana, August 1993.  MMWR 1993;42:132–4. 

175.

 

Drinka PJ, Gravenstein S, Krause P, Schilling M, Miller BA, Shult P.  Outbreaks of influenza A and B in a 

highly immunized nursing home population.  J Family Practice 1997;45:509–14. 

176.

 

Schilling M, Povinelli L, Krause P, et al.  Efficacy of zanamivir for chemoprophylaxis of nursing home 

influenza outbreaks.  Vaccine 1998;16:1771–4. 

177.

 

Hall CB.  Nosocomial viral infections: perennial weeds on pediatric wards.  Am J Med 1981;70:670–6. 

178.

 

Whimbey E, Elting LS, Couch RB, et al.  Influenza A virus infections among hospitalized adult bone 

marrow transplant recipients.  Bone Marrow Transpl 1994;13:437–40. 

179.

 

Evans ME, Hall KL, Berry SE.  Influenza control in acute care hospitals.  Am J Infect Control 

1997;25:357–62. 

background image

 

 

152 

180.

 

Munoz FM, Campbell JR, Atmar RL, et al.  Influenza A virus outbreak in a neonatal intensive care unit.  

Pediatr Infect Dis J 1999;18:811–5. 

181.

 

Alford RH, Kasel JA, Gerone PJ, Knight V.  Human influenza resulting from aerosol inhalation.  Proc Soc 

Exp Biol Med 1966;122:800–4. 

182.

 

Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG.  An outbreak of influenza aboard a 

commercial airliner.  Am J Epidemiol 1979;110:1–6. 

183.

 

Chanock RW, Kim HW, Vargosko AJ, et al.  Respiratory syncytial virus 1: virus recovery and other 

observations during 1960 — outbreak of bronchiolitis, pneumonia, and other minor respiratory illness in 

children.  JAMA 1961;176:647–53. 

184.

 

Gardner DS, Court SDM, Brocklebank JT, et al. Virus cross-infection in paediatric wards.  Br Med J 

1973;2:571–75. 

185.

 

Sawyer LA, Murphy JJ, Kaplan JE, et al.  25–30 nm virus particle associated with a hospital outbreak of 

acute gastroenteritis with evidence for airborne transmission.  Am J Epidemiol 1988;127:1261–71. 

186.

 

Baxby D.  Poxviruses.  In: Belshe RB, ed. Textbook of human virology, 2

nd

 ed. St. Louis, MO: Mosby Year 

Book, 1991;930–46. 

187.

 

Neff JM.  Variola (smallpox) and monkeypox viruses.  In: Mandell GL, Bennett JE, Dolin R. eds. Principles 

and practice of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;1555–6. 

188.

 

Wehrle PF, Posch J, Richter KH, Henderson DA.  An airborne outbreak of smallpox in a German hospital 

and its significance with respect to other recent outbreaks in Europe.  Bull WHO 1970;43:669–79. 

189.

 

Hawkes N.  Science in Europe: smallpox death in Britain challenges presumption of laboratory safety.  

Science 1979;203:855–6. 

190.

 

Eickhoff TC.  Airborne nosocomial infection: a contemporary perspective. Infect Control Hosp Epidemiol 

1994;15:663–72. 

191.

 

Nuzum EO, Rossi CA, Stephenson EH, LeDuc JW.  Aerosol tranmission of Hantaan and related viruses to 

laboratory rats. Am J Trop Med Hyg 1988;38:636-40. 

192.

 

CDC.  Hantavirus infection — southwestern United States: Interim recommendations for risk reduction.  

CDC.  MMWR 1993;42(No. RR-11):1–13. 

193.

 

Vitek CR, Breiman RF, Ksiazek TG, et al.  Evidence against person-to-person transmission of hantavirus to 

health care workers.  Clin Infect Dis 1996;22:824–6. 

194.

 

Wells RM, Young J, Williams RJ, et al.  Hantavirus transmission in the United States.  Emerg Infect Dis 

1997;3:361–5. 

195.

 

Chaparro J, Vega J, Terry W, et al.  Assessment of person-to-person transmission of hantavirus pulmonary 

syndrome in a Chilean hospital setting.  J Hosp Infect 1998;40:281–5. 

196.

 

Nolte KB, Foucar K, Richmond JY.  Hantaviral biosafety issues in the autopsy room and laboratory: 

Concerns and recommendations.  Hum Pathol 1996;27:1253–4. 

197.

 

Stephenson EH, Larson EW, Dominik JW.  Effect of environmental factors on aerosol-induced Lassa virus 

infection.  J Med Virol 1984;14:295–303. 

198.

 

Monath TP.  Lassa fever: review of epidemiology and epizootiology.  Bull World Health Organ 1975;52: 

577–92. 

199.

 

Monath TP, Casals J.  Diagnosis of Lassa fever and the isolation and management of patients.  Bull WHO 

1975;52:707–15. 

200.

 

Zweighaft RM, Fraser DW, Hattwick MA, et al.  Lassa fever: response to an imported case.  N Engl J Med 

1977;297:803–7. 

201.

 

Cooper CB, Gransden WR, Webster M, et al.  A case of Lassa fever: experience at St Thomas’ hospital.  Br 

Med J (Clin Res Ed) 1982;285:1003–5. 

202.

 

(108)

  Monath TP.  Yellow fever: Victor, victoria? Conqueror, conquest? Epidemics and research in the last 

forty years and prospects for the future. Am J Trop Med Hyg 1991;45:1–43. 

203.

 

 

(109)

  CDC.  Update: management of patients with suspected viral hemorrhagic fever — United States.  

MMWR 1995;44:475–9. 

204.

 

(110)

  Weber DJ, Rutala WA.  Risks and prevention of nosocomial transmission rare zoonotic diseases.  

Clin Infect Dis 2001;32:446–56. 

205.

 

Decker MD, Schaffner W.  Nosocomial diseases of healthcare workers spread by the airborne or contact 

routes (other than tuberculosis).  In: Mayhall CG, ed. Hospital epidemiology and infection control, 2

nd

 ed. 

Philadelphia, PA: Lippincott Williams & Wilkins, 1999;1101–26. 

background image

 

 

153

206.

 

(46)

  Fridkin SK, Kremer FB, Bland LA, Padhye A, McNeil MM, Jarvis WR.  

Acremonium kiliense

 

endophthalmitis that occurred after cataract extraction in an ambulatory surgical center and was traced to an 

environmental reservoir.  Clin Infect Dis 1996;22:222–7. 

207.

 

Loeb M, Wilcox L, Thornley D, et al.  

Bacillus

 species pseudobacteremia following hospital construction.  

Can J Infect Control 1995;10:37–40. 

208.

 

Olle-Goig JE, Canela-Soler J.  An outbreak of 

Brucella melitensis

 infection by airborne transmission among 

laboratory workers.  Am J Public Health 1987;77:335–8. 

209.

 

Kiel FW, Khan MY.  Brucellosis among hospital employees in Saudi Arabia.  Infect Control Hosp 

Epidemiol 1993;14:268–72. 

210.

 

Staszkiewicz J, Lewis CM, Colville J, Zervos M, Band J.  Outbreak of 

Brucella melitensis

 among 

microbiology laboratory workers in a community hospital.  J Clin Microbiol 1991;20:287–90. 

211.

 

Fiori PL, Mastrandrea S, Rappelli P, Cappuccinelli P.  

Brucella abortus

 infection acquired in microbiology 

laboratories.  J Clin Microbiol 2000;38:2005–6. 

212.

 

Spinelli JS, Ascher MS, Brooks DL, et al.  Q fever crisis in San Francisco: controlling a sheep zoonosis in a 

lab animal facility.  Lab Anim 1981;10:29–38. 

213.

 

(Table 1)

  American Conference of Governmental Industrial Hygienists (ACGIH).  HVAC components, 

functions and malfunctions (topic 8-4).  In:  Industrial ventilation: a Manual of recommended practice, 24

th

 

ed. Cincinnati, OH : American Conference of Governmental Industrial Hygienists, Inc., 2001. 

214.

 

(35)

  American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc.  Ventilation for 

Indoor Air Quality.  ASHRAE Standard 62-1999. Atlanta, GA: ASHRAE 1999;1–27. 

215.

 

(133)

  Burroughs HEB.  Sick building syndrome: fact, fiction, or facility?  In: Hansen W, ed. A guide to 

managing indoor air quality in health care organizations. Oakbrook Terrace, IL: Joint Commission on 

Accreditation of Health Care Organizations, 1997;3–13. 

216.

 

American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc.  Gravimetric and dust spot 

procedures for testing air cleaning devices used in general ventilation for removing particulate matter.  

ANSI/ASHRAE Standard 52–1–1999. Atlanta, GA: ASHRAE 1999;1–25. 

217.

 

Robinson TJ, Ouellet AE.  Filters and filtration.  ASHRAE J 1999;65–70. 

218.

 

Dryden GE, Dryden SR, Brown DG, Schatzle KC, Godzeski C.  Performance of bacteria filters.  Respir 

Care 1980;25:1127–35. 

219.

 

(33)

  Rutala WA, Jones SM, Worthington JM, Reist PC, Weber DJ.  Efficacy of portable filtration units in 

reducing aerosolized particles in the size range of 

Mycobacterium tuberculosis

.  Infect Control Hosp 

Epidemiol 1995;16:391–8. 

220.

 

(5)

  U.S. Environmental Protection Agency,  Office of Air and Radiation and U.S. Department of Health & 

Human Services, National Institute of Occupational Safety and Health.  Building air quality: a guide for 

building owners and facilities managers.  Washington, DC: USEPA, 1991. EPA/400/1-91/033, or NIOSH 

91-114.  Available at:  www.cdc.gov/niosh/baqtoc.html 

221.

 

(28)

  Ko G, Burge HA, Muileberg M, Rudnick S, First M.  Survival of mycobacteria on HEPA filter 

material.  J Am Biol Safety Assoc 1998;3:65–78. 

222.

 

(6)

  Rao CY, Burge HA, Chang JCS.  Review of quantitative standards and guidelines for fungi in indoor 

air.  J Air & Waste Manage Assoc 1996;46:899–906. 

223.

 

Riley RL, Wells WF, Mills CC, Nyka W, McLean RL.  Air hygiene in tuberculosis: quantitative studies of 

infectivity and control in a pilot ward.  Am Rev Tuberc 1957;75:420–31. 

224.

 

Riley RL, Nardell EA.  Cleaning the air: the theory and application of UV air disinfection.  Am Rev Respir 

Dis 1989;139:1286–94. 

225.

 

Riley RL.  Ultraviolet air disinfection for control of respiratory contagion.  In: Kundsin RB, ed. 

Architectural design and indoor microbial pollution.New York, NY: Oxford University Press, 1988;174–97. 

226.

 

Willmon TL, Hollaender A, Langmuir AD.  Studies of the control of acute respiratory diseases among naval 

recruits. I.  A review of a four-year experience with ultraviolet irradiation and dust suppressive measures, 

1943 to 1947.  Am J Hyg 1948;48:227–32. 

227.

 

Wells WF, Wells MW, Wilder TS.  The environmental control of epidemic contagion. I. An epidemiologic 

study of radiant disinfection of air in day schools.  Am J Hyg 1942;35:97–121. 

228.

 

Perkins JE, Bahlke AM, Silverman HF.  Effect of ultra-violet irradiation of classrooms on spread of measles 

in large rural central schools.  Am J Public Health Nations Health 1947;37:529–37. 

229.

 

Nagy R.  Application and measurement of ultraviolet radiation.  Am Ind Hyg Assoc J 1964;25:274–81. 

230.

 

Illuminating Engineering Society.  IES Lighting handbook, 4

th

 ed.  New York, NY: Illuminating 

Engineering Society, 1966;25–7. 

background image

 

 

154 

231.

 

Riley RL.  Indoor spread of respiratory infection by recirculation of air.  Bull Physiopathol Respir 

1979;15:699–705. 

232.

 

Menzies D, Pasztor J, Rand T, Bourbeau J.  Germicidal ultraviolet irradiation in air conditioning systems: 

effect on office worker health and wellbeing — a pilot study.  Occup Environ Med 1999;56:397–402. 

233.

 

Riley RL, Permutt S.  Room air disinfection by ultraviolet irradiation of upper air: air mixing and 

germicidal effectiveness.  Arch Environ Health 1971;22:208–19. 

234.

 

Nicas M, Miller SL.  A multi-zone model evaluation of the efficacy of upper-room air ultraviolet germicidal 

irradiation.  Appl Occup Environ Hyg 1999;14:317–28. 

235.

 

Kethley TW, Branch K.  Ultraviolet lamps for room air disinfection: effect of sampling location and particle 

size of bacterial aerosol.  Arch Environ Health 1972;25:205–14. 

236.

 

Riley RL, Knight M, Middlebrook G.  Ultraviolet susceptibility of BCG and virulent tubercle bacilli.  Am 

Rev Respir Dis 1976;113:413–8. 

237.

 

Collins FM.  Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light.  Appl 

Microbiol 1971;21:411–3. 

238.

 

Riley RL, Permutt S, Kaufman JE.  Convection, air mixing, and ultraviolet air disinfection in rooms.  Arch 

Environ Health 1971;22:200–7. 

239.

 

Nardell EA.  Fans, filters, or rays?  Pros and cons of the current environmental tuberculosis control 

technologies.  Infect Control Hosp Epidemiol 1993;14:681–5. 

240.

 

ECRI.  Health devices evaluation of mobile high efficiency filter air cleaners (MHEFACs).  ECRI 

1997;26:367–88. 

241.

 

(103)

  American Society of Heating, Refrigerating, and Air-Conditioning Engineers.  1999 ASHRAE 

Handbook: heating, ventilating, and air-conditioning applications.  Chapter 7: Health care facilities.  

Atlanta, GA: ASHRAE, 1999;7.1–7.13. 

242.

 

Elovitz KM.  Understanding what humidity does and why.  ASHRAE J 1999;April:84–90. 

243.

 

Orme I.  Patient impact.  In: Hansen W, ed. A guide to managing indoor air quality in health care 

organizations:  Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations 

Publications, 1997:43–52. 

244.

 

Gundermann KO.  Spread of microorganisms by air-conditioning systems — especially in hospitals.  Ann 

NY Acad Sci 1980;209–17. 

245.

 

Arundel AV, Sterling EM, Biggin JH, Sterling TD.  Indirect health effects of relative humidity in indoor 

environments.  Environ Health Perspect 1986;65:351–61. 

246.

 

U.S. Environmental Protection Agency.  Ventilation and air quality in offices.  Washington, DC: EPA 

Document #402-F-94-003, Revision: July 1990. 

247.

 

Hermans RD, Streifel AJ.  Ventilation design.  In: Bierbaum PJ, Lippman M, eds.  Workshop on 

engineering controls for preventing airborne infections in workers in health care and related facilities. 

Cincinnatti, OH: NIOSH and CDC, 1993;107–46. 

248.

 

Memarzadeh F, Jiang J.  A methodology for minimizing risk from airborne organisms in hospital isolation 

rooms.  ASHRAE Trans 2000;106:731–47. 

249.

 

(11)

  Hansen W.  The need for an integrated indoor air quality program.  In: Hansen W, ed. A guide to 

managing indoor air quality in health care organizations. Oakbrook Terrace, IL: Joint Commission on 

Accreditation of Healthcare Organizations Publications, 1997;xiii – xviii. 

250.

 

(12)

  Bartley J. Ventilation.  In:  Pfeiffer J, ed. APIC Text of infection control and epidemiology.  

Washington, DC; Association for Professionals in Infection Control and Epidemiology, Inc (APIC), 

2000;77.1–77.11. 

251.

 

Levine AS, Siegel SE, Schreiber AD, et al.  Protected environments and prophylactic antibiotics.  N Engl J 

Med 1973;288:477–483. 

252.

 

(90)

  Denning DW, Clemons KV, Hanson LH, Stevens DA.  Restriction endonuclease analysis of total 

cellular DNA of 

Aspergillus fumigatus

 isolates of geographically and epidemiologically diverse origin.  J 

Infect Dis 1990;162:1151–8. 

253.

 

Rhame FS.  Prevention of nosocomial aspergillosis.  J Hosp Infect 1991;18 (Suppl. A):466–72. 

254.

 

(85)

  Barnes RA, Rogers TR.  Control of an outbreak of nosocomial aspergillosis by laminar air-flow 

isolation.  J Hosp Infect 1989;14:89–94. 

255.

 

Roy M-C.  The operating theater: a special environmental area.  In:  Wenzel RP, ed. Prevention and control 

of nosocomial infections, 3

rd

 ed. Baltimore, MD: William & Wilkins, 1997;515–38. 

256.

 

Pavelchak N, DePersis RP, London M, et al.  Identification of factors that disrupt negative air pressurization 

of respiratory isolation rooms.  Infect Control Hosp Epidemiol 2000;21:191–5. 

background image

 

 

155

257.

 

Anderson K.  

Pseudomonas pyocyanea

 disseminated from an air cooling apparatus.  Med J Austr 

1959;529–32. 

258.

 

Shaffer JG, McDade JJ.  Airborne 

Staphylococcus aureus

: a possible source in air control equipment.  Arch 

Environ Health 1963;5:547–51. 

259.

 

Morey PR.  Building-related illness with a focus on fungal issues.  In: Hansen W, ed.  A guide to managing 

indoor air quality in health care organizations. Oakbrook Terrace, IL: Joint Commission on Accreditation of 

Healthcare Organizations Publications, 1997;15–25. 

260.

 

Streifel AJ.  Recognizing IAQ risk and implementing an IAQ program.  In: Hansen W, ed.  A guide to 

managing indoor air quality in health care organizations; Oakbrook Terrace, IL: Joint Commission on 

Accreditation of Healthcare Organizations Publications, 1997;75–91. 

261.

 

Morey PR.  Appendix B.  Fungal growth checklist.  In:   Hansen W. ed. A guide to managing indoor air 

quality in health care organizations.  Oakbrook Terrace, IL: Joint Commission on Accreditation of Health 

Care Organizations Publications, 1997;129–35. 

262.

 

Brock DL, Jiankang J, Rinaldi MG, Wickes BL, Huycke MM.  Outbreak of invasive 

Aspergillus

 infection 

in surgical patients, associated with a contaminated air-handling system.  Clin Inf Dis 2003;37:786–93. 

263.

 

(31)

  National Air Duct Cleaners Association.  General specifications for the cleaning of commercial 

HVAC systems. Washington, DC: NADCA, 2002. Publication No. NAD-06. Available at:  

www.nadca.com/standards/standards.asp 

264.

 

(32)

  U.S. Environmental Protection Agency. Use of disinfectants and sanitizers in heating, ventilation, air 

conditioning, and refrigeration systems [letter].  March 14, 2002.  Available at:  

www.epa.gov/oppad001/hvac.htm 

265.

 

U.S. Environmental Protection Agency.  Should you have the air ducts in your home cleaned?  Washington, 

DC: EPA, 1997. EPA Document No. 402-K-97-002. 

266.

 

(159)

 Vujanovic V, Smoragiewicz W, Krzysztyniak K.  Airborne fungal ecological niche determination as 

one of the possibilities for indirect mycotoxin risk assessment in indoor air.  Environ Toxicol 2001;16:1–8. 

267.

 

Soules WJ.  Airflow management techniques.  Clean Rooms 1993;2:18–20. 

268.

 

Lawson CN.  Commissioning hospitals for compliance.  ASHRAE Trans 1993;99(2). 

269.

 

Wadowsky R, Benner S.  Distribution of the genus 

Aspergillus

 in hospital room air conditioners.  Infect 

Control 1987;8:516–8. 

270.

 

Streifel AJ.  Aspergillosis and construction. In: Kundsin RB, ed.  Architectural design and indoor microbial 

pollution. New York, NY: Oxford University Press, 1988;198–217. 

271.

 

Streifel AJ, Vesley D, Rhame FS.  Occurrence of transient high levels of airborne fungal spores.  

Proceedings of the 6

th

 Conference on Indoor Air Quality and Climate. Toronto, ON: 1990. 

272.

 

(73)

  Morey R, Williams C.  Porous insulation in buildings: a potential source of microorganisms.  

Proceedings - Indoor Air ‘90, 5

th

 International Conference. Toronto, ON: 1990;1–6. 

273.

 

(13)

  Bartley J.  Construction and renovation.  In: Pfeiffer J, ed. APIC Text of infection control and 

epidemiology.  Washington, DC: Association for Professionals in Infection Control and Epidemiology, Inc., 

2000; 72.1–72.11. 

274.

 

(14)

  Harvey MA.  Critical-care-unit design and furnishing: Impact on nosocomial infections.  Infect 

Control Hosp Epidemiol 1998;19:597–601. 

275.

 

(15)

  National Association of Children’s Hospitals and Related Institutions.  Patient Care Focus Groups 

1998.  Assessing organizational readiness for infection control issues related to construction, renovation, 

and physical plant projects. 

276.

 

(50)

  Bartley JM.  APIC State-of-the-art report: the role of infection control during construction in health 

care facilities.  Am J Infect Control 2000;28:156–9. 

277.

 

(16)

  Carter CD, Barr BA.  Infection control issues in construction and renovation.  Infect Control Hosp 

Epidemiol 1997;18:587–96. 

278.

 

(47)

  Streifel AJ.  Maintenance and engineering.  In:  Pfeiffer J, ed. APIC Text of Infection Control and 

Epidemiology.  Washington, DC: Association for Professionals in Infection Control and Epidemiology, 

Inc., 2000;76.1-76.8. 

279.

 

Kennedy V, Barnard B, Hackett B.  Use of a risk matrix to determine the level of barrier protection during 

construction activities. Atlanta, GA : Peachtree Publications, 1997;27–8. 

280.

 

Morey PR.  Building-related illness with a focus on fungal issues.  In: Hansen W, ed. A auide to managing 

indoor air quality in health care organizations.  Oakbrook Terrace, IL: Joint Commission on Accreditation 

of Healthcare Organizations Publications, 1997;15–25. 

background image

 

 

156 

281.

 

(67)

 Bartley J, ed. Infection control tool kit series – construction and renovation. Washington, DC: 

Association for Professionals in Infection Control and Epidemiology, 1999. 

282.

 

Bryce EA, Walker M, Scharf S, et al.  An outbreak of cutaneous aspergillosis in a tertiary-care hospital.  

Infect Control Hosp Epidemiol 1996;17:170–2. 

283.

 

(62)

  Thio CL, Smith D, Merz WG, et al.  Refinements of environmental assessment during an outbreak 

investigation of invasive aspergillosis in a leukemia and bone marrow transplant unit.  Infect Control Hosp 

Epidemiol 2000;21:18–23. 

284.

 

(65)

  Kuehn TH, Gacek B, Yang CH, et al.  Final report: ASHRAE 804-RP Phase I identification of 

contaminants, exposures effects, and control options for construction/renovation activities.  Atlanta, 

GA;ASHRAE, Inc. 1995. 

285.

 

Kennedy HF, Michie JR, Richardson MD.  Air sampling for

 Aspergillus

 spp. during building activity in a 

paediatric hospital ward.  J Hosp Infect 1995;31:322–25. 

286.

 

Leenders ACAP, van Belkum A, Behrendt M, Luijendijk AD, Verbrugh HA.  Density and molecular 

epidemiology of 

Aspergillus

 in air and relationship to outbreaks of 

Aspergillus 

infection.  J Clin Microbiol 

1999;37:1752–7. 

287.

 

Rath PM, Ansorg R.  Value of environmental sampling and molecular typing of aspergilli to assess 

nosocomial sources of aspergillosis.  J Hosp Infect 1997;37:47–53. 

288.

 

(71)

  Streifel AJ, Marshall JW.  Parameters for ventilation controlled environments in hospitals.  In: Design, 

Construction, and Operation of Healthy Buildings. Atlanta, GA: ASHRAE Press, 1998. 

289.

 

(348)

  Streifel AJ.  Air cultures for fungi.  In: Gilcrist M, ed. Clinical microbiology procedures handbook.  

Washington, DC: American Society for Microbiology Press,1992;11.8.1–11.8.7. 

290.

 

American Conference of Governmental Industrial Hygienists (ACGIH). 2000 Threshold limit Values and 

biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 

Inc., 2000;1–184. 

291.

 

U.S. Department of Labor, Occupational Safety and Health Administration.  Air contaminants standard.  29 

CFR 1910.1000, §1910.1000, Tables Z-1, Z-3.  Federal Register 1993;58:35338–51. 

292.

 

(86)

  Leenders A, vanBelkum A, Janssen S, et al.  Molecular epidemiology of apparent outbreaks of 

invasive 

Aspergillus

 in a hematology ward.  J Clin Microbiol 1996;34:345–51. 

293.

 

(91)

  James MJ, Lasker BA, McNeil MM, Shelton M, Warnock DW, Reiss E.  Use of a repetitive DNA 

probe to type clinical and environmental isolates of 

Aspergillus flavus

 from a cluster of cutaneous infections 

in a neonatal intensive care unit.  J Clin Microbiol 2000;38:3612–8. 

294.

 

(92)

  Skladny H, Buchheidt D, Baust C, et al.  Specific detection of 

Aspergillus

 species in blood and 

bronchoalveolar lavage samples of immunocompromised patients by two-step PCR.  J Clin Microbiol 

1999;37:3865–71. 

295.

 

(93)

  Symoens F, Bouchara J–P, Heinemann S, Nolard N.  Molecular typing of 

Aspergillus terreus

 isolates 

by random amplification of polymorphic DNA.  J Hosp Infect 2000;44:273–80. 

296.

 

(94)

  Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Gaztelurrutia L, Villate Navarro JI, Rodríguez 

Tudela JL.  Genetic similarity among one 

Aspergillus flavus

 strain isolated from a patient who underwent 

heart surgery and two environmental strains obtained from the operating room.  J Clin Microbiol 

2000;38:2419–22. 

297.

 

Buttner MP, Stetzenbach LD.  Monitoring airborne fungal spores in an experimental indoor environment to 

evaluate sampling methods and the effects of human activity on air sampling.  Appl Environ Microbiol 

1993;59:219–26. 

298.

 

Sayer WJ, Shean DB, Ghosseiri J.  Estimation of airborne fungal flora by the Anderson sampler versus the 

gravity settling culture plate.  J Allerg 1969;44:214–27. 

299.

 

Hay RJ, Clayton YM, Goodley JM.  Fungal aerobiology: how, when and where?  J Hosp Infect 

1995;30(Suppl):S352–7. 

300.

 

Morris G, Kokki MH, Anderson K, Richardson MD.  Sampling of 

Aspergillus

 spores in air.  J Hosp Infect 

2000;44:81–92. 

301.

 

Iwen PC, Davis JC, Reed EC, Winfield BA, Hinrichs SH.  Airborne fungal spore monitoring in a protective 

environment during hospital construction and correlation with an outbreak of invasive aspergillosis.  Infect 

Control Hosp Epidemiol 1994;15:303–6. 

302.

 

Pegues DA, Lasker BA, McNeil MM, Hamm PM, Lundal JL, Kubak BM.  Cluster of cases of invasive 

aspergillosis in a transplant intensive care unit: evidence of person-to-person airborne transmission.  Clin 

Infect Dis 2002;34:412–6. 

background image

 

 

157

303.

 

Goodley JM, Clayton YM, Hay RJ.  Environmental sampling for aspergilli during building construction on 

a hospital site.  J Hosp Infect 1994;26:27–35. 

304.

 

(72)

  American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE).  The HVAC 

commissioning process.   Atlanta, GA: ASHRAE, 1996;1–48. ASHRAE Guideline 1. 

305.

 

63)

  Mermel LA, Josephson SL, Giorgio CH, Dempsey J, Parenteau S.  Association of Legionnaires’ 

disease with construction: contamination of potable water?  Infect Control Hosp Epidemiol 1995;16:76–81. 

306.

 

Loo VG, Bertrand C, Dixon C, et al.  Control of construction-associated nosocomial aspergillosis in an 

antiquated hematology unit.  Infect Control Hosp Epidemiol 1996;17:360–4. 

307.

 

(68)

  Ottney TC.  Particle management for HVAC systems.  ASHRAE J 1993;35:26–28, 30, 32, 34. 

308.

 

Rautiala S, Reponen T, Nevalainen A, et al.  Control of exposure to airborne viable microorganisms during 

remediation of moldy buildings: report of three case studies.  Am Ind Hyg Assoc J 1998;59:455–60. 

309.

 

(69)

  Finkelstein LE, Mendelson MH.  Infection control challenges during hospital renovation.  Am J 

Nursing 1997;97:60–1. 

310.

 

Hruszkewycz V, Ruben B, Hypes CM, Bostic GD, Staszkiewicz J, Band JD.  A cluster of pseudofungemia 

associated with hospital renovation adjacent to the microbiology laboratory.  Infect Control Hosp Epidemiol 

1992;13:147–50. 

311.

 

Laurel VL, Meier PA, Astorga A, Dolan D, Brockett R, Rinaldi MG.  Pseudoepidemic of 

Aspergillus niger

 

infections traced to specimen contamination in the microbiology laboratory.  J Clin Microbiol 

1999;37:1612–6. 

312.

 

(66)

  Opal SM, Asp AA, Cannady PB Jr, Morse PL, Burton LJ, Hammer II PG.  Efficacy of infection 

control measures during a nosocomial outbreak of disseminated aspergillosis associated with hospital 

construction.  J Infect Dis 1986;153: 634–7. 

313.

 

Fitzpatrick F, Prout S, Gilleece A, Fenelon LE, Murphy OM.  Nosocomial aspergillosis during building 

work — a multidisciplinary approach.  J Hosp Infect 1999;42:170–1. 

314.

 

Garrett DO, Jochimsen E, Jarvis W.  Invasive 

Aspergillus

 spp. infections in rheumatology patients.  J 

Rheumatol 1999;26:146–9. 

315.

 

Larsson L, Larsson PF.  Analysis of chemical markers as a means of characterizing airborne micro-

organisms in indoor environments: a case study.  Indoor Built Environ 2001;10:232–7. 

316.

 

(99)

  Buckner CD, Clift RA, Sanders JE, et al.  Protective environment for marrow transplant recipients: a 

prospective study.  Ann Intern Med 1978;89:893–901. 

317.

 

(100)

  Murray WA, Streifel AJ, O'Dea TJ, Rhame FS.  Ventilation for protection of immune compromised 

patients.  ASHRAE Trans 1988;94:1185–91. 

318.

 

(101)

  Streifel AJ, Vesley D, Rhame FS, Murray B. Control of airborne fungal spores in a university 

hospital.  Environment International 1989;12:441–4. 

319.

 

Perry S, Penland WZ.  The portable laminar flow isolator: new unit for patient protection in a germ-free 

environment.  In: Recent Results in Cancer Research. New York, NY: Springer-Verlag, 1970. 

320.

 

Hayden CS, Fischbach, M, Johnston OE.  A model for calculating air leakage in negative pressure isolation 

areas.  Cincinnati, OH: DHHS, 1997. NIOSH Report ECTR 212-05c. 

321.

 

DeLuga GF.  Differential airflow, pressure, have key relationship in pressurization.  Lab Design 1997:2:6–

7. 

322.

 

Rhame FS.  Nosocomial aspergillosis: How much protection for which patients?  Infect Control Hosp 

Epidemiol 1989;10:296–8. 

323.

 

Hofflin JM, Potasman I, Baldwin JC, Oyster PE, Stinson EB, Remington JS.  Infectious complications in 

heart transplant recipients receiving cyclosporine and corticosteroids.  Ann Intern Med 1987;106:209–16. 

324.

 

Schulman LL, Smith CR, Drusin R, Rose EA, Enson Y, Reemtsma K.  Respiratory complications of cardiac 

transplantation.  Am J Med Sci 1988;296:1–10. 

325.

 

Dummer JS, Ho M.  Risk factors and approaches to infections in transplant recipients.  In: Mandell GL, 

Bennett JE, Dolin R, eds. Principles and practice of infectious diseases, 5

th

 ed. Philadelphia, PA; Churchill 

Livingstone, 2000;3126–35. 

326.

 

Dummer JS, Ho M.  Infections in solid organ transplant recipients. In: Mandell GL, Bennett JE, Dolin R, 

eds.  Principles and practice of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 

2000;3148–58. 

327.

 

Walsh TR, Guttendorf J, Dummer S, et al.  The value of protective isolation procedures in cardiac 

transplant recipients.  Ann Thorac Surg 1989;47:539–45. 

328.

 

Streifel AJ.  Health-care IAQ: guidance for infection control.  HPAC Heating/Piping/Air Cond Eng  2000; 

Oct:28–30, 33, 34, 36. 

background image

 

 

158 

329.

 

(87)

  Yeager CC.  Copper and zinc preservatives.  In:  Block SS, ed.  Disinfection, sterilization, and 

preservation, 4

th

 ed. Philadelphia, PA: Lea & Febiger, 1991;358–61. 

330.

 

Cookson ST, Jarvis WR.  Prevention of nosocomial transmission of 

Mycobacterium tuberculosis

.  Infect 

Dis Clin North Am 1997;11:367–409. 

331.

 

(42)

  CDC.  Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons: 

Florida and New York, 1988–1991. MMWR 1991;40:585–91. 

332.

 

(43)

  CDC.  Outbreak of multidrug-resistant tuberculosis at a hospital — New York City, 1991.  MMWR 

1993;42:427–34. 

333.

 

(7)

  Beck-Sague CM, Dooley SW, Hutton MD, et al.  Hospital outbreak of multidrug-resistant 

Mycobacterium tuberculosis

.  JAMA 1992;268:1280–6. 

334.

 

(17)

  Coronado VG, Beck-Sague CM, Hutton MD, et al.  Transmission of multidrug-resistant 

Mycobacterium tuberculosis

 among persons with human immunodeficiency virus infection in an urban 

hospital: Epidemiologic and restriction fragment length polymorphism analysis.  J Infect Dis 

1993;168:1052–5. 

335.

 

(18)

  Coronado VG, Valway S, Finelli L, et al.  Nosocomial transmission of multidrug-resistant 

Mycobacterium tuberculosis

 among intravenous drug users with human immunodeficiency virus infection 

[abstract].  In: Abstracts of the Third Annual Meeting of the Society for Hospital Epidemiology of America. 

Chicago, IL:  Infect Control Hosp Epidemiol 1993;14:428. 

336.

 

(8)

  Dooley SW, Villarino ME, Lawrence M, et al.  Tuberculosis in a hospital unit for patients infected with 

the human immunodeficiency virus (HIV): evidence of nosocomial transmission.  JAMA 1992;267:2632–4. 

337.

 

(19)

  Edlin BR, Tokars JI, Grieco MH, et al.  An outbreak of multidrug-resistant tuberculosis among 

hospitalized patients with the acquired immunodeficiency syndrome: epidemiologic studies and restriction 

fragment length polymorphism analysis.  N Engl J Med 1992;326:1514–22. 

338.

 

(20)

  Fischl MA, Uttamchandani RB, Daikos GL, et al.  An outbreak of tuberculosis caused by multiple-

drug-resistant tubercle bacilli among patients with HIV infection.  Ann Intern Med 1992;117:177–83. 

339.

 

(21)

  Ikeda ARM, Birkhead GS, DeFerdinando Jr GT, et al.  Nosocomial tuberculosis: an outbreak of a 

strain resistant to seven drugs.  Infect Control Hosp Epidemiol 1995;16:152–9. 

340.

 

(22)

  Jarvis WR.  Nosocomial transmission of multidrug-resistant 

Mycobacterium tuberculosis

.  Res 

Microbiol 1992;144:117–22. 

341.

 

(23)

  Jarvis WR.  Nosocomial transmission of multidrug-resistant 

Mycobacterium tuberculosis

.  Am J Infect 

Control 1995;23:146–51. 

342.

 

(24)

 Jereb JA, Klevens RM, Privett TD, et al.  Tuberculosis in health care workers at a hospital with an 

outbreak of multidrug-resistant 

Mycobacterium tuberculosis

.  Arch Intern Med 1995;155:854–9. 

343.

 

(25)

  Moran GJ, McCabe F, Morgan MT, Talan DA.  Delayed recognition and infection control for 

tuberculosis patients in the emergency department.  Ann Emerg Med 1995;26:283–9. 

344.

 

(26)

  Pearson ML, Jereb JA, Frieden TR, et al.  Nosocomial transmission of multidrug-resistant 

Mycobacterium tuberculosis

: a risk to hospitalized patients and health-care workers.  Ann Intern Med 

1992;117:191–6. 

345.

 

Tokars JI, Jarvis WR, Edlin BR, et al.  Tuberculin skin testing of hospital employees during an outbreak of 

multidrug-resistant tuberculosis in human immunodeficiency virus (HIV) infected patients.  Infect Control 

Hosp Epidemiol 1992;13:509–10. 

346.

 

Macher JM.  The use of germicidal lamps to control tuberculosis in healthcare facilities.  Infect Control 

Hosp Epidemiol 1993;14:723–9. 

347.

 

(129)

  U.S. Department of Labor, Occupational Safety and Health Administration.  Respiratory Protection, 

29 CFR 1910.139.  Federal Register 1998;63:1152–300. 

348.

 

(105)

  Ehrenkranz NJ, Kicklighter JL.  Tuberculosis outbreak in a general hospital: evidence for airborne 

spread of infection.  Ann Intern Med 1972;77:377–82. 

349.

 

(106)

  Calder RA, Duclos P, Wilder MH, et al.  

Mycobacterium tuberculosis

 transmission in a health clinic.  

Bull Int Union Tuberc Lung Dis 1991;66:103–6. 

350.

 

(107)

  Jereb JA, Burwen DR, Dooley SW, et al.  Nosocomial outbreak of tuberculosis in a renal transplant 

unit: application of a new technique for restriction fragment length polymorphism analysis of 

Mycobacterium tuberculosis

 isolates.  J Infect Dis 1993;168:1219–24. 

351.

 

(127)

  Ayliffe GAJ.  Role of the environment of the operating suite in surgical wound infection.  Rev Infect 

Dis 1991;13(suppl):S800–S804. 

352.

 

(128)

  Choux M, Genitori L, Lang D, Lena G.  Shunt implantation: reducing the incidence of shunt 

infection.  J Neurosurg 1992;77:875–80. 

background image

 

 

159

353.

 

Edmiston CE Jr, Sinski S, Seabrook GR, Simons D, Goheen MP.  Airborne particulates in the OR 

environment.  AORN J 1999;69:1169–72. 

354.

 

Duhaime AC, Bonner K, McGowan KL, Schut L, Sutton LN, Plotkin S.  Distribution of bacteria in the 

operating room environment and its relation to ventricular shunt infections: a prospective study.  Childs 

Nerv Syst 1991;7:211–4. 

355.

 

Everett WD, Kipp H.  Epidemiologic observations of operating room infections resulting from variations in 

ventilation and temperature.  Am J Infect Control 1991;19:277–82. 

356.

 

(115)

  Lidwell OM.  Clean air at operation and subsequent sepsis in the joint.  Clin Orthop 1986;211:91–02. 

357.

 

(116)

  Nichols RL.  The operating room.  In: Bennett JV, Brachman PS, eds.  Hospital infections, 3

rd

 ed. 

Boston, MA: Little, Brown and Company, 1992;461–73. 

358.

 

(117)

  Clark RP, Reed PJ, Seal DV, Stephenson ML.  Ventilation conditions and air-borne bacteria and 

particles in operating theatres: proposed safe economies.  J Hyg (Lond) 1985;95:325–35. 

359.

 

(119)

  Laufman H.  The operating room.  In: Bennett JV, Brachman PS, eds. Hospital infections, 2

nd

 ed.  

Boston, MA/Toronto, ON: Little, Brown and Company, 1986;315–23. 

360.

 

Pittet D, Ducel G.  Infectious risk factors related to operating rooms.  Infect Control Hosp Epidemiol 

1994;15:456–62. 

361.

 

Hambraeus A.  Aerobiology in the operating room — a review.  J Hosp Infect 1988;11(suppl. A):68–76. 

362.

 

(118)

  Babb JR, Lynam P, Ayliffe GAJ.  Risk of airborne transmission in an operating theater containing 

four ultraclean air units.  J Hosp Infect 1995;31:159–68. 

363.

 

Velesco, E, Thuler LCS, Martins CAS, deCastroDias LM, Conalves VMSC.  Risk factors for infectious 

complications after abdominal surgery for malignant disease.  Am J Infect Control 1996;24:1–6. 

364.

 

(120)

  National Academy of Sciences, National Research Council, Division of Medical Sciences, Ad Hoc 

Committee on Trauma.  Postoperative wound infections: the influence of ultraviolet irradiation of the 

operating room and of various other factors.  Ann Surg 1964;160 (suppl.):1–192. 

365.

 

(121)

  Charnley J.  A clean-air operating enclosure.  Br J Surg 1964;51:202–5. 

366.

 

(122)

  Lidwell OM, Lowbury EJL, Whyte W, Blowers R, Stanley SJ, Lowe D.  Effect of ultraclean air in 

operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomized study.  Br Med 

J 1982;285:10–4. 

367.

 

(123)

  Hill C, Flamant R, Mazas F, Evrard J.  Prophylactic cefazolin versus placebo in total hip 

replacement: report of a multicentre double-blind randomized trial.  Lancet 1981;1:795–6. 

368.

 

(124)

  Ha’eri GB, Wiley AM.  Total hip replacement in a laminar flow environment with special reference 

to deep infections.  Clin Orthop 1980;148:163–8. 

369.

 

(125)

  Collins DK, Steinhaus K.  Total hip replacement without deep infection in a standard operating room.  

J Bone Joint Surg 1976;58A:446–50. 

370.

 

(126)

  Taylor GD, Bannister GC, Leeming JP.  Wound disinfection with ultraviolet radiation.  J Hosp Infect 

1995;30:85–93. 

371.

 

(130)

  Langevin PB, Rand KH, Layton AJ.  The potential for dissemination of 

Mycobacterium tuberculosis

 

through the anesthesia breathing circuit.  Chest 1999;115:1107–14. 

372.

 

(131)

  U.S. Department of Labor, Occupational Safety and Health Administration.  Occupational exposure 

to tuberculosis: proposed rule. (29 CFR 1910).  Federal Register 1997;62:54159–209. 

373.

 

(132)

  Aranha-Creado H, Prince D, Greene K, Brandwein H.  Removal of 

Mycobacterium 

species by 

breathing circuit filters.  Infect Control Hosp Epidemiol 1997;18:252–254. 

374.

 

Anesthesiology Society of America.  Infection Control for Practice of Anesthesisology. 1999. Available at: 

www.asahq.org/Profinfo/Infection/Infection_TOC.html 

375.

 

McCarthy JF.  Risk factors for occupational exposures in healthcare professionals.  In: Hansen W, ed. A 

guide to managing indoor air quality in health care organizations.  Oakbrook Terrace IL: Joint Commission 

on Accreditation of Healthcare Organizations, 1997;27–41. 

376.

 

National Institute for Occupational Safety and Health.  NIOSH Health Hazard Evaluation and Technical 

Assistance Report: HETA 85-126-1932;1988. 

377.

 

National Institute for Occupational Safety and Health.  NIOSH Health Hazard Evaluation and Technical 

Assistance Report: HETA 88-101-2008;1990. 

378.

 

(135)

  National Institute for Occupational Safety and Health.  Control of smoke from laser/electric surgical 

procedures.  DHHS (NIOSH) Publication 96-128;1996.  Available at:  www.cdc.gov/niosh/hc11.html 

379.

 

Taravella MJ, Weinberg A, Blackburn P, May M.  Do intact viral particles survive excimer laser ablation?  

Arch Ophthalmol 1997;115:1028–30. 

background image

 

 

160 

380.

 

Hagen KB, Kettering JD, Aprecio RM, et al.  Lack of virus transmission by the excimer laser plume.  Am J 

Ophthalmol 1997;124:206–11. 

381.

 

Kunachak S, Sithisarn P, Kulapaditharom B.  Are laryngeal papilloma virus-infected cells viable in the 

plume derived from a continuous mode carbon dioxide laser, and are they infectious? A preliminary report 

on one laser mode.  J Laryng Otol 1996;110:1031–3. 

382.

 

(137)

  Hughes PS, Hughes AP.  Absence of human papillomavirus DNA in the plume of erbium:YAG 

laser-treated warts.  J Am Acad Dermatol 1998;38:426–8. 

383.

 

Garden JM, O’Bannion K, Sheinitz LS, et al.  Papillomavirus in the vapor of carbon dioxide laser treated 

verrucase.  JAMA 1988;125:1199–202. 

384.

 

Sawchuck WS, Weber JP, Lowry DR, et al.   Infectious papillomavirus in the vapour of warts treated with 

carbon dioxide laser or electrocoagulation: detection and protection.  J Am Acad Dermatol 1989;21:41–9. 

385.

 

Baggish MS, Poiesz BJ, Joret D, et al.  Presence of human immunodeficiency virus DNA in laser smoke.  

Lasers Surg Med 1991;11:197–203. 

386.

 

(138)

  Capizzi PJ, Clay RP, Battey MJ.  Microbiologic activity in laser resurfacing plume and debris.  

Lasers Surg Med 1998;23:172–4. 

387.

 

McKinley IB Jr, Ludlow MO.  Hazards of laser smoke during endodontic therapy.  J Endodont 

1994;20:558. 

388.

 

Favero MS, Bolyard EA.  Microbiologic considerations: disinfection and sterilization strategies and the 

potential for airborne transmission of bloodborne pathogens.  Surg Clin North Am 1995;75:1071–89. 

389.

 

(136)

  Association of periOperative Registered Nurses.  Recommended practices for laser safety in practice 

settings.  In: Standards, Recommended Practices and Guidelines. Denver CO; AORN;2003;301–5. 

390.

 

(139)

  ECRI.  Surgical smoke evacuation systems.  Health Devices 1997;26:132–72. 

391.

 

(140)

  ECRI.  Update evaluation: Surgical smoke evacuation systems.  Health Devices 1999;28:333–62. 

392.

 

(141)

  ECRI.  Stationary surgical smoke evacuation systems.  Health Devices 2001;30:73–86. 

393.

 

American National Standards Institute.  ANSI National standard for safe use of lasers in health care 

facilities.  ANSI Z136.3-1996. 

394.

 

Kaufman AF, McDade J, Patton C, et al.  Pontiac fever: isolation of the etiologic agent (

Legionella 

pneumophila

) and demonstration of its mode of transmission.  Am J Epidemiol 1981;114:337–47. 

395.

 

(192)

  Marston BJ, Lipman HB, Breiman RF.  Surveillance for Legionnaires’ disease: risk factors for 

morbidity and mortality related to infection with 

Legionella

.  Arch Intern Med 1994;154:2417–22. 

396.

 

(Appendix; 4)

  Hoge CW, Breiman RF.  Advances in the epidemiology and control of 

Legionella

 

infections.  Epidemiol Rev 1991;13:329–40. 

397.

 

Breiman RF, Butler JC.  Legionnaires’ disease: clinical, epidemiological, and public health perspectives.  

Semin Respir Infect 1998;13:84–9. 

398.

 

Yu, VL.  

Legionella pneumophila

 (Legionnaires’ disease). In: Mandell GL, Bennett JE, Dolin R, eds.  

Principles and practice of infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;2424–

35. 

399.

 

Muder RR.  Other 

Legionella

 species.  In: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of 

infectious diseases, 5

th

 ed. Philadelphia, PA: Churchill Livingstone, 2000;2435–41. 

400.

 

Yu VL.  Could aspiration be the major mode of transmission for 

Legionella

?  Am J Med 1993;95:13–5. 

401.

 

Jimenez P, Torres A, Rodriguez-Roisin R, et al.  Incidence and etiology of pneumonia acquired during 

mechanical ventilation.  Crit Care Med 1989;17:882–5. 

402.

 

(220)

  Zuravleff JJ, Yu VL, Shonnard JW, Rihs JD, Best M.  

Legionella pneumophila

 contamination of a 

hospital humidifier: demonstration of aerosol transmission and subsequent subclinical infection in exposed 

guinea pigs.  Am Rev Respir Dis 1983;128:657–61. 

403.

 

(202)

  Mastro TD, Fields BS, Breiman RF, Campbell J, Plikaytis BD, Spika JS.  Nosocomial Legionnaires’ 

disease and use of medication nebulizers.  J Infect Dis 1991;163:667–70. 

404.

 

(203)

  Dondero TJ Jr, Rendtorff RC, Mallison GF, et al.  An outbreak of Legionnaires’ disease associated 

with a contaminated air-conditioning cooling tower.  N Engl J Med 1980;302:365–70. 

405.

 

(199)

  Garbe PL, Davis BJ, Weisfield JS, et al.  Nosocomial Legionnaires’ disease: epidemiologic 

demonstration of cooling towers as a source.  JAMA 1985;254:521–4. 

406.

 

(204)

  O’Mahony MC, Stanwell-Smith RE, Tillett HE, et al.  The Stafford outbreak of Legionnaires’ 

disease.  Epidemiol Infect 1990;104:361–80. 

407.

 

(205)

  Breiman RF, Fields BS, Sanden G, Volmer L, Meier A, Spika J.  An outbreak of Legionnaires’ 

disease associated with shower use: possible role of amoebae.  JAMA 1990;263:2924–6. 

background image

 

 

161

408.

 

(200)

  Hanrahan JP, Morse DL, Scharf VB, et al.  A community hospital outbreak of legionellosis: 

transmission by potable hot water.  Am J Epidemiol 1987;125:639–9. 

409.

 

(206)

  Breiman RF, VanLoock FL, Sion JP, et al.  Association of “sink bathing” and Legionnaires’ disease 

[abstract].  In: Abstracts of the 91

st

 Meeting of the American Society for Microbiology, 1991. 

410.

 

(207)

  Struelens MJ, Maes N, Rost F, et al.  Genotypic and phenotypic methods for the investigation of a 

nosocomial 

Legionella pneumophila

 outbreak and efficacy of control measures.  J Infect Dis 1992;166:22–

30. 

411.

 

Terranova W, Cohen ML, Fraser DW.  Outbreak of Legionnaires’ disease diagnosed in 1977.  Lancet 

1978;2:122–4. 

412.

 

(219)

  Marrie TJ, Haldane D, MacDonald S, et al.  Control of endemic nosocomial Legionnaires’ disease by 

using sterile potable water for high risk patients.  Epidemiol Infect 1991;107:591–605. 

413.

 

Nechwatal R, Ehret W, Klatte OJ, et al.  Nosocomial outbreak of legionellosis in a rehabilitation center: 

demonstration of potable water as a source.  Infection 1993;21:235–40. 

414.

 

Hoebe CJP, Cluitmanans JJM, Wagenvoort JHT.  Two fatal cases of nosocomial 

Legionella pneumophila 

pneumonia associated with a contaminated cold water supply.  Eur J Clin Microbiol Infect Dis 

1998;17:740–9. 

415.

 

Helms CM, Viner JP, Sturm RH, et al.  Comparative features of pneumococcal, 

Mycoplasma

, and 

Legionnaires’ disease pneumonias.  Ann Intern Med 1979;90:543–7. 

416.

 

Yu V, Kroboth FJ, Shonnard J, Brown A, McDearman S, Magnussen M.  Legionnaires’ disease: new 

clinical perspectives from a prospective pneumonia study.  Am J Med 1982;73:357–61. 

417.

 

(194)

  Jimenez ML, Aspa J, Padilla B, et al.  Fiberoptic bronchoscopic diagnosis of pulmonary disease in 

151 HIV-infected patients with pneumonitis.  Eur J Clin Microbiol Infect Dis 1991;10:491–6. 

418.

 

Lowry PW, Blankenship RJ, Gridley W, et al.  A cluster of

 Legionella 

sternal wound infections due to 

postoperative topical exposure to contaminated tap water.  N Engl J Med 1991;324:109–12. 

419.

 

Shah A, Check F, Baskin S.  Legionnaires’ disease and acute renal failure: case report and review.  Clin 

Infect Dis 1992;14:204–7. 

420.

 

Lowry PW, Tompkins LS.  Nosocomial legionellosis: a review of pulmonary and extrapulmonary 

syndromes.  Am J Infect Control 1993;21:21–7. 

421.

 

Schlanger G, Lutwick LI, Kurzman M, et al.  Sinusitis caused by 

L. pneumophila

 in a patient with acquired 

immune deficiency syndrome.  Am J Med 1984;77:957–60. 

422.

 

Tompkins LS, Roessler BJ, Redd SC, et al.  

Legionella

 prosthetic-valve endocarditis.  N Engl J Med 

1988;318:530–5. 

423.

 

(195)

  Bock BV, Kirby BD, Edelstein PH, et al.  Legionnaires’ disease in renal transplant recipients.  Lancet 

1978;1:410–3. 

424.

 

(196)

  Kirby BD, Snyder KM, Meyer RD, Finegold SM.  Legionnaires’ disease: report of 65 nosocomially 

acquired cases and review of the literature.  Medicine 1980;59:188–205. 

425.

 

(197)

  Brady MT.  Nosocomial Legionnaires’ disease in a children’s hospital.  J Pediatr 1989;115:46–50. 

426.

 

Horie H, Kawakami H, Minoshima K, et al.  Neonatal Legionnaires’ disease: histologic findings in an 

autopsied neonate.  Acta Pathol Jpn 1992;42:427–31. 

427.

 

Roig J, Aguilar X, Ruiz J, et al.  Comparative study of 

Legionella pneumophila

 and other nosocomial 

pneumonias.  Chest 1991;99:344–50. 

428.

 

Redd SC, Schuster DM, Quan J, et al.  Legionellosis cardiac transplant recipients: results of a nationwide 

survey.  J Infect Dis 1988;158:651–3. 

429.

 

Seu P, Winston DJ, Olthoft KM, et al.  Legionnaires’ disease in liver transplant recipients.  Infect Dis Clin 

Pract 1993;2:109–13. 

430.

 

(215)

  Chow JW, Yu VL.  

Legionella

: a major opportunistic pathogen in transplant recipients.  Semin 

Respir Infect 1998;13:132–9. 

431.

 

(189)

  Kool JL, Fiore AE, Kioski CM, et al.  More than ten years of unrecognized nosocomial transmission 

of Legionnaires’ disease among transplant patients.  Infect Control Hosp Epidemiol 1998;19:898–904. 

432.

 

(190)

  Le Saux NM, Sekla L, McLeod J, et al.  Epidemic of nosocomial Legionnaires’ disease in renal 

transplant recipients: a case-control and environmental study.  Can Med Assoc J 1989;140:1047–53. 

433.

 

Berendt RF, Young HW, Allen RG, Knutsen GL.  Dose-response of guinea pigs experimentally infected 

with aerosols of 

Legionella pneumophila

.  J Infect Dis 1980;141:186–92. 

434.

 

Marston BJ, Plouffe JF, File TM, et al.  Incidence of community-acquired pneumonia requiring 

hospitalization — results of a population-based active surveillance study in Ohio.  Arch Intern Med 

1997;157:1709–18. 

background image

 

 

162 

435.

 

(198)

  Muder RR, Yu VL, McClure JK, Kroboth FJ, Kominos SD, Lumish RN.  Nosocomial Legionnaires’ 

disease uncovered in a prospective pneumonia study: implications for underdiagnosis.  JAMA 

1983;249:3184–8. 

436.

 

Brennen C, Vickers JP, Yu VL, Puntereri A, Yee YC.  Discovery of occult 

Legionella pneumonia

 in a long-

stay hospital: Results of prospective serologic survey.  Br Med J 1987;295:306–7. 

437.

 

(166)

  Marrie TJ, MacDonald S, Clarke K, Haldane D.  Nosocomial Legionnaires’ disease: lessons from a 

four-year prospective study.  Am J Infect Control 1991;19:79–85. 

438.

 

Stout JE, Yu, VL.  Current concepts: legionellosis.  N Engl J Med 1997;337:682–7. 

439.

 

Vergis EN, Yu VL.  Macrolides are ideal for empiric therapy of community-acquired pneumonia in the 

immunocompromised host.  Semin Respir Infect 1998;13:322–8. 

440.

 

Sopena N, Sabria-Leal M, Pedro-Botet ML, et al.  Comparative study of the clinical presentation of 

Legionella pneumonia

 and other community-acquired pneumonias.  Chest 1998;113:1195–200. 

441.

 

(217)

  Hirani NA, MacFarlane JT.  Impact of management guidelines on the outcome of severe community 

acquired pneumonia.  Thorax 1997;52:17–21. 

442.

 

Lieberman D, Porath A, Schlaeffer F, Boldur L.  

L. pneumophila

 species community-acquired pneumonia: a 

review of 56 hospitalized patients.  Chest 1996;109:1243–9. 

443.

 

Ewig S, Bauer T, Hasper E, et al.  Value of routine microbial investigation in community-acquired 

pneumonia treated in a tertiary care center.  Respiration 1996;63:164–9. 

444.

 

Marrie TJ, Peeling RW, Fine MJ, et al.  Ambulatory patients with community-acquired pneumonia: the 

frequency of atypical agents and clinical course.  Am J Med 1996;101:508–15. 

445.

 

Benin Al, Benson RF, Besser RE.  Trends in Legionnaires’ disease, 1980–1998: declining mortality and 

new patterns of diagnosis.  Clin Infect Dis 2002;35:1039–46. 

446.

 

Fliermans CD, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH.  Ecologic distribution of 

Legionella 

pneumophila

.  Appl Environ Microbiol 1981;41:9–16. 

447.

 

Morris GK, Patton CM, Feeley JC, et al.  Isolation of the Legionnaires’ disease bacterium from 

environmental samples.  Ann Intern Med 1979;90:664–6. 

448.

 

Hsu SC, Martin R, Wentworth BB.  Isolation of 

Legionella

 species from drinking water.  Appl Environ 

Microbiol 1984;48:830–2. 

449.

 

Tison DL, Seidler RJ.  

Legionella

 incidence and density in potable drinking water.  Appl Environ Microbiol 

1983;45:337–9. 

450.

 

Parry MF, Stampleman L, Hutchinson JH, et al.  Waterborne 

Legionella bozemanii

 and nosocomial 

pneumonia in immunosuppressed patients.  Ann Intern Med 1985;103:205–10. 

451.

 

England AC, Fraser DW.  Sporadic and epidemic nosocomial legionellosis in the United States:  

epidemiologic features.  Am J Med 1981;70:707–11. 

452.

 

Cohen ML, Broome CV, Paris AL, et al.  Fatal nosocomial Legionnaires’ disease: clinical and 

epidemiological characteristics.  Ann Intern Med 1979;90:611–3. 

453.

 

(193)

  Haley CE, Cohen ML, Halter J, Meyer RD.  Nosocomial Legionnaires’ disease: a continuing 

common-source epidemic at Wadsworth Medical Center.  Ann Intern Med 1979;90:583–6. 

454.

 

Stout JE, Yu VL, Vickers RM, Shonnard J.  Potable water supply as the hospital reservoir for Pittsburgh 

pneumonia agent.  Lancet 1982;1:471–2. 

455.

 

(201)

  Arnow PM, Chou T, Weil D, Shapiro EN, Kretzschmar C.  Nosocomial Legionnaires’ disease caused 

by aerosolized tap water from respiratory devices.  J Infect Dis 1982;146:460–7. 

456.

 

Farrell ID, Barker JE, Miles EP, Hutchinson JCP.  A field study of the survival of 

Legionella pneumophila

 

in a hospital hot-water system.  Epidemiol Infect 1990;104:381–7. 

457.

 

Stout JE, Yu VL, Best MG.  Ecology of 

Legionella pneumophila

 within water distribution systems.  Appl 

Environ Microbiol 1985;49:221–8. 

458.

 

Sanden GN, Fields BS, Barbaree JM, et al.  Viability of 

Legionella pneumophila

 in chlorine-free water at 

elevated temperatures.  Curr Microbiol 1989;61–5. 

459.

 

Schulze-Röbbecke R, Rodder M, Exner M.  Multiplication and killing temperatures of naturally occurring 

legionellae.  Zbl Bakt Hyg B 1987;184:495–500. 

460.

 

Habicht W, Muller HE.  Occurrence and parameters of frequency of 

Legionella

 in warm water systems of 

hospitals and hotels in Lower Saxony.  Zbl Bakt Hyg B 1988;186:79–88. 

461.

 

Ciesielski CA, Blaser MJ, Wang WL.  Role of stagnation and obstruction of water flow in isolation of 

Legionella pneumophila

 from hospital plumbing.  Appl Environ Microbiol 1984;48:984–7. 

462.

 

Rowbotham TJ.  Preliminary report on the pathogenicity of 

Legionella pneumophila

 for freshwater and soil 

amoebae.  J Clin Path 1980;33:179–83. 

background image

 

 

163

463.

 

Fields BS, Sanden GN, Barbaree JM, et al.  Intracellular multiplication of 

Legionella pneumophila

 in 

amoebae isolated from hospital hot water tanks.  Curr Microbiol 1989;18:131–7. 

464.

 

(142)

  Villarino ME, Stevens LE, Schable B, et al.  Risk factors for epidemic 

Xanthomonas maltophilia

 

infection/colonization in intensive care unit patients.  Infect Control Hosp Epidemiol 1992;13:201–6. 

465.

 

(147)

  Burdge DR, Nakielna EM, Noble MA.  Case-control and vector studies of nosocomial acquisition of 

Pseudomonas cepacia

 in adult patients with cystic fibrosis.  Infect Control Hosp Epidemiol 1993;14:127–

30. 

466.

 

Stephenson JR, Heard SR, Richards MA, Tabaqchali S.  Gastrointestinal colonization and septicaemia with 

Pseudomonas aeruginosa

 due to contaminated thymol mouthwash in immunocompromised patients.  J 

Hosp Infect 1985;6:369–78. 

467.

 

Kolmos HJ, Thusen B, Neilsen SV, Lohmann M, Kristoffersen K, Rosdahl VT.  Outbreak of infection in a 

burns unit due to 

Pseudomonas aeruginosa

 originating from contaminated tubing used for irrigating 

patients.  J Hosp Infect 1993;24:11–21. 

468.

 

Vanholder R, Vanhaecke E, Ringoir S.  Waterborne 

Pseudomonas 

septicemia.  ASAIO Trans 

1990;36:M215–6. 

469.

 

Ehni WF, Reller LB, Ellison RT III.  Bacteremia in granulocytopenic patients in a tertiary-care general 

hospital.  Rev Infect Dis 1991;13:613–9. 

470.

 

Gallagher PG, Watanakunakorn C.  

Pseudomonas 

bacteremia in a community teaching hospital, 1980–

1984.  Rev Infect Dis 1989;11:846–52. 

471.

 

Centers for Disease Control.  Nosocomial infection and pseudoinfection from contaminated endoscopes and 

bronchoscopes — Wisconsin and Missouri.  MMWR 1991;40:675–8. 

472.

 

Kerr JR, Moore JE, Curran MD, et al.  Investigation of a nosocomial outbreak of 

Pseudomonas aeruginosa 

pneumonia in an intensive care unit by random amplification of polymorphic DNA assay.  J Hosp Infect 

1995;30:125–31. 

473.

 

Brewer SC, Wunderink RG, Jones CB, Leeper KV.  Ventilator-associated pneumonia due to 

Pseudomonas 

aeruginosa

.  Chest 1996;109:1019–22. 

474.

 

Rello J, Jubert P, Valles J, et al.  Evaluation of outcome for intubated patients with pneumonia due to 

Pseudomonas aeruginosa

.  Clin Infect Dis 1996;23:973–8. 

475.

 

Henderson A, Kelly W, Wright M.  Fulminant primary 

Pseudomonas aeruginosa

 pneumonia and 

septicaemia in previously well adults.  Intensive Care Med 1992;18:430–2. 

476.

 

Torres A, Serra-Battles J, Ferrer A, et al.  Severe community acquired pneumonia: epidemiology and 

prognostic factors.  Am Rev Respir Dis 1991;144:312–8. 

477.

 

Pedersen SS, Koch C, H

r

iby N, Rosendal K.  An epidemic spread of multiresistant 

Pseudomonas 

aeruginosa

 in a cystic fibrosis center.  J Antimicrob Chemother 1986;17:505–6. 

478.

 

Kubesch P, Dörk T, Wulbrand U, et al.  Genetic determinants of airways’ colonization with 

Pseudomonas 

aeruginosa

 in cystic fibrosis.  Lancet 1993;341:189–93. 

479.

 

Koch C, H

r

iby N.  Pathogenesis of cystic fibrosis.  Lancet 1993;341:1065–9. 

480.

 

Worlitzsch D, Wolz C. Botzenart K, et al. Molecular epidemiology of 

Pseudomonas aeruginosa

 – urinary 

tract infections in paraplegic patients.  Zentrabl Hyg Umweltmed 1989;189:175–84. 

481.

 

Glenister H, Holton J, Teall A.  Urinary tract pressure recording equipment as a source for infection.  J 

Hosp Infect 1985;6:224–6. 

482.

 

Ferroni A., Nguyen L, Pron B, Quense G, Brusset MC, Berche P.  Outbreak of nosocomial urinary tract 

infections due to 

Pseudomonas aeruginosa

 in a paediatric surgical unit associated with tap water 

contamination.  J Hosp infect 1998;39:301–7. 

483.

 

Marrie TJ, Major H, Gurwith M, et al.  Prolonged outbreak of nosocomial urinary tract infection with a 

single strain of 

Pseudomonas aeruginosa

.  Can Med Assoc J 1978;119:593–8. 

484.

 

Moore B, Forman A.  An outbreak of urinary 

Pseudomonas aeruginosa

 infection acquired during urological 

operations.  Lancet 1966;2:929–31. 

485.

 

Anderson RJ, Schafer LA, Olin DB, Eickhoff TC.  Septicemia in renal transplant recipients.  Arch Surg 

1973;106:692–4. 

486.

 

Fang G, Brennen C, Wagener M, et al.  Use of ciprofloxacin versus use of aminoglycosides for therapy of 

complicated urinary tract infection: prospective, randomized clinical and pharmacokinetic study.  

Antimicrob Agents Chemother 1991;35:1849–55. 

487.

 

Dorff GJ, Beimer NF, Rosenthal DR, Rytel MW.  

Pseudomonas 

septicemia: illustrated evolution of its skin 

lesions.  Arch Intern Med 1971;128:591–5. 

488.

 

Teplitz C.  Pathogenesis of 

Pseudomonas vasculitis

 and septic lesions.  Arch Pathol 1965;80:297–307. 

background image

 

 

164 

489.

 

Roberts R, Tarpay MM, Marks MI, Nitschke R.  Erysipelas-like lesions and hyperesthesia as manifestations 

of 

Pseudomonas aeruginosa

 sepsis.  JAMA 1982;248:2156–7. 

490.

 

Duncan BW, Adzick NS, deLorimier AA, et al.  Necrotizing fasciitis in childhood.  J Pediatr Surg 

1992;27:668–71. 

491.

 

McManus AT, Mason AD Jr, McManus WF, Pruitt BA Jr.  Twenty-five year review of 

Pseudomonas 

aeruginosa

 bacteremia in a burn center.  Eur J Clin Microbiol 1985;4:219–23. 

492.

 

Tredget EE, Shankowsky HA, Joffe AM, et al.  Epidemiology of infections with 

Pseudomonas aeruginosa 

in burn patients: the role of hydrotherapy.  Clin Infect Dis 1992;15:941–9. 

493.

 

Schlech WF III, Simosen N, Sumarah R, Martin RS.  Nosocomial outbreak of 

Pseudomonas aeruginosa

 

folliculitis associated with a physiotherapy pool.  Can Med Assoc J 1986;134:909–13. 

494.

 

Fang G, Keys TF, Gentry LO, et al.  Prosthetic valve endocarditis resulting from nosocomial bacteremia: a 

prospective, multicenter study.  Ann Intern Med 1993;119:560–7. 

495.

 

Cohen PS, Maguire JH, Weinstein L.  Infective endocarditis caused by gram-negative bacteria: a review of 

the literature, 1945–1977.  Prog Cardiovasc Dis 1980;22:205–42. 

496.

 

Wise BL, Mathis JL, Jawetz E.  Infections of the central nervous system due to 

Pseudomonas aeruginosa

.  J 

Neurosurg 1969;31:432–4. 

497.

 

Bray DA, Calcaterra TC.  

Pseudomonas 

meningitis complicating head and neck surgery.  Laryngoscope 

1976;86:1386–90. 

498.

 

Schein OD, Wasson PJ, Boruchoff SA, Kenyon KR.  Microbial keratitis associated with contaminated 

ocular medications.  Am J Ophthalmol 1988;105:361–5. 

499.

 

Procope JA.  Delayed-onset 

Pseudomonas 

keratitis after radial keratotomy.  J Cataract Refract Surg 

1997;23:1271–2. 

500.

 

Sapico FL, Montgomerie JZ.  Vertebral osteomyelitis in intravenous drug abusers: report of three cases and 

review of the literature.  Rev Infect Dis 1980;2:196–206. 

501.

 

Tindel JR, Crowder JG.  Septic arthritis due to 

Pseudomonas aeruginosa

.  JAMA 1971;218:559-61. 

502.

 

Martone WJ, Tablan OC, Jarvis WR.  The epidemiology of nosocomial epidemic 

Pseudomonas cepacia

 

infections.  Eur J Epidemiol 1987;3:222–32. 

503.

 

Goldmann DA, Klinger JD.  

Pseudomonas cepacia

: biology, mechanisms of virulence, epidemiology.  J 

Pediatr 1986;108:806–12. 

504.

 

Widmer AF, Wenzel RP, Trilla A, et al.  Outbreak of 

Pseudomonas aeruginosa

 infections in a surgical 

intensive care unit: probable transmission via hands of a health care worker.  Clin Infect Dis 1993;16: 372–

6. 

505.

 

Döring G, Hörz M, Ortelt J, et al.  Molecular epidemiology of 

Pseudomonas aeruginosa

 in an intensive care 

unit.  Epidemiol Infect 1993;110:427–36. 

506.

 

Hollyoak V, Allison D, Summers J.  

Pseudomonas aeruginosa

 wound infection associated with a nursing 

home whirlpool bath.  CDR Review 1995;5:R100–2. 

507.

 

Grundmann H, Kropec A, Hartung D, Berner R, Daschner F.  

Pseudomonas aeruginosa

 in a neonatal 

intensive care unit: reservoirs and ecology of the nosocomial pathogen.  J Infect Dis 1993;168:943–7. 

508.

 

Martino P, Venditti M, Papa G, Orefici G, Serra P.  Water supply as a source of 

Pseudomonas aeruginosa 

in a hospital for hematological malignancies.  Bollettino dell Istituto Sieroterapico Milanese 1985;64:109–

14. 

509.

 

Ayliffe GAJ, Babb JR, Collins BJ, Lowbury EJ, Newsom SWB.  

Pseudomonas aeruginosa

 in hospital 

sinks.  Lancet 1974;2:578–81. 

510.

 

Kluyver AJ.  

Pseudomonas aureofaciens

 nov. spec and its pigments.  J Bacteriol 1956;72:406–11. 

511.

 

Romling U, Fiedler B, Bosshammer J, et al.  Epidemiology of chronic 

Pseudomonas aeruginosa

 infections 

in cystic fibrosis.  J Infect Dis 1994:170:1616–21. 

512.

 

Jones F, Bartlett CL.  Infections associated with whirlpools and spas.  Soc Appl Bacteriol Symp Series 

1985;14:61S–6S. 

513.

 

Casewell MW, Slater NG, Cooper JE.  Operating theater water-baths as a cause of 

Pseudomonas 

septicemia.  J Hosp Infect 1981;2:237–47. 

514.

 

Rechsteiner J, Landheer JE, de Jong J, van Kregten E, Lindner JG. [Kidney lithotriptor as a possible source 

of hospital infection].  Nederlands Tijdschrift voor Geneeskunde 1988;132:1849–59. (Dutch) 

515.

 

(308)

  Taplin D, Mertz PM.  Flower vases in hospitals as reservoirs for pathogens.  Lancet 1973;2: 1279–

1281. 

516.

 

Kaiser AB.  Humidifiers and 

Pseudomonas 

infections.  N Engl J Med 1970;283:708. 

background image

 

 

165

517.

 

Levin MH, Olson B, Nathan C, et al.  

Pseudomonas

 in the sinks in an intensive care unit: relation to 

patients.  J Clin Pathol 1984;37:424–7. 

518.

 

Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR.  Isolation of amoebae 

and 

Pseudomonas

 and 

Legionella

 spp. from eyewash stations.  Appl Environ Microbiol 1991;57:163–7. 

519.

 

Struelens MJ, Rost F, Deplano A, et al.

  Pseudomonas aeruginosa

 and 

Enterobacteriaceae

 bacteremia after 

biliary endoscopy: an outbreak investigation using DNA macrorestriction analysis.  Am J Med 

1993;95:489–98. 

520.

 

Blanc DS, Parret T, Janin B, Raselli P, Francioli P.  Nosocomial infections and pseudoinfections from 

contaminated bronchoscopes: two-year follow up using molecular markers.  Infect Control Hosp Epidemiol 

1997;18:134–6. 

521.

 

Boukadida J, de Montalembert M, Gaillard JL, et al.  Outbreak of gut colonization by 

Pseudomonas 

aeruginosa

 in immunocompromised children undergoing total digestive decontamination: analysis by 

pulsed-field electrophoresis.  J Clin Microbiol 1991;29:2068–71. 

522.

 

Grigis A, Goglio A, Parea M, Gnecchi F, Minetti B, Barbui T.  Nosocomial outbreak of severe 

Pseudomonas aeruginosa

 infections in haematological patients.  Eur J Epidemiol 1993;9:390–5. 

523.

 

Gupta AK, Shashi S, Mohan M, Lamba IM, Gupta R.  Epidemiology of 

Pseudomonas aeruginosa

 

infections in a neonatal intensive care unit.  J Trop Pediatr 1993;39:32–6. 

524.

 

Sader HS Pignatari AC, Leme IL, et al.  Epidemiologic typing of multiply drug-resistant 

Pseudomonas 

aeruginosa

 isolated from an outbreak in an intensive care unit.  Diagn Microbiol Infect Dis 1993;17:13–8. 

525.

 

Krecmery V, Trupl J.  Nosocomial outbreak of meropenem-resistant 

Pseudomonas aeruginosa

 infections in 

a cancer center.  J Hosp Infect 1994;28:209–18. 

526.

 

Jumaa P, Chattopadhyay B.  Outbreak of gentamicin, ciprofloxacin-resistant 

Pseudomonas aeruginosa

 in an 

intensive care unit, traced to contaminated quivers.  J Hosp Infect 1994;28:209–18. 

527.

 

Carson LA, Favero MS, Bond WW, Petersen NJ.  Morphological, biochemical, and growth characteristics 

of 

Pseudomonas cepacia

 from distilled water.  Appl Microbiol 1973;25:476–83. 

528.

 

Bassett DC, Stokes KJ, Thomas WR.  Wound infection with 

Pseudomonas multivorans

: a waterborne 

contaminant of disinfectant solutions.  Lancet 1970;1:1188–91. 

529.

 

Wishart MM, Riley TV.  Infection with 

Pseudomonas maltophilia

: hospital outbreak due to contaminated 

disinfectant.  Med J Aust 1976;2:710–2. 

530.

 

Conly JM, Klass L, Larson L.  

Pseudomonas cepacia

 colonization and infection in intensive care units.  

Can Med Assoc J 1986;134:363–6. 

531.

 

Bosshammer J, Fielder B, Gudowis P, von der Hardt H, Romling U, Tummler B.  Comparative hygienic 

surveillance of contamination with pseudomonads in a cystic fibrosis ward over a 4-year period.  J Hosp 

Infect 1995;31:261–74. 

532.

 

Hutchinson GR, Parker S, Pryor JA, et al.  Home-use nebulizers: a potential primary source of 

B. cepacia

 

and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis.  J Clin Microbiol 

1996;34:584–7. 

533.

 

Pegues DA, Carson LA, Anderson RL, et al.  Outbreak of 

Pseudomonas cepacia

 bacteremia in oncology 

patients.  Clin Infect Dis 1993;16:407–11. 

534.

 

CDC.  Nosocomial 

Burkholderia cepacia

 infection and colonization with intrinsically contaminated 

mouthwash — Arizona, 1998.  MMWR 1998;47:926–8. 

535.

 

Berthelot P, Grattard F, Mahul P, et al.  Ventilator temperature sensors: an unusual source of 

Pseudomonas 

cepacia

 in nosocomial infection.  J Hosp Infect 1993;25:33–43. 

536.

 

Khardori N, Elting L, Wong E, et al.  Nosocomial infections due to 

Xanthomonas maltophilia

 

(

Pseudomonas maltophilia

) in patients with cancer.  Rev Infect Dis 1990;12:997–1003. 

537.

 

Oie S, Oomaki M, Yorioka K, et al.  Microbial contamination of “sterile water” used in Japanese hospitals.  

J Hosp Infect 1998;38:61–5. 

538.

 

Crane LR, Tagle LC, Palutke WA.  Outbreak of 

Pseudomonas paucimobilis

 in an intensive care facility.  

JAMA 1981;246:985–7. 

539.

 

Lemaitre D, Elaichouni A, Hundhausen M, et al.  Tracheal colonization with 

Sphingomonas paucimobilis 

in 

mechanically-ventilated neonates due to contaminated ventilator temperature probes.  J Hosp Infect 

1996;32:199–206. 

540.

 

Maki DG, Klein BS, McCormick RD, et al.  Nosocomial 

Pseudomonas pickettii

 bacteremias traced to 

narcotic tampering.  A case for selective drug screening of health care personnel.  JAMA 1991;265:981–6. 

541.

 

Maroye P, Doermann HP, Rogues AM, Gachie JP, Mégraud F.  Investigation of an outbreak of 

Ralstonia 

pickettii

 in a paediatric hospital by RAPD.  J Hosp Infection 2000:44;267–72. 

background image

 

 

166 

542.

 

McNeil MM, Solomon SL, Anderson RL, et al.  Nosocomial 

Pseudomonas pickettii

 colonization associated 

with a contaminated respiratory therapy solution in a special care nursery.  J Clin Microbiol 1985;22:903–7. 

543.

 

Lamka KG, LeChevallier MW, Seidler RJ.  Bacterial contamination of drinking water supplies in a modern 

rural neighborhood.  Appl Environ Microbiol 1980;39:734–8. 

544.

 

Nakashima AK, McCarthy MA, Martone WJ, Anderson RL.  Epidemic septic arthritis caused by 

Serratia 

marcescens

 and associated with a benzalkonium chloride antiseptic.  J Clin Microbiol 1987;25:1014–8. 

545.

 

Nakashima AK, Highsmith AK, Martone WJ.  Survival of 

Serratia marcescens

 in benzalkonium chloride 

and in multiple-dose medication vials: relationship to epidemic septic arthritis.  J Clin Microbiol 1987;25: 

1019–21. 

546.

 

Bosi C, Davin-Regli A, Charrel R, Rocca B, Monnet D, Bollet C.  

Serratia marcescens

 nosocomial 

outbreak due to contamination of hexetidine solution.  J Hosp Infect 1996;33:217–24. 

547.

 

Ehrenkranz NJ, Bolyard EA, Wiener M, Cleary TJ.  Antibiotic-sensitive 

Serratia marcescens

 infections 

complicating cardiopulmonary operations: contaminated disinfectant as a reservoir.  Lancet 1980;2:1289–

92. 

548.

 

Cimolai N, Trombley C, Wensley D, LeBlanc J.  Heterogeneous 

Serratia marcescens

 genotypes from a 

nosocomial pediatric outbreak.  Chest 1997;111:194–7. 

549.

 

Hartstein AI, Rashad AL, Liebler JM, et al.  Multiple intensive care unit outbreaks of 

Acinetobacter 

calcoaceticus

 subspecies anitratus respiratory infection and colonization associated with contaminated, 

reusable ventilator circuits and resuscitation bags.  Am J Med 1988;85:624–31. 

550.

 

Stone JW, Das BC.  Investigation of an outbreak of infection with 

Acinetobacter calcoaceticus

 in a special 

care baby unit.  J Hosp Infect 1986;7:42–8. 

551.

 

Vandenbroucke-Grauls CMJE, Kerver AJH, Rommes JH, Jansen R, den Dekker C, Verhoef J.  Endemic 

Acinetobacter anitratus

 in a surgical intensive care unit: mechanical ventilators as reservoir.  Eur J Clin 

Microbiol Infect Dis 1988;7:485–9. 

552.

 

Cefai C, Richards J, Gould FK, McPeake P.  An outbreak of 

Acinetobacter

 respiratory infection resulting 

from incomplete disinfection of ventilatory equipment.  J Hosp Infect 1990;15:177–82. 

553.

 

Gervich DH, Grout CS.  An outbreak of nosocomial 

Acinetobacter 

infections from humidifiers.  Am J 

Infect Control 1985;13:210–5. 

554.

 

Castle M, Tenney JH, Weinstein MP, Eickhoff TC.  Outbreak of a multiply resistant 

Acinetobacter

 in a 

surgical intensive care unit.  Heart Lung 1978;7:641–4. 

555.

 

Smith PW, Massanari RM.  Room humidifiers as a source of 

Acinetobacter

 infections.  JAMA 1977;237: 

795–7. 

556.

 

Snydman DR, Maloy MF, Brock SM, Lyons RW, Rubin SJ.  Pseudobacteremia: false-positive blood 

cultures from mist tent contamination.  Am J Epidemiol 1977;106:154–9. 

557.

 

Rosenthal SL.  Sources of 

Pseudomonas

 and 

Acinetobacter

 species found in human culture materials.  Am J 

Clin Pathol 1974;62:807–11. 

558.

 

Allen KD, Green HT.  Hospital outbreak of multi-resistant 

Acinetobacter anitratus

: an airborne mode of 

spread.  J Hosp Infect 1987;9:169–75. 

559.

 

Crombach WHJ, Dijkshoorn L, van Noort-Klaassen M, Niessen J, van Knippenbert-Gordebeke G.  Control 

of an epidemic spread of multi-resistant

 Acinetobacter calcoaceticus

 in a hospital.  Intensive Care Med 

1989;15: 166–170. 

560.

 

Catalano M, Quelle LS, Jeric PE, Di Martino A, Maimone SM.  Survival of 

Acinetobacter baumannii

 on 

bed rails during an outbreak and during sporadic cases.  J Hosp Infect 1999;42:27–35. 

561.

 

D’Agata EMC, Venkataraman L, DeGirolami P, Samore M.  Molecular epidemiology of ceftazidime-

resistant gram-negative bacilli on inanimate surfaces and their role in cross-transmission during non-

outbreak periods.  J Clin Microbiol 1999;37:3065–7. 

562.

 

Jawad A, Snelling AM, Heritage J, Hawkey PM.  Exceptional desiccation tolerance of 

Acinetobacter 

radioresistens

.  J Hosp Infect 1998;39:235–40. 

563.

 

Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM.  Survival of 

Acinetobacter baumannii

 on dry 

surfaces: comparison of outbreak and sporadic isolates.  J Clin Microbiol 1998;36:1938–41. 

564.

 

Getschell-White, SI, Donowitz LG, Groschel DHM.  The inanimate environment of an intensive care unit 

as a potential source of nosocomial bacteria: evidence for long survival of 

Acinetobacter calcoaceticus

.  

Infect Control Hosp Epidemiol 1989;10:402–6. 

565.

 

Loiwal V, Kumar A, Gupta P, Gomber S, Ramachandran VG.  

Enterobacter aerogenes

 outbreak in a 

neonatal intensive care unit.  Pediatr Int 1999;41:157–61. 

background image

 

 

167

566.

 

Matsaniotis NS, Syriopoulou VP, Theodoridou MC, Tzanetou KG, Mostrou GI.  

Enterobacter

 sepsis in 

infants and children due to contaminated intravenous fluids.  Infect Control 1984;5:471–7. 

567.

 

Zembrzuska-Sadlowska E.  The dangers of infections of the hospitalized patients with the microorganisms 

present in preparations and in the hospital environment.  Acta Pol Pharm 1995;52:173–8. 

568.

 

Felts SK, Schaffner W, Melly MA, Koenig MG.  Sepsis caused by contaminated intravenous fluids.  Ann 

Intern Med 1972;77:881–90. 

569.

 

Modi N, Damjanovic V, Cooke RW.  Outbreak of cephalosporin resistant 

Enterobacter cloacae

 infection in 

a neonatal intensive care unit.  Arch Dis Child 1987;62:148–51. 

570.

 

Graham DR, Wu E, Highsmith AK, Ginsburg ML.  An outbreak of pseudobacteremia caused by 

Enterobacter cloacae

 from a phlebotomist’s vial of thrombin.  Ann Intern Med 1981;95:585–8. 

571.

 

Andersen BM, Sorlie D, Hotvedt R, et al.  Multiply beta-lactam-resistant 

Enterobacter cloacae

 infections 

linked to the environmental flora in a unit for cardiothoracic and vascular surgery.  Scand J Infect Dis 

1989;21:181–91. 

572.

 

Wisplinghoff H, Perbix W, Seifert H.  Risk factors for nosocomial bloodstream infections due to 

Acinetobacter baumannii

: a case-control study of adult burn patients.  Clin Infect Dis 1999;28:59–66. 

573.

 

Crowe M, Towner KJ, Humphreys H.  Clinical and epidemiological features of an outbreak of 

Acinetobacter 

infection in an intensive therapy unit.  J Med Microbiol 1995;43:55–62. 

574.

 

National Nosocomial Infections Surveillance (NNIS) Report: Data summary from October 1986–April 

1996, issued May 1996.  Am J Infect Control 1996;24:380–8. 

575.

 

Bergogne-Bérézin E, Joly-Guillou ML.  Hospital infection with 

Acinetobacter

 spp.: an increasing problem.  

J Hosp Infect 1991;18 (suppl A):250–5. 

576.

 

Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C.  Nosocomial pneumonia in ventilated 

patients: a cohort study evaluating attributable mortality and hospital stay.  Am J Med 1993;94: 281–8. 

577.

 

(143)

  Seifert H, Strate A, Pulverer G.  Nosocomial bacteremia due to 

Acinetobacter baumanii

: clinical 

features, epidemiology, and predictors of mortality.  Medicine 1995;74:340–9. 

578.

 

Cisneros JM, Reyes MJ, Pachón J, et al.  Bacteremia due to 

Acinetobacter baumanii

: epidemiology, clinical 

findings, and prognostic features.  Clin Infect Dis 1996;22:1026–32. 

579.

 

Schaberg DR, Culver DH, Gaynes RP.  Major trends in the microbial ecology of nosocomial infections.  

Am J Med 1991;91(suppl 3B):72S–5S. 

580.

 

Wang CC, Chu ML, Ho LJ, Hwang RC.  Analysis of plasmid pattern in pediatric intensive care outbreaks 

of nosocomial infection due to 

Enterobacter cloacae

.  J Hosp Infect 1991;19:33–40. 

581.

 

Acolet D, Ahmet Z, Houang E, Hurley R, Kaufman ME.  

Enterobacter cloacae

 in a neonatal intensive care 

unit: account of an outbreak and its relationship to use of third generation cephalosporins.  J Hosp Infect 

1994;28:273–86. 

582.

 

Mayhall CG, Lamb VA, Gayle WE Jr, Haynes BW Jr.  

Enterobacter cloacae

 septicemia in a burn center: 

epidemiology and control of an outbreak.  J Infect Dis 1979;139:166–71. 

583.

 

John JF Jr, Sharbaugh RJ, Bannister ER.  

Enterobacter cloacae

: bacteremia, epidemiology, and antibiotic 

resistance.  Rev Infect Dis 1982;4:13–28. 

584.

 

McDonald C, Banerjee SN, Jarvis WR, NNIS.  Seasonal variation of 

Acinetobacter

 infections: 1987–1996.  

Clin Infect Dis 1999;29:1133–7. 

585.

 

Beck-Sague CM, Jarvis WR, Brook JH, et al.  Epidemic bacteremia due to 

Acinetobacter baumanii

 in five 

intensive care units.  Am J Epidemiol 1990;132:723–33. 

586.

 

(144)

  Yu VL.  

Serratia marcescens

: historical perspective and clinical review.  N Engl J Med 

1979;300:887–93. 

587.

 

Wenger PN, Tokars JI, Brennan P, et al.  An outbreak of 

Enterobacter hormaechei

 infection and 

colonization in an intensive care nursery.  Clin Infect Dis 1997;24:1243–4. 

588.

 

Buxton AE, Anderson RL, Wedegar D, Atlas E.  Nosocomial respiratory tract infection and colonization 

with 

Acinetobacter calcoaceticus

.  Am J Med 1978;65:507–13. 

589.

 

French GL, Casewell MW, Roncoroni AJ, Knight S, Philipps I.  A hospital outbreak of antibiotic-resistant 

Acinetobacter anitratus

: epidemiology and control.  J Hosp Infect 1980;1:125–31. 

590.

 

Guenter SH, Hendley JO, Wenzel RP.  Gram-negative bacilli as nontransient flora on the hands of hospital 

personnel.  J Clin Microbiol 1987;25:488–90. 

591.

 

Dreyfuss D Djedaini K, Weber P, et al.  Prospective study of nosocomial pneumonia and of patient and 

circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change.  

Am Rev Respir Dis 1991;143:738–43. 

background image

 

 

168 

592.

 

(145)

  Go SE, Urban C, Burns J, et al.  Clinical and molecular epidemiology of 

Acinetobacter

 infections 

sensitive only to polymixin B and sublactam.  Lancet 1994;344:1329–32. 

593.

 

Musa EK, Desai N, Casewell MW.  The survival of 

Acinetobacter calcoaceticus

 inoculated on fingertips 

and on formica.  J Hosp Infect 1990;15:219–27. 

594.

 

Jawad A, Heritage J, Snelling AM, Gascoyne-Binzi DM, Hawkey PM.  Influence of relative humidity and 

suspending menstrua on survival of 

Acinetobacter

 spp. on dry surfaces.  J Clin Microbiol 1996;34:2881–7. 

595.

 

Mulin B, Talon D, Viel JF, et al.  Risk factors for nosocomial colonization with multiresistant 

Acinetobacter baumanii

.  Eur J Clin Microbiol Infect Dis 1995;14:569–76. 

596.

 

O’Brien RJ.  The epidemiology of nontuberculous mycobacterial disease.  Clin Chest Med 1989;10:407–18. 

597.

 

Böttger EC, Teske A, Kirschner P, et al.  Disseminated “

Mycobacterium genavense

” infection in patients 

with AIDS.  Lancet 1992;340:76–80. 

598.

 

Wallace RJ Jr, Brown BA, Griffith DE.  Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous 

mycobacteria.  Ann Rev Microbiol 1998;52:453–90. 

599.

 

Chapman JS, Dewlett HJ, Potts WE.  Cutaneous reactions to unclassified mycobacterial antigens: a study of 

children in household contact with patients who excrete unclassified mycobacteria.  Am Rev Respir Dis 

1962;86:547–52. 

600.

 

(245)

  Crow HE, Corpe RF, Smith CE.  Is serious pulmonary disease caused by nonphotochromogenic 

(“atypical”) acid-fast mycobacteria communicable?  Dis Chest 1961;39:372–81. 

601.

 

Kuritsky JM, Bullen MG, Broome CV, Silcox VA, Good RC, Wallace, RJ Jr.  Sternal wound infections and 

endocarditis due to organisms of the 

Mycobacterium fortuitum

 complex.  Ann Intern Med 1983;98:938–9. 

602.

 

Laussucq S, Baltch AL, Smith RP, et al.  Nosocomial

 Mycobacterium

 

fortuitum

 colonization from a 

contaminated ice machine.  Am Rev Respir Dis 1988;138:891–4. 

603.

 

Panwalker AP, Fuhse E.  Nosocomial 

Mycobacterium gordonae

 pseudoinfection from contaminated ice 

machines.  Infect Control 1986;7:67–70. 

604.

 

Wallace RJ Jr, Musser JM, Hull SI, et al.  Diversity and sources of rapidly growing mycobacteria associated 

with infections following cardiac surgery.  J Infect Dis 1989;159:708–16. 

605.

 

Burns DN, Wallace RJ Jr, Schultz ME, et al.  Nosocomial outbreak of respiratory tract colonization with 

Mycobacterium fortuitum

: demonstration of the usefulness of pulsed-field gel electrophoresis in an 

epidemiologic investigation.  Am Rev Respir Dis 1991;144:1153–9. 

606.

 

Lessing MPA, Walker MM.  Fatal pulmonary infection due to 

Mycobacterium fortuitum

.  J. Clin Pathol 

1993;46:271–2. 

607.

 

(149)

  Hoy J, Rolston K, Hopfer RL.  Pseudoepidemic of 

Mycobacterium fortuitum

 in bone marrow 

cultures.  Am J Infect Control 1987;15:268–71. 

608.

 

Lockwood WW, Friedman C, Bus N, Pierson C, Gaynes R.  An outbreak of 

Mycobacterium terrae

 in 

clinical specimens associated with a hospital potable water supply.  Am Rev Respir Dis 1989;140:1614–7. 

609.

 

Sniadack DH, Ostroff SM, Karlix MA, et al.  A nosocomial pseudo-outbreak of 

Mycobacterium xenopi

 due 

to a contaminated water supply: lessons in prevention.  Infect Control Hosp Epidemiol 1993;14:636–41. 

610.

 

(148)

  Cox R, deBorja K, Bach MC.  A pseudo-outbreak of 

Mycobacterium chelonae

 infections related to 

bronchoscopy.  Infect Control Hosp Epidemiol 1997;18:136–7. 

611.

 

(150)

  Stine TM, Harris AA, Levin S, Rivera N, Kaplan, RL.  A pseudoepidemic due to atypical 

mycobacteria in a hospital water supply.  JAMA 1987;258:809–11. 

612.

 

(151)

  Bennett SN, Peterson DE, Johnson DR, Hall WN, Robinson-Dunn B, Dietrich S.  Bronchoscopy-

associated 

Mycobacterium xenopi

 pseudoinfections.  Am J Respir Crit Care Med 1994;150:245–50. 

613.

 

Chadha R, Grover M, Sharma A, et al.  An outbreak of post-surgical wound infections due to 

Mycobacterium abscessus

.  Pediatr Surg Int 1998;13:406–10. 

614.

 

Von Reyn CF, Maslow JN, Barber TW, Falkinham JO III, Arbeit RD.  Persistent colonization of potable 

water as a source of 

Mycobacterium avium

 infection in AIDS.  Lancet 1994;343:1137–41. 

615.

 

du Moulin GC, Stottmeier KD, Pelletier PA, Tsang AY, Hedley-Whyte J.  Concentration of 

Mycobacterium 

avium

 by hospital hot water systems.  JAMA 1988;260:1599–601. 

616.

 

Peters M, Müller C, Rüsch-Gerdes S, et al.  Isolation of atypical mycobacteria from tap water in hospitals 

and homes: Is this a possible source of disseminated MAC infection in AIDS patients?  J Infect 

1995;31:39–44. 

617.

 

Soto LE, Bobadilla M, Villalobos Y, et al.  Post-surgical nasal cellulitis outbreak due to 

Mycobacterium 

chelonae

.  J Hosp Infect 1991;19:99–106. 

618.

 

Wenger JD, Spika JS, Smithwick RW, et al.  Outbreak of 

Mycobacterium chelonae

 infection associated 

with use of jet injectors.  JAMA 1990;264:373–6. 

background image

 

 

169

619.

 

Safranek TJ, Jarvis WR, Carson LA, et al.  

Mycobacterium chelonae

 wound infections after plastic surgery 

employing contaminated gentian violet skin-marking solution.  N Eng J Med 1987;317:197–201. 

620.

 

Gremillion DH, Mursch SB, Lerner CJ.  Injection site abscesses caused by 

Mycobacterium chelonae

.  Infect 

Control 1983;4:25–8. 

621.

 

Begg N, O’Mahoney M, Penny P, Richardson AE.  

Mycobacterium chelonae

 associated with a hospital 

hydrotherapy pool.  Community Med 1986;8:348–50. 

622.

 

Aubuchon C, Hill JJ Jr, Graham DR.  Atypical mycobacterial infection of soft tissue associated with use of 

a hot tub. A case report.  J Bone Joint Surg 1986;68–A:766–8. 

623.

 

Kirk J, Kaminski GW.  

Mycobacterium marinum

 infection.  Aust J Dermatol 1976;17:111–6. 

624.

 

Ross BC, Johnson PDR, Oppedisano F, et al.  Detection of 

Mycobacterium ulcerans

 in environmental 

samples during an outbreak of ulcerative disease.  Appl Environ Microbiol 1997;63:4135–8. 

625.

 

Tokars JI, McNeil MM, Tablan OC, et al.  

Mycobacterium gordonae

 pseudoinfection associated with a 

contaminated antimicrobial solution.  J Clin Microbiol 1990;28:2765–9. 

626.

 

Arnow PM, Bakir M, Thompson K, Bova JL.  Endemic contamination of clinical specimens by 

Mycobacterium gordonae

.  Clin Infect Dis 2000;31:472–6. 

627.

 

Wright EP, Collins CH, Yates MD.  

Mycobacterium xenopi

 and 

Mycobacterium kansasii

 in a hospital water 

supply.  J Hosp Infect 1985;6:175–8. 

628.

 

du Moulin GC, Stottmeier KD.  Waterborne mycobacteria: an increasing threat to health.  ASM News 

1986;10:525–9. 

629.

 

Engel HWB, Berwald LG.  The occurrence of 

Mycobacterium kansasii

 in tapwater.  Tubercle 1980;61:21–

6. 

630.

 

Kubalek I, Mysak J.  The prevalence of environmental mycobacteria in drinking water supply systems in a 

demarcated region in Czech Republic in the period 1984–1989.  Eur J Epidemiol 1996;12:471–4. 

631.

 

Fox C, Smith F, Brogan O, et al.  Non-tuberculous mycobacteria in a hospital’s piped water supply.  J Hosp 

Infect 1992;21:152–4. 

632.

 

Aronson T, Holtzman A, Glover N, et al.  Comparison of large restriction fragments of 

Mycobacterium 

avium

 isolates recovered from AIDS and non-AIDS patients with those of isolates from potable water.  J 

Clin Microbiol 1999;37:1008–12. 

633.

 

Carson LA, Bland LA, Cusick LB, et al.  Prevalence of nontuberculous mycobacteria in water supplies of 

hemodialysis centers.  Appl Environ Microbiol 1988;54:3122–5. 

634.

 

Carson LA, Petersen NJ, Favero MS, Aguero SM.  Growth characteristics of atypical mycobacteria in water 

and their comparative resistance to disinfectants.  Appl Environ Microbiol 1978;36:839–46. 

635.

 

Taylor RH, Falkinham III JO, Norton CD, LeChevallier MW.  Chlorine, chloramine, chlorine dioxide, and 

ozone susceptibility of 

Mycobacterium avium

.  Appl Environ Microbiol 2000;66:1702–5. 

636.

 

Schulze-Röbbecke R, Fischeder R.  Mycobacteria in biofilms.  Zbl Hyg 1989;188:385–90. 

637.

 

Schulze-Röbbecke R, Feldmann C, Fischeder R, Janning B, Exner M, Wahl G.  Dental units: an 

environmental study of sources of potentially pathogenic mycobacteria.  Tubercle Lung Dis 1995;76:318–

23. 

638.

 

Meisel JL, Perera DR, Meligro C, Rublin CE.  Overwhelming watery diarrhea associated with 

Cryptosporidium

 in an immunosuppressed patient.  Gastroenterology 1976;70:1156–60. 

639.

 

Nime FA, Page DL, Holscher MA, Yardley JH.  Acute enterocolitis in a human being infected with the 

protozoan 

Cryptosporidium

.  Gastroenterology 1976;70:592–8. 

640.

 

Goldstein ST, Juranek DD, Ravenholt O, et al.  Cryptosporidiosis: an outbreak associated with drinking 

water despite state-of-the-art treatment.  Ann Intern Med 1996;124:459–68. 

641.

 

Rose JB.  Enteric waterborne protozoa: hazard and exposure assessment.  In: Craun GF, ed. Safety of water 

disinfection: balancing chemical and microbial risks. Washington, DC: ILSI Press, 1993;115–26. 

642.

 

(157)

  Juranek DD, Addiss D, Bartlett ME, et al.  Crytosporidiosis and public health: workshop report.  J 

AWWA 1995;87:69–80. 

643.

 

DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W.  The infectivity of 

Cryptosporidium parvum

 in healthy volunteers.  N Engl J Med 1995;332:855–9. 

644.

 

Okhuysen PC, Chappell CL, Crabb JH, Sterling CR, DuPont HL.  Virulence of three distinct 

Cryptosporidium parvum

 isolates for healthy adults.  J Infect Dis 1999;180:1275–81. 

645.

 

Chappell CL, Okhuysen PC, Sterling CR, Wang C, Jakubowski W, DuPont HL.  Infectivity of 

Cryptosporidium parvum

 in healthy adults with pre-existing anti- 

C. parvum

 serum immunoglobulin G.  

Am J Trop Med 1999;60:157–64. 

background image

 

 

170 

646.

 

Meinhardt PL, Casemore DP, Miller KB.  Epidemiologic aspects of human cryptosporidiosis and the role of 

waterborne transmission.  Epidemiol Rev 1996;18:118–36. 

647.

 

Rose JB.  Occurrence and significance of 

Cryptosporidium

 in water.  JAWWA 1988;80:53–8. 

648.

 

Rose JB, Gerba CP, Jakubowski W.  Survey of potable water supplies for 

Cryptosporidium

 and 

Giardia.

  

Environ Sci Technol 1991;25:1393–400. 

649.

 

LeChevallier MW, Norton WD, Lee RG.  

Giardia

 and 

Cryptosporidium

 spp. in filtered drinking water 

supplies.  Appl Environ Microbiol 1991;57:2617–21. 

650.

 

Mackenzie WR, Hoxie NJ, Proctor ME, et al.  A massive outbreak in Milwaukee of 

Cryptosporidium 

infection transmitted through the public drinking water supply.  N Engl J Med 1994;331:161–7. 

651.

 

Atherton F, Newman CP, Casemore DP.  An outbreak of waterborne cryptosporidiosis associated with a 

public water supply in the UK.  Epidemiol Infect 1995;115:123–31. 

652.

 

Hayes EB, Matte TD, O’Brien TR, et al.  Large community outbreak of cryptosporidiosis due to 

contamination of a filtered public water supply.  N Engl J Med 1989;320:1372–5. 

653.

 

Neill MA, Rice SK, Ahmad NV, Flanigan TP.  Cryptosporidiosis: an unrecognized cause of diarrhea in 

elderly hospitalized patients.  Clin Infect Dis 1996;22:168–70. 

654.

 

Rutala WA, Weber DJ.  Water as a reservoir of nosocomial pathogens.  Infect Control Hosp Epidemiol 

1997;18:609–16. 

655.

 

Chadwick P.  The epidemiological significance of 

Pseudomonas aeruginosa

 in hospital sinks.  Can J Public 

Health 1976;67:323–8. 

656.

 

Cordes LG, Wiesenthal AM, Gorman GW, et al.  Isolation of 

Legionella pneumophila

 from hospital shower 

heads.  Ann Intern Med 1981;94:195–7. 

657.

 

Bollin GE, Plouffe JF, Para MF, Hackman B.  Aerosols containing 

Legionella pneumophila

 generated by 

shower heads and hot-water faucets.  Appl Environ Microbiol 1985;50:1128–31. 

658.

 

Weber DJ, Rutala WA, Blanchet CN, Jordan M, Gergen MF.  Faucet aerators: a source of patient 

colonization with 

Stenotrophomonas maltophilia

.  Am J Infect Control 1999;27:59–63. 

659.

 

Kappstein I, Grundmann H, Hauer T, Niemeyer C.  Aerators as a reservoir of 

Acinetobacter junii

: an 

outbreak of bacteraemia in paediatric oncology patients.  J Hosp Infect 2000;44:27–30. 

660.

 

Dennis PJL, Wright AE, Rutter DA, Death JE, Jones BPC.  

Legionella pneumophila

 in aerosols from 

shower baths.  J Hyg (Camb) 1984;93:349–53. 

661.

 

(153)

  American Society of Heating, Refrigerating, and Air-Conditioning Engineers.  ASHRAE Guideline 

12-2000: minimizing the risk of legionellosis associated with building water systems.  Atlanta, GA: 

ASHRAE, Inc., 2000;1–16. 

662.

 

Newsom SWB.  Microbiology of hospital toilets.  Lancet 1972;2:700–3. 

663.

 

Gerba CP, Wallis C, Melnick JL.  Microbiological hazards of household toilets: droplet production and the 

fate of residual organisms.  Appl Microbiol 1975;30:229–37. 

664.

 

(152)

  Hlady WG, Mullen RC, Mintz CS, Shelton BG, Hopkins RS, Daikos GL.  Outbreak of Legionnaires’ 

disease linked to a decorative fountain by molecular epidemiology.  Am J Epidemiol 1993;138:555–62. 

665.

 

Rees JC, Allen KD.  Holy water — A risk factor for hospital-acquired infection.  J Hosp Infect 1996;32:51–

5. 

666.

 

(226)

  Favero MS, Petersen NJ, Boyer KM, Carson LA, Bond WW.  Microbial contamination of renal 

dialysis systems and associated risks.  ASAIO Trans 1974;20:175–83. 

667.

 

(227)

  Favero MS, Petersen NJ, Carson LA, Bond WW, Hindman SH.  Gram-negative bacteria in 

hemodialysis systems.  Health Lab Sci 1975;12:321–34. 

668.

 

(228)

  Favero MS, Petersen NJ.  Microbiologic guidelines for hemodialysis systems.  Dialysis Transplant 

1979;6:34–6. 

669.

 

Griffiths PA, Babb JR, Bradley CR, Fraise AP.  Glutaraldehyde-resistant 

Mycobacterium chelonae

 from 

endoscope washer disinfectors.  J Appl Microbiol 1997;82:519–26. 

670.

 

Phillips G, McEwan H, Butler J.  Quality of water in washer-disinfectors.  J Hosp Infect 1995;31:152–4. 

671.

 

(259)

  Cooke RPD, Whymant-Morris A, Umasankar RS, Goddard SV.  Bacteria-free water for automatic 

washer-disinfectors: an impossible dream?   J Hosp Infect 1998;48:63–5. 

672.

 

Humphreys H, Lee JV.  Water quality for endoscopy washer-disinfectors.  J Hosp Infect 1999;42:76–8. 

673.

 

Muscarella LF.  Are all sterilization processes alike?  AORN J 1998;67:966–70, 973–6. 

674.

 

U.S. Food and Drug Administration.  MAUDE database.  Available at: 

www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.CFM 

background image

 

 

171

675.

 

Alvarado CJ, Stolz SM, Maki DG.  Nosocomial infections from contaminated endoscopes: a flawed 

automated endoscope washer — an investigation using molecular epidemiology.  Am J Med 1991;91 

(Suppl 3b):272–80. 

676.

 

Abrutyn E, Goodhart GL, Roos K, Anderson R, Buxton A.  

Acinetobacter calcoaceticus

 outbreak 

associated with peritoneal dialysis.  Am J Epidemiol 1978;107:328–35. 

677.

 

Mader JT, Reinarz JA.  Peritonitis during peritoneal dialysis — the role of the preheating water bath.  J 

Chronic Dis 1978;31:635–41. 

678.

 

Kosatsky T, Kleeman J.  Superficial and systemic illness related to a hot tub.  Am J Med 1985;79:10–2. 

679.

 

McGuckin MB, Thorpe RJ, Abrutyn E.  Hydrotherapy: An outbreak of 

Pseudomonas aeruginosa

 wound 

infections related to Hubbard tank treatments.  Arch Phys Med Rehabil 1981;62:283–5. 

680.

 

(243)

  Koepke GH, Christopher RP.  Contamination of whirlpool baths during treatment of infected 

wounds.  Arch Phys Med Rehabil 1965;46:261–3. 

681.

 

Miller JK, LaForest NT, Hedberg M, Chapman V.  Surveillance and control of Hubbard tank bacterial 

contaminants.  Phys Ther 1972;50:1482–6. 

682.

 

Nelson RM, Reed JR, Kenton DM.  Microbiological evaluation of decontamination procedures for 

hydrotherapy tanks.  Phys Ther 1972;52:919–23. 

683.

 

Page CF.  The whirlpool bath and cross-infection.  Arch Phys Med Rehabil 1954;35:97–8. 

684.

 

Newsom SWB.  Hospital infection from contaminated ice.  Lancet 1968;2:620–2. 

685.

 

Ravn P, Lundgren JD, Kjaeldgaard P, et al.  Nosocomial outbreak of cryptosporidiosis in AIDS patients.  Br 

Med J 1991;302:277–80. 

686.

 

Bangsborg JM, Uldum S, Jensen JS, Bruun BG.  Nosocomial legionellosis in three heart-lung transplant 

patients: case reports and environmental observations.  Eur J Clin Microbiol Infect Dis 1995;14:99–104. 

687.

 

(246)

  Stout JE, Yu VL, Muraca P.  Isolation of 

Legionella pneumophila

 from the cold water of hospital ice 

machines: implications for origin and transmission of the organism.  Infect Control 1985;6:141–6. 

688.

 

Cross DF, Benchimol A, Dimond EG.  The faucet aerator — a source of 

Pseudomonas 

infection.  N Engl J 

Med 1966;274:1430–1. 

689.

 

Chryseobacterium (Flavobacterium) meningosepticum

 outbreak associated with colonization of water taps 

in a neonatal intensive care unit.  J Hosp Infect 2001;47:188–92. 

690.

 

Brown DG, Baublis J.  Reservoirs of 

Pseudomonas

 in an intensive care unit for newborn infants: 

Mechanisms of control.  J Pediatr 1977;90:453–7. 

691.

 

Perryman FA, Flournoy DJ.  Prevalence of gentamicin- and amikacin-resistant bacteria in sink drains.  J 

Clin Microbiol 1980;12:79–83. 

692.

 

Doring G, Horz M, Ortelt J, Grupp H, Wolz C.  Molecular epidemiology of 

Pseudomonas aeruginosa

 in an 

intensive care unit.  Epidemiol Infect 1993;110:427–36. 

693.

 

Teres D, Schweers P, Bushnell LS, Hedley-Whyte J, Feingold DS.  Sources of 

Pseudomonas aeruginosa

 

infection in a respiratory/surgical intensive care unit.  Lancet 1973;1:415–7. 

694.

 

Barbeau J, Tanguay R, Faucher E, et al.  Multiparametric analysis of waterline contamination in dental 

units.  Appl Environ Microbiol 1996;62:3954–9. 

695.

 

Atlas RM, Williams JF, Huntington MK.  

Legionella 

contamination of dental-unit waters.  Appl Environ 

Microbiol 1995;61:1208–13. 

696.

 

Fayle SA, Pollard MA.  Decontamination of dental unit water systems: a review of current 

recommendations.  Br Dent J 1996;181:369–72. 

697.

 

Pien FD, Bruce AE.  Nosocomial 

Ewingella americana

 bacteremia in an intensive care unit.  Arch Intern 

Med 1986;146:111–2. 

698.

 

Stiles GM, Singh L, Imazaki G, Stiles QR.  Thermodilution cardiac output studies as a cause of prosthetic 

valve bacterial endocarditis.  J Thorac Cardiovasc Surg 1984;88:1035–7. 

699.

 

Tyndall RL, Lyle MM, Ironside KS.  The presence of free-living amoebae in portable and stationary eye 

wash stations.  Am Ind Hyg Assoc J 1987;48:933–4. 

700.

 

Bowman EK, Vass AA, Mackowski R, Owen BA, Tyndall RL.  Quantitation of free-living amoebae and 

bacterial populations in eyewash stations relative to flushing frequency.  Am Ind Hyg Assoc J 

1996;57:626–33. 

701.

 

Siegman-Igra Y, Shalem A, Berger SA, Livio S, Michaeli D.  Should potted plants be removed from 

hospital wards?  J Hosp Infect 1986;7:82–5. 

702.

 

(309)

  Kates SG, McGinley KJ, Larson EL, Leyden JJ.  Indigenous multiresistant bacteria from flowers in 

hospital and nonhospital environments.  Am J Infect Control 1991;19:156–61. 

background image

 

 

172 

703.

 

Zanetti F, Stampi S, De L, et al.  Water characteristics associated with the occurrence of 

Legionella 

pneumophila

 in dental units.  Eur J Oral Sci 2000;108:22–8. 

704.

 

Peel MM, Calwell JM, Christopher PJ, Harkness JL, Rouch GJ. 

Legionella pneumophila

 and water 

temperatures in Australian hospitals.  Aust NZ J Med 1985;15:38–41. 

705.

 

Groothuis DG, Veenendaal HR, Dijkstra HL.  Influence of temperature on the number of 

Legionella 

pneumophila

 in hot water systems.  J Appl Bacteriol 1985;59:529–36. 

706.

 

Plouffe JF, Webster LR, Hackman B.  Relationship between colonization of a hospital building with 

Legionella pneumophila

 and hot water temperatures.  Appl Environ Microbiol 1983;46:769–70. 

707.

 

(212)

  Alary Ma, Joly JR.  Factors contributing to the contamination of hospital water distribution systems 

by Legionellae.  J Infect Dis 1992;165:565–9. 

708.

 

U.K.Health & Safety Executive.  The control of legionellosis in hot and cold water systems.  Supplement to 

the control of Legionellosis, including Legionnaires’ disease. London: Health & Safety Executive Office, 

1998;1–4. 

709.

 

(167)

  Marrie TJ, Haldane D, Bezanson G, Peppard R.  Each water outlet is a unique ecologic niche for 

Legionella pneumophila

.  Epidemiol Infect 1992;108:261–70. 

710.

 

(154)

  Snyder MB, Siwicki M, Wireman J, et al.  Reduction of 

Legionella pneumophila

 through heat 

flushing followed by continuous supplemental chlorination of hospital hot water.  J Infect Dis 

1990;162:127–32. 

711.

 

(155)

  Ezzeddine H, Van Ossel C, Delmee M, Wauters G.  

Legionella

 spp. in a hospital hot water system: 

effect of control measures.  J Hosp Infect 1989;13:121–31. 

712.

 

Reichert M.  Automatic washers/disinfectors for flexible endoscopes.  Infect Control Hosp Epidemiol 

1991;12:497–9. 

713.

 

(45)

  Joint Commission on Accreditation of Healthcare Organizations.  Hospital accreditation standards, 

2001: environment of care. Oakbrook Terrace, IL: JCAHO Press, 2001;193–220. 

714.

 

(161)

  Best M, Yu VL, Stout J, Goetz A, Muder RR, Taylor F.  L

egionellaceae

 in the hospital water supply: 

epidemiologic link with disease and evaluation of a method for control of nosocomial Legionnaires’ disease 

and Pittsburgh pneumonia.  Lancet 1983;2:307–10. 

715.

 

CDC.  Emergency Response Planning and Coordination.  Available at:  

www.cdc.gov/nceh/emergency/emergency.htm 

716.

 

McGlown KJ, Fottler MD.  The impact of flooding on the delivery of hospital services in the southeastern 

United States.  Health Care Manage Rev 1996;21:55–71. 

717.

 

Fisher, HL.  Emergency evacuation of the Denver Veteran’s Administration Medical Center.  Milit Med 

1986;151:154–61. 

718.

 

Peters, MS.  Hospitals respond to water loss during the midwest floods of 1993: preparedness and 

improvisation.  J Emerg Med 1996;14:345–50. 

719.

 

(156)

  Joint Commission on Accreditation of Healthcare Organizations.  Comprehensive Accreditation 

manual for hospitals: the official handbook (CAH00SJ).  Oakbrook Terrace, IL: JCAHO Press, 2000. 

720.

 

Hargreaves J, Shireley L, Hansen S, et al.  Bacterial contamination associated with electronic faucets: a new 

risk for healthcare facilities.  Infect Control Hosp Epidemiol 2001;22:202–5. 

721.

 

(158)

 CDC.  National surveillance of dialysis-associated diseases in the United States, 1997.  Atlanta, GA: 

Public Health Service, U.S. Department of Health and Human Services, 1998. 

722.

 

Stout JE, Best ME, Yu VL.  Susceptibility of members of the family 

Legionellaceae

 to thermal stress: 

implications for heat eradication methods in water distribution systems.  Appl Environ Microbiol 

1986;52:396–9. 

723.

 

Bornstein N, Vieilly C, Nowiki M, Paucod JC, Fleurette J.  Epidemiological evidence of legionellosis 

transmission through domestic hot water supply systems and possibilities of control.  Isr J Med Sci 

1986;13:39–40. 

724.

 

(162)

  Meenhorst PL, Reingold AL, Groothuis DG, et al.  Water-related nosocomial pneumonia caused by 

Legionella pneumophila

 serogroups 1 and 10.  J Infect Dis 1985;152:356–64. 

725.

 

(216)

  Mandel AS, Sprauer MA, Sniadack DH, Ostroff SM.  State regulation in hospital water temperature.  

Infect Control Hosp Epidemiol 1993;14:642–5. 

726.

 

(168)

  Department of Health.  The control of 

Legionella

 in health care premises: a code of practice.  

London: HMSO, 1991. 

727.

 

(169)

  Helms CM, Massanari RM, Wenzel RP, et al.  Legionnaires’ disease associated with a hospital water 

system: a five-year progress report on continuous hyperchlorination.  JAMA 1988;259:2423–7. 

background image

 

 

173

728.

 

(170)

  Edelstein PH, Whittaker RE, Kreiling RL, Howell, CL.  Efficacy of ozone in eradication of 

Legionella pneumophila

 from hospital plumbing fixtures.  Appl Environ Microbiol 1982;44:1330–4. 

729.

 

(171)

  Muraca P, Stout JE, Yu, VL.  Comparative assessment of chlorine, heat, ozone, and UV light for 

killing 

Legionella pneumophila

 within a model plumbing system.  Appl Environ Microbiol 1987;53:447–

53. 

730.

 

(172)

  Domingue EL, Tyndall RL, Mayberry WR, Pancorbo OC.  Effects of three oxidizing biocides on 

Legionella pneumophila

 serogroup 1.  Appl Environ Microbiol 1988;54:741–7. 

731.

 

(173)

  Landeen LK, Yahya MT, Gerba CP.  Efficacy of copper and silver ions and reduced levels of free 

chlorine in inactivation of

 Legionella pneumophila

.  Appl Environ Microbiol 1989;55:3045–50. 

732.

 

(174)

  Matulonis U, Rosenfeld CS, Shadduck RK.  Prevention of 

Legionella

 infections in bone marrow 

transplant unit: multifaceted approach to decontamination of a water system.  Infect Control Hosp 

Epidemiol 1993;14:571–83. 

733.

 

(175)

  Liu Z, Stout JE, Tedesco L, et al.  Controlled evaluation of copper-silver ionization in eradicating 

Legionella pneumophila

 from a hospital water distribution system.  J Infect Dis 1994;169:919–22. 

734.

 

(176)

  Margolin AB.  Control of microorganisms in source water and drinking water.  In: Hurst CJ, 

Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV, eds. Manual of environmental microbiology. 

Washington, DC: American Society for Microbiology Press, 1997;195–202. 

735.

 

(177)

  Freije MR.  

Legionella

 control in health care facilities: a guide for minimizing risk.  HC Information 

Resources, Inc. 1996;65–75. 

736.

 

(178)

  Yu-sen E, Lin R, Vidic D, Stout JE, Yu VL.  

Legionella

 in water distribution systems.  J AWWA 

1998;90:112–21. 

737.

 

(179)

  Biurrun A, Caballero L, Pelaz C, Leon E, Gago A.  Treatment of a 

Legionella pneumophila

colonized water distribution system using copper-silver ionization and continuous chlorination.  Infect 

Control Hosp Epidemiol 1999;20:426–8. 

738.

 

(180)

  Goetz A, Yu VL.  Copper-silver ionization: cautious optimism for 

Legionella

 disinfection and 

implications for environmental culturing.  Am J Infect Control 1997;25:449–51. 

739.

 

(181)

  Stout JE, Lin YS, Goetz AM, Muder RR.  Controlling 

Legionella

 in hospital water systems: 

experience with the superheat-and-flush method and copper-silver ionization.  Infect Control Hosp 

Epidemiol 1998;19:911–4. 

740.

 

(182)

  Walker JT, Mackerness CW, Mallon D, Makin T, Williets T, Keevil CW.  Control of 

Legionella 

pneumophila

 in a hospital water system by chlorine dioxide.  J Ind Microbiol 1995;15:384–90. 

741.

 

(183)

  Hambidge A.  Reviewing efficacy of alternative water treatment techniques.  Health Estate 

2001;55:23–5. 

742.

 

(184)

  Rohr U, Senger M, Selenka F, Turley R, Wilhelm M.  Four years of experience with silver-copper 

ionization for control of 

Legionella

 in a German university hospital hot water plumbing system.  Clin Infect 

Dis 1999;29:1507–11. 

743.

 

(185)

  Cunliffe DA.  Inactivation of 

Legionella pneumophila

 by monochloramine.  J Appl Bacteriol 

1990;68:453–9. 

744.

 

(186)

  Kirmeyer GJ, Foust GW, Pierson GL, Simmler JJ, LeChevalier MW.  Optimizing chloramine 

treatment.  Denver, CO: American Water Works Research Foundation, 1993. 

745.

 

(187)

  Kool JL, Carpenter JC, Fields BS.  Effect of monochloramine disinfection of municipal drinking 

water on risk of nosocomial Legionnaires’ disease.  Lancet 1999;353:272–7. 

746.

 

(188)

  Kool JL, Bergmire-Sweat D, Butler JC, et al.  Hospital characteristics associated with colonization of 

water systems by 

Legionella

 and risk of nosocomial Legionnaires’ disease: a cohort study of 15 hospitals.  

Infect Control Hosp Epidemiol 1999;20:798–805. 

747.

 

(213)

  Yu VL, Beam TR Jr, Lumish RM, et al.  Routine culturing for 

Legionella

 in the hospital environment 

may be a good idea: a three-hospital prospective study.  Am J Med Sci 1987;294:97–9. 

748.

 

Allegheny County Health Department.  Approaches to prevention and control of 

Legionella

 infection in 

Allegheny County health care facilities.  Pittsburgh, PA: Allegheny County Health Department, 1997;1–13. 

749.

 

Goetz AM, Stout JE, Jacobs SL, et al.  Nosocomial Legionnaires’ disease discovered in community 

hospitals following cultures of the water system: seek and ye shall find.  Am J Infect Control 1998;26:8–11. 

750.

 

Maryland Department of Health and Mental Hygiene.  Report of the Maryland Scientific Working Group to 

study 

Legionella

 in the water systems in healthcare institutions.  Available at:  

www.dhmh.state.md.us/html/legionella.htm 

751.

 

Yu VL.  Nosocomial legionellosis: Current epidemiologic issues.  In: Remington JS, Swartz MN, eds. 

Current clinical topics in infectious diseases..  New York, NY: McGraw-Hill, 1986;239–53. 

background image

 

 

174 

752.

 

Vickers RM, Yu VL, Hanna SS.  Determinants of 

Legionella pneumophila

 contamination of water 

distribution systems: 15-hospital prospective study.  Infect Control 1987;8:357–63. 

753.

 

(214)

  Tobin JO, Swann RA, Bartlett CLR.  Isolation of 

Legionella pneumophila

 from water systems: 

methods and preliminary results.  Br Med J 1981;282:515–7. 

754.

 

Marrie TJ, Bezanson G, Fox J, Kuehn R, Haldane D, Birbridge S.  Dynamics of 

Legionella pneumophila

 in 

the potable water of one floor of a hospital. In: Barbaree JM, Breiman RF, Dufour AP, eds. 

Legionella

current status and emerging perspectives.  Washington, DC: American Society for Microbiology Press, 

1993;238–40. 

755.

 

Plouffe JF, Para MF, Maher WE, Hackman B, Webster L. Subtypes of 

Legionella pneumophila

 serogroup 1 

associated with different attack rates.  Lancet 1983;2:649–50. 

756.

 

Fraser DW.  Sources of legionellosis.  In: Thornsberry C, Balows A, Feeley JC, Jakubowski W, eds.  

Legionella

: Proceedings of the 2nd International Symposium.  Washington, DC: American Society for 

Microbiology Press,1994:277–80. 

757.

 

Dourmon E, Bibb WF, Rajagopalan P, Desplaces N, McKinney RM.  Monoclonal antibody reactivity as a 

virulence marker for

 Legionella pneumophila

 serogroup 1 strain. J Infect Dis 1992;165:569–73. 

758.

 

Brundrett GW.  Guides on avoiding Legionnaires’disease.  In: 

Legionella

 and building services.  Oxford, 

UK: Butterworth Heineman, 1992;346–73. 

759.

 

(191)

  Kugler JW, Armitage JO, Helms CM, et al.  Nosocomial Legionnaires’ disease: occurrence in 

recipients of bone marrow transplants.  Am J Med 1983;74:281–8. 

760.

 

Lepine LA, Jernigan DB, Butler JC, et al.  A recurrent outbreak of nosocomial Legionnaires’ disease 

detected by urinary antigen testing: evidence for long-term colonization of a hospital plumbing system.  

Infect Control Hosp Epidemiol 1998;19:905–10. 

761.

 

Barbaree JM.  Selecting a subtyping technique for use in investigations of legionellosis epidemics.  In: 

Barbaree JM, Breiman RF, Dufour AP, eds. 

Legionella

: current status and emerging perspectives. 

Washington, DC: American Society for Microbiology Press, 1993;169–72. 

762.

 

Joly JR, McKinney RM, Tobin JO, Bibb WF, Watkins ID, Ramsay D. Development of a standardized 

subgrouping scheme for 

Legionella pneumophila

 serogroup 1 using monoclonal antibodies.  J Clin 

Microbiol 1986;23:768–71. 

763.

 

(209)

  Schoonmaker D, Helmberger T, Birkhead G. Comparison of ribotyping and restriction enzyme 

analysis using pulsed-field gel electrophoresis for distinguishing 

Legionella pneumophila

 isolates obtained 

during a nosocomial outbreak.  J Clin Microbiol 1992;30:1491–8. 

764.

 

(163)

  Johnston JM, Latham RH, Meier FA, et al.  Nosocomial outbreak of Legionnaires’ disease: 

molecular epidemiology and disease control measures.  Infect Control 1987;853–8. 

765.

 

Best MG, Goetz A, Yu VL.  Heat eradication measures for control of nosocomial Legionnaires’ disease: 

Implementation, education, and cost analysis.  Infect Control 1984;12:26–30. 

766.

 

(164)

  Muraca PW, Yu VL, Goetz A.  Disinfection of water distribution systems for 

Legionella

: a review of 

application procedures and methodologies.  Infect Control Hosp Epidemiol 1990;11:79–88. 

767.

 

(210)

  Knirsch CA, Jakob K, Schoonmaker D, et al.  An outbreak of 

Legionella micdadei

 pneumonia in 

transplant patients: evalutaion, molecular epidemiology, and control.  Am J Med 2000;108:290–5. 

768.

 

(211)

  CDC.  Sustained transmission of nosocomial Legionnaires’ Disease — Arizona and Ohio.  MMWR 

1997;46:416–21. 

769.

 

218)

  Patterson WJ, Hay J, Seal DV, McLuckie JC.  Colonization of transplant unit water supplies with 

Legionella

 and protozoa: precautions required to reduce the risk of legionellosis.  J Hosp Infect 1997;37:7–

17. 

770.

 

U.S. Department of Labor, Occupational Safety and Health Administration.  OSHA technical manual, 

Section III, Chapter 7. Legionellosis. Available at:  www.osha-slc.gov/dts/osta/otm/otm_iii/otm_iii_7.html 

771.

 

Rudnick JR, Beck-Sague CM, Anderson RL, Schable B, Miller JM, Jarvis WR.  Gram-negative bacteremia 

in open-heart surgery patients traced to probable tap-water contamination of pressure-monitoring 

equipment.  Infect Control Hosp Epidemiol 1996;17:281–5. 

772.

 

Miller RP.  Cooling towers and evaporative condensers.  Ann Intern Med 1979;90:667–70. 

773.

 

Butler JC, Breiman RF.  Legionellosis. In: Evans AS, Brachman PS, eds. Bacterial infections of humans, 3

rd

 

ed. New York, NY: Plenum Medical, 1998;355–76. 

774.

 

Witherell LE, Novick LF, Stone KM, et al. 

 Legionella

 in cooling towers.  J Environ Health 1986;49:134–9. 

775.

 

Cordes LG, Fraser DW, Skaliy P, et al.  Legionnaires’ disease outbreak at an Atlanta, Georgia country club: 

evidence for spread from an evaporative condenser.  Am J Epidemiol 1980;111:425–31. 

background image

 

 

175

776.

 

Kaufmann AF, McDade JE, Patton CM, et al.  Pontiac fever: isolation of the etiologic agent (

Legionella 

pneumophila

) and demonstration of its mode of transmission.  Am J Epidemiol 1981;114:337–47. 

777.

 

Morton S, Bartlett CLR, Bibby LF, Hutchinson DM, Dyer JV, Dennis PJ.  Outbreak of Legionnaires’ 

disease from a cooling water system in a power station.  Br J Indust Med 1986;43:630–5. 

778.

 

Friedman S, Spitalny K, Barbaree J, Faur Y, McKinney R.  Pontiac fever outbreak associated with a cooling 

tower.  Am J Public Health 1987;77:568–72. 

779.

 

Addiss DG, Davis JP, LaVenture M, Wand PJ, Hutchinson MA, McKinney RM.  Community-acquired 

Legionnaires’disease associated with a cooling tower: evidence for longer-distance transport of 

Legionella 

pneumophila

.  Am J Epidemiol 1989;130:557–68. 

780.

 

Keller DW, Hajjeh R, DeMaria A Jr, et al.  Community outbreak of Legionnaires’ disease: an investigation 

confirming the potential for cooling towers to transmit 

Legionella

 species.  Clin Inf Dis 1996;22:257–61. 

781.

 

Pastoris MC, Ciceroni L, Lo Monaco R, et al.  Molecular epidemiology of an outbreak of Legionnaires’ 

disease associated with a cooling tower in Genova-Sestri Ponente, Italy.  Eur J Clin Microbiol Infect Dis 

1997;16:883–92. 

782.

 

Brown CM, Nuorti PJ, Breiman RF, et al.  A community outbreak of Legionnaires’ disease linked to 

hospital cooling towers: an epidemiological method to calculate dose of exposure.  Inter J Epidemiol 

1999;28:353–9. 

783.

 

Broadbent CR.  

Legionella

 in cooling towers: Practical research, design, treatment, and control guidelines.  

In: Barbaree JM, Breiman RF, Dufour AP, eds.  

Legionella

: current status and emerging perspectives. 

Washington, DC: American Society for Microbiology Press,1993;217–22. 

784.

 

(222)

  Bhopal RS, Barr G.  Maintenance of cooling towers following two outbreaks of Legionnaires’ 

disease in a city.  Epidemiol Infect 1990;104:29–38. 

785.

 

CDC.  Suggested health and safety guidelines for public spas and hot tubs.  Atlanta, GA: Centers for 

Disease Control, 1985. Publication No. 99–960. 

786.

 

(221)

  World Health Organization.  Environmental aspects of the control of Legionellosis, 14

th

 ed. 

Copenhagen, Denmark: World Health Organization,1986. Schriftenr Ver Wasser Boden Lufthyg 

1993;91:249–52.  (German) 

787.

 

(223)

  World Health Organization.  Epidemiology, prevention, and control of legionellosis: memorandum 

from a WHO meeting.  Bull WHO 1990;68:155–64. 

788.

 

Association for the Advancement of Medical Instrumentation.  American National Standard Hemodialysis 

Systems ANSI/AAMI RD5-1981, Association for the Advancement of Medical Instrumentation. Arlington, 

VA: AAMI, 1982. 

789.

 

(229)

  Association for the Advancement of Medical Instrumentation.  American National Standard 

Hemodialysis Systems ANSI/AAMI RD5-1992, Association for the Advancement of Medical 

Instrumentation. Arlington, VA: AAMI, 1993. 

790.

 

Association for the Advancement of Medical Instrumentation.  Reuse of hemodialyzers ROH-1986, 

Association for the Advancement of Medical Instrumentation. Arlington, VA: AAMI, 1986. 

791.

 

(230)

  Association for the Advancement of Medical Instrumentation.  American National Standard Reuse of 

hemodialyzers ANSI/AAMI RD47-1993, Association for the Advancement of Medical Instrumentation. 

Arlington, VA: AAMI, 1993. 

792.

 

(236)

  Association for the Advancement of Medical Instrumentation.  Water treatment equipment for 

hemodialysis applications.  ANSI/AAMI RD62-2001, Association for the Advancement of Medical 

Instrumentation. Arlington, VA: AAMI, 2001. 

793.

 

Tokars JI, Miller ER, Alter MJ, Arduino MJ. National surveillance of dialysis associated diseases in the 

United States, 1997.  Semin Dialysis 2000;13:75–85. 

794.

 

Hindman SH, Carson LA, Petersen NJ, et. al.  Pyrogenic reactions during hemodialysis caused by 

extramural endotoxin.  Lancet 1975;2:732–4. 

795.

 

Stamm JE, Engelhard WE, Parson JE.  Microbiological study of water softener resins.  Appl Microbiol 

1969;18:376–86. 

796.

 

Alter MJ, Favero MS, Miller JK, Coleman BJ, Bland LA.  National surveillance of dialysis-associated 

diseases in the United States, 1988. ASAIO Trans 1990;36:107–18. 

797.

 

Tokars JI, Alter MJ, Favero MS, Moyer LA, Bland LA. National surveillance of dialysis-associated 

diseases in the United States, 1990. ASAIO J 1993;39:71–80. 

798.

 

Tokars JI, Alter MJ, Favero MS, Moyer LA, Bland LA. National surveillance of dialysis-associated 

diseases in the United States, 1991. ASAIO J 1993;39:966–75. 

background image

 

 

176 

799.

 

Tokars JI, Alter MJ, Favero MS, Moyer LA, Bland LA.  National surveillance of dialysis-associated 

diseases in the United States, 1993.  ASAIO J 1996;42:219–29. 

800.

 

(231)

  Petersen NJ, Boyer KM, Carson LA, Favero MS.  Pyrogenic reactions from inadequate disinfection 

of a dialysis unit distribution system.  Dialysis Transpl 1978;7:52–7. 

801.

 

Gazenfeldt-Gazit E, Elaihou HE.   Endotoxin antibodies in patients on maintenance hemodialysis.  Israel J 

Med Sci 1969;5:1032–6. 

802.

 

Laude-Sharp M, Canoff M, Simard L, Pusineri C, Kazatchkine M, Haeffner-Cavaillon N.  Induction of IL-1 

during hemodialysis: transmembrane passage of intact endotoxin (LPS).  Kidney Int 1990;38:1089–94. 

803.

 

Arduino MJ, Bland LA, McAllister SK, Favero MS.  The effects of endotoxin contaminated dialysate and 

polysulfone or cellulosic membranes on the release of TNF

α

 during simulated dialysis.  Artif Organs 

1995;19:880–6. 

804.

 

Greisman SE, Hornick RB.  Comparative pyrogenic reactivity of rabbit and man to bacterial endotoxin.  

Proc Soc Exp Biol Med 1969;131:1154–8. 

805.

 

Weary ME, Donohue G, Pearson FC, Story K.  Relative potencies of four reference endotoxin standards as 

measured by the 

Limulus

 amoebocyte lysate and USP rabbit pyrogen tests. Appl Environ Microbiol 

1980;40:1148–51. 

806.

 

(239)

  Bland LA, Ridgeway MR, Aguero SM, Carson LA, Favero MS.   Potential bacteriologic and 

endotoxin hazards associated with liquid bicarbonate concentrate.  ASAIO Trans 1987;33:542–5. 

807.

 

(232)

  Dawids SG, Vejlsgaard R. Bacteriological and clinical evaluation of different dialysate delivery 

systems.  Acta Med Scand 1976;199:151–5. 

808.

 

Favero MS, Alter MJ, Tokars JI, Arduino MJ.  Dialysis-associated infections and their control. In:  Bennett 

JV, Brachman PS, eds. Hospital infections 4

th

 ed. Philadelphia, PA: Lippincott-Raven, 1998;357–80. 

809.

 

233)

  Kidd EE. Bacterial contamination of dialyzing fluid of artificial kidney.  Br Med J 1964;1:880–2. 

810.

 

Jones DM, Tobin BM, Harlow GR, et al.  Bacteriological studies of the modified kiil dialyzer.  Br Med J 

1970;3:135–7. 

811.

 

(240)

  Raij L, Shapiro FL, Michael AF. Endotoxemia in febrile reactions during hemodialysis.  Kidney Int 

1973;4:57–60. 

812.

 

Vanholder R, Van Haecke E, Veys N, et al.  Endotoxin transfer through dialysis membranes: small versus 

large-pore membranes.  Nephrol Dial Transplant 1992;7:333–9. 

813.

 

Evans RC, Holmes CJ. In vitro study of the transfer of cytokine-inducing substances across selected high-

flux hemodialysis membranes.  Blood Purif 1991;9:92–101. 

814.

 

Lonnemann G, Behme TC, Lenzer B, et al.  Permeability of dialyzer membranes to TNF

α

-inducing 

substances derived from water bacteria.  Kidney Int 1992;42:61–8. 

815.

 

Ure

Z

a P, Herbelin A, Zingraff J, et al.  Permeability of cellulosic and non-cellulosic membranes to 

endotoxin subunits and cytokine production during in-vitro hemodialysis.  Nephrol Dial Transplant. 

1992;7:16–28. 

816.

 

(241)

  Bommer J, Becker KP, Urbaschek R.  Potential transfer of endotoxin across high-flux polysulfone 

membranes. J Am Soc Nephrol 1996;7:883–8. 

817.

 

Yamagami S, Adachi T, Sugimura, T, et al.  Detection of endotoxin antibody in long-term dialysis patients.  

Int J Artif Organs 1990;13:205–10. 

818.

 

Arduino MJ.  CDC investigations of noninfectious outbreaks of adverse events in hemodialysis facilities, 

1979–1999.  Semin Dialysis 2000;13:86–91. 

819.

 

Roth V, Jarvis WR.  Outbreaks of infection and/or pyrogenic reactions in dialysis patients.  Semin Dialysis 

2000;13:92–100. 

820.

 

Gordon SM, Tipple MME, Bland LA, Jarvis WR.  Pyrogenic reactions associated with reuse of disposable 

hollow-fiber hemodialyzers.  JAMA 1988;260:2077–81. 

821.

 

Alter MJ, Tokars JI, Arduino MJ.  Nosocomial infections in hemodialysis units — strategies for control.  In: 

Owen WF, Periera BJG, Sayegh MH, eds.  Dialysis and transplantation: a companion to Brenner and 

Rector’s “The Kidney.” Orlando, FL: WB Saunders Company, 1999;337–57. 

822.

 

Bernick JJ, Port FK, Favero MS, Brown DG.  Bacterial and endotoxin permeability of hemodialysis 

membranes.  Kidney Int 1979;16:491–6. 

823.

 

Bommer J, Becker KP, Urbaschek R, Ritz E, Urbaschek B.  No evidence for endotoxin transfer across high 

flux polysulfone membranes.  Clin Nephrol 1987;27:278–82. 

824.

 

Schindler R, Lonnemann G, Schaeffer J, et al.  The effect of ultrafiltered dialysate on the cellular content of 

interleukin-1 receptor antagonist in patients on chronic hemodialysis.  Nephron 1994;68:229–33. 

background image

 

 

177

825.

 

Akrum RAE, Frolich M, Gerritsen AF, et al.  Improvement of chronic inflammatory state in hemodialysis 

patients by the use of ultrapure water for dialysate.  J Am Soc Nephrol 1997;8:226A. 

826.

 

Quellhorst E.  Methods of Hemodialysis.  Nieren U Hochdruck 1998;27:35–41. 

827.

 

Baz M, Durand C, Ragon A, et al.  Using ultrapure water in hemodialysis delays carpal tunnel syndrome.  

Int J Artif Organs 1991;14:681–5. 

828.

 

Schwalbe S, Holzhauer M, Schaeffer J, et al.  

β

2-Microglobulin associated amyloidosis: a vanishing 

complication of long-term hemodialysis?  Kidney Int 1997;52:1077–83. 

829.

 

(242)

  Arduino MJ, Favero MS.  Microbiologic aspects of hemodialysis: water quality for hemodialysis.  

AAMI Monograph WQD-1998. Arlington, VA: Association for the Advancement of Medical 

Instrumentation, 1998. 

830.

 

Leypoldt JK, Schmidt B, Gurland, HJ.  Measurement of backfiltration rates during hemodialysis with 

highly permeable membranes.  Blood Purif 1991;9:74–84. 

831.

 

Carson LA, Bland LA, Cusick LB, Collin S, Favero MS, Bolan G.  Factors affecting endotoxin levels in 

fluids associated with hemodialysis procedures. In: Novitsky TJ, Watson SW, eds. Detection of bacterial 

endotoxins with the Limulus Amoebocyte Lysate Test. New York, NY: Alan R. Liss, 1987;223–4. 

832.

 

Anderson RL, Holland BW, Carr JK, Bond WW, Favero MS.  Effect of disinfectants on pseudomonads 

colonized on the interior surface of PVC pipes.  Am J Public Health 1990;80:17–21. 

833.

 

Bland LA, Favero MS.  Microbial contamination control strategies for hemodialysis.  JCAHO Plant Tech 

Manage Series 1989;3:30–6. 

834.

 

(237)

  Bland LA.  Microbiological and endotoxin assays of hemodialysis fluids.  Adv Renal Replacement 

Ther 1995;2:70–9. 

835.

 

(238)

  Arduino MJ, Bland LA, Aguero SM, Carson LA, Ridgeway M, Favero MS.  Comparison of 

microbiologic assay methods for hemodialysis fluids.  J Clin Microbiol 1991;29:592–4. 

836.

 

Association for the Advancement of Medical Instrumentation.  American national standard water treatment 

equipment for hemodialysis applications.  ANSI/AAMI RD62-1999.  Arlington, VA: Association for the 

Advancement of Medical Instrumentation, 1999. 

837.

 

Arduino MJ.  How should dialyzers be reprocessed?  Semin Dialysis 1998;11:282–4. 

838.

 

Jochimsen EM, Frenette C, Delorme M, et al.  A cluster of bloodstream infections and pyrogenic reactions 

among hemodialysis patients traced to dialysis machine waste-handling option units.  Am J Nephrol 

1998;18:485–9. 

839.

 

Wang SA, Levine RB, Carson LA, et al.  An outbreak of gram-negative bacteremia in hemodialysis patients 

traced to hemodialysis machine waste drain ports.  Infect Control Hosp Epidemiol 1999;20:746–51. 

840.

 

National Institutes of Health.  U.S. Renal Diseases Survey: 1999 Annual Data Report.  Bethesda, MD: 

National Institute of Diabetes, Digestive and Kidney Diseases, Division of Kidney, Urologic, and 

Hematologic Diseases, 1999. 

841.

 

Monsen T, Olofson C, Ronnmark M, Wistrom J.  Clonal spread of staphylococci among patients with 

peritonitis associated with continuous ambulatory peritoneal dialysis.  ASAIO J 2000;57:613–8. 

842.

 

Band JD, Ward JI, Fraser DW, et al.  Peritonitis due to a 

Mycobacterium chelonae

-like organism associates 

with intermittent chronic peritoneal dialysis.  J Infect Dis 1982;145:9–17. 

843.

 

Monsen T, Crabtree JH, Siddiqui RA, et al.  Dialysis catheter infection related peritonitis: incidence and 

time dependent risk.  ASAIO J 1999;45:574–80. 

844.

 

Vera G, Lew SQ.  

Mycobacterium fortuitum

 peritonitis in two patients receiving continuous ambulatory 

peritoneal dialysis.  Am J Nephrol 1999;19:586–9. 

845.

 

Soriano F, Rodriguez-Tudela JL, Gomez-Garces JL, Velo M.  Two possibly related cases of 

Mycobacterium 

fortuitum

 peritonitis in continuous ambulatory peritoneal dialysis.  Eur J Clin Microbiol 1989;8:895–7. 

846.

 

Szeto CC, Li PK, Leung CB, Yu AW, Lui SF, Lai NK.  

Xanthomonas maltophila

 peritonitis in uremic 

patients receiving ambulatory peritoneal dialysis.  Am J Kidney Dis 1997;29:991–5. 

847.

 

Panlilio AL, Beck-Sague CM, Siegel JD, et al.  Infections and pseudoinfections due to povidone-iodine 

solution contaminated with 

Pseudomonas cepacia

.  Clin Infect Dis 1992;14:1078–83. 

848.

 

Riebel W, Frantz N, Adelstein D, Spanguolo PJ.  

Corynebacterium

 JK: a cause of nosocomial device-

related infection.  Rev Infect Dis 1986;8:42–9. 

849.

 

Radix AE, Bieluch VM, Graeber CW.  Peritonitis caused by 

Monilia sitophila

 in a patient undergoing 

peritoneal dialysis.  Int J Artif Organs 1996;19:218–20. 

850.

 

Banerjee S, Marwaha RK, Bajwa RP.  Fungal peritonitis complicating peritoneal dialysis.  Indian Pediatr 

1995;32:693–7. 

background image

 

 

178 

851.

 

Bergeson E, Denis R, Cartier P.  Peritoneal dialysis: peritonitis and catheter infections.  Annales de 

Chirugie 1996;50:606–12. (French) 

852.

 

Troidle L, Kliger AS, Goldie SJ, et al.  Continuous peritoneal dialysis-associated peritonitis of nosocomial 

origin.  Perit Dialysis International 1996;16:505–10. 

853.

 

Smith CA.  Reduced incidence of peritonitis by utilizing “flush before fill” in APD.  Adv Perit Dialysis 

1997;13:224–6. 

854.

 

Valeri A, Radhakrishnan J, Vernocchi L, Carmichael LD, Stern L.  The epidemiology of peritonitis in acute 

peritoneal dialysis: a comparison between open- and closed drainage systems.  Am J Kidney Dis 

1993;21:300–9. 

855.

 

Stamm WE, Colelle JJ, Anderson RL, Dixon RE.  Indwelling arterial catheters as a source of nosocomial 

bacteremia: an outbreak caused by 

Flavobacterium

 species.  N Engl J Med 1975;292:1099-102. 

856.

 

Schimpff SC.  Gram negative bacteremia.  Support Care Cancer 1993;1:5–18. 

857.

 

Graman PS, Quinlan GA, Rank JA.  Nosocomial legionellosis traced to contaminated ice.  Infect Control 

Hosp Epidemiol 1997;18:637–40. 

858.

 

Gahrn-Hansen B, Uldum SA, Schmidt J, Nielsen B, Birkeland SA, Jorgensen KA.  [Nosocomial 

Legionella

 

pneumophila 

infection in a nephrology department].  Ugeskrift for Laeger 1995;157:590-4. (German) 

859.

 

Wilson IG, Hogg GM, Barr JG.  Microbiological quality of ice in hospital and community.  J Hosp Infect 

1997;36:171–80. 

860.

 

Spencer RC.  The emergence of epidemic, multiple-antibiotic-resistant 

Stenotrophomonas

 (

Xanthomonas

maltophilia 

and 

Burkholderia

 (

Pseudomonas

)

 cepacia.

  J Hosp Infect 1995;30(suppl):453–64. 

861.

 

(248)

  Cannon RO, Poliner JR, Hirschhorn RB, et al.  A multistate outbreak of Norwalk virus gastroenteritis 

associated with consumption of commercial ice.   J Infect Dis 1991;164:860-3. 

862.

 

(249)

  Khan AS, Moe CL, Glass RI, et al.  Norwalk virus-associated gastroenteritis traced to ice 

consumption aboard a cruise ship in Hawaii: comparison and application of molecular method-based assays.  

J Clin Microbiol 1994;32:318-22. 

863.

 

(244)

  CDC. Outbreak of viral gastroenteritis — Pennsylvania and Delaware.  MMWR 1987;36:709-11. 

864.

 

Quick R, Paugh K, Addiss D, Kobayashi J, Baron R.  Restaurant-associated outbreak of giardiasis.  J Infect 

Dis 1992;166:673-6. 

865.

 

Hedberg CW, White KE, Johnson JA, et al.  An outbreak of 

Salmonella enteritidis

 infection at a fast food 

restaurant: implications for foodhandler-associated transmission.  J Infect Dis 1991;164:1135–40. 

866.

 

Burnett IA, Weeks GR, Harris DM.  A hospital study of ice-making machines: their bacteriology, design, 

usage, and upkeep.  J Hosp Infect 1994;28:305–13. 

867.

 

Petersen NJ. Don’t culture the ice machines. Hosp Infect Control 1982;9:8–9. 

868.

 

CDC.  Sanitary care and maintenance of ice chests and ice machines.  Atlanta, GA: CDC, 1979.  

Publication No. 00-2384. 

869.

 

(247)

  Manangan LP, Anderson RL, Arduino MJ, Bond WW.  Sanitary care and maintenance of ice-storage 

chests and ice-making machines in healthcare facilities.  Am J Infect Control 1998;26:111–2. 

870.

 

Anonymous.  Ice as a source of infection.  CDR Weekly 1993;3:241. 

871.

 

Cardaney CR, Rodeheaver GT, Horowitz, JH, Kenney JG, Edlich RF.  Influence of hydrotherapy and 

antiseptic agents on burn wound bacteria contamination.  J Burn Care Rehab 1985;6:230–2. 

872.

 

Gruber RP, Laub DR, Vistnes LM.  The effect of hydrotherapy on the clinical course and pH of 

experimental cutaneous chemical burns.  Plastic Reconstruct Surg 1975;55:200–4. 

873.

 

Mansell RE, Borchardt KA.  Disinfecting hydrotherapy equipment.  Arch Phys Med Rehabil 1974;55:318–

20. 

874.

 

Hall J, Skevington SM, Maddison PH, Chapman K.  A randomized and controlled trial of hydrotherapy in 

rheumatoid arthritis.  Arthritis Care Res 1996;9:206–15. 

875.

 

Gross A, Cutright DE, Bhaskar SN.  Effectiveness of pulsating water jet lavage in treatment of 

contaminated crush injuries.  Am J Surgery 1972;124:373–7. 

876.

 

Rodeheaver GT, Paltry D, Thacker JG, Edgerton MT, Edlich RF.  Wound cleansing by high pressure 

irrigation.  Surg Gynecol Obstetr 1975;141:357–62. 

877.

 

Saxe A, Goldestein E, Dixon S, Ostrup R.  Pulsatile lavage in the management of postoperative wound 

infections.  Am Surgeon 1980;46:391–7. 

878.

 

Weller K.  In search of efficacy and efficiency: an alternative to conventional wound cleansing modalities.  

Ostomy/Wound Manage 1991;37:23–8. 

879.

 

Solomon SL.  Host factors in whirlpool-associated 

Pseudomonas aeruginosa

 skin disease. Infect Control 

1985;6:402–6. 

background image

 

 

179

880.

 

Hicks CB, Chulay JD.  Bacteremic 

Citrobacter freundii

 cellulitis associated with tub immersion in a patient 

with the nephrotic syndrome.  Mil Med 1988;153:400–1. 

881.

 

Mayhall CG, Lamb VA, Gayle WE, Haynes BW.  

Enterobacter cloacae

 septicemia in a burn center: 

epidemiology and control of an outbreak.  J Infect Dis 1979;139:166–71. 

882.

 

Marrie TJ, Gass RSR, Yates L.  

Legionella

 

pneumophila

 in a physiotherapy pool.  Eur J Clin Microbiol 

1987;6:212–3. 

883.

 

Havelaar AH, Berwald LG, Groothuis DG, Baas JG.  Mycobacteria in semi-public swimming pools and 

whirlpools.  Ztb Bakteriol Mikrobiol Hyg [B] 1985;180:505–14. 

884.

 

Favero MS.  Whirlpool spa-associated infections: are we really in hot water?  Am J Public Health 

1984;74:653–5. 

885.

 

Ratnam S, Hogan K, March SB, Butler RW.  Whirlpool-associated folliculitis caused by 

Pseudomonas 

aeruginosa

: report of an outbreak and review.  J Clin Microbiol 1986;23:655–9. 

886.

 

Stone HH, Kolb LD.  The evolution and spread of gentamicin-resistant 

Pseudomonas

.  J Trauma 

1971;11:586–9. 

887.

 

Richard P, LeFlock R, Chamoux C, Pannier M, Espaze E, Richet H.  

Pseudomonas aeruginosa

 outbreak in 

a burn unit: role of antimicrobials in the emergence of multiply resistant strains.  J Infect Dis 1994;170:377–

83. 

888.

 

Berrouane YF, McNutt L-A, Buschelman BJ, et al.  Outbreak of severe 

Pseudomonas aeruginosa

 infections 

caused by a contaminated drain in a whirlpool bathtub.  Clin Infect Dis 2000;31:1331–7. 

889.

 

(250)

  Schmidt OW, Cooney MK, Foy HM.  Adeno-associated virus in adenovirus type 3 conjunctivitis.  

Infect Immun 1975;11:1362–70. 

890.

 

DeJonckheere JF.  Hospital hydrotherapy pools treated with ultraviolet light: bad bacteriological quality and 

presence of thermophilic 

Naegleria

.  J Hyg (Lond) 1982;88:205–14. 

891.

 

American Physical Therapy Association.  Hydrotherapy/therapeutic pool infection control guidelines. 

Alexandria, VA: APTA, 1995;112. 

892.

 

CDC.  Disinfection of hydrotherapy pools and tanks.  Atlanta, GA: Centers for Disease Control, Public 

Health Service, U.S. Department of Health and Human Services, 1974. Publication No. HHS 00-2383. 

893.

 

Price D, Ahearn DG.  Incidence and persistence of 

Pseudomonas aeruginosa

 in whirlpools.  J Clin 

Microbiol 1988;26:1650–4. 

894.

 

(252)

 White CG.  Chemistry of chlorination.  In: Handbook of chlorination and alternative disinfectants, 3

rd

 

ed.  New York, NY: Van Nostrand Reinhold, 1992;184–249. 

895.

 

Mayhall CG.  Burn patients.  In: Pfeiffer J, ed. APIC Text of infection control and epidemiology. 

Washington, DC: Association for Professionals in Infection Control and Epidemiology, Inc (APIC), 

2000;32.1–32.8. 

896.

 

Smith RF, Blasi D, Dayton SL, Chipps DD.  Effects of sodium hypochlorite on the microbial flora of burns 

and normal skin.  J Trauma 1974;14:938–44. 

897.

 

Cardany CR, Rodeheaver GT, Horowitz JH, Kenney JG, Edlich RF.  Influence of hydrotherapy and 

antiseptic agents on burn wound bacterial contamination.  J Burn Care Rehabil 1985;6:230–2. 

898.

 

Steve L, Goodhart P, Alexander J.  Hydrotherapy burn treatment: use of chloramine-T against resistant 

microorganisms.  Arch Phys Med Rehabil 1979;60:301–3. 

899.

 

Golland A.  Basic hydrotherapy.  Physiotherapy 1981;67:258–62. 

900.

 

Edlich RF, Becker DG, Phung D, McClelland WA, Day SG.  Water treatment of hydrotherapy exercise 

pools.  J Burn Care Rehabil 1988;9:9510–5. 

901.

 

Penny PT.  Hydrotherapy pools of the future — the avoidance of health problems.  J Hosp Infect 

1991;18:535–42. 

902.

 

CDC.  Swimming pools: safety and disease control through proper design and operation. Atlanta, GA: U.S. 

Department of Health and Human Services, 1976. Publication No. HHS No. 88–8319. 

903.

 

Linneman CC Jr.  Nosocomial infections associated with physical therapy, including hydrotherapy. In: 

Mayhall CG, ed. Hospital epidemiology and infection control, 2

nd

 ed. Philadelphia, PA: Lippincott Williams 

& Wilkins, 1999;931–6. 

904.

 

Aspinall ST, Graham R.  Two sources of contamination of a hydrotherapy pool by environmental 

organisms.  J Hosp Infect 1989;14:285–92. 

905.

 

(251)

  McCandlish R, Renfrew M.  Immersion in water during labor and birth: the need for evaluation.  

Birth 1993;20:79–85. 

906.

 

Hawkins S.  Water vs conventional births: Infection rates compared.  Nursing Times 1995;91:38–40. 

background image

 

 

180 

907.

 

Vochem M, Vogt M, Doring G.  Sepsis in a newborn due to 

Pseudomonas aeruginosa

 from a contaminated 

tub bath.  N Engl J Med 2001;345:378–9. 

908.

 

Eriksson M, Ladfors L, Mattsson LA, Fall O.  Warm tub bath during labor: a study of 1385 women with 

prelabor rupture of the membranes after 34 weeks of gestation.  Acta Obstet Gynaecol Scand 1996;75:642–

4. 

909.

 

Rush J, Burlock S, Lambert K, Loosley-Millman M, Hutchinson B, Enkin M.  The effects of whirlpool 

baths in labor: a randomized, controlled trial.  Birth 1996;23:136–3. 

910.

 

Davis BJ.  Whirlpool operation and the prevention of infection.  Infect Control 1985;6:394–7. 

911.

 

(253)

  Muscarella LF.  Automatic flexible endoscope reprocessors.  Gastrointest Endosc Clin N Am 

2000;10:245–57. 

912.

 

(254)

  Muscarella LF.  Anticipated reliability of liquid chemical sterilants [letter].  Am J Infect Control 

1998;26:155–6. 

913.

 

(255)

  Muscarella LF.  Dej

B

 vu... all over again?  The importance of instrument drying [letter].  Infect 

Control Hosp Epidemiol 2000;21:628–9. 

914.

 

(256)

  Gubler JGH, Salfinger M, von Graevenitz A.  Pseudoepidemic of nontuberculous mycobacteria due 

to a contaminated bronchoscope cleaning machine: report of an outbreak and review of the literature.  Chest 

1992;101:1245–9. 

915.

 

(257)

  Fraser VJ, Jones M, Murray PR, Medoff G, Zhang Y, Wallace RJ Jr.  Contamination of flexible 

fiberoptic bronchoscopes with 

Mycobacterium chelonae

 linked to an automated bronchoscope disinfection 

machine.  Am Rev Respir Dis 1992;145:853–5. 

916.

 

Maloney S, Welbel S, Daves B, et al.

  Mycobacterium abscessus

 pseudoinfection traced to an automated 

endoscope washer: utility of epidemiologic and laboratory investigation.  J Infect Dis 1994;169:1166–9. 

917.

 

Merighi A, Contato E, Scagliarini R, et al.  Quality improvement in gastrointestinal endoscopy: 

microbiologic surveillance of disinfection.  Gastrointest Endosc 1996;43:457–62. 

918.

 

(258)

  Muscarella LF.  Application of environmental sampling to flexible endoscope reprocessing: the 

importance of monitoring the rinse water.  Infect Control Hosp Epidemiol 2002;23:285–9. 

919.

 

Mitchell DH, Hicks LJ, Chiew R, Montanaro JC, Chen SC.  Pseudoepidemic of 

Legionella

 

pneumophila 

serogroup 6 associated with contaminated bronchoscopes.  J Hosp Infect 1997;37:19–23. 

920.

 

Ido K, Ishino Y, Ota Y, et al.  Deficiencies of automatic endoscopic reprocessors: a method to achieve high-

grade disinfection of endoscopes.  Gastrointest Endosc 1996;44:583–6. 

921.

 

(260)

  Allen JJ, Allen MO, Olsen MM, et al.  

Pseudomonas

 infection of the biliary system resulting from 

the use of a contaminated endoscope.  Gastroenterology 1987;92:759–63. 

922.

 

Agerton T, Valway S, Gore B, et al.  Transmission of a highly drug-resistant strain (Strain W-1) of 

Mycobacterium tuberculosis

: community outbreak and nosocomial transmission via a contaminated 

bronchoscope.  JAMA 1997;278:1073–7. 

923.

 

(261)

  Michele TM, Cronin WA, Graham NMH, et al.  Transmission of 

Mycobacterium tuberculosis

 by a 

fiberoptic bronchoscope: identification by DNA fingerprinting.  JAMA 1997;278:1093–5. 

924.

 

Bronowicki J-P, Venard V, Botte C, et al.  Patient-to-patient transmission of hepatitis C virus during 

colonoscopy.  N Engl J Med 1997;337:237–40. 

925.

 

(262)

  U.S. Food and Drug Administration, CDC.  FDA and CDC Public health advisory: infection from 

endoscopes inadequately reprocessed by an automated endoscope reprocessing system.  September 10, 

1999.  Available at:  www.fda.gov/cdrh/safety.html 

926.

 

Rey JF.  Endoscopic disinfection.  A worldwide problem.  J Clin Gastroenterol 1999;28:291–7. 

927.

 

Wang HC, Liaw YS, Yang PC, Kuo SH, Luh KT.  A pseudoepidemic of 

Mycobacterium chelonae

 infection 

caused by contamination of a fibreoptic bronchoscope suction channel.  Eur Respir J 1995;8:1259–62. 

928.

 

(263)

  Alvarado CJ, Reichelderfer M.  APIC guideline for infection prevention and control in flexible 

endoscopy.  Am J Infect Control 2000;28:138–55. 

929.

 

Van Klingeren B, Pullen W.  Glutaraldehyde resistant mycobacteria from endoscope washers.  J Hosp 

Infect 1993;25:147–9. 

930.

 

Flournoy DJ, Petrone RL, Voth DW.  A pseudo-outbreak of 

Methylobacterium mesophilica

 isolated from 

patients undergoing bronchoscopy.  Eur J Clin Microbiol Infect Dis 1992;11:240–3. 

931.

 

Reeves DS, Brown NM.  Mycobacterial contamination of fibreoptic bronchoscopes.  J Hosp Infect 

1995;30(suppl):S531–S536. 

932.

 

Kelstrup J, Funder-Nielsen T, Theilade J.  Microbial aggregate contamination of water lines in dental 

equipment and its control.  Acta Path Scand 1977;85:177–83. 

background image

 

 

181

933.

 

Challacombe SJ, Fernandes LL.  Detecting 

Legionella

 

pneumophila

 in water systems: a comparison of 

various dental units.  J Am Dent Assoc 1995;126:603–8. 

934.

 

Singh R, Stine OC, Smith DL, Spitznagel JK Jr, Labib ME, Williams HN.  Microbial diversity of biofilms 

in dental unit water systems.  Appl Environ Microbiol 2003;69:3412–20. 

935.

 

(264)

  CDC.  Statement from the Centers for Disease Control and Prevention (CDC) regarding biofilm and 

dental unit water quality. Atlanta, GA:  U.S. Public Health Service, Department of Health and Human 

Services, 1999.  Available at:  www.cdc.gov/nccdphp/oh/ic-fs-biofilm.htm 

936.

 

(265)

  CDC.  Recommended infection control practices for dentistry, 1993.  MMWR 1993;42(No. RR-8):1–

12. 

937.

 

(268)

  Bagga BS, Murphy RA, Anderson AW, Punwani I.  Contamination of dental unit cooling water with 

oral microorganisms and its prevention.  J AM Dent Assoc 1984;109:712–6. 

938.

 

Scheid RC, Rosen S, Beck FM.  Reduction of CFUs in high-speed handpiece water lines over time.  Clin 

Prev Dent 1990;12:9–12. 

939.

 

Williams JF. Johnston AM, Johnson B, Huntington MK, Mackenzie CD.  Microbial contamination of dental 

unit waterlines: prevalence, intensity, and microbiological characteristics.  J Am Dent Assoc 1993;124:59–

65. 

940.

 

Santiago JI, Huntington MK, Johnston AM, Quinn RS, Williams JF.  Microbial contamination of dental 

unit waterlines: short- and long-term effects of flushing.  Gen Dent 1994;42:528–35. 

941.

 

Williams HN, Johnson A, Kelley JI, et al.  Bacterial contamination of the water supply in newly installed 

dental units.  Quintessence Int 1995;26:331–7. 

942.

 

CDC.  Guideline for infection control in dental health-care settings.  MMWR 2003;52:in press. 

943.

 

(266)

  Office of Safety and Asepsis Procedures Research Foundation.  Position paper on dental unit 

waterlines.  Annapolis, MD: OSAPRF, 2000. Available at:  www.osap.org/issues/pages/water/duwl.htm 

944.

 

(267)

  U.S. Environmental Protection Agency.  National primary drinking water regulations, 40 CFR 1, Part 

141, Subpart G;1999.  At:  www.epa.gov/safewater/mcl.html 

945.

 

(344)

  Eaton AD, Clesceri LS, Greenberg AE, eds. Standard methods for the examination of water and 

wastewater, 20

th

 ed. Washington, DC: American Public Health Association, 1998;9–1 through  9–41. 

946.

 

(269)

  Shearer BG.  Biofilm and the dental office.  J Am Dent Assoc 1996;127:181–9. 

947.

 

Maki DG, Alvarado CJ, Hassemer CA, Zilz MA.  Relation of the inanimate hospital environment to 

endemic nosocomial infection.  N Engl J Med 1982;307:1562–6. 

948.

 

Danforth D, Nicolle LE, Hume K, Alfieri N, Sims H.  Nosocomial infections on nursing units with floors 

cleaned with a disinfectant compared with detergent.  J Hosp Infect 1987;10:229–35. 

949.

 

Spaulding EH.  Role of chemical disinfection in the prevention of nosocomial infections.  In: Brachman PS, 

Eickhoff TC, eds.  Proceedings of the International Conference on Nosocomial Infections, 1970.  Chicago, 

IL:  American Hospital Association, 1971;247–54. 

950.

 

Spaulding EH.  Chemical disinfection and antisepsis in the hospital.  J Hosp Res 1972;9:5–31. 

951.

 

(273)

  Favero MS, Bond WW.  Chemical disinfection of medical and surgical materials.  In: Block SS, ed. 

Disinfection, sterilization, and preservation, 5

th

 ed. Philadelphia, PA: Lippincott Williams & Wilkins, 

2001;881–917. 

952.

 

(274)

  Rutala WA.  APIC guideline for selection and use of disinfectants.  Am J Infect Control 

1996;24:313–42. 

953.

 

Agolini G, Russo A, Clementi M.  Effect of phenolic and chlorine disinfectants on hepatitis on hepatitis C 

virus binding and infectivity.  Am J Infect Control 1999;27:236–9. 

954.

 

(279)

  Favero MS, Bond WW.  Sterilization, disinfection, and antisepsis in the hospital.  In: Balows A, 

Hausler WJ Jr, Herrmann KL, Isenberg HD, Shadomy HJ, eds. Manual of clinical microbiology, 5

th

 ed.   

Washington, DC: American Society for Microbiology, 1991;183–200. 

955.

 

Nyström B.  Bioburden of non-disposable surgical instruments and operating room textiles.  In: Gaughran 

ERL, Morrissey RF, eds.  Sterilization of medical products, Vol II.  Montreal, Québec: Multiscience 

Publications Ltd., 1981;156–63. 

956.

 

Nyström B.  Disinfection of surgical instruments.  J Hosp Infect 1981;2:3636–8. 

957.

 

Rutala WA, Weber DJ.  FDA labeling requirements for disinfection of endoscopes: a counterpoint.  Infect 

Control Hosp Epidemiol 1995;16:231–5. 

958.

 

Parker HH IV, Johnson RD.  Effectiveness of ethylene oxide for sterilization of dental handpieces.  J Dent 

1995;1:1–3. 

background image

 

 

182 

959.

 

Alfa MJ, DeGagne P, Olson N, Puchalski T.  Comparison of ion plasma, vaporized hydrogen peroxide, and 

100% ethylene oxide sterilizers to the 12/88 ethylene oxide gas sterilizer.  Infect Control Hosp Epidemiol 

1996;17:92–100. 

960.

 

Rutala WA, Gergen MF, Jones JF, Weber DJ.  Levels of microbial contamination on surgical instruments.  

Am J Infect Control 1998;26:143–5. 

961.

 

(275)

  Stingeni L, Lapomarda V, Lisi P.  Occupational hand dermatitis in hospital environments.  Contact 

Dermatitis 1995;33:172–6. 

962.

 

(276)

  Ashdown BC, Stricof DD, May ML, Sherman SJ, Carmody RF.  Hydrogen peroxide poisoning 

causing brain infarction: neuroimaging findings.  AM J Roentgenol 1998;170:1653–5. 

963.

 

(277)

 Busch A, Werner E. [Animal tolerance to peracetic acid.  1. Experimental results rollowing the 

application of peracetic acid solutions on the skin of pigs].  Monatshefte für Veterinaermedizin 

1974;29:494–8.   (German) 

964.

 

(278)

  U.S. Food and Drug Administration.  Medical devices: adequate directions for use.  21 CFR Part 

801.5, 807.87.e. 

965.

 

U.S. Food and Drug Administration (FDA) and U.S. Environmental Protection Agency (EPA).  

Memorandum of understanding between the Food and Drug Administration, Public Health Service, 

Department of Health and Human Services, and the Environmental Protection Agency: Notice regarding 

matters of mutual responsibility — regulation of liquid chemical germicides intended for use on medical 

devices, 1993.  Available from FDA, Center for Devices and Radiological Health (CDRH), Office of Health 

and Industry Programs, Division of Small Manufacturers Assistance, Rockville MD 20850, or EPA, 

Registration Division, Antimicrobial Program Branch, 401 M St., SW, Washington DC 20460. 

966.

 

U.S. Food and Drug Administration (FDA).  Interim measures for the registration of antimicrobial 

products/liquid chemical germicides with medical device use claims under the memorandum of 

understanding between EPA and FDA, 1994.  CDRH Facts on Demand, Shelf #851, p. 14;June 30, 1994.  

Available from FDA, CDRH, Office of Health and Industry Programs, Division of Small Manufacturers 

Assistance, Rockville MD 20850. 

967.

 

(293)

  U.S. Department of Labor, Occupational Safety and Health Administration.  Occupational Exposure 

to Bloodborne Pathogens: final rule (29 CFR 1910.1030).  Federal Register 1991;56:64004–182. 

968.

 

Collins BJ.  The hospital environment: how clean should a hospital be?  J Hosp Infect 1988;11 (Suppl A): 

53–6. 

969.

 

Van den Berg RWA, Claahsen HL, Niessen M, Muytjens HL, Liem K, Voss A.  

Enterobacter cloacae

 

outbreak in the NICU related to disinfected thermometers.  J Hosp Infect 2000;45:29–34. 

970.

 

Spaulding EH.  Alcohol as a surgical disinfectant.  AORN J 1964;2:67–71. 

971.

 

(282)

  Ayliffe GAJ, Collins BJ, Lowbury EJL, Babb JR, Lilly HA.  Ward floors and other surfaces as 

reservoirs of hospital infection.  J Hyg (Camb) 1967;65:515–37. 

972.

 

(283)

  Dancer SJ.  Mopping up hospital infection.  J Hosp Infect 1999;43:85–100. 

973.

 

Gable TS.  Bactericidal effectiveness of floor cleaning methods in a hospital environment.  Hospitals JAHA 

1966;40:107–11. 

974.

 

(271)

  U.S. Environmental Protection Agency.  Federal Insecticide, Fungicide, and Rodenticide Act.  7 USC 

6 § 136 et seq.;1972.  Available at:  www4.law.cornell.edu/uscode/7/ch6schII.html 

975.

 

Petersen NJ, Marshall JH, Collins DE.  Why wash walls in hospital isolation rooms?  Health Lab Sci 

1973;10:23–7. 

976.

 

(285)

  Mallison GF.  Decontamination, disinfection, and sterilization.  Nurs Clin North Am 1980;15:757–

67. 

977.

 

Ayliffe GAJ, Collins BJ, Lowbury EJL.  Cleaning and disinfection of hospital floors.  Br Med J 

1966;2:442–5. 

978.

 

Vesley D, Pryor AK, Walter WG, Shaffer JG.  A cooperative microbiological evaluation of floor-cleaning 

procedures in hospital patient rooms.  Health Lab Sci 1970;7:256–64. 

979.

 

Daschner J, Rabbenstein G, Langmaack H. [Fla chendekontamination zur verhutung und bekampfund von 

drakenhaus infectionen.] Deutsche Medizische Wochenschrift 1980;10:325–9. (German) 

980.

 

Dharan S, Mourouga P, Copin P, Bessmer G, Tschanz B, Pittet D.  Routine disinfection of patients’ 

environmental surfaces: Myth or reality?  J Hosp Infect 1999;42:113–7. 

981.

 

Palmer PH, Yeoman DM.  A study to assess the value of disinfectants when washing ward floors.  Med J 

Australia 1972;2:1237–9. 

982.

 

(284)

  Schmidt EA, Coleman DL, Mallison GF.  Improved system for floor cleaning in health care facilities.  

Appl Environ Microbiol 1984;47:942–6. 

background image

 

 

183

983.

 

(272)

  Mallison GF.  Hospital disinfectants for housekeeping: floors and tables.  Infect Control 1984;5:537. 

984.

 

Vesley D, Klapes NA, Benzow K, Le CT.  Microbiological evaluation of wet and dry floor sanitization 

systems in hospital patient rooms.  Appl Environ Microbiol 1987;53:1042–5. 

985.

 

Werry C, Lawrence JM, Sanderson PJ.  Contamination of detergent cleaning solutions during hospital 

cleaning.  J Hosp Infect 1988;11:44–9. 

986.

 

(280)

  Chou T.  Environmental services.  In:  APIC Text of Infection Control and Epidemiology. Pfeiffer J, 

ed. Washington, DC: Association for Professionals in Infection Control and Epidemiology, Inc.;2000;73.1–

73.8. 

987.

 

(281)

  Rutala WA, Weber D.  General information on cleaning, disinfection, and sterilization. In:   Pfeiffer 

J, ed. APIC Text of infection control and epidemiology. Washington, DC: Association for Professionals in 

Infection Control and Epidemiology, Inc (APIC);2000:55.1–55.6. 

988.

 

(286)

  Walter CW, Kundsin RB.  The floor as a reservoir of hospital infections.  Surg Gynec Obstet 

1960;111:412–22. 

989.

 

(287)

  Scott E, Bloomfield SF.  The survival and transfer of microbial contamination via cloths, hands and 

utensils.  J Appl Bacteriol 1990;68:271–8. 

990.

 

(288)

  Scott E, Bloomfield SF.  Investigations of the effectiveness of detergent washing, drying and 

chemical disinfection on contamination of cleaning cloths.  J Appl Bacteriol 1990;68:279–83. 

991.

 

Givan KF, Black BL, Williams PF.  Multiplication of 

Pseudomonas

 species in phenolic germicidal 

detergent solution.  Can J Pub Health 1971;62:72. 

992.

 

Thomas MEM, Piper E, Maurer IM.  Contamination of an operating theater by gram-negative bacteria: 

examination of water supplies, cleaning methods, and wound infections.  J Hyg (Camb) 1972;70:63–73. 

993.

 

Medcraft JW, Hawkins JM, Fletcher BN, Dadswell JV.  Potential hazard from spray cleaning of floors in 

hospital wards.  J Hosp Infect 1987;9:151–7. 

994.

 

(289)

  Brown DG, Schaltzle K, Gable T.  The hospital vacuum cleaner: mechanism for redistributing 

microbial contaminants.  J Environ Health 1980;42:192–6. 

995.

 

(290)

  Wysowski DK, Flynt JW, Goldfield M, et al.  Epidemic hyperbilirubinemia and use of a phenolic 

disinfectant detergent.  Pediatrics 1978;61:165–70. 

996.

 

(291)

  Doan HM, Keith L, Shennan AT.  Phenol and neonatal jaundice.  Pediatrics 1979;64:324–5. 

997.

 

(292)

  American Academy of Pediatrics, American College of Obstetricians and Gynecologists. Infection 

control.  In:  Guidelines for perinatal care, 4

th

 ed. Evanston, IL: AAP, ACOG, 1997;269–74. 

998.

 

(294)

  Spire B, Montagnier L, Barré-Sinoussi F, Chermann JC.  Inactivation of lymphadenopathy associated 

virus by chemical disinfectants.  Lancet 1984;2:899–901. 

999.

 

(295)

  Martin LS, McDougal JS, Loskoski SL.  Disinfection and inactivation of the human T lymphotrophic 

virus type-III/lymphadenopathy-associated virus.  J Infect Dis 1985;152:400–3. 

1000.

 

(296)

  Hanson PJ, Gor D, Jeffries DJ, Collins JV.  Chemical inactivation of HIV on surfaces.  Br Med J 

1989;298:862–4. 

1001.

 

(297)

  Bloomfield SF, Smith-Burchnell CA, Dalgleish AG.  Evaluation of hypochlorite-releasing 

disinfectants against the human immunodeficiency virus (HIV).  J Hosp Infect 1990;15:273–8. 

1002.

 

(298)

  Druce JD, Jardine D, Locarnini SA, Birch CJ.  Susceptibility of HIV to inactivation by 

disinfectants and ultraviolet light.  J Hosp Infect 1995;30:167–80. 

1003.

 

(299)

  Van Bueren J, Simpson RA, Salman H, Farrelly HD, Cookson BD.  Inactivation of HIV-1 by 

chemical disinfectants: sodium hypochlorite.  Epidemiol Infect 1995;115:567–79. 

1004.

 

(300)

  Prince DL, Prince HN, Thraehart O, et al.  Methodological approaches to disinfection of human 

hepatitis viruses.  J Clin Microbiol 1993;31:3296–304. 

1005.

 

Tabor E, Gerety RJ.  A survey of formalin inactivation of hepatitis A virus, hepatitis B virus, and a non-

A, non-B hepatitis agent.  In: Second International Max von Pettenkofer Symposium on Viral Hepatitis.  

Munich, Germany: October 1982. 

1006.

 

Thraenhart O, Kuwert EK, Scheiermann N, et al.  Comparison of the morphological alteration and 

disintegration test (MADT) and the chimpanzee infectivity test for determination of hepatitis B virucidal 

activity of chemical disinfectants.  Zentralbl Bakteriol Mikrobiol Hyg (B) 1982;176:472–84. 

1007.

 

(303)

  U.S. Department of Labor, Occupational Safety and Health Administration.  EPA-registered 

disinfectants for HIV/HBV. [Memorandum 2/28/97].  Available at:  www.osha-

slc.gov/OshDoc/Interp_data/I19970228C.html 

1008.

 

U.S. Environmental Protection Agency.  Lists A, B, C, D, E, and F:  EPA registered disinfectants, 

sanitizers and sterilants.  Available at:  www.epa.gov/oppad001/chemregindex.htm 

background image

 

 

184 

1009.

 

U.S. Environmental Protection Agency.  Protocols for testing the efficacy of disinfectants against 

hepatitis B.  Federal Register 2000;65:51828–30. 

1010.

 

(301)

 CDC.  Recommendations for prevention of HIV transmission in health-care settings.  MMWR 

1987;36(No.2S):1S–18S. 

1011.

 

(304)

  Weber DJ, Barbee SL, Sobsey MD, Rutala WA.  The effect of blood on the antiviral activity of 

sodium hypochlorite, a phenolic, and a quaternary ammonium compound.  Infect Control Hosp 

Epidemiol 1999;20:821–7. 

1012.

 

(302)

  Sattar SA, Springthorpe VS.  Survival and disinfectant inactivation of the human 

immunodeficiency virus: a critical review.  Rev Infect Dis 1991;13:430–47. 

1013.

 

(400)

  CDC, National Institutes of Health.  Biosafety in microbiological and biomedical laboratories, 4

th

 

ed.  Washington, DC: U.S. Government Printing Office, 1999. 

1014.

 

Lee R.  The advantages of carpets in mental hospitals.  Ment Hosp 1965;16:324–5 

1015.

 

Simmons D, Reizenstein J, Grant M.  Considering carpets in hospital use.  Dimensions 1982;June:18–21. 

1016.

 

Willmott M.  The effect of a vinyl floor surface and a carpeted floor surface upon walking in elderly 

hospital in-patients.  Age Ageing 1986;15:119–20. 

1017.

 

Shaffer J, Key I.  The microbiological effects of carpeting on the hospital environment.  Hospitals JAHA 

1966;40:126–39. 

1018.

 

Walter W, Stober A.  Quantitative and qualitative microbial studies of hospital carpets.  J Environ Health 

1967;30:293–300. 

1019.

 

Anderson RL.  Biological evaluation of carpeting.  Appl Microbiol 1969;18:180–7. 

1020.

 

Lanese RR, Keller MD, Macpherson CR, Covey RC.  A study of microflora on tiled and carpeted 

surfaces in a hospital nursery.  Am J Public Health 1973;63:174–8. 

1021.

 

Bonde GJ.  Bacterial flora of synthetic carpets in hospitals.  Health Lab Sci  1973;10:308–18. 

1022.

 

Rylander R, Myrback K, Verner-Carlson B, Ohrstrom M.  Bacteriological investigation of wall-to-wall 

carpeting.  Am J Public Health 1974;64:163–8. 

1023.

 

(305)

  Suzuki A, Namba Y, Matsuura M, Horisawa A.  Bacterial contamination of floors and other 

surfaces in operating rooms: a five-year survey.  J Hyg (Camb) 1984;93:559–66. 

1024.

 

Skoutelis AT, Westenfelder GO, Beckerdite M, Phair JP.  Hospital carpeting and epidemiology of 

Clostridium difficile

.  Am J Infect Control 1993;22:212–7. 

1025.

 

Anderson RL, Mackel DC, Stoler BS, Mallison GF.  Carpeting in hospitals: an epidemiological 

evaluation.  J Clin Microbiol 1982;15:408–15. 

1026.

 

(160)

  Vesper S, Dearborn DG, Yike I, et al.  Evaluation of 

Stachybotrys chartarum

 in the house of an 

infant with pulmonary hemorrhage: quantitative assessment before, during, and after remediation.  J 

Urban Health 2000;77:68–85. 

1027.

 

Bakker PGH, Faoagali JL.  The effect of carpet on the number of microbes in the hospital environment.  

N Zeal Med J 1977;85:88–92. 

1028.

 

(306)

  Richet H, McNeil M, Pewters W, et al.  

Aspergillus flavus

 in a bone marrow transplant unit 

(BMTU): Pseudofungemia traced to hallway carpeting [abstract].  In:  Abstracts of the 89

th

 Annual 

Meeting of the American Society for Microbiology, 1989. 

1029.

 

CDC.  Respiratory illness associated with carpet cleaning at a hospital clinic — Virginia.  MMWR 

1983;32:378,383–4. 

1030.

 

Maley MP.  Bacterial threats to new hospitals.  Lancet 1997;350:223–4. 

1031.

 

U.S. Environmental Protection Agency.  Office of Toxic Substances.  Efficacy data requirements.  

Supplemental recommendations DIS/TSS-2;1/25/79. 

1032.

 

307)

  U.S. Department of Labor, Occupational Safety and Health Administration.  OSHA Standards 

Interpretation and Compliance Letters;6/10/94: Decontamination of a plush carpet surface after a spill.  

Available at:  www.osha-slc.gov/OshDoc/Interp_data/I19940610.html 

1033.

 

Richards K.  New York City: special suites — Memorial Sloan Kettering.  Interiors 1998;157:56–9. 

1034.

 

Noskin BA, Bednarz P, Suriano T, Reiner S, Peterson LR.  Persistent contamination of fabric-covered 

furniture by vancomycin-resistant enterococci: implications for upholstery selection in hospitals.  Am J 

Infect Control 2000;28:311–3. 

1035.

 

Sanderson PJ, Alshafi KM.  Environmental contamination by organisms causing urinary tract infection.  J 

Hosp Infect 1995;29: 301–3. 

1036.

 

Babe KS Jr, Arlian LG, Confer PD, Kim R.  House dust mite (

Dermatophagoides farinae

 and 

Dermatophagoides pteronyssinus

) prevalence in the rooms and hallways of a tertiary care hospital.  J 

Allergy Clin Immunol 1995;95:801–5. 

background image

 

 

185

1037.

 

Custovic A, Fletcher A, Pickering CAC, et al.  Domestic allergens in public places III: house dust mite, 

cat, dog, and cockroach allergens in British hospitals.  Clin Exper Allergy 1998;28:53–9. 

1038.

 

Ansorg R, Thomssen R, Stubbe P. Erwinia species causing fatal septicemia in a newborn. Med Microbiol 

Immunol (Berl) 1974;159:161–70. 

1039.

 

Trust TJ, Bartlett KH.  Isolation of 

Pseudomonas aeruginosa

 and other bacterial species from ornamental 

aquarium plants.  Appl Environ Microbiol 1976;31:992–4. 

1040.

 

(310)

  Bartzokas CA, Holley MP, Sharp CA.  Bacteria in flower vase water: incidence and significance in 

general ward practice.  Br J Surg 1975;62:295–7. 

1041.

 

Watson AG, Koons CE.  

Pseudomonas

 on the chrysanthemums.  Lancet 1973;2:91. 

1042.

 

(311)

  Siegman-Igra Y, Shalem A, Berger SA, Livio S, Michaeli D.  Should potted plants be removed 

from hospital wards?  J Hosp Infect 1986;7:82–5. 

1043.

 

Rosenzweig AL.  Contaminated flower vases. Lancet 1973;2:568–9. 

1044.

 

Johansen KS, Laursen H, Wilhjelm BJ.  Flower vases as reservoirs of pathogens.  Lancet 1974;1:359. 

1045.

 

Rogues AM, Quesnel C, Revel P, Saric J, Gachie JP.  Potted plants as a potential reservoir of 

Fusarium

 

species.  J Hosp Infect 1997;35:163–4. 

1046.

 

(312)

  Lass-Flörl C, Rath P, Niederwieser D, et al.  

Aspergillus terreus

 infections in haematological 

malignancies: molecular epidemiology suggests association with in-hospital plants.  J Hosp Infect 

2000;46:31–5. 

1047.

 

Levine OS, Levine MM.  Houseflies (

Musca domestica

) as mechanical vectors of shigellosis.  Rev Infect 

Dis 1991;13:688–96. 

1048.

 

Šrámová H, Daniel M, Absolonová V, D

ě

di

č

ová D, Jedli

č

ková Z, Lhotová H, Petráš P, Subertová V.  

Epidemiological role of arthropods detectable in health facilities.  J Hosp Infect 1992;20:281–92. 

1049.

 

Tan SW, Yap KL, Lee HL.  Mechanical transport of rotavirus by the legs and wings of Musca domestica 

(Diptera: 

Muscidae

).  J Med Entomol 1997;34:527–31. 

1050.

 

(313)

  Burgess NR.  Hospital design and cockroach control.  Trans R Soc Trop Med Hyg 1984;78:293–4. 

1051.

 

Ash N, Greenberg B.  Vector potential for the German cockroach (Dictyoptera: 

Blattellidae

) in 

dissemination of 

Salmonella enteritidis

 serotype typhimurium.  J Med Entomol 1980;17:417–23. 

1052.

 

Fotedar R, Banerjee U.  Nosocomial fungal infections — study of the possible role of cockroaches 

(

Blattella germanica

) as vectors.  Acta Trop 1992;50:339–43. 

1053.

 

Rosef O, Kapperud G.  House flies (

Musca domestica

) as possible vectors of 

Campylobacter

 

fetus

 subsp. 

jejuni.  Appl Environ Microbiol 1983;45:381–3. 

1054.

 

Forsey T, Darougar S.  Transmission of chlamydiae by the housefly.  Br J Ophthalmol 1981;65:147–50. 

1055.

 

Grübel P, Hoffman JS, Chong FK, Burstein NA, Mepani C, Cave DR.  Vector potential of houseflies 

(

Musca domestica

) for 

Helicobacter pylori

.  J Clin Microbiol 1997;35:1300–3. 

1056.

 

Oothuman P, Jeffery J, Aziz, AHA, Bakar EA, Jegathesan M.  Bacterial pathogens isolated from 

cockroaches trapped from pediatric wards in peninsular Malaysia.  Trans R Soc Trop Med Hyg 

1989;83:133–5. 

1057.

 

Beatson SH.  Pharaoh’s ants as pathogen vectors in hospitals.  Lancet 1972;1:425–7. 

1058.

 

LeGuyader A, Rivault C, Chaperon J.  Microbial organisms carried by brown-banded cockroaches in 

relation to their spatial distribution in a hospital.  Epidemiol Infect 1989;102:485–92. 

1059.

 

Fotedar R, Banerjee U, Shriniwas, Verma A.  Cockroaches (

Blattella germanica

) as carriers of 

microorganisms of medical importance in hospitals.  Epidemiol Infect 1991;107:181–7. 

1060.

 

Fotedar R, Banerjee U, Singh S, Shriniwas, Verma AK.  The housefly (

Musca domestica

) as a carrier of 

pathogenic microorganisms in a hospital environment.  J Hosp Infect 1992;20:209–15. 

1061.

 

Fotedar R, Shriniwas, Banerjee U, Samantray JC, Nayar E, Verma A.  Nosocomial infections: 

cockroaches as possible vectors of drug-resistant 

Klebsiella

.  J Hosp Infect 1991;18:155–9. 

1062.

 

Devi SJN, Murray CJ.  Cockroaches (

Blatta

 and 

Periplaneta

 species) as reservoirs of drug-resistant 

salmonellas.  Epidemiol Infect 1991;107:357–64. 

1063.

 

Cotton MF, Wasserman E, Pieper CH, et al.  Invasive disease due to extended spectrum beta-lactamase-

producing 

Klebsiella pneumoniae

 in a neonatal unit: the possible role of cockroaches.  J  Hosp Infect 

2000;44:13–7. 

1064.

 

Baker LF.  Pests in hospitals.  J Hosp Infect 1981;2:5–9. 

1065.

 

(316)

  Allen BW.  Excretion of viable tubercle bacilli by 

Blatta orientalis

 (the oriental cockroach) 

following ingestion of heat-fixed sputum smears: a laboratory investigation.  Trans R Soc Trop Med Hyg 

1987;81:98–9. 

background image

 

 

186 

1066.

 

(317)

 Laszlo A.  Technical guide: sputum examination for tuberculosis by direct microscopy in low 

income countries, 5

th

 ed.  Paris, France: International Union Against Tuberculosis and Lung Disease, 

2000.  Available at:  www.iuatld.org/html/body_guides.htm 

1067.

 

Cohen D, Green M, Block C, et al.  Reduction of transmission of shigellosis by control of houseflies 

(

Musca domestica

).  Lancet 1991;337:993–7. 

1068.

 

Daniel M, Šrámová H, Zálabská E.  

Lucilia sericata

 (Diptera: 

Calliphoridae

) causing hospital-acquired 

myiasis of a traumatic wound.  J Hosp Infect 1994;28:149–52. 

1069.

 

Jacobson JA, Kolts RL, Conti M, Burke JP.  Hospital-acquired myiasis.  Infect Control 1980;1:319–20. 

1070.

 

Mielke U.  Nosocomial myiasis.  J Hosp Infect 1997;37:1–5. 

1071.

 

Sherman RA.  Wound myiasis in urban and suburban United States.  Arch Intern Med 2000;160:2004–

14. 

1072.

 

(314)

  Lukin LG.  Human cutaneous myiasis in Brisbane: a prospective study.  Med J Aust 

1989;150:237–40. 

1073.

 

Watkins M, Wyatt T.  A ticklish problem: pest infestation in hospitals.  Prof Nurse 1989;4:389–92. 

1074.

 

Schoninger S.  Pest control and extermination in health care facilities.  Prof Sanit Manage 1978;9:24–7. 

1075.

 

(315)

  Bruesch J.  Institutional pest management: current trends.  Exec Housekeep Today 1994;15:6–12. 

1076.

 

Tenover FC.  VRSA, VISA, GISA: the dilemma behind the name game.  Clin Microbiol Newsletter 

2000;22:49–53. 

1077.

 

CDC.  National Nosocomial Infections Surveillance System (NNIS): Semiannual report. December 1999.  

Available at:  www.cdc.gov/ncidod/hip/SURVEILL/NNIS.HTM 

1078.

 

Hartstein AI, Mulligan ME.  Methicillin-resistant 

Staphylococcus aureus

.  In: Mayhall CG, ed. Hospital 

epidemiology and infection control, 2

nd

 ed.  Philadelphia, PA: Lippincott Williams & Wilkins, 1999;347–

64. 

1079.

 

Walsh TJ, Vlahov D, Hansen SL, et al.  Prospective microbiologic surveillance in control of nosocomial 

methicillin-resistant 

Staphylococcus aureus

.  Infect Control 1987;8:7–14. 

1080.

 

Walsh TJ, Auger F, Tatem BA, Hansen SL, Standford HJ.  Novobiocin and rifampin in combination 

against methicillin-resistant 

Staphylococcus aureus

: an in vitro comparison with vancomycin plus 

rifampin.  J Antimicrob Chemother 1986;17:75–82. 

1081.

 

McNeil MM, Solomon SL.  The epidemiology of MRSA.  Antimicrobiol Newsl 1985;2:49–56. 

1082.

 

Oie S, Kamiya A.  Survival of methicillin-resistant 

Staphylococcus aureus

 (MRSA) on naturally 

contaminated dry mops.  J Hosp Infect 1996;34:145–9. 

1083.

 

Arnow PM, Allyn PA, Nichols EM, Hill DL, Pezzlo M, Bartlett RH.  Control of methicillin-resistant 

Staphylococcus aureus

 in a burn unit: role of nurse staffing.  J Trauma 1982;22:954–9. 

1084.

 

(329)

  Karanfil LV, Murphy M, Josephson A, et al.  A cluster of vancomycin-resistant 

Enterococcus 

faecium

 in an intensive care unit.  Infect Control Hosp Epidemiol 1992;13:195–200. 

1085.

 

Handwerger S, Raucher B, Altarac D, et al.  Nosocomial outbreak due to 

Enterococcus faecium

 highly 

resistant to vancomycin, penicillin, and gentamicin.  Clin Infect Dis 1993;16:750–5. 

1086.

 

Boyle JF, Soumakis SA, Rendo A, et al.  Epidemiologic analysis and genotypic characterization of a 

nosocomial outbreak of vancomycin-resistant enterococci.  J Clin Microbiol 1993;31:1280–5. 

1087.

 

(330)

  Boyce JM, Opal SM, Chow JW, et al.  Outbreak of multidrug-resistant 

Enterococcus faecium

 with 

transferable vanB class vancomycin resistance.  J Clin Microbiol 1994;32:1148–53. 

1088.

 

(331)

  Rhinehart E, Smith NE, Wennerstein C, et al.  Rapid dissemination of beta-lactamase-producing, 

aminoglycoside-resistant 

Enterococcus faecalis

 among patients and staff on an infant-toddler surgical 

ward.  N Engl J Med 1990;323:1814–8. 

1089.

 

Crossley K, Landesman B, Zaske D.  An outbreak of infections caused by strains of 

Staphylococcus 

aureus

 resistant to methicillin and aminoglycosides.  II. epidemiologic studies.  J Infect Dis 

1979;139:280–7. 

1090.

 

Peacock JE Jr, Marsik FJ, Wenzel RP.  Methicillin-resistant 

Staphylococcus aureus

: introduction and 

spread within a hospital.  Ann Intern Med 1980;93:526–32. 

1091.

 

Walsh TJ, Hansen SL, Tatem BA, Auger F, Standiford HJ.  Activity of novobiocin against methicillin-

resistant 

Staphylococcus aureus

.  J Antimicrob Chemother 1985;15:435–40. 

1092.

 

(332)

  Livornese LL Jr, Sias S, Samel C, et al.  Hospital-acquired infection with vancomycin-resistant 

Enterococcus faecium

 transmitted by electronic thermometers.  Ann Intern Med 1992;117:112–6. 

1093.

 

Gould FK, Freeman R.  Nosocomial infection with microsphere beds.  Lancet 1993;342:241–2. 

background image

 

 

187

1094.

 

Morris JG, Shay DK, Hebden JN, et al.  

Enterococci

 resistant to multiple antimicrobial agents, including 

vancomycin: establishment of endemicity in a university medical center.  Ann Intern Med 1995;123:250–

9. 

1095.

 

Edmond MB, Ober JS, Weinbaum DL, et al.  Vancomycin-resistant 

Enterococcus faecium

 bacteremia: 

risk factors for infection.  Clin Infect Dis 1995;20:1126–33. 

1096.

 

(333)

  Zervos MJ, Kauffman CA, Therasse PM, Bergman AG, Mikesell TS, Schaberg DR.  Nosocomial 

infection by gentamicin-resistant 

Streptococcus faecalis

: an epidemiologic study. Ann Intern Med 

1987;106:687–91. 

1097.

 

Zervos MJ, Dembinski S, Mikesell T, Schaberg DR.  High-level resistance to gentamicin in 

Streptococcus faecalis

: risk factors and evidence for exogenous acquisition of infection.  J Infect Dis 

1986;153: 1075–83. 

1098.

 

Bonilla HF, Zervos MA, Lyons MJ, et al.  Colonization with vancomycin-resistant 

Enterococcus faecium

comparison of a long-term-care unit with an acute-care hospital.  Infect Control Hosp Epidemiol 

1997;18:333–9. 

1099.

 

Bonilla HF, Zervos MJ, Kauffman CA.  Long-term survival of vancomycin-resistant 

Entercoccus faecium

 

on a contaminated surface.  Infect Control Hosp Epidemiol 1996;17:770–1. 

1100.

 

Boyce JM, Bermel LA, Zervos MJ, et al.  Controlling vancomycin-resistant enterococci.  Infect Control 

Hosp Epidemiol 1995;16:634–7. 

1101.

 

Boyce JM, Potter-Bynoe G, Chenevert C, King T.  Environmental contamination due to methicillin-

resistant 

Staphylococcus aureus

: possible infection control implications.  Infect Control Hosp Epidemiol 

1997;18:622–7. 

1102.

 

(328)

  Layton MC, Perez M, Heald P, Patterson JE.  An outbreak of mupirocin-resistant 

Staphylococcus 

aureus

 on a dermatology ward associated with an environmental reservoir.  Infect Control Hosp 

Epidemiol 1993;14:369–75. 

1103.

 

Collins SM, Hacek DM, Degen LA, Wright MP, Noskin GA, Peterson LR.  Contamination of the clinical 

microbiology laboratory with vancomycin-resistant enterococci and multidrug-resistant 

Enterobacteriaceae

: implications for hospital and laboratory workers.  J Clin Microbiol 2001;39:3772–4. 

1104.

 

Bonten MJM, Hayden MK, Nathan C, et al.  Epidemiology of colonisation of patients and environment 

with vancomycin-resistant enterococci.  Lancet 1996;348:1615–9. 

1105.

 

Wendt C, Wiesenthal B, Dietz E, Rüden H.  Survival of vancomycin-resistant and vancomycin-

susceptible enterococci on dry surfaces.  J Clin Microbiol 1998;36:3734–46. 

1106.

 

(323)

  Bradley CR, Fraise AP.  Heat and chemical resistance of enterococci.  J Hosp Infect 1996;34:191–

6. 

1107.

 

(324)

  Anderson RL, Carr JH, Bond WW, Favero MS.  Susceptibility of vancomycin-resistant 

enterococci to environmental disinfectants.  Infect Control Hosp Epidemiol 1997;18:195–9. 

1108.

 

(325)

  Saurina G, Landman D, Quale JM.  Activity of disinfectants against vancomycin-resistant 

Enterococcus faecium

.  Infect Control Hosp Epidemiol 1997;18:345–7. 

1109.

 

(326)

  Rutala WA, Stiegel MM, Sarubbi FA, Weber DJ.  Susceptibility of antibiotic-susceptible and 

antibiotic-resistant hospital bacteria to disinfectants.  Infect Control Hosp Epidemiol 1997;18:417–21. 

1110.

 

(327)

  Sehulster LM, Anderson RL.  Susceptibility of glycopeptide-intermediate resistant 

Staphylococcus 

aureus

 (GISA) to surface disinfectants, hand washing chemicals, and a skin antiseptic [abstract Y-3].  In: 

Abstracts of the 98

th

 General Meeting, American Society for Microbiology.  1998. 

1111.

 

Armstrong-Evans M, Litt M, McArthur MA, et al.  Control of transmission of vancomycin-resistant 

Enterococcus faecium

 in a long-term-care facility.  Infect Control Hosp Epidemiol 1999;20:312–17. 

1112.

 

Global Consensus Conference: Final Recommendations.  Global Consensus Conference on Infection 

Control Issues Related to Antimicrobial Resistance.  Am J Infect Control 1999;27:503–13. 

1113.

 

Freeman R, Kearns AM, Lightfoot NF.  Heat resistance of nosocomial enterococci.  Lancet 1994;345:64–

5. 

1114.

 

CDC.

  Staphylococcus aureus

 resistant to vancomycin — United States.  MMWR 2002;51:565–7. 

1115.

 

CDC.  Vancomycin resistant 

Staphylococcus aureus

 — Pennsylvania, 2002.  MMWR 2002;51:902. 

1116.

 

(320)

  Weber DJ, Rutala WA.  Role of environmental contamination in the transmission of vancomycin-

resistant enterococci.  Infect Control Hosp Epidemiol 1997;18:306–9. 

1117.

 

(321)

  Lai KK, Kelley AL, Melvin ZS, Belliveau PP, Fontecchio SA.  Failure to eradicate vacomycin-

resistant enterococci in a university hospital and the cost of barrier precautions.  Infect Control Hosp 

Epidemiol 1998;19:647–2. 

background image

 

 

188 

1118.

 

(322)

  Byers KE, Durbin LJ, Simonton BM, Anglim AM, Adal KA, Farr BM.  Disinfection of hospital 

rooms contaminated with vancomycin-resistant 

Enterococcus faecium

.  Infect Control Hosp Epidemiol 

1998;19:261–4. 

1119.

 

Siegel DL, Edelstein PH, Nachamkin I.  Inappropriate testing for diarrheal diseases in the hospital.  

JAMA 1990;263:979–82. 

1120.

 

Yannelli B, Gurevich I, Schoch PE, Cunha BA.  Yield of stool cultures, ova and parasite tests, and 

Clostridium difficile

 determination in nosocomial diarrhea.  Am J Infect Control 1988;16:246–9. 

1121.

 

Gerding DN, Olson MM, Peterson LR, et al.  

Clostridium difficile

-associated diarrhea and colitis in 

adults: a prospective case-controlled epidemiologic study.  Arch Intern Med 1986;146:95–100. 

1122.

 

Svenungsson B, Burman LG, Jalakas-Pörnull K, Lagergren 

C

, Struwe J, 

C

kerlund T.  Epidemiology and 

molecular characterization of 

Clostridium difficile

 strains from patients with diarrhea: low disease 

incidence and evidence of limited cross-infection in a Swedish teaching hospital.  J Clin Microbiol 

2003;41:4031–7. 

1123.

 

Barlett JG.  Antibiotic-associated colitis.  Dis Mon 1984;30:1–55. 

1124.

 

Pierce PF Jr, Wilson R, Silva J Jr, et al.  Antibiotic-associated pseudomembranous colitis: an 

epidemiologic investigation of a cluster of cases.  J Infect Dis 1982;145:269–74. 

1125.

 

Aronsson B, Möllby, Nord C-E.  Antimicrobial agents and 

Clostridium difficile

 in acute enteric disease: 

epidemiologic data from Sweden, 1980–1982.  J Infect Dis 1985;151:476–81. 

1126.

 

Thibault A, Miller MA, Gaese C.  Risk factors for the development of 

Clostridium difficile

-associated 

diarrhea during a hospital outbreak.  Infect Control Hosp Epidemiol 1991;12:345–8. 

1127.

 

McFarland LV, Surawicz CM, Stamm WE.  Risk factors for 

Clostridium difficile

 carriage and 

Clostridium difficile

-associated diarrhea in a cohort of hospitalized patients.  J Infect Dis 1990;162:678–

84. 

1128.

 

Zadik PM, Moore AP.  Antimicrobial associations of an outbreak of diarrhoea due to 

Clostridium 

difficile

.  J Hosp Infect 1998;39:189–93. 

1129.

 

Johnson S, Homann SR, Bettin KM, et al.  Treatment of asymptomatic 

Clostridium difficile

 carriers (fecal 

excretors) with vancomycin or metronidazole: a randomized, placebo controlled trial.  Ann Intern Med 

1992;117:297–302. 

1130.

 

(319)

  Gerding DN, Johnson S, Peterson LR, Mulligan ME, Silva J Jr.  

Clostridium difficile

-associated 

diarrhea and colitis.  Infect Control Hosp Epidemiol 1995;16:459–77. 

1131.

 

Titov L, Lebedkova N, Shabanov A, Tang YJ, Cohen SH, Silva J Jr.  Isolation and molecular 

characterization of 

Clostridium difficile

 strains from patients and the hospital environment in Belarus.  J 

Clin Microbiol 2000;38:1200–2. 

1132.

 

Mulligan ME, Rolfe RD, Finegold SM, George WL.  Contamination of a hospital environment by 

Clostridium difficile

.  Curr Microbiol 1979;3:173–5. 

1133.

 

Fekety R, Kim KH, Brown D, Batts DH, Cudmore M, Silva J Jr.  Epidemiology of antibiotic-associated 

colitis: isolation of 

Clostridium difficile

 from the hospital environment.  Am J Med 1981;70:906–8. 

1134.

 

Malamou-Ladas H, Farrell SO, Nash JO, Tabaqchali S.  Isolation of 

Clostridium difficile

 from patients 

and the evironment of hospital wards.  J Clin Pathol 1983;6:88–92. 

1135.

 

Kaatz GW, Gitlin SD, Schaberg DR, et al.  Acquisition of 

Clostridium difficile

 from the hospital 

environment.  Am J Epidemiol 1988;127:1289–94. 

1136.

 

Cohen SH, Tang YJ, Muenzer J, Gumerlock PH, Silva J Jr.  Isolation of various genotypes of 

Clostridium 

difficile

 from patients and the environment in an oncology ward.  J Infect Dis 1997;889–93. 

1137.

 

Savage AM.  Nosocomial spread of 

Clostridium difficile

.  Infect Control 1983;4:31–3. 

1138.

 

Brooks SE, Veal RO, Kramer M, Dore L, Schupf N, Adachi M.  Reduction in the incidence of 

Clostridium difficile

-associated diarrhea in an acute care hospital and a skilled nursing facility following 

replacement of electronic thermometers with single-use disposables.  Infect Control Hosp Epidemiol 

1992;13:98–103. 

1139.

 

Johnson S, Gerding DN, Olson MM, et al.  Prospective, controlled study of vinyl glove use to interrupt 

Clostridium difficile

 nosocomial transmission.  Am J Med 1990;88:137–40. 

1140.

 

McFarland LV, Mulligan ME, Kwok RYY, Stamm WE.  Nosocomial acquisition of 

Clostridium difficile

 

infection.  New Engl J Med 1989l;320:204–10. 

1141.

 

Mayfield JL, Leet T, Miller J, Mundy LM.  Environmental control to reduce transmission of 

Clostridium 

difficile

.  Clin Inf Dis 2000;31:995–1000. 

background image

 

 

189

1142.

 

Wilcox MH, Fawley WN, Wigglesworth N, Parnell P, Verity P, Freeman J.  Comparison of the effect of 

detergent versus hypochlorite cleaning on environmental contamination and incidence of 

Clostridium 

difficile

 infection.  J Hosp Infect 2003;54:109–14. 

1143.

 

(334)

  Worsley MA.  Infection control and prevention of 

Clostridium difficile

 infection.  J Antimicrobial 

Chemother 1998;41 (Suppl. C):59–66. 

1144.

 

von Rheinbaben F, Schünemann S, Groß T, Wolff MH.  Transmission of viruses via contact in a 

household setting: experiments using bacteriophage 

φ

X174 as a model virus.  J Hosp Infect 2000;46:61–

6. 

1145.

 

Hall CB, Douglas G Jr, Gelman JM.  Possible transmission by fomites of respiratory syncytial virus.  J 

Infect Dis 1980;141:98–102. 

1146.

 

Brady MT, Evans J, Cuartas J.  Survival and disinfection of parainfluenza viruses on environmental 

surfaces.  Am J Infect Control 1990;18:18–23. 

1147.

 

Hendley JO, Wenzel RP, Gwaltney JM Jr.  Transmission of rhinovirus colds by self-inoculation.  N Engl 

J Med 1973;288:1361–4. 

1148.

 

Butz AM, Fosarelli P, Dick J, Cusack T, Yolken R.  Prevalence of rotavirus on high-risk fomites in day-

care facilities.  Pediatrics 1993;92:202–5. 

1149.

 

Wilde J, Van R, Pickering LK, Eiden J, Yolken R.  Detection of rotaviruses in the day care environment 

— detection by reverse transcriptase polymerase chain reaction.  J Infect Dis 1992;166:507–11. 

1150.

 

Chapin M, Yatabe J, Cherry JD.  An outbreak of rotavirus gastroenteritis on a pediatric unit.  Am J Infect 

Control 1983;11:88–91. 

1151.

 

Appleton H, Higgins PG.  Viruses and gastroenteritis in infants.  Lancet 1975;i:1297. 

1152.

 

Abad FX, Villena C, Guix S, Caballero S, Pintó RM, Bosch A.  Potential role of fomites in the vehicular 

transmission of human astroviruses.  Appl Environ Microbiol 2001;67:3904–7. 

1153.

 

Chadwick PR, Beards G, Brown D, et al.  Management of hospital outbreaks of gastro-enteritis due to 

small round structured viruses.  Report of the Public Health Laboratory Service, Viral Gastroenteritis 

Working Group.  J Hosp Infect 2000;45:1–10. 

1154.

 

Spender QW, Lewis D, Price EH.  Norwalk-like viruses: study of an outbreak.  Arch Dis Child 

1986;61:142–7. 

1155.

 

Storr J, Rice S, Phillips AD, Price E, Walker Smith JA.  Clinical associations of Norwalk-like virus in the 

stools of children.  J Pediatr Gastroenterol Nutr 1986;5:576–80. 

1156.

 

Russo PL, Spelman DW, Harrington GA, et al.  Hospital outbreak of Norwalk-like virus.  Infect Control 

Hosp Epidemiol 1997;17:1374–8. 

1157.

 

Springthorpe VS, Grenier JL, Lloyd-Evans N, Sattar SA.  Chemical disinfection of human rotaviruses: 

efficacy of commercially-available products in suspension tests.  J Hyg (Camb) 1986;97:139–61. 

1158.

 

(335)

  Lloyd-Evans N, Springthorpe VS, Sattar SA.  Chemical disinfection of human rotavirus-

contaminated inanimate surfaces.  J Hyg (Camb) 1986;97:163–73. 

1159.

 

CDC.  Interim recommendations for cleaning and disinfection of the SARS patient environment.  At:  

www.cdc.gov/ncidod/sars/cleaningpatientenviro.htm 

1160.

 

Brown P, Gajdusek DC.  The human spongiform encephalopathies: Kuru, Creutzfeldt-Jakob disease, and 

Gerstmann-Sträussler-Scheinker syndrome.  Curr Top Microbiol Immunol 1991;172:1–20. 

1161.

 

Will RG.  Epidemiology of Creutzfeldt-Jakob disease.  Br Med Bull 1993;49:960–70. 

1162.

 

Holman RC, Khan AS, Belay ED, Schonberger LB.  Creutzfeldt-Jakob disease in the United States, 

1979–1994: using national mortality data to assess the possible occurrence of variant cases.  Emerg Infect 

Dis 1996;2:333–7. 

1163.

 

Will RG, Ironside JW, Zeidler M, et al. A new variant of Creutzfeldt-Jakob disease in the U.K.  Lancet 

1996;347:921–5. 

1164.

 

Lasmézas CI, Deslys JP, Demaimay R, et al.  BSE transmission to macaques.  Nature 1996;381:743–4. 

1165.

 

Collinge J, Sidle KCL, Heads J, Ironside J, Hill AF.  Molecular analysis of prion strain variation and the 

aetiology of “new variant” CJD.  Nature 1996;383:685–90. 

1166.

 

Bruce ME, Will RG, Ironside JW, et al.  Transmission to mice indicates that “new variant” CJD is caused 

by the BSE agent.  Nature 1997;389:498–501. 

1167.

 

Prusiner SB.  Biology and genetics of prion diseases.  Ann Rev Microbiol 1994;48:655–86. 

1168.

 

Prusiner SB.  Human prion diseases. In: Zuckerman AJ, Banatvala JE, Pattison JR, eds. Principles and 

practice of clinical virology, 3

rd

 ed. Chichester, UK: John Wiley & Sons, 1995;703–29. 

1169.

 

Prusiner SB.  Prions.  Proc Natl Acad Sci USA 1998;95:13363–83. 

background image

 

 

190 

1170.

 

(337)

  Kimberlin RH, Walker CA, Millson GC, et al.  Disinfection studies with two strains of mouse-

passaged scrapie agent.  Guidelines for Creutzfeldt-Jakob and related agents.  J Neurol Sci 1983;59:349–

55. 

1171.

 

Sklaviadis TK, Manuelidis L, Manuelidis EE.  Physical properties of the Creutzfeldt-Jakob disease agent.  

J Virol 1989;63:1212–22. 

1172.

 

Brown P, Gajdusek DC, Gibbs CJ Jr, Asher DM.  Potential epidemic of Creutzfeldt-Jakob disease from 

human growth hormone therapy.  N Engl J Med 1985;12:728–33. 

1173.

 

Brown P, Preece MA, Will RG.  “Friendly fire” in medicine: hormones, homografts and Creutzfeldt-

Jakob disease.  Lancet 1992;340:24–7. Brown P, Preece MA, Will RG.  “Friendly fire” in medicine: 

hormones, homografts and Creutzfeldt-Jakob disease.  Lancet 1992;340:24–7. 

1174.

 

Frasier D, Foley TP Jr.  Creutzfeldt-Jakob disease in recipients of pituitary hormones.  J Clin Endocrinol 

Metabol 1994;78:1277–9. 

1175.

 

Centers for Disease Control.  Epidemiologic notes and reports: rapidly progressive dementia in a patient 

who received a cadaveric dura mater graft.  MMWR 1987;36:49–50, 55. 

1176.

 

Centers for Disease Control.  Epidemiologic notes and reports update: Creutzfeldt-Jakob disease in a 

patient receiving cadaveric dura mater graft.  MMWR 1987;36:324–5. 

1177.

 

Centers for Disease Control.  Epidemiologic notes and reports update: Creutzfeldt-Jakob disease in a 

second patient who received a cadaveric dura mater graft.  MMWR 1989;38:37–8, 43. 

1178.

 

CDC.  Creutzfeldt-Jakob disease in patients who received a cadaveric dura mater graft — Spain, 1985–

1992.  MMWR 1993;42:560–3. 

1179.

 

Martinez-Lage JF, Poza M, Sola J, et al.  Accidental transmission of Creutzfeldt-Jakob disease by dural 

cadaveric grafts.  J Neurol Neurosurg Psychiatry 1994;57:1091–4. 

1180.

 

CDC.  Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts — Japan, January 1979–

May 1997.  MMWR 1997;46:1066–9. 

1181.

 

Lang CLG, Heckmann JG, Neundörfer B.  Creutzfeldt-Jakob disease via dural and corneal transplants.  J 

Neurol Sci 1998;160:128–39. 

1182.

 

Nevin S, McMenemey WH, Behrman S, Jones DP.  Subacute spongiform encephalopathy — a subacute 

form of encephalopathy attributable to vascular dysfunction (spongiform cerebral atrophy).  Brain 

1960;83:519–69. 

1183.

 

Bernoulli C, Siegfried J, Baumgartner G, et al.  Danger of accidental person-to-person transmission of 

Creutzfeldt-Jakob disease by surgery.  Lancet 1977;1:478–9. 

1184.

 

Will RG, Matthews WB.  Evidence for case-to-case transmission of Creutzfeldt-Jakob disease.  J Neurol 

Neurosurg Psychiatry 1982;45:235–8. 

1185.

 

El Hachimi KH, Chaunu M-P, Cervenakova L, Brown P, Foncin J-F.  Putative neurosurgical transmission 

of Creutzfeldt-Jakob disease with analysis of donor and recipient: agent strains.  Comp Rendus Acad Sci 

Iii: Science de la vie 1997;320:319–28. 

1186.

 

Brown P, Gibbs CJ, Amyx HL, et al.  Chemical disinfection of Creutzfeldt-Jakob disease virus.  N Engl J 

Med 1982;306:1279–82. 

1187.

 

Brown P, Rohwer RG, Gajdusek DC.  Newer data on the inactivation of scrapie virus or Creutzfeldt-

Jakob disease virus in brain tissue.  J Infect Dis 1986;153:1145–8. 

1188.

 

(338)

  Rosenberg RN, White CL, Brown P, Gajdusek DC, Volpe JJ, Dyck PJ.  Precautions in handling 

tissues, fluids, and other contaminated materials from patients with documented or suspected Creutzfeldt-

Jakob disease.  Ann Neurol 1986;19:75–7. 

1189.

 

Taylor DM.  Resistance of the ME7 scrapie agent to peracetic acid.  Vet Microbiol 1991;27:19–24. 

1190.

 

Taguchi F, Tamai Y, Uchida K, et al.  Proposal for a procedure for complete inactivation of the 

Creutzfeldt-Jakob disease agent.  Arch Virol 1991;119:297–301. 

1191.

 

(339)

 Taylor D.  Inactivation of the unconventional agents of scrapie, bovine spongiform encephalopathy, 

and Creutzfeldt-Jakob disease.  J Hosp Infect 1991;18 (Suppl A):141–6. 

1192.

 

Favero MS.  Current issues in hospital hygiene and sterilization technology.  J Infect Control (Asia 

Pacific Edition) 1998;1:8–10. 

1193.

 

Ricketts MN, Cashman NR, Stratton EE, El Saadany S.  Is Creutzfeldt-Jakob disease transmitted in 

blood?  Emerg Infect Dis 1997;3:155–63. 

1194.

 

Will RG, Kimberlin RH.  Creutzfeldt-Jakob disease and the risk from blood or blood products.  Vox Sang 

1998;75:178–80. 

1195.

 

Evatt B, Austin H, Barnhart E, et al.  Surveillance for Creutzfeldt-Jakob disease among persons with 

hemophilia.  Transfusion 1998;38:817–20. 

background image

 

 

191

1196.

 

Patry D, Curry B, Easton D, Mastrianni JA, Hogan DB.  Creutzfeldt-Jakob disease (CJD) after blood 

product transfusion from a donor with CJD.  Neurology 1998;50:1872–3. 

1197.

 

(340)

  Budka H, Aguzzi A, Brown P, et al.  Tissue handling in suspected Creutzfeldt-Jakob disease (CJD) 

and other human spongiform encephalopathies (prion diseases).  Brain Pathol 1995;5:319–22. 

1198.

 

(341)

  Ironside JW, Bell JE.  The “high-risk” neuropathological autopsy in AIDS and Creutzfeldt-Jakob 

disease: principles and practice.  Neuropathol Appl Neurobiol 1996;22:388–93. 

1199.

 

(336)

  Rutala WA, Weber DJ.  Creutzfeldt-Jakob disease: recommendations for disinfection and 

sterilization.  Clin Infect Dis 2001;32:1348–56. 

1200.

 

Joint Commission for the Accreditation of Healthcare Organizations.  Exposure to Creutzfeldt-Jakob 

Disease.  Sentinel Alert, Issue 20; June 2001.  Available at:  www.jcaho.org/edu_pub/sealert/sea20.html 

1201.

 

(342)

  World Health Organization.  WHO Infection control guideline for transmissible spongiform 

encephalopathies: report of a WHO consultation.  Geneva, Switzerland: WHO, 1999. Available at: 

www.who.int/emc-documents/tse/whocdscsraph2003c.html 

1202.

 

Litsky BY.  Results of bacteriological surveys highlight problem areas in hospitals.  Hospital 

Management 1966;101:82–8. 

1203.

 

Eickhoff TC.  Microbiologic sampling.  Hospitals 1970;44:86–7. 

1204.

 

American Hospital Association Committee on Infections Within the Hospitals.  Statement on 

microbiologic sampling in the hospital 1974;48:125–6. 

1205.

 

Rafferty KM, Pancoast SJ.  Brief report: bacteriological sampling of telephones and other hospital staff-

hand contact objects.  Infect Control 1984;5:533–5. 

1206.

 

Haley RW, Shachtman RS.  The emergence of infection control programs in U.S. hospitals: an 

assessment, 1976.  Am J Epidemiol 1980;111:574–91. 

1207.

 

Mallison GF, Haley RW.  Microbiologic sampling of the inanimate environment in U.S. hospitals, 1976–

1977.  Am J Med 1981;70:941–6. 

1208.

 

Gröschel DHM.  Air sampling in hospitals.  Ann NY Acad Sci 1980;353:230–40. 

1209.

 

(208, Appendix; 6)

  Barbaree JM, Gorman GW, Martin WT, Fields BS, Morrill WE.  Protocol for 

sampling environmental sites for legionellae.  Appl Environ Microbiol 1987;53:1454–8. 

1210.

 

Eickhoff TC.  Microbiologic sampling of the hospital environment.  Health Lab Sci 1974;11:73–5. 

1211.

 

Isenberg HD.  Significance of environmental microbiology in nosocomial infections and the care of 

hospitalized patients.  In:  Lorian V, ed. Significance of medical microbiology in the care of patients.  

Baltimore, MD: Williams & Wilkins, 1977;220–34. 

1212.

 

McGowan JE Jr, Weinstein RA.  The role of the laboratory in control of nosocomial infection.  In: 

Bennett JV, Brachman PS, eds.  Hospital infections, 4

th

 ed. Philadelphia, PA: Lippincott Raven, 

1998;143–64. 

1213.

 

Turner AG, Wilkins JR, Craddock JG.  Bacterial aerosolization from an ultrasonic cleaner.  J Clin 

Microbiol 1975;1:289–93. 

1214.

 

(343)

  Bond WW, Sehulster LM.  Microbiological culturing of environmental and medical-device 

surfaces.  In: Isenberg HD, Miller JM, Bell M, eds. Clinical microbiology procedures handbook, section 

11.  Washington, DC: American Society for Microbiology Press, 2004 (in press). 

1215.

 

Cole EC, Cook CE.  Characterization of infectious aerosols in health care facilities: an aid to effective 

engineering controls and preventive strategies.  Am J Infect Control 1998;26:452–64. 

1216.

 

Nevalainen A, Willeke K, Liebhaber F, Pastuszka J, Burge H, Henningson E.  Bioaerosol sampling.  In: 

Willeke K, Baron PA, eds. Aerosol management.  New York, NY: Van Nostrand Reinhold, 1993;471–92. 

1217.

 

Cox CS.  The aerobiological pathway of microorganisms. Chichester UK: John Wiley & Sons, 1987. 

1218.

 

(349)

  Wolf HW, Skaliy P, Hall LB, et al.  Sampling microbiological aerosols.  Public Health Service 

publication No. 686.  Government Printing Office, Washington, DC: 1964. 

1219.

 

Zeterberg JM.  A review of respiratory virology and the spread of virulent and possible antigenic viruses 

via air conditioning systems.  Ann Allergy 1973;31:228–34. 

1220.

 

Randall CW, Ledbetter JO.  Bacterial air pollution from activated sludge units.  Am Ind Hyg Assoc J 

1966;Nov/Dec:506–19. 

1221.

 

Salem H, Gardner DE.  Health aspects of bioaerosols.  In: Lighthart B, Mohr AJ, eds.  Atmospheric 

microbial aerosols, theory and applications. New York, NY: Chapman and Hall, 1985;304–30. 

1222.

 

Sattar SA, Ijaz MK.  Spread of viral infections by aerosols.  Crit Rev Environ Control 1987;17:89–131. 

1223.

 

(345)

  Buttner MP, Willeke K, Grinshpun SA.  Sampling and analysis of airborne microorganisms.  In: 

Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV, eds.  Manual of environmental 

microbiology. Washington, DC: American Society for Microbiology Press, 1997;629–40. 

background image

 

 

192 

1224.

 

(346)

  Jensen PA, Schafer MP.  Sampling and characterization of bioaerosols.  In: NIOSH Manual of 

Analytical Methods;Cincinnati OH;CDC;1998: p. 82–112. Available at: 

www.cdc.gov/niosh/nmam/pdfs/chapter-j.pdf 

1225.

 

Jolley AE.  The value of surveillance cultures on neonatal intensive care units.  J Hosp Infect 

1993;25:153–9. 

1226.

 

Hardy KA, McGowan KL, Fisher MC, Schidlow DV.  

Pseudomonas cepacia

 in the hospital setting: lack 

of transmission between cystic fibrosis patients.  J Pediatr 1986;109:51–4. 

1227.

 

Hambraeus A, Lagerqvist-Widh A, Zettersten U, Engberg S, Sedin G, Sjoberg L.  Spread of 

Klebsiella

 in 

a neonatal ward.  Scand J Infect Dis 1991;23:189–94. 

1228.

 

Humphreys H, Peckham D, Patel P, Knox A.  Airborne dissemination of 

Burkholderia

 (

Pseudomonas

cepacia 

from adult patients with cystic fibrosis.  Thorax 1994;49:1157–9. 

1229.

 

Pankhurst CL, Harrison VE, Philpott-Howard J.  Evaluation of contamination of the dentist and dental 

surgery environment with 

Burkholderia

 (

Pseudomonas

cepacia

 during treatment of children with cystic 

fibrosis.  Int J Paediatr Dent 1995;5:243–7. 

1230.

 

Weber DO, Gooch JJ, Wood WR, Britt EM, Kraft RO.  Influence of operating room surface 

contamination on surgical wounds: a prospective study.  Arch Surg 1976;111:484–8. 

1231.

 

Pfeiffer EH, Wittig JR, Dunkelberg H, Werner HP.  Hygienic and bacteriological comparative studies in 

50 hospitals.  V. Bacterial contamination of hospital surfaces.  Zentralbl Bakteriol [B] 1978;167:11–21. 

(German) 

1232.

 

Sattar SA, Lloyd-Evans N, Springthorpe VS.  Institutional outbreaks of rotavirus diarrhea: potential role 

of fomites and environmental surfaces as vehicles for virus transmission.  J Hyg (Camb) 1986;96:277–89. 

1233.

 

Smith SM, Eng RH, Padberg FT Jr.  Survival of nosocomial pathogenic bacteria at ambient temperature.  

J Med 1996;27:293–302. 

1234.

 

Craythorn JM, Barbour AG, Matsen JM, Britt MR, Garibaldi RA.  Membrane filter contact technique for 

bacteriological sampling of moist surfaces.  J Clin Microbiol 1980;12:250–5. 

1235.

 

Scott E, Bloomfield SF, Barlow CG.  A comparison of contact plate and calcium alginate swab 

techniques for quantitative assessment of bacteriological contamination of environmental surfaces.  J 

Appl Bacteriol 1984;56:317–20. 

1236.

 

Poletti L, Pasquarella C, Pitzurra M, Savino A.  Comparative efficiency of nitrocellulose membranes 

versus RODAC plates in microbial sampling on surfaces.  J Hosp Infect 1999;41:195–201. 

1237.

 

Russell AD.  Factors influencing the efficacy of antimicrobial agents.  In: Russell AD, Hugo WB, Ayliffe 

GAJ, eds. Principles and practices of disinfection, preservation and sterilization. Oxford, UK: Blackwell 

Science, 1999;95–123. 

1238.

 

(347)

  International Organization for Standardization (ISO).  Sterilization of medical devices — 

microbiological methods, Part 1.  ISO Standard 11737-1.  Paramus, NJ: International Organization for 

Standardization, 1995. 

1239.

 

Favero MS, Gabis DA, Vesley D.  Environmental monitoring procedures. In: Speck ML, ed. 

Compendium of methods for the microbiological examination of foods, 2

nd

 ed.  Washington, DC: 

American Public Health Association;1984;47–61. 

1240.

 

Favero MS, Bond WW, Petersen NJ, Berquist KR, Maynard JE.  Detection methods for study of the 

stability of hepatitis B antigen on surfaces.  J Infect Dis 1974;129:210–2. 

1241.

 

Favero MS, McDade JJ, Robertsen JA, Hoffmann RK, Edwards RW.  Microbiological sampling of 

surfaces.  J Appl Bacteriol 1968;31:336–43. 

1242.

 

Petersen NJ, Collins DE, Marshall JH.  Evaluation of skin cleansing procedures using the wipe-rinse 

technique.  Health Lab Sci 1974;11:182–97. 

1243.

 

Schalkowsky S, Hall LB, Kline RC.  Potential effects of recent findings on spacecraft sterilization 

requirements.  Space Life Sci 1969;1:520–30. 

1244.

 

Hall LB, Lyle RG.  Foundations of planetary quarantine.  Environ Biol Med 1971;1:5–8. 

1245.

 

Rutala WA, Weber DJ.  Uses of inorganic hypochlorite (bleach) in health-care facilities.  Clin Microbiol 

Rev 1997;10:597–610. 

1246.

 

Mallison GF.  Central services and linens and laundry.  In: Bennett JV, Brachman PS, eds. Hospital 

infections.  Boston, MA: Little, Brown, & Co, 1986;251–6. 

1247.

 

(365)

  Blaser MJ, Smith PE, Cody HJ, Wang W-LL, LaForce FM.  Killing of fabric-associated bacteria in 

hospital laundry by low-temperature washing.  J Infect Dis 1984;149:48–57. 

1248.

 

Centers for Disease Control.  Outbreak of viral hepatitis in the staff of a pediatric ward — California.  

MMWR 1977;28:77–9. 

background image

 

 

193

1249.

 

Shah PC, Krajden S, Kane J, Summerbell RC.  Tinea corporis caused by 

Microsporum canis

: report of a 

nosocomial outbreak.  Eur J Epidemiol 1988;4:33–7. 

1250.

 

(353)

  Barrie D, Hoffman PN, Wilson JA, Kramer JM.  Contamination of hospital linen by 

Bacillus 

cereus

.  Epidemiol Infect 1994;113:297–306. 

1251.

 

Standaert SM, Hutcheson RH, Schaffner W.  Nosocomial transmission of 

Salmonella gastroenteritis

 to 

laundry workers in a nursing home.  Infect Control Hosp Epidemiol 1994;15:22–6. 

1252.

 

Pasternak J, Richtmann R, Ganme APP, et al.  Scabies epidemic: price and prejudice.  Infect Control 

Hosp Epidemiol 1994;15:540–2. 

1253.

 

(357)

  Association for the Advancement of Medical Instrumentation.  Processing of reusable surgical 

textiles for use in health care facilities: ANSI/AAMI recommended practice ST65. Arlington, VA: 

Association for the Advancement of Medical Instrumentation, 2000;16. 

1254.

 

Association of Operating Room Nurses.  Recommended practices for surgical attire: AORN standards 

and rrecommended practices.  AORN J 1995;62:141–2. 

1255.

 

Loh W, Ng VV, Holton J.  Bacterial flora on the white coats of medical students.  J Hosp Infect 

2000;45:65–8. 

1256.

 

Belkin NL.  Use of scrubs and related apparel in healthcare facilities.  Am J Infect Control 1997;25:401–

4. 

1257.

 

Belkin NL.  Home laundering of soiled surgical scrubs: surgical site infections and the home 

environment.  Am J Infect Control 2000;29:58–64. 

1258.

 

(355)

  Joint Committee on Healthcare Laundry Guidelines.  Guidelines for healthcare linen service.  

Hallendale, FL: Textile Rental Service Association of America, 1999. 

1259.

 

(356)

  Greene VW.  Microbiological contamination control in hospitals: part 6 — roles of central service 

and the laundry.  Hospitals JAHA 1970;44:98–103. 

1260.

 

(350)

  Wagner RA.  Partitioned laundry improves bacteria control.  Hospitals JAHA 1966;40:148–51. 

1261.

 

(351)

  Hambraeus A, Malmborg AS.  Is a bed centre in a hospital a hygienic hazard?  J Hyg (Camb) 

1982;88:143–7. 

1262.

 

(352)

  McDonald LL, Pugliese G.  Textile processing service.  In: Mayhall CG, ed. Hospital 

epidemiology and infection control, 2

nd

 ed. Philadelphia, PA: Lippincott Williams & Wilkins, 

1999;1031–4. 

1263.

 

(354)

  Legnani PP, Leoni E.  Factors affecting the bacteriological contamination of commercial washing 

machines.  Zentralbl Hyg Umweltmed 1997;200:319–33. 

1264.

 

Maki DG, Alvarado C, Hassemer C.  Double-bagging of items from isolation rooms is unnecessary as an 

infection control measure: a comparative study of surface contamination with single- and double-bagging.  

Infect Control 1986;7:535–7. 

1265.

 

Garner JS, Simmons BP.  CDC guideline for isolation precautions in hospitals.  Infect Control 1983;4: 

245–325 and Am J Infect Control 1984;12:103–63. 

1266.

 

Weinstein SA, Gantz NM, Pelletier C, Hibert D.  Bacterial surface contamination of patients’ linen: 

isolation precautions versus standard care.  Am J Infect Control 1989;17:264–7. 

1267.

 

(358)

  Hughes HG.  Chutes in hospitals.  Can Hosp 1964;41:56–7, 87. 

1268.

 

(359)

  Michaelsen GS.  Designing linen chutes to reduce spread of infectious organisms.  Hospitals 

JAHA 1965;39 (3):116–9. 

1269.

 

(360)

  Hoch KW.  Laundry chute cleaning recommendations [letter].  Infect Control 1982;3:360. 

1270.

 

(361)

  Whyte W, Baird G, Annand R.  Bacterial contamination on the surface of hospital linen chutes.  J 

Hyg (Camb) 1969;67:427–35. 

1271.

 

(363)

  Walter WG, Schillinger JE.  Bacterial survival in laundered fabrics.  Appl Microbiol 1975;29:368–

73. 

1272.

 

(362)

  Taylor LJ.  Segregation, collection, and disposal of hospital laundry and waste.  J Hosp Infect 

1988;11 (Suppl. A):57–63. 

1273.

 

Barrie D.  How hospital linen and laundry services are provided.  J Hosp Infect 1994;27:219–35. 

1274.

 

Riggs CH, Sherrill JC.  Textile laundering technology. Hallendale FL: Textile Rental Service 

Association; 1999;92–7. 

1275.

 

Mouton RP, Bekkers JH.  Bacteriological results of routine procedures in a hospital laundry.  Folia Med 

Neerl 1967;10:71–6. 

1276.

 

Nicholes PS.  Bacteria in laundered fabrics.  Am J Public Health 1970;60:2175–80. 

1277.

 

Arnold L.  A sanitary study of commercial laundry practices.  Am J Public Health 1938;28:839–44. 

background image

 

 

194 

1278.

 

(364)

  Belkin NL.  Aseptics and aesthetics of chlorine bleach: can its use in laundering be safely 

abandoned?  Am J Infect Control 1998;26:149–51. 

1279.

 

Jordan WE, Jones DV.  Antiviral effectiveness of chlorine bleach in household laundry use.  Am J Dis 

Child 1969;117:313–6. 

1280.

 

Hittman Associates, Inc.  Energy efficient water use in hospitals [Final summary report (H-W8000-78-

756FR)]. Prepared for the University of California, Lawrence Berkeley Laboratory, 1979. Contract No. 

P.O. 4627702. 

1281.

 

(366)

  Jaska JM, Fredell DL.  Impact of detergent systems on bacterial survival on laundered fabrics.  

Appl Environ Microbiol 1980;39:743–8. 

1282.

 

(367)

  Battles DR, Vesley D.  Wash water temperature and sanitation in the hospital laundry.  J Environ 

Health 1981;43:244–50. 

1283.

 

(368)

  Christian RR, Manchester JT, Mellor MT.  Bacteriological quality of fabrics washed at lower-than-

standard temperatures in a hospital laundry facility.  Appl Environ Microbiol 1983;45:591–7. 

1284.

 

(369)

  Smith JA, Neil KR, Davidson CG, Davidson RW.  Effect of water temperature on bacterial killing 

in laundry.  Infect Control 1987;8:204–9. 

1285.

 

(370)

  Tompkins DS, Johnson P, Fittall BR.  Low-temperature washing of patients’ clothing: effects of 

detergent with disinfectant and a tunnel drier on bacterial survival.  J Hosp Infect 1988;12:51–8. 

1286.

 

(371)

  Ayliffe GAJ, Collins BJ, Taylor LJ.  Laundering. In: Wright PSG, ed. Hospital-acquired Infection: 

principles and Prevention.  Bristol, UK: 1982;101–6. 

1287.

 

Koller W, Wewalka G.  A new method for microbiological evaluation of disinfecting laundering 

processes.  Zbl Bakt Hyg I Abt Orig B 1982;176:463–71. 

1288.

 

(372)

  Meyer CL, Eitzen HE, Schreiner RL, Gfell MA, Moye L, Kleiman MB.  Should linen in newborn 

intensive care units be autoclaved?  Pediatrics 1981;67:362–4. 

1289.

 

(373)

  Wagg RE.  Disinfection of textiles in laundering and dry cleaning.  Chem Ind 1965;44:1830–4. 

1290.

 

(374)

  Bates CJ, Wilcox MH, Smith TL, Spencer RC.  The efficacy of a hospital dry cleaning cycle in 

disinfecting material contaminated with bacteria and viruses.  J Hosp Infect 1993;23:255–62. 

1291.

 

(375)

  Oehnel E.  Drycleaning in the hospital laundry. Can Hosp 1971;September:66–7. 

1292.

 

DiGacomo JC, Odom JW, Ritoto PC, Swan KC.  Cost containment in the operating room: use of 

reusables versus disposable clothing.  Am Surg 1992;58:654–6. 

1293.

 

American Society for Testing Materials.  Standard test method for resistance of materials used in 

protective clothing to penetration by synthetic blood.  ASTM, 1998;F1670–98. 

1294.

 

American Society for Testing Materials.  Standard test method for resistance of materials used in 

protective clothing to penetration by bloodborne pathogens using phi-X174 bacteriophage penetration as 

a test system.  ASTM 1997;F1671–976. 

1295.

 

Belkin NL.  Are “impervious” surgical gowns really liquid-proof?  Bull Am Col Surgeons 1999;84:19–

36. 

1296.

 

Belkin NL.  OR gowns — even a “pass” can fail.  AORN J 1999;70:302–4. 

1297.

 

Laufman H, Belkin NL, Meyer KK.  A critical review of a century’s progress in surgical apparel: how far 

have we come?  J Am Col Surgeons 2000;191:554–68. 

1298.

 

Leonas KK, Jinkins RS.  The relationship of selected fabric characteristics and the barrier effectiveness of 

surgical gown fabrics.  Am J Infect Control 1997;25:16–23. 

1299.

 

Meyer KK, Beck WC.  Gown-glove interface: a possible solution to the danger zone.  Infect Control 

Hosp Epidemiol 1995;16:488–90. 

1300.

 

McCullough EA.  Methods for determining the barrier efficacy of surgical gowns.  Am J Infect Control 

1993;21:368–74. 

1301.

 

Pissiotis CA, Komborozos V, Papoutsi C, Skrekas G.  Factors that influence the effectiveness of surgical 

gowns in the operating theater.  Eur J Surg 1997;163:597–604. 

1302.

 

Association of Operating Room Nurses (AORN).  Recommended practices for use and selection of 

barrier materials for surgical gowns and drapes.  Association of Operating Room Nurses.  AORN J 

1996;63:650, 653–4. 

1303.

 

Belkin NL, Koch FT.  OR barrier materials — Necessity or extravagance?  AORN J 1998;67:443–5. 

1304.

 

Rutala WA, Weber DJ.  A review of single-use and reusable gowns and drapes in health care.  Infect 

Control Hosp Epidemiol 2001;22:248–57. 

1305.

 

Murphy L.  Cost/benefit study of reusable and disposable OR draping materials.  J Healthc Mater Manage 

1993;11:44–8. 

background image

 

 

195

1306.

 

(376)

  U.S. Environmental Protection Agency.  Consumer products treated with pesticides.  Office of 

Pesticide Programs.  Available at:  www.epa.gov/opp00001/citizens/treatart.htm 

1307.

 

Kalyon BD, Olgun U.  Antibacterial efficacy of triclosan-incorporated polymers.  Am J Infect Control 

2001;29:124–5. 

1308.

 

U.S. Environmental Protection Agency.  Clarification of treated articles exemption. Availability of draft 

PR notice.  Federal Register 1998;63:19256–8. 

1309.

 

Mayer CE.  FTC Challenges antibacterial product.  Washington, DC: Washington Post, September 

17,1999;A09. 

1310.

 

(377)

  Fujita K, Lilly HA, Kidson A, Ayliffe GAJ.  Gentamicin-resistant 

Pseudomonas aeruginosa

 

infection from mattresses in a burns unit.  Br Med J 1981;283:219–20. 

1311.

 

(378)

  Grubb DJ, Watson KC.  

Pseudomonas 

septicaemia from plastic mattresses [letter].  Lancet 

1982;1:518. 

1312.

 

(379)

  Sherertz RJ, Sullivan ML.  An outbreak of infections with 

Acinetobacter calcoaceticus

 in burn 

patients: contamination of patients’ mattresses.  J Infect Dis 1985;151:252–8. 

1313.

 

(380)

  Ndawula EM, Brown L.  Mattresses as reservoirs of epidemic methicillin-resistant 

Staphylococcus 

aureus

 [letter].  Lancet 1991;337:488. 

1314.

 

(381)

  O’Donoghue MAT, Allen KD.  Costs of an outbreak of wound infections in an orthopaedic ward.  

J Hosp Infect 1992;22:73–9. 

1315.

 

 

(382)

  Weernink A, Severin WPJ, Thernberg T, Dijkshoorn L.  Pillows, an unexpected source of 

Acinetobacter

.  J Hosp Infect 1995;29:189–99. 

1316.

 

Newsome TW, Johns LA, Pruitt BA Jr.  Use of an air-fluidized bed in the care of patients with extensive 

burns.  Am J Surg 1972;124:52–6. 

1317.

 

(383)

  Scheidt A, Drusin LM.  Bacteriologic contamination in an air-fluidized bed.  J Trauma 

1983;23:241–2. 

1318.

 

(384)

  Freeman R, Gould FK, Ryan DW, Chamberlain J, Sisson PR.  Nosocomial infection due to 

enterococci attributed to a fluidized microsphere bed: the value of pyrolysis mass spectrometry.  J Hosp 

Infect 1994;27:187–93. 

1319.

 

Sharbaugh RJ, Hargest TS.  Bactericidal effect of the air-fluidized bed.  Am Surgeon 1971;37:583–6. 

1320.

 

Sharbaugh RJ, Hargest TS, Wright FA.  Further studies on the bactericidal effect of the air-fluidized bed.  

Am Surgeon 1973;39:253–6. 

1321.

 

Winters WD.  A new perspective of microbial survival and dissemination in a prospectively contaminated 

air-fluidized bed model.  Am J Infect Control 1990;18:307–15. 

1322.

 

(385)

  Clancy MJ.  Nosocomial infection and microsphere beds [letter].  Lancet 1993;342:680–1. 

1323.

 

(386)

  Clancy MJ.  Nosocomial infection due to enterococci attributed to a fluidized microsphere bed 

[letter].  J Hosp Infect 1994;28:324–5. 

1324.

 

Vesley D, Hankinson SE, Lauer JL.  Microbial survival and dissemination associated with an air-

fluidized therapy unit.  Am J Infect Control 1986;14:35–40. 

1325.

 

Bolyard EA, Townsend TR, Horan T.  Airborne contamination associated with in-use air-fluidized beds: 

a descriptive study.  Am J Infect Control 1987;15:75–8. 

1326.

 

(387)

  Jacobsen E, Gurevich I, Cunha BA.  Air-fluidized beds and negative-pressure isolation rooms 

[letter].  Am J Infect Control 1993;21:217–8. 

1327.

 

Cooper JE.  Pets in hospitals.  Br Med J 1976;1:698–700. 

1328.

 

Egerton JR.  Pets and zoonoses.  Med J Aust 1982;2:311. 

1329.

 

Yamauchi T.  Pet programs in hospitals.  Pediatr Infect Dis J 1993;12:707. 

1330.

 

Khan MA, Farrag N.  Animal-assisted activity and infection control implications in a healthcare setting.  J 

Hosp Infect 2000;46:4–11. 

1331.

 

Weber DJ, Rutala WA.  Epidemiology and prevention of nosocomial infections associated with animals 

in the hospital. In: Mayhall CG, ed. Hospital epidemiology and infection control, 2

nd

 ed. Philadelphia, 

PA: Lippincott Williams & Wilkins, 1999;1399–421. 

1332.

 

Acha PN, Szyfres B.  Zoonoses and communicable diseases common to man and animals, 2

nd

 ed.  

Washington, DC: Pan American Health Organization, 1987. Scientific publication No. 503. 

1333.

 

Elliot DL, Tolle SW, Goldberg L, Miller JB.  Pet-associated illness.  N Engl J Med 1985;313:985–95. 

1334.

 

Marx MB.  Parasites, pets, and people.  Primary Care 1991;18:153–65. 

1335.

 

Goldstein EJ.  Household pets and human infections.  Infect Dis Clin North Am 1991;5:117–30. 

1336.

 

Chomel BB.  Zoonoses of house pets other than dogs, cats, and birds.  Pediatr Infect Dis J 1992;11:479–

87. 

background image

 

 

196 

1337.

 

Gnann JW Jr, Bressler GS, Bodet CA III, Avent CK.  Human blastomycosis after a dog bite.  Ann Intern 

Med 1983;98:48–9. 

1338.

 

Garcia VF.  Animal bites and 

Pasteurella 

infections.  Pediatr Rev 1997;18:127–30. 

1339.

 

Crowder HR, Dorn CR, Smith RE.  Group A 

Streptococcus

 in pets and group A streptococcal disease in 

man.  Int J Zoonoses 1978;5:45–54. 

1340.

 

(397)

  CDC.  Reptile-associated salmonellosis — selected states, 1996–1998.  MMWR 1999;48:1009–13. 

1341.

 

Devriese LA, Ieven M, Goossens H, et al.  Presence of vancomycin-resistant enterococci in farm and pet 

animals.  Antimicrob Agent Chemother 1996;40:2285–7. 

1342.

 

Scott GM, Thomson R, Malone-Lee J, Ridgway GL.  Cross-infection between animals and man: Possible 

feline tranmission of 

Staphylococcus aureus

 infection in humans?  J Hosp Infect 1988;12:29–34. 

1343.

 

Weinberg A.  Ecology and epidemiology of zoonotic pathogens.  Infect Dis Clin North Am 1991;5:1–6. 

1344.

 

Yu V, Meissner C.  Zoonoses.  In: Schaechter M, Medoff G, Schlessinger D, eds. Mechanisms of 

microbial diseases. Baltimore, MD: Williams & Wilkins, 1989;749–64. 

1345.

 

Ryan KJ.  Some bacteria causing zoonotic diseases. In: Sherris JC, ed. Medical microbiology, 2

nd

 ed. 

New York, NY: Elsevier, 1990;489–98. 

1346.

 

Chang HJ, Miller HL, Watkins N, et al.  An epidemic of 

Malassezia pachydermatis

 in an intensive care 

nursery associated with colonization of healthcare workers’ pet dog.  N Engl J Med 1998;338:706–11. 

1347.

 

Drusin LM, Ross BG, Rhodes KH, Krause AN, Scott RA.  Nosocomial ringworm in a neonatal intensive 

care unit: a nurse and her cat.  Infect Control Hosp Epidemiol 2000;21:605–7. 

1348.

 

Richet HM, Craven PC, Brown JM, et al.  A cluster of 

Rhodococcus

 (

Gordona

bronchialis

 sternal-

wound infections after coronary-artery bypass surgery.  N Engl J Med 1991;324:104–9. 

1349.

 

(394)

  Saylor K.  Pet visitation program.  J Gerontol Nurs 1998;24:36–8. 

1350.

 

Corson SA, O’Leary Corson E.  Pets as mediators of therapy.  Curr Psychiatr Ther 1978;18:195–205. 

1351.

 

Fick KM.  The influence of an animal on social interactions of nursing home residents in a group setting.  

Am J Occup Ther 1993;47:529–34. 

1352.

 

Gunby P.  Patient progressing well?  He must have a pet.  JAMA 1979;241:438. 

1353.

 

Culliton BJ.  Take two pets and call me in the morning.  Science 1987;237:1560–1. 

1354.

 

Wilkes CN, Shalko TK, Trahan M.  Pet Rx: Implications for good health.  Health Educ 1989;20:6–9. 

1355.

 

Doyle K, Kukowski T.  Utilization of pets in a hospice program.  Health Educ 1989;20:10–1. 

1356.

 

Teeter LM.  Pet therapy program.  J Amer Vet Med Assoc 1997;210:1435–8. 

1357.

 

Gammonley J, Yates J.  Pet projects: animal assisted therapy in nursing homes.  J Gerontol Nurs 

1991;17:12–5. 

1358.

 

(395)

  Draper RJ, Gerber GJ, Layng EM.  Defining the role of pet animals in psychotherapy.  Psychiat J 

Univ Ottawa 1990;15:169–72. 

1359.

 

Allen DT.  Effects of dogs on human health.  J Amer Vet Med Assoc 1997;210:1136–9. 

1360.

 

(391)

  Delta Society.  Standards of practice for animal-assisted activities and animal-assisted therapy.  

Renton, WA: Delta Society, 1996. 

1361.

 

(392)

  Fox JG.  Transmissible drug resistance in 

Shigella

 and 

Salmonella

 isolated from pet monkeys and 

their owners.  J Med Primatol 1975;4:165–71. 

1362.

 

(393)

  Ostrowski SR, Leslie MJ, Parrott T, Abelt S, Piercy PE.  B-virus from pet macaque monkeys: an 

emerging threat in the United States?  Emerg Infect Dis 1998;4:117–21. 

1363.

 

CDC. How to prevent transmission of intestinal roundworms from pets to people.   Available at:  

www.cdc.gov/ncidod/diseases/roundwrm/roundwrm.htm 

1364.

 

(146)

 Boyce JM, Pittet D.  Guideline for hand hygiene in health-care settings: recommendations of the 

Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand 

Hygiene Task Force.  Infect Control Hosp Epidemiol 2002;23 (Suppl):S1–S40. 

1365.

 

(388)

  American Academy of Allergy, Asthma, and Immunology.  Tips to remember: indoor allergens. 

Available at:  www.aaaai.org/patients/publicedmat/tips/indoorallergens.stm 

1366.

 

(389)

  Duncan SL, APIC Guideline Committee.  APIC State-of-the-art report: the implications of service 

animals in healthcare settings.  Am J Infect Control 2000;28:170–80. 

1367.

 

(390)

  Murray AB, Ferguson A, Morrison BJ.  The frequency and severity of cat allergy vs. dog allergy in 

atopic children.  J Allergy Clin Immunol 1983;72:145–9. 

1368.

 

Hodson T, Custovic A, Simpson A, Chapman M, Woodcock A, Green R.  Washing the dog reduces dog 

allergen levels, but the dog needs to be washed twice a week.  J Allergy Clin Immunol 1999;103:581–5. 

1369.

 

Brickel CN.  The therapeutic roles of cat mascots with a hospital based population: a staff survey.  

Gerontologist 1979;19:368–72. 

background image

 

 

197

1370.

 

Thomas W, Stermer M.  Eden alternative principles hold promise for the future of long-term care.  

Balance 1999;3:14–7. 

1371.

 

Tavormina CE.  Embracing the Eden alternative in long-term care environments.  Geriatr Nurs 

1999;20:158–61. 

1372.

 

Brook I, Fish CH, Schantz PM, Cotton DD.  Toxocariasis in an institution for the mentally retarded.  

Infect Control 1981;2:317–9. 

1373.

 

Huminer D, Symon R, Groskopf I, et al.  Seroepidemiological study of toxocariasis and strongyloidiasis 

in adult mentally retarded institutionalized subjects.  Am J Trop Med Hyg 1992;46:278–81. 

1374.

 

Huminer D, Pitlik SD, Block C, Kaufman L, Amit S, Rosenfeld JB.  Aquarium-borne 

Mycobacterium 

marinum

 skin infection: report of a case and review of the literature. Arch Dermatol 1986;122:698–703. 

1375.

 

Lewis FMT, Marsh BJ, von Reyn CF.  Fish tank exposure and cutaneous infections due to 

Mycobacterium marinum

: tuberculin skin testing, treatment, and prevention.  Clin Infect Dis 

2003;37:390–7. 

1376.

 

(398)

 U.S. Department of Justice.  Americans with Disabilities Act. Public Law 101-336 (28 CFR 36.101 

et seq.).  Title III, Public Accomodations Operated by Private Entities, Sect. 302, Prohibition of 

Discrimination by Public Accomodations;42 USC 12101 et seq.  July 26, 1990. 

1377.

 

U.S. Department of Justice, Civil Rights Division, Disability Rights Section.  Commonly asked questions 

about service animals in places of business, 1996. 

1378.

 

Schachter J, Sung M, Meyer KF.  Potential danger of Q fever in a university hospital environment.  J 

Infect Dis 1971;123:301–4. 

1379.

 

Konkle DM, Nelson KN, Lunn DP.  Nosocomial transmission of 

Cryptosporidium

 in a veterinary 

hospital.  J Vet Intern Med 1997;11:340–3. 

1380.

 

House JK, Mainar-Jaime RC, Smith BP, House AM, Kamiya DY.  Risk factors for nosocomial 

Salmonella

 infection among hospitalized horses.  J Am Vet Med Assoc 1999;214:1511–6. 

1381.

 

Weese JS, Staempfli HR, Prescott JF.  Isolation of environmental 

Clostridium difficile

 from a veterinary 

teaching hospital.  J Vet Diagn Invest 2000;12:449–52. 

1382.

 

Boerlin P, Eugster S, Gaschen F, Straub R, Schawalder P.  Transmission of opportunistic pathogens in a 

veterinary teaching hospital.  Vet Microbiol 2001;82:347–9. 

1383.

 

Schott HC II, Ewart SL, Walker RD, et al.  An outbreak of salmonellosis among horses at a veterinary 

teaching hospital.  J Am Vet Med Assoc 2001;218:1152–9,1170. 

1384.

 

Kim LM, Morley PS, Traub-Dargatz JL, Salman MD, Gentry-Weeks C.  Factors associated with 

Salmonella

 shedding among equine colic patients at a veterinary teaching hospital.  J Am Vet Med Assoc 

2001;218:740–8. 

1385.

 

Seguin JC, Walker RD, Caron JP, et al.  Methicillin-resistant 

Staphylococcus aureus

 outbreak in a 

veterinary teaching hospital: potential human-to-animal transmission.  J Clin Microbiol 1999;37:1459–

63. 

1386.

 

Shen DT, Crawford TB, Gorham JR, et al.  Inactivation of equine infectious anemia virus by chemical 

disinfectants.  Am J Vet Res 1977;38:1217–9. 

1387.

 

Scott FW.  Virucidal disinfectants and feline viruses.  Am J Vet Res 1980;41:410–4. 

1388.

 

Brown TT.  Laboratory evaluation of selected disinfectants as virucidal agents against porcine parvovirus, 

pseudorabies virus, and transmissible gastroenteritis virus.  Am J Vet Res 1981;42:1033–6. 

1389.

 

Saknimit M, Inatsuki I, Sugiyama Y, et al.  Virucidal efficacy of physico-chemical treatments against 

coronaviruses and parvoviruses of laboratory animals.  Exp Anim 1988;37:341–5. 

1390.

 

Bruins G, Dyer JA.  Environmental considerations of disinfectants used in agriculture.  Rev Sci Tech 

1995;14:81–94. 

1391.

 

Quinn PJ, Markey BK.  Disinfection and disease prevention in veterinary medicine.  In: Block SS, ed. 

Disinfection, sterilization, and preservation, 5

th

 ed.  Philadelphia, PA: Lippincott Williams & Wilkins, 

2001;1069–103. 

1392.

 

Fox JG, Lipman NS.  Infections transmitted by large and small laboratory animals.  Infect Dis Clin North 

Am 1991;5:131–63. 

1393.

 

(401)

  U.S. Department of Labor, Occupational Safety and Health Administration.  Personal Protective 

Equipment for General Industry, Final Rule (29 CFR 1910 §1910.132, 1910.138).  Federal Register 

1994;59:16334–64. 

1394.

 

U.S. Department of Agriculture.  Public Law 89-544 (The Animal Welfare Act of 1966).  7 USC § 2131-

2156. 

background image

 

 

198 

1395.

 

(399)

  U.S. Department of Agriculture.  Public Law 99-198 Food Security Act of 1985, Subtitle F - 

Animal Welfare.  7 USC § 2131. 

1396.

 

Althaus H, Sauerwald M, Schrammeck E.  Waste from hospitals and sanatoria.  Zbl Bakteriol Hyg I Abt 

Orig B 1983;178:1–29. 

1397.

 

Kalnowski G, Wiegand H, Henning R.  The microbial contamination of hospital waste.  Zbl Bakteriol 

Hyg I Abt Orig B 1983;178:364–79. 

1398.

 

Mose JR, Reinthaler F.  Microbial contamination of hospital waste and household refuse.  Zbl Bakteriol 

Hyg I Abt Orig B 1985;181:98–110. 

1399.

 

Collins CH, Kennedy DA.  The microbiological hazards of municipal and clinical wastes.  J Appl 

Bacteriol 1992;73:1–6. 

1400.

 

Rutala WA, Odette RL, Samsa GP.  Management of infectious waste by U.S. hospitals.  JAMA 

1989;262:1635–40. 

1401.

 

Agency for Toxic Substances and Disease Registry.  The public health implications of medical waste: a 

report to Congress.  Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 

1990. 

1402.

 

Hedrick ER.  Infectious waste management — will science prevail?  Infect Control Hosp Epidemiol 

1988;9:488–90. 

1403.

 

Keene J.  Medical waste management: public pressure vs. sound science.  Hazard Mat Control 

1989;Sept/Oct:29–36. 

1404.

 

Keene J.  Medical waste: a minimal hazard.  Infect Control Hosp Epidemiol 1991;12:682–5. 

1405.

 

Rutala WA, Weber DJ.  Mismatch between science and policy.  N Engl J Med 1991;325:578–82. 

1406.

 

U.S. Environmental Protection Agency.  EPA guide for infectious waste management.  Washington, DC: 

U.S. Government Printing Office, 1986. EPA Publication No. 530SW86014. 

1407.

 

(402)

  U.S. Department of Transportation.  Hazardous materials regulations.  49 CFR Parts 171–180, 

Division 6.2;and Hazardous Materials: Revision to Standards for Infectious Substances and Genetically–

Modified Microorganisms: Proposed Rule.  Federal Register 1998;63:46843–59. 

1408.

 

(403)

  U.S. Postal Service.  C 023.8.0 Infectious substances (Hazard Class 6, Division 6.2) et seq.  At: 

http://pe.usps.gov/text/dmm/c023.htm 

1409.

 

(404)

  Greene R, Miele DJ, Slavik NS.  Technical assistance manual: state regulatory oversight of 

medical waste treatment technologies, 2

nd

 ed: a report of the State and Territorial Association on 

Alternative Treatment Technologies, 1994. 

1410.

 

U.S. Environmental Protection Agency (EPA).  40 CFR Part 60.  Standards of performance for new 

stationary sources and emission guidelines for existing sources: hospital/medical/infectious waste 

incinerators; Final Rule.  Federal Register 1997;62:48347–91. 

1411.

 

CDC/National Institutes of Health.  Biosafety in microbiological and biomedical laboratories.   

Washington, DC: U.S. Government Printing Office, 1985. DHHS Publication No. (CDC) 93–8395. 

1412.

 

(409)

  U.S. Department of Health and Human Services, Office of Inspector General, CDC.  Possession, 

use, and transfer of select agents and toxins, interim final rule (42 CFR Part 73). Federal Register, 

December 13, 2002;67(240):76885–905. 

1413.

 

U.S. Department of Agriculture, Animal and Plant Health Inspection Service.  Agricultural Bioterrorism 

Protection Act of 2002; Possession, use, and transfer of biological agents and toxins: interim final rule (9 

CFR Part 121). Federal Register. December 13, 2002;67(240):76907–38. 

1414.

 

(410)

  CDC.  Recommendations on infective waste.  Atlanta, GA: Office of Biosafety and Hospital 

Infections Program, 1988;1–6. 

1415.

 

(405)

  CDC.  National Institute for Occupational Safety and Health.  NIOSH Alert: Preventing 

needlestick injuries in health care settings. Cincinnati, OH: DHHS, 1999.  DHHS-NIOSH Publication No. 

2000–108. 

1416.

 

Rutala WA, Stiegel MM, Sarubbi FA.  Decontamination of laboratory microbiological waste by steam 

sterilization.  Appl Environ Microbiol 1982;43:1311–6. 

1417.

 

Lauer JL, Battles DR, Vesley D.  Decontaminating infectious laboratory waste by autoclaving.  Appl 

Environ Microbiol 1982;44:690–4. 

1418.

 

Palenik CJ, Cumberlander ND.  Effects of steam sterilization on the contents of sharps containers.  Am J 

Infect Control 1993;21:28–33. 

1419.

 

(406)

  Weber AM, Boudreau Y, Mortimer VD.  Stericycle, Inc., Morton, WA.  HETA 98-0027-2709.  

NIOSH, CDC, Cincinnati, OH, 1998. 

background image

 

 

199

1420.

 

(407)

  Johnson KR, Braden CR, Cairns KL, et al.  Transmission of 

Mycobacterium tuberculosis

 from 

medical waste.  JAMA 2000;284:1683–8. 

1421.

 

(408)

  Emery R, Sprau D, Lao YJ, Pryor W.  Release of bacterial aerosols during infectious waste 

compaction: An initial hazard evaluation for health care workers.  Am Ind Hyg Assoc J  1992;53:339–45. 

1422.

 

National Committee for Clinical Laboratory Standards (NCCLS).  Protection of laboratory workers from 

instrument biohazards and infectious disease transmitted by blood, body fluids, and tissue.  Approved 

guideline.  1997, NCCLS Document M29-A (ISBN1-56238-339-6). 

1423.

 

Snyder JW, Check W.  Bioterrorism threats to our future: the role of the clinical microbiology laboratory 

in detection, identification, and confirmation of biological agents. Report of the October 27–29, 2000 

Colloquium, American Academy of Microbiology, American College of Microbiology. Available at:  

www.asm.org 

1424.

 

CDC.  List of select agents and biological toxins.  At:  www.cdc.gov/od/sap/docs/salist.pdf 

1425.

 

Bond WW.  Survival of hepatitis B virus in the environment.  JAMA 1984;252:397–8. 

1426.

 

Slade JE, Pike EB, Eglin RP, Colbourne JS, Kurtz JB.  The survival of human immunodeficiency virus in 

water, sewage, and sea water.  Water Sci Technol 1989;21:55–9. 

1427.

 

Geertsma RE, Van Asten JAAM.  Sterilization of prions.  Zentr Steril 1995;3:385–94. 

1428.

 

(52)

  Johnson MW, Mitch WE, Heller AH, Spector R.  The impact of an educational program on 

gentamicin use in a teaching hospital.  Am J Med 1982;73:9–14. 

1429.

 

(53)

  Soumerai SB, Salem-Schatz S, Avorn J, Casteris CS, Ross-Degnan D, Popovsky MA.  A controlled 

trial of educational outreach to improve blood transfusion practice.  JAMA 1993;270:961–6. 

1430.

 

(54)

  Eisenberg JM.  An education program to modify laboratory use by house staff.  J Med Educ 

1977;52:578–81. 

1431.

 

(55)

  Rello J, Quintana E, Ausina V, Puzo V, Puzo C, Net A, Prats G.  Risk factors for 

Staphylococcus 

aureus

 nosocomial pneumonia in critically ill patients.  Am Rev Respir Dis 1990;142:1320–4. 

1432.

 

(56)

  McWhinney PHM, Kibbler CC, Hamon MD, et al.  Progress in the diagnosis and management of 

aspergillosis in bone marrow transplantation: 13 years’ experience.  Clin Infect Dis 1993;17:397–404. 

1433.

 

(74)

  Aisner J, Murillo J, Schimpff SC, Steere AC.  Invasive aspergillosis in acute leukemia: Correlation 

with nose cultures and antibiotic use.  Ann Intern Med 1979;90:4–9. 

1434.

 

(102)

  Rhame FS.  Endemic nosocomial filamentous fungal disease: a proposed structure for 

conceptualizing and studying the environmental hazard.   Infect Control 1986;7S:124–5. 

1435.

 

(Table 1)

  Mutchler JE.  Principles of ventilation.  In: NIOSH.  The industrial environment — its 

evaluation and control.  Washington, DC: U.S. Department of Health, Education, and Welfare, Public 

Health Service, NIOSH, 1973.  Publication #74-117.  Available at:  www.cdc.gov/niosh/74-117.html 

1436.

 

Breiman RF, Cozen W, Fields BS, et al.  Role of air sampling in investigation of an outbreak of 

Legionnaires’ disease associated with exposure to aerosols from an evaporative condenser.  J Infect Dis 

1990;161:1257–61. 

1437.

 

(Appendix; 9)

  CDC.  Procedures for the recovery of 

Legionella

 from the environment.  Atlanta, GA: 

U.S. Department of Health and Human Services, Public Health Service, CDC, 1992;1–13. 

1438.

 

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM.  Microbial biofilms.  Ann 

Rev Microbiol 1995;49:711–45. 

1439.

 

LeChevallier MW, Babcock TM, Lee RG.  Examination and characterization of distribution system 

biofilms.  Appl Environ Microbiol 1987;53:2714–24. 

1440.

 

Nagy LA, Olson BH.  Occurrence and significance of bacteria, fungi, and yeasts associated with 

distribution pipe surfaces.  Proceeds of the Water Quality Technology Conference. Portland, OR: 

1985;213–38. 

1441.

 

Maki DG, Martin WT.  Nationwide epidemic of septicemia caused by contaminated infusion products.  

IV growth of microbial pathogens in fluids for intravenous infusion.  J Infect Dis 1975;131:267–72. 

1442.

 

Costerton JW, Stewart PS, Greenberg EP.  Bacterial biofilms: a common cause of persistent infections.  

Science 1999;284:1318–22. 

1443.

 

Costerton JW, Khoury AE, Ward KH, Anwar H.  Practical measures to control device-related bacterial 

infections.  Int J Artif Organs 1993;16:765–70. 

1444.

 

Nickel JC, Costerton JW, McLean RJC, Olson M.  Bacterial biofilms: influence on the pathogenesis, 

diagnosis, and treatment of urinary tract infections.  J Antimicrobial Chemother 1994;33 (Suppl. A):31–

41. 

1445.

 

LeChevallier MW, Cawthon CD, Lee RG.  Inactivation of biofilm bacteria.  Appl Environ Microbiol 

1988;54:2492–9. 

background image

 

 

200 

1446.

 

Anwar J, Strap JL, Costerton JW.  Establishment of aging biofilms: possible mechanism of bacterial 

resistance to antimicrobial therapy.  Antimicrobiol Agents Chemotherapy 1992;36:1347–51. 

1447.

 

Stewart PS.  Biofilm accumulation model that predicts antibiotic resistance to 

Pseudomonas aeruginosa

 

biofilms.  Antimicrobiol Agents Chemotherapy 1994;38:1052–8. 

1448.

 

Chen X, Stewart PS.  Chlorine penetration into artificial biofilm is limited by a reaction-diffusion 

interaction.  Environ Sci Technol 1996;30:2078–83. 

1449.

 

Huang C-T, Yu FP, McFeters GA, Stewart PS.  Non-uniform spatial patterns of respiratory activity with 

biofilms during disinfection.  Appl Environ Microbiol 1995;61:2252–6. 

1450.

 

Donlan RM, Pipes WO.  Selected drinking water characteristics and attached microbial population 

density.  J AWWA 1988;80:70–6. 

1451.

 

Reasoner DJ, Geldreich EE.  A new medium for the enumeration and subculture of bacteria from potable 

water.  Appl Environ Microbiol 1985;49:1–7. 

1452.

 

Pass T, Wright R, Sharp B, Harding GB.  Culture of dialysis fluids on nutrient-rich media for short 

periods at elevated temperatures underestimates microbial contamination.  Blood Purif 1996;14:136–45. 

1453.

 

Arduino MJ, Bland LA, Aguero SM, et al.  Effects of incubation time and temperature on microbiologic 

sampling procedures for hemodialysis fluids.  J Clin Microbiol 1991;29:1462–5. 

1454.

 

(234)

  Klein E, Pass T, Harding GB, Wright R, Million C.  Microbial and endotoxin contamination in 

water and dialysate in the central United States.  Artif Organs 1990;14:85–94. 

1455.

 

(235)

  Man N-K, Degremont A, Darbord J-C, Collet M, Vaillant P.  Evidence of bacterial biofilm in 

tubing from hydraulic pathway of hemodialysis system.  Artif Organs 1998;22:596–600. 

1456.

 

Pearson FC, Weary ME, Sargent HE, et al.  Comparison of several control standard endotoxins to the 

National Reference Standard Endotoxin — an HIMA collaborative study.  Appl Environ Microbiol 

1985;50:91–3. 

1457.

 

(Appendix; 1)

  Arnow PM, Weil D, Para MF.  Prevalence of significance of 

Legionella

 

pneumophila

 

contamination of residential hot-tap water systems.  J Infect Dis 1985;152:145–51. 

1458.

 

(Appendix; 2)

  Shelton BG, Morris GK, Gorman GW.  Reducing risks associated with 

Legionella

 

bacteria in building water systems.  In: Barbaree JM, Breiman RF, Dufour AP, eds.  

Legionella

: current 

status and emerging perspectives. Washington, DC: American Society for Microbiology Press, 1993;279–

81. 

1459.

 

(Appendix; 3)

  Joly JR.  Monitoring for the presence of 

Legionella

: where, when, and how?  In: Barbaree 

JM, Breiman RF, Dufour AP, eds. 

Legionella

: current status and emerging perspectives. Washington, 

DC: American Society for Microbiology Press, 1993;211–6. 

1460.

 

(Appendix; 7)

  Brenner DJ, Feeley JC, Weaver RE.  Family VII. 

Legionellaceae

. In: Krieg NR, Holt JG, 

eds.  Bergey’s manual of systemic bacteriology, volume 1. Baltimore, MD: Williams & Wilkins, 

1984;279–88. 

1461.

 

(Appendix; 8)

  Katz SM, Hammel JM.  The effect of drying, heat, and pH on the survival of 

Legionella

 

pneumophila

.  Ann Clin Lab Sci 1987;17:150–6. 

1462.

 

(Box 2)

  Alary MA, Joly JR.  Comparison of culture methods and an immunofluorescence assay for the 

detection of 

Legionella pneumophila

 in domestic hot water devices.  Curr Microbiol 1992;25:19–25. 

1463.

 

(Box 2)

  Vickers RM, Stout JE, Yu VL.  Failure of a diagnostic monoclonal immunofluorescent reagent 

to detect 

Legionella

 

pneumophila

 in environmental samples.  Appl Environ Microbiol 1990;56:2912–4. 

1464.

 

(Box 2)

  Flournoy DJ, Belobraydic KA, Silberg SL, Lawrence CH, Guthrie PJ.  False postive 

Legionella

 

pneumophila

 direct immunofluorscence monoclonal antibody test caused by 

Bacillus cereus

 spores.  Diag 

Microbiol Infect Dis 1988;9:123–5. 

1465.

 

 

(Box 2)

  Bej AK, Majbubani MH, Atlas RM.  Detection of viable 

Legionella

 

pneumophila

 in water by 

polymerase chain reaction and gene probe methods.  Appl Environ Microbiol 1991;57:597–600. 

1466.

 

Schulze-Röbbecke R, Jung KD, Pullman H, Hundgeburth J.  Control of 

Legionella

 

pneumophila

 in a 

hospital hot water system.  Zbl Hyg 1990;190:84–100. 

1467.

 

Colbourne JS, Pratt DJ, Smith MG, Fisher-Hoch SP, Harper D.  Water fittings as sources of 

Legionella

 

pneumophila

 in a hospital plumbing system.  Lancet 1984;1:210–3. 

1468.

 

U.S. Environmental Protection Agency.  National interim primary drinking water regulations: control of 

trihalomethanes in drinking water: final rules.  Federal Register 1979;44:68624–705. 

1469.

 

U.S. Environmental Protection Agency.  National interim primary drinking water regulations: 

Trihalomethanes. Federal Register 1983;48:8406–14. 

 

 

background image

 

 

201

Part IV.  Appendices 

 

 

Appendix A.  Glossary of Terms

 

 

Acceptable indoor air quality: 

 air in which there are no known contaminants at harmful 

concentrations as determined by knowledgeble authorities and with which a substantial majority (>80%) 

of the people exposed do not express dissatisfaction. 

ACGIH:

  American Conference of Governmental Industrial Hygienists. 

Action level: 

 the concentration of a contaminant at which steps should be taken to interrupt the trend 

toward higher, unacceptable levels. 

Aerosol:

  particles of respirable size generated by both humans and environmental sources and that 

have the capability of remaining viable and airborne for extended periods in the indoor environment. 

AIA:

  American Institute of Architects, a professional group responsible for publishing the 

Guidelines 

for Design and Construction of Hospitals and Healthcare Facilities

, a consensus document for design 

and construction of health-care facilities endorsed by the U.S. Department of Health and Human 

Services, health-care professionals, and professional organizations. 

Air changes per hour (ACH): 

 the ratio of the volume of air flowing through a space in a certain 

period of time (the airflow rate) to the volume of that space (the room volume).  This ratio is expressed 

as the number of air changes per hour (ACH). 

Air mixing:

  the degree to which air supplied to a room mixes with the air already in the room, usually 

expressed as a mixing factor.  This factor varies from 1 (for perfect mixing) to 10 (for poor mixing).  It 

is used as a multiplier to determine the actual airflow required (i.e., the recommended ACH multiplied 

by the mixing factor equals the actual ACH required). 

Airborne transmission: 

 a means of spreading infection when airborne droplet nuclei (small particle 

residue of evaporated droplets <5 µm in size containing microorganisms that remain suspended in air 

for long periods of time) are inhaled by the susceptible host. 

Air-cleaning system: 

 a device or combination of devices applied to reduce the concentration of 

airborne contaminants (e.g., microorganisms, dusts, fumes, aerosols, other particulate matter, and 

gases). 

Air conditioning:

  the process of treating air to meet the requirements of a conditioned space by 

controlling its temperature, humidity, cleanliness, and distribution. 

Allogeneic:

  non-twin, non-self.  The term refers to transplanted tissue from a donor closely matched to 

a recipient but not related to that person. 

Ambient air:

  the air surrounding an object. 

Anemometer:

  a flow meter which measures the wind force and velocity of air.  An anemometer is 

often used as a means of determining the volume of air being drawn into an air sampler. 

Anteroom:

  a small room leading from a corridor into an isolation room.  This room can act as an 

airlock, preventing the escape of contaminants from the isolation room into the corridor. 

ASHE:

  American Society for Healthcare Engineering, an association affiliated with the American 

Hospital Association. 

ASHRAE: 

 American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc. 

Autologous:

  self.  The term refers to transplanted tissue whose source is the same as the recipient, or 

an identical twin. 

Automated cycler:

  a machine used during peritoneal dialysis which pumps fluid into and out of the 

patient while he/she sleeps. 

Biochemical oxygen demand (BOD):

  a measure of the amount of oxygen removed from aquatic 

environments by aerobic microorganisms for their metabolic requirements.  Measurement of BOD is 

used to determine the level of organic pollution of a stream or lake.  The greater the BOD, the greater 

background image

 

 

202 

the degree of water pollution.  The term is also referred to as Biological Oxygen Demand (BOD). 

Biological  oxygen demand (BOD):

  an indirect measure of the concentration of biologically 

degradable material present in organic wastes (pertaining to water quality).  It usually reflects the 

amount of oxygen consumed in five days by biological processes breaking down organic waste (BOD5). 

Biosafety level:

  a combination of microbiological practices, laboratory facilities, and safety equipment 

determined to be sufficient to reduce or prevent occupational exposures of laboratory personnel to the 

microbiological agents they work with.  There are four biosafety levels based on the hazards associated 

with the various microbiological agents. 

BOD5:

  the amount of dissolved oxygen consumed in five days by biological processes breaking down 

organic matter. 

Bonneting:

  a floor cleaning method for either carpeted or hard surface floors that uses a circular 

motion of a large fibrous disc to lift and remove soil and dust from the surface. 

Capped spur:

  a pipe leading from the water recirculating system to an outlet that has been closed off 

(“capped”).  A capped spur cannot be flushed, and it might not be noticed unless the surrounding wall is 

removed. 

CFU/m

3

:

  colony forming units per cubic meter (of air). 

Chlamydospores: 

 thick-walled, typically spherical or ovoid resting spores asexually produced by 

certain types of fungi from cells of the somatic hyphae. 

Chloramines:

  compounds containing nitrogen, hydrogen, and chlorine.  These are formed by the 

reaction between hypochlorous acid (HOCl) and ammonia (NH

3

) and/or organic amines in water.  The 

formation of chloramines in drinking water treatment extends the disinfecting power of chlorine.  The 

term is also referred to as Combined Available Chlorine. 

Cleaning:

  the removal of visible soil and organic contamination from a device or surface, using either 

the physical action of scrubbing with a surfactant or detergent and water, or an energy-based process 

(e.g., ultrasonic cleaners) with appropriate chemical agents. 

Coagulation-flocculation:

  coagulation is the clumping of particles that results in the settling of 

impurities.  It may be induced by coagulants (e.g., lime, alum, and iron salts).  Flocculation in water and 

wastewater treatment is the agglomeration or clustering of colloidal and finely-divided suspended matter 

after coagulation by gentle stirring by either mechanical or hydraulic means, such that they can be 

separated from water or sewage. 

Commissioning (a room):

  testing a system or device to ensure that it meets the pre-use specifications 

as indicated by the manufacturer or predetermined standard, or air sampling in a room to establish a pre-

occupancy baseline standard of microbial or particulate contamination.  The term is also referred to as 

benchmarking at 77°F (25°C). 

Completely packaged:

  functionally packaged, as for laundry. 

Conidia: 

 asexual spores of fungi borne externally. 

Conidiophores:

  specialized hyphae that bear conidia in fungi. 

Conditioned space:

  that part of a building that is heated or cooled, or both, for the comfort of the 

occupants. 

Contaminant:

  an unwanted airborne constituent that may reduce the acceptibility of air. 

Convection:

  the transfer of heat or other atmospheric properties within the atmosphere or in the 

airspace of an enclosure by the circulation of currents from one region to another, especially by such 

motion directed upward. 

Cooling tower:

  a structure engineered to receive accumulated heat from ventilation systems and 

equipment and transfer this heat to water, which then releases the stored heat to the atmosphere through 

evaporative cooling. 

Critical item (medical instrument):

  a medical instrument or device that contacts normally sterile 

areas of the body or enters the vascular system.  There is a high risk of infection from such devices if 

they are microbiologically contaminated prior to use.  These devices must be sterilized before use. 

Dead legs:

  areas in the water system where water stagnates.  A dead leg is a pipe or spur, leading from 

the water recirculating system to an outlet that is used infrequently, resulting in inadequate flow of 

background image

 

 

203

water from the recirculating system to the outlet.  This inadequate flow reduces the perfusion of heat or 

chlorine into this part of the water distribution system, thereby adversely affecting the disinfection of the 

water system in that area. 

Deionization:

  removal of ions from water by exchange with other ions associated with fixed charges 

on a resin bed.  Cations are usually removed and H

+

 ions are exchanged; OH

-

 ions are exchanged for 

anions. 

Detritis:

  particulate matter produced by or remaining after the wearing away or disintegration of a 

substance or tissue. 

Dew point:

  the temperature at which a gas or vapor condenses to form a liquid; the point at which 

moisture begins to condense out of the air.  At dew point, air is cooled to the point where it is at 100% 

relative humidity or saturation. 

Dialysate:

  the aqueous electrolyte solution, usually containing dextrose, used to make a concentration 

gradient between the solution and blood in the hemodialyzer (dialyzer). 

Dialyzer:

  a device that consists of two compartments (blood and dialysate) separated by a 

semipermeable membrane.  A dialyzer is usually referred to as an artificial kidney. 

Diffuser:

  the grille plate that disperses the air stream coming into the conditioned air space. 

Direct transmission:

  involves direct body surface-to-body surface contact and physical transfer of 

microorganisms between a susceptible host and an infected/colonized person, or exposure to cloud of 

infectious particles within 3 feet of the source; the aerosolized particles are >5 µm in size. 

Disability:

  as defined by the Americans with Disabilities Act, a disability is any physical or mental 

impairment that substantially limits one or more major life activities, including but not limited to 

walking, talking, seeing, breathing, hearing, or caring for oneself. 

Disinfection: 

 a generally less lethal process of microbial inactivation (compared to sterilization) that 

eliminates virtually all recognized pathogenic microorganisms but not necessarily all microbial forms 

(e.g., bacterial spores). 

Drain pans:

  pans that collect water within the HVAC system and remove it from the system.  

Condensation results when air and steam come together. 

Drift:

  circulating water lost from the cooling tower in the form as liquid droplets entrained in the 

exhaust air stream (i.e., exhaust aerosols from a cooling tower). 

Drift eliminators:

  an assembly of baffles or labyrinth passages through which the air passes prior to its 

exit from the cooling tower.  The purpose of a drift eliminator is to remove entrained water droplets 

from the exhaust air. 

Droplets: 

 particles of moisture, such as are generated when a person coughs or sneezes, or when water 

is converted to a fine mist by a device such as an aerator or shower head.  These particles may contain 

infectious microorganisms.  Intermediate in size between drops and droplet nuclei, these particles tend 

to quickly settle out from the air so that any risk of disease transmission is generally limited to persons 

in close proximity to the droplet source. 

Droplet nuclei:

  sufficiently small particles (1–5 µm in diameter) that can remain airborne indefinitely 

and cause infection when a susceptible person is exposed at or beyond 3 feet of the source of these 

particles. 

Dual duct system:

  an HVAC system that consists of parallel ducts that produce a cold air stream in 

one and a hot air stream in the other. 

Dust:

  an air suspension of particles (aerosol) of any solid material, usually with particle sizes <100 µm 

in diameter. 

Dust-spot test:

  a procedure that uses atmospheric air or a defined dust to measure a filter’s ability to 

remove particles.  A photometer is used to measure air samples on either side of the filter, and the 

difference is expressed as a percentage of particles removed. 

Effective leakage area:

  the area through which air can enter or leave the room.  This does not include 

supply, return, or exhaust ducts.  The smaller the effective leakage area, the better isolated the room. 

Endotoxin:

  the lipopolysaccharides of gram-negative bacteria, the toxic character of which resides in 

the lipid portion.  Endotoxins generally produce pyrogenic reactions in persons exposed to these 

background image

 

 

204 

bacterial components. 

Enveloped virus:

  a virus whose outer surface is derived from a membrane of the host cell (either 

nuclear or the cell’s outer membrane) during the budding phase of the maturation process.  This 

membrane-derived material contains lipid, a component that makes these viruses sensitive to the action 

of chemical germicides. 

Evaporative condenser:

  a wet-type, heat-rejection unit that produces large volumes of aerosols during 

the process of removing heat from conditioned space air. 

Exhaust air:

  air removed from a space and not reused therein. 

Exposure:

  the condition of being subjected to something (e.g., infectious agents) that could have a 

harmful effect. 

Fastidious:

  having complex nutritional requirements for growth, as in microorganisms. 

Fill:

  that portion of a cooling tower which makes up its primary heat transfer surface.  Fill is 

alternatively known as “packing.” 

Finished water:

  treated, or potable water. 

Fixed room-air HEPA recirculation systems:

  nonmobile devices or systems that remove airborne 

contaminants by recirculating air through a HEPA filter.  These may be built into the room and 

permanently ducted or may be mounted to the wall or ceiling within the room.  In either situation, they 

are fixed in place and are not easily movable. 

Fomite:

  an inanimate object that may be contaminated with microorganisms and serves in their 

transmission. 

Free and available chlorine:

  the term applied to the three forms of chlorine that may be found in 

solution (i.e., chlorine [Cl

2

]

 

, hypochlorite [OCl

], and hypochlorous acid [HOCl]). 

Germicide:

  a chemical that destroys microorganisms.  Germicides may be used to inactivate 

microorganisms in or on living tissue (antiseptics) or on environmental surfaces (disinfectants). 

Health-care–associated: 

 an outcome, usually an infection, that occurs in any health-care facility as a 

result of medical care.  The term “health-care–associated” replaces “nosocomial,” the latter term being 

limited to adverse infectious outcomes occurring only in hospitals. 

Hemodiafiltration:

  a form of renal replacement therapy in which waste solutes in the patient’s blood 

are removed by both diffusion and convection through a high-flux membrane. 

Hemodialysis:

  a treatment for renal replacement therapy in which waste solutes in the patient’s blood 

are removed by diffusion and/or convection through the semipermeable membrane of an artificial 

kidney or dialyzer. 

Hemofiltration:

  cleansing of waste products or other toxins from the blood by convection across a 

semipermeable, high-flux membrane where fluid balance is maintained by infusion of sterile, pyrogen-

free substitution fluid pre- or post-hemodialyzer. 

HEPA filter:

  High Efficiency Particulate Air filters capable of removing 99.97% of particles 0.3 µm in 

diameter and may assist in controlling the transmission of airborne disease agents.  These filters may be 

used in ventilation systems to remove particles from the air or in personal respirators to filter air before 

it is inhaled by the person wearing the respirator.  The use of HEPA filters in ventilation systems 

requires expertise in installation and maintenance.  To test this type of filter, 0.3 µm particles of 

dioctylphthalate (DOP) are drawn through the filter.  Efficiency is calculated by comparing the 

downstream and upstream particle counts.  The optimal HEPA filter allows only three particles to pass 

through for every 10,000 particles that are fed to the filter. 

Heterotrophic (heterotroph):

  that which requires some nutrient components from exogenous sources.  

Heterotrophic bacteria cannot synthesize all of their metabolites and therefore require certain nutrients 

from other sources. 

High-efficiency filter:

  a filter with a particle-removal efficiency of 90%–95%. 

High flux:

  a type of dialyzer or hemodialysis treatment in which large molecules (>8,000 daltons [e.g., 

β

2 microglobulin]) are removed from blood. 

High-level disinfection:

  a disinfection process that inactivates vegetative bacteria, mycobacteria, fungi, 

and viruses, but not necessarily high numbers of bacterial spores. 

background image

 

 

205

Housekeeping surfaces:

  environmental surfaces (e.g., floors, walls, ceilings, and tabletops) that are not 

involved in direct delivery of patient care in health-care facilities. 

Hoyer lift:

  an apparatus that facilitates the repositioning of the non-ambulatory patient from bed to 

wheelchair or gurney and subsequently to therapy equipment (immersion tanks). 

Hubbard tank:

  a tank used in hydrotherapy that may accomodate whole-body immersion (e.g., as may 

be indicated for burn therapy).  Use of a Hubbard tank has been replaced largely by bedside post-lavage 

therapy for wound care management. 

HVAC: 

 Heating, Ventilation, Air Conditioning. 

Iatrogenic:

  induced in a patient by a physician’s activity, manner, or therapy.  The term is used 

especially in reference to an infectious complication or other adverse outcome of medical treatment. 

Impactor:

  an air-sampling device in which particles and microorganisms are directed onto a solid 

surface and retained there for assay. 

Impingement:

  an air-sampling method during which particles and microorganisms are directed into a 

liquid and retained there for assay. 

Indirect transmission: 

 involves contact of a susceptible host with a contaminated intermediate object, 

usually inanimate (a fomite). 

Induction unit:

  the terminal unit of an in-room ventilation system.  Induction units take centrally 

conditioned air and further moderate its temperature.  Induction units are not appropriate for areas with 

high exhaust requirements (e.g., research laboratories). 

Intermediate-level disinfection:

  a disinfection process that inactivates vegetative bacteria, most fungi, 

mycobacteria, and most viruses (particularly the enveloped viruses), but does not inactivate bacterial 

spores. 

Isoform:

  a possible configuration (tertiary structure) of a protein molecule.  With respect to prion 

proteins, the molecules with large amounts of 

α

-conformation are the normal isoform of that particular 

protein, whereas those prions with large amounts of 

β

-sheet conformation are the proteins associated 

with the development of spongiform encephalopathy (e.g., Creutzfeldt-Jakob disease [CJD]). 

Laminar flow:

  HEPA-filtered air that is blown into a room at a rate of 90 ± 10 feet/min in a 

unidirectional pattern with 100 ACH–400 ACH. 

Large enveloped virus:

  viruses whose particle diameter is >50 nm and whose outer surface is covered 

by a lipid-containing structure derived from the membranes of the host cells.  Examples of large 

enveloped viruses include influenza viruses, herpes simplex viruses, and poxviruses. 

Laser plume:

  the transfer of electromagnetic energy into tissues which results in a release of particles, 

gases, and tissue debris. 

Lipid-containing viruses:

  viruses whose particle contains lipid components.  The term is generally 

synonymous with enveloped viruses whose outer surface is derived from host cell membranes.  Lipid-

containing viruses are sensitive to the inactivating effects of liquid chemical germicides. 

Lithotriptors:

  instruments used for crushing caliculi (i.e., calcified stones, and sand) in the bladder or 

kidneys. 

Low efficiency filter:

  the prefilter with a particle-removal efficiency of approximately 30% through 

which incoming air first passes.  See also Prefilter. 

Low-level disinfection:

  a disinfection process that will inactivate most vegetative bacteria, some fungi, 

and some viruses, but cannot be relied upon to inactivate resistant microorganisms (e.g., mycobacteria 

or bacterial spores). 

Makeup air:

  outdoor air supplied to the ventilation system to replace exhaust air. 

Makeup water:

  a cold water supply source for a cooling tower. 

Manometer: 

 a device that measures the pressure of liquids and gases.  A manometer is used to verify 

air filter performance by measuring pressure differentials on either side of the filter. 

Membrane filtration:

  an assay method suitable for recovery and enumeration of microorganisms from 

liquid samples.  This method is used when sample volume is large and anticipated microbial 

contamination levels are low. 

Mesophilic:

  that which favors a moderate temperature.  For mesophilic bacteria, a temperature range of 

background image

 

 

206 

68°F–131°F (20°C–55°C) is favorable for their growth and proliferation. 

Mixing box:

  the site where the cold and hot air streams mix in the HVAC system, usually situated 

close to the air outlet for the room. 

Mixing faucet:  

a faucet that mixes hot and cold water to produce water at a desired temperature. 

MMAD:

  Mass Median Aerodynamic Diameter.  This is the unit used by ACGIH to describe the size of 

particles when particulate air sampling is conducted. 

Moniliaceous: 

 hyaline or brightly colored.  This is a laboratory term for the distinctive characteristics 

of certain opportunistic fungi in culture (e.g., 

Aspergillus

 spp. and 

Fusarium

 spp.). 

Monochloramine:

  the result of the reaction between chlorine and ammonia that contains only one 

chlorine atom.  Monochloramine is used by municipal water systems as a water treatment. 

Natural ventilation:

  the movement of outdoor air into a space through intentionally provided openings 

(i.e., windows, doors, or nonpowered ventilators). 

Negative pressure:

  air pressure differential between two adjacent airspaces such that air flow is 

directed into the room relative to the corridor ventilation (i.e., room air is prevented from flowing out of 

the room and into adjacent areas). 

Neutropenia:

  a medical condition in which the patient’s concentration of neutrophils is substantially 

less than that in the normal range.  Severe neutropenia occurs when the concentration is <1,000 

polymorphonuclear cells/µL for 2 weeks or <100 polymorphonuclear cells /mL for 1 week, particularly 

for hematopoietic stem cell transplant (HSCT) recipients. 

Noncritical devices: 

 medical devices or surfaces that come into contact with only intact skin.  The risk 

of infection from use of these devices is low. 

Non-enveloped virus:

  a virus whose particle is not covered by a structure derived from a membrane of 

the host cell.  Non-enveloped viruses have little or no lipid compounds in their biochemical 

composition, a characteristic that is significant to their inherent resistance to the action of chemical 

germicides. 

Nosocomial:

  an occurrence, usually an infection, that is acquired in a hospital as a result of medical 

care. 

NTM:

  nontuberculous mycobacteria.  These organisms are also known as atypical mycobacteria, or as 

“Mycobacteria other than tuberculosis” (MOTT).  This descriptive term refers to any of the fast- or 

slow-growing  

Mycobacterium

 spp. found in primarily in natural or man-made waters, but it excludes 

Mycobacterium tuberculosis

 and its variants. 

Nuisance dust:

  generally innocuous dust, not recognized as the direct cause of serious pathological 

conditions. 

Oocysts:

  a cyst in which sporozoites are formed; a reproductive aspect of the life cycle of a number of 

parasitic agents (e.g., 

Cryptosporidium

 spp., and 

Cyclospora

 spp.). 

Outdoor air:

  air taken from the external atmosphere and, therefore, not previously circulated through 

the ventilation system. 

Parallel streamlines: 

 a unidirectional airflow pattern achieved in a laminar flow setting, characterized 

by little or no mixing of air. 

Particulate matter (particles):

  a state of matter in which solid or liquid substances exist in the form of 

aggregated molecules or particles.  Airborne particulate matter is typically in the size range of 0.01–100 

µm diameter. 

Pasteurization:

  a disinfecting method for liquids during which the liquids are heated to 140°F (60

E

C) 

for a short time (>30 mins.) to significantly reduce the numbers of pathogenic or spoilage 

microorganisms. 

Plinth:

  a treatment table or a piece of equipment used to reposition the patient for treatment. 

Portable room-air HEPA recirculation units:

  free-standing portable devices that remove airborne 

contaminants by recirculating air through a HEPA filter. 

Positive pressure: 

 air pressure differential between two adjacent air spaces such that air flow is 

directed from the room relative to the corridor ventilation (i.e., air from corridors and adjacent areas is 

prevented from entering the room). 

background image

 

 

207

Potable (drinking) water:

  water that is fit to drink.  The microbiological quality of this water as 

defined by EPA microbiological standards from the Surface Water Treatment Rule: a) 

Giardia lamblia

99.9% killed/inactivated; b) viruses: 99.9% inactivated; c) 

Legionella

 spp.: no limit, but if 

Giardia

 and 

viruses are inactivated, 

Legionella

 will also be controlled; d) heterotrophic plate count [HPC]: <500 

CFU/mL; and e) >5% of water samples total coliform-positive in a month. 

PPE:

  Personal Protective Equipment. 

ppm:

  parts per million.  The term is a measure of concentration in solution.  Chlorine bleaches 

(undiluted) that are available in the U.S. (5.25%–6.15% sodium hypochlorite) contain approximately 

50,000–61,500 parts per million of free and available chlorine. 

Prefilter:

  the first filter for incoming fresh air in a HVAC system.  This filter is approximately 30% 

efficient in removing particles from the air.  See also Low-Efficiency Filter. 

Prion:

  a class of agent associated with the transmission of diseases knowns as transmissible 

spongiform encephalopathies (TSEs).  Prions are considered to consist of protein only, and the abnormal 

isoform of this protein is thought to be the agent that causes diseases such as Creutzfeldt-Jakob disease 

(CJD), kuru, scrapie, bovine spongiform encephalopathy (BSE), and the human version of BSE which is 

variant CJD (vCJD). 

Product water:

  water produced by a water treatment system or individual component of that system. 

Protective environment:

  a special care area, usually in a hospital, designed to prevent transmission of 

opportunistic airborne pathogens to severely immunosuppressed patients. 

Pseudoepidemic (pseudo-outbreak):

  a cluster of positive microbiologic cultures in the absence of 

clinical disease.  A pseudoepidemic usually results from contamination of the laboratory apparatus and 

process used to recover microorganisms. 

Pyrogenic:

  an endotoxin burden such that a patient would receive >5 endotoxin units (EU) per 

kilogram of body weight per hour, thereby causing a febrile response.  In dialysis this usually refers to 

water or dialysate having endotoxin concentrations of >5 EU/mL. 

Rank order:

  a strategy for assessing overall indoor air quality and filter performance by comparing 

airborne particle counts from lowest to highest (i.e., from the best filtered air spaces to those with the 

least filtration). 

RAPD:

  a method of genotyping microorganisms by randomly amplified polymorphic DNA.  This is 

one version of the polymerase chain reaction method. 

Recirculated air:

  air removed from the conditioned space and intended for reuse as supply air. 

Relative humidity:

  the ratio of the amount of water vapor in the atmosphere to the amount necessary 

for saturation at the same temperature.  Relative humidity is expressed in terms of percent and measures 

the percentage of saturation.  At 100% relative humidity, the air is saturated.  The relative humidity 

decreases when the temperature is increased without changing the amount of moisture in the air. 

Reprocessing (of medical instruments):

  the procedures or steps taken to make a medical instrument 

safe for use on the next patient.  Reprocessing encompasses both cleaning and the final or terminal step 

(i.e., sterilization or disinfection) which is determined by the intended use of the instrument according to 

the Spaulding classification. 

Residuals:

  the presence and concentration of a chemical in media (e.g., water) or on a surface after the 

chemical has been added. 

Reservoir:  

a nonclinical source of infection. 

Respirable particles:

  those particles that penetrate into and are deposited in the nonciliated portion of 

the lung.  Particles >10 µm in diameter are not respirable. 

Return air:

  air removed from a space to be then recirculated. 

Reverse osmosis (RO):

  an advanced method of water or wastewater treatment that relies on a semi-

permeable membrane to separate waters from pollutants.  An external force is used to reverse the 

normal osmotic process resulting in the solvent moving from a solution of higher concentration to one 

of lower concentration. 

Riser: 

 water piping that connects the circulating water supply line, from the level of the base of the 

tower or supply header, to the tower’s distribution system. 

background image

 

 

208 

RODAC:

  Replicate Organism Direct Agar Contact.  This term refers to a nutrient agar plate whose 

convex agar surface is directly pressed onto an environmental surface for the purpose of microbiologic 

sampling of that surface. 

Room-air HEPA recirculation systems and units:

  devices (either fixed or portable) that remove 

airborne contaminants by recirculating air through a HEPA filter. 

Routine sampling:

  environmental sampling conducted without a specific, intended purpose and with 

no action plan dependent on the results obtained. 

Sanitizer:  

an agent that reduces microbial contamination to safe levels as judged by public health 

standards or requirements. 

Saprophytic:

  a naturally-occurring microbial contaminant. 

Sedimentation:

  the act or process of depositing sediment from suspension in water.  The term also 

refers to the process whereby solids settle out of wastewater by gravity during treatment. 

Semicritical devices:

  medical devices that come into contact with mucous membranes or non-intact 

skin. 

Service animal:

  any animal individually trained to do work or perform tasks for the benefit of a person 

with a disability. 

Shedding:

  the generation and dispersion of particles and spores by sources within the patient area, 

through activities such as patient movement and airflow over surfaces. 

Single-pass ventilation:

  ventilation in which 100% of the air supplied to an area is exhausted to the 

outside. 

Small, non-enveloped viruses:

  viruses whose particle diameter is <50 nm and whose outer surface is 

the protein of the particle itself and not that of host cell membrane components.  Examples of small, 

non-enveloped viruses are polioviruses and hepatitis A virus. 

Spaulding Classification:

  the categorization of inanimate medical device surfaces in the medical 

environment as proposed in 1972 by Dr. Earle Spaulding.  Surfaces are divided into three general 

categories, based on the theoretical risk of infection if the surfaces are contaminated at time of use.  The 

categories are “critical,” “semicritical,” and “noncritical.” 

Specific humidity:

  the mass of water vapor per unit mass of moist air.  It is expressed as grains of 

water per pound of dry air, or pounds of water per pound of dry air.  The specific humidity changes as 

moisture is added or removed.  However, temperature changes do not change the specific humidity 

unless the air is cooled below the dew point. 

Splatter:

  visible drops of liquid or body fluid that are expelled forcibly into the air and settle out 

quickly, as distinguished from particles of an aerosol which remain airborne indefinitely. 

Steady state:

  the usual state of an area. 

Sterilization:

  the use of a physical or chemical procedure to destroy all microbial life, including large 

numbers of highly-resistant bacterial endospores. 

Stop valve:

  a valve that regulates the flow of fluid through a pipe.  The term may also refer to a faucet. 

Substitution fluid:

  fluid that is used for fluid management of patients receiving hemodiafiltration.  

This fluid can be prepared on-line at the machine through a series of ultrafilters or with the use of sterile 

peritoneal dialysis fluid. 

Supply air:

  air that is delivered to the conditioned space and used for ventilation, heating, cooling, 

humidification, or dehumidification. 

Tensile strength:

  the resistance of a material to a force tending to tear it apart, measured as the 

maximum tension the material can withstand without tearing. 

Therapy animal:

  an animal (usually a personal pet) that, with their owners or handlers, provide 

supervised, goal-directed intervention to clients in hospitals, nursing homes, special-population schools, 

and other treatment sites. 

Thermophilic:  

capable of growing in environments warmer than body temperature. 

Thermotolerant:

  capable of withstanding high temperature conditions. 

TLV®:

  an exposure level under which most people can work consistently for 8 hours a day, day after 

day, without adverse effects.  The term is used by the ACGIH to designate degree of exposure to 

background image

 

 

209

contaminants.  TLV® can be expressed as approximate milligrams of particulate per cubic meter of air 

(mg/m

3

).  TLVs® are listed as either an 8-hour TWA (time weighted average) or a 15-minute STEL 

(short term exposure limit). 

TLV-TWA:

  Threshold Limit Value-Time Weighted Average. The term refers to the time-weighted 

average concentration for a normal 8-hour workday and a 40-hour workweek to which nearly all 

workers may be exposed repeatedly, day after day, without adverse effects.  The TLV-TWA for 

“particulates (insoluble) not otherwise classified” (PNOC) - (sometimes referred to as nuisance dust) - 

are those particulates containing no asbestos and <1% crystalline silica.  A TLV-TWA of 10 mg/m

3

 for 

inhalable particulates and a TLV-TWA of 3 mg/m

3

 for respirable particulates (particulates <5 µm in 

aerodynamic diameter) have been established. 

Total suspended particulate matter:

  the mass of particles suspended in a unit of volume of air when 

collected by a high-volume air sampler. 

Transient:

  a change in the condition of the steady state that takes a very short time compared with the 

steady state.  Opening a door, and shaking bed linens are examples of transient activities. 

TWA:

  average exposure for an individual over a given working period, as determined by sampling at 

given times during the period.  TWA is usually presented as the average concentration over an 8-hour 

workday for a 40-hour workweek. 

Ultraclean air:

  air in laminar flow ventilation that has also passed through a bank of HEPA filters. 

Ultrafilter:

  a membrane filter with a pore size in the range of 0.001–0.05 µm, the performance of 

which is usually rated in terms of a nominal molecular weight cut-off (defined as the smallest molecular 

weight species for which the filter membrance has more than 90% rejection). 

Ultrafiltered dialysate:

  the process by which dialysate is passed through a filter having a molecular 

weight cut-off of approximately 1 kilodalton for the purpose of removing bacteria and endotoxin from 

the bath. 

Ultraviolet germicidal irradiation (UVGI):

  the use of ultraviolet radiation to kill or inactivate 

microorganisms. 

Ultraviolet germicidal irradiation lamps:

  lamps that kill or inactivate microorganisms by emitting 

ultraviolet germicidal radiation, predominantly at a wavelength of 254 nm.  UVGI lamps can be used in 

ceiling or wall fixtures or within air ducts of ventilation systems. 

Vapor pressure:

  the pressure exerted by free molecules at the surface of a solid or liquid.  Vapor 

pressure is a function of temperature, increasing as the temperature rises. 

Vegetative bacteria:

  bacteria that are actively growing and metabolizing, as opposed to a bacterial 

state of quiescence that is achieved when certain bacteria (gram-positive bacilli) convert to spores when 

the environment can no longer support active growth. 

Vehicle:  

any object, person, surface, fomite, or media that may carry and transfer infectious 

microorganisms from one site to another. 

Ventilation:

  the process of supplying and removing air by natural or mechanical means to and from 

any space.  Such air may or may not be conditioned. 

Ventilation air:

  that portion of the supply air consisting of outdoor air plus any recirculated air that has 

been treated for the purpose of maintaining acceptable indoor air quality. 

Ventilation, dilution:

  an engineering control technique to dilute and remove airborne contaminants by 

the flow of air into and out of an area.  Air that contains droplet nuclei is removed and replaced by 

contaminant-free air.  If the flow is sufficient, droplet nuclei become dispersed, and their concentration 

in the air is diminished. 

Ventilation, local exhaust: 

 ventilation used to capture and removed airborne contaminants by 

enclosing the contaminant source (the patient) or by placing an exhaust hood close to the contaminant 

source. 

v/v:

  volume to volume.  This term is an expression of concentration of a percentage solution when the 

principle component is added as a liquid to the diluent. 

w/v:

  weight to volume.  This term is an expression of concentration of a percentage solution when the 

principle component is added as a solid to the diluent. 

background image

 

 

210 

Weight-arrestance:

  a measure of filter efficiency, used primarily when describing the performance of 

low- and medium-efficiency filters.  The measurement of weight-arrestance is performed by feeding a 

standardized synthetic dust to the filter and weighing the fraction of the dust removed. 

 

 

Appendix B.  Air 

 

1.  Airborne Contaminant Removal 

 

Table B.1.  Air changes/hour (ACH) and time required for airborne-contaminant removal 
efficiencies of 99% and 99.9%* 

 

Time (mins.) required for removal:  

ACH+ § ¶ 

99% efficiency 99.9% 

efficiency 

2 138 207 

4 69 104 

46 

69 

8 35 52 

10 

28 

41 

12 

23 

35 

15 

18 

28 

20 14 21 

50 6  8 

 

*  This table is revised from Table S3-1 in reference 4 and has been adapted from the formula for the rate of purging airborne 

       contaminants presented in reference 1435. 

+  Shaded entries denote frequently cited ACH for patient-care areas. 

§  Values were derived from the formula: 

 

t

2

 – t

1

 =  – [ln (C

2

 / C

1

) / (Q / V)] 

H

 60, with t

1

 = 0 and where 

 

 

t

1

 = initial timepoint in minutes 

t

2

 = final timepoint in minutes 

 

C

1

 = initial concentration of contaminant 

C

2

 = final concentration of contaminant 

 

C

2

 / C

1

 = 1 – (removal efficiency / 100) 

Q = air flow rate in cubic feet/hour 

 

V = room volume in cubic feet 

Q / V = ACH 

 

¶  Values apply to an empty room with no aerosol-generating source.  With a person present and generating 

aerosol, this table would not apply.  Other equations are available that include a constant generating source.  

However, certain diseases (e.g., infectious tuberculosis) are not likely to be aerosolized at a constant rate.  The 

times given assume perfect mixing of the air within the space (i.e., mixing factor = 1).  However, perfect mixing 

usually does not occur.  Removal times will be longer in rooms or areas with imperfect mixing or air stagnation.

213

   

Caution should be exercised in using this table in such situations.  For booths or other local ventilation enclosures, 

manufacturers’ instructions should be consulted. 

 

 

 

2.  Air Sampling for Aerosols Containing Legionellae

 

 

Air sampling is an insensitive means of detecting 

Legionella pneumophila,

 and is of limited practical 

value in environmental sampling for this pathogen.  In certain instances, however, it can be used to a) 

demonstrate the presence of legionellae in aerosol droplets associated with suspected bacterial 

background image

 

 

211

reservoirs; b) define the role of certain devices [e.g., showers, faucets, decorative fountains, or evaporate 

condensers] in disease transmission; and c) quantitate and determine the size of the droplets containing 

legionellae.

1436

   Stringent controls and calibration are necessary when sampling is used to determine 

particle size and numbers of viable bacteria.

1437

   Samplers should be placed in locations where human 

exposure to aerosols is anticipated, and investigators should wear a NIOSH-approved respirator (e.g., 

N95 respirator) if sampling involves exposure to potentially infectious aerosols. 

 

Methods used to sample air for legionellae include impingement in liquid, impaction on solid medium, 

and sedimentation using settle plates.

1436

   The Chemical Corps.-type all-glass impingers (AGI) with the 

stem 30 mm from the bottom of the flask have been used successfully to sample for legionellae.

1436

   

Because of the velocity at which air samples are collected, clumps tend to become fragmented, leading 

to a more accurate count of bacteria present in the air.  The disadvantages of this method are a) the 

velocity of collection tends to destroy some vegetative cells; b) the method does not differentiate 

particle sizes; and c) AGIs are easily broken in the field.  Yeast extract broth (0.25%) is the 

recommended liquid medium for AGI sampling of legionellae;

1437

  standard methods for water samples 

can be used to culture these samples. 

 

Andersen samplers are viable particle samplers in which particles pass through jet orifices of decreasing 

size in cascade fashion until they impact on an agar surface.

1218

   The agar plates are then removed and 

incubated.  The stage distribution of the legionellae should indicate the extent to which the bacteria 

would have penetrated the respiratory system.  The advantages of this sampling method are a) the 

equipment is more durable during use; b) the sampler can cetermine the number and size of droplets 

containing legionellae; c) the agar plates can be placed directly in an incubator with no further 

manipulations; and d) both selective and nonselective BCYE agar can be used.  If the samples must be 

shipped to a laboratory, they should be packed and shipped without refrigeration as soon as possible. 

 

 

3.  Calculation of Air Sampling Results

 

 

Assuming that each colony on the agar plate is the growth from a single bacteria-carrying particle, the 

contamination of the air being sampled is determined from the number of colonies counted.  The 

airborne microorganisms may be reported in terms of the number per cubic foot of air sampled.  The 

following formulas can be applied to convert colony counts to organisms per cubic foot of air 

sampled.

1218

 

 

For solid agar impactor samplers: 

 

C / (R 

H

 P) = N 

  where  N = number of organisms collected per cubic foot of air sampled 

 

 

 

C = total plate count 

 

 

 

R = airflow rate in cubic feet per minute 

 

 

 

P = duration of sampling period in minutes 

 

For liquid impingers: 

 (C 

H

 V) / (Q 

H

 P 

H

 R) = N    where  C = total number of colonies from all aliquots plated 

 

 

 

V = final volume in mL of collecting media 

 

 

 

Q = total number of mL plated 

 

 

 

P, R, and N are defined as above 

background image

 

 

212 

 

4.  Ventilation Specifications for Health-Care Facilities

 

 

The following tables from the AIA 

Guidelines for Design and Construction of Hospitals and Health-Care Facilities, 2001

 are reprinted with permission of the American Institute 

of Architects and the publisher (The Facilities Guidelines Institute).

120

 

 

Table B.2.  Ventilation requirements for areas affecting patient care in hospitals and outpatient facilities

1

 

Notes:  This table is Table 7.2 in the AIA guidelines, 2001 edition.  Superscripts used in this table refer to notes following the table. 

 

 

Air movement 

Minimum 

Minimum 

AII air 

 

relationship 

air changes 

total air 

exhausted 

Recirculated 

Relative 

Design 

 

to adjacent 

of outdoor 

changes per 

directly to 

by means of 

humidity

8

 temperature

9

 

Area designation 

area

2

 air 

per 

hour

3

 hour

4, 5

 outdoors

6

 room 

units

7

 

(%) 

(degrees F [C]) 

 

Surgeru and critical care

 

Operating/surgical cystoscopic rooms

10, 11

 Out 

15 

– 

No 

30–60 68–73 

(20–23)

12 

Delivery room

10

 

Out 

15 

– 

No 

30–60 

68–73 (20–23)  

Recovery room

10

 – 

– 

No 

30–60 

70–75 

(21–24) 

Critical and intensive care 

– 

– 

No 

30–60 

70–75 (21–24) 

Newborn intensive care 

– 

– 

No 

30–60 

72–78 (22–26) 

Treatment room

13

 

–  – 6 

– – – 

75 

(24) 

Trauma room

13

 Out 

15 

– 

No 

30–60 

70–75 

(21–24) 

Anesthesia 

gas 

storage 

In  – 8 

Yes 

– – – 

Endoscopy In 

– 

No 

30–60 

68–73 

(20–23) 

Bronchoscopy

11

 In 

12 

Yes 

No 

30–60 

68–73 

(20–23) 

ER waiting rooms 

In 

12 

Yes

14, 15 

– – 

70–75 

(21–24) 

Triage In 

12 

Yes

14

 –  – 

70–75 

(21–24) 

Radiology waiting rooms 

In 

12 

Yes

14, 15 

– – 

70–75 

(21–24) 

Procedure room 

Out 

15 

– 

No 

30–60 

70–75 (21–24) 

 

Nursing

 

Patient room 

– 

6

16

 –  – 

– 

70–75 

(21–24) 

Toilet room 

In 

– 

10 

Yes 

– 

– 

– 

Newborn nursery suite 

– 

– 

No 

30–60 

72–78 (22–26) 

Protective environment room

11, 17

 Out 

2  12 –  No  – 75 

(24) 

Airborne infection isolation room

17, 18

 In 

12  Yes

15

 No  – 75 

(24) 

Isolation alcove or anteroom

17, 18

 In/Out 

–  10 Yes  No  –  – 

Labor/delivery/recovery – 

 

6

16

 –  – 

– 

70–75 

(21–24) 

Labor/delivery/recovery/postpartum – 

  6

16

 –  – 

– 

70–75 

(21–24) 

Patient 

corridor 

–  – 2 

– – – – 

 

 

background image

 

 

213 

 

Air movement 

Minimum 

Minimum 

AII air 

 

relationship 

air changes 

total air 

exhausted 

Recirculated 

Relative 

Design 

 

to adjacent 

of outdoor 

changes per 

directly to 

by means of 

humidity

8

 temperature

9

 

Area designation 

area

2

 air 

per 

hour

3

 hour

4, 5

 outdoors

6

 room 

units

7

 

(%) 

(degrees F [C]) 

 

Ancillary

 

Radiology

19

 

  X-ray (surgical/critical care and 

     catheterization) 

Out 

15 

– 

No 

30-60 

70–75 (21–24) 

X-ray (diagnostic & treatment) 

– 

– 

– 

– 

– 

75 (24) 

 Darkroom 

In 

– 

10 

Yes 

No 

– 

– 

Laboratory 

 General

19

 

–  – 6 

–  – – 

75 

(24) 

 Biochemistry

19

 Out 

– 

– 

No 

– 

75 

(24) 

 Cytology 

In 

– 

Yes 

No 

– 

75 

(24) 

 Glass 

washing 

In 

– 

10 

Yes 

– 

– 

– 

 Histology 

In 

– 

Yes 

No 

– 

75 

(24) 

 Microbiology

19

 In 

– 

Yes 

No 

– 

75 

(24) 

  Nuclear medicine 

In 

– 

Yes 

No 

– 

75 (24) 

 Pathology 

In 

– 

Yes 

No 

– 

75 

(24) 

 Serology 

Out 

– 

– 

No 

– 

75 

(24) 

 Sterilizing 

In 

– 

10 

Yes 

– 

– 

– 

Autopsy room

11

 In 

– 

12 

Yes 

No 

– 

– 

Nonrefrigerated body-holding room 

In 

– 

10 

Yes 

– 

– 

70 (21) 

Pharmacy 

Out  – 4 

–  – – – 

 

Diagnostic and treatment

 

Examination 

room 

–  – 6 

–  – – 

75 

(24) 

Medication 

room 

Out  – 4 

–  – – – 

Treatment 

room 

–  – 6 

–  – – 

75 

(24) 

Physical therapy and hydrotherapy 

In 

– 

– 

– 

– 

75 (24) 

Soiled workroom or soiled holding 

In 

– 

10 

Yes 

No 

– 

– 

Clean workroom or clean holding 

Out 

– 

– 

– 

– 

– 

 

Sterilizing and supply 

ETO-sterilizer room 

In 

– 

10 

Yes 

No 

30-60 

75 (24) 

Sterilizer equipment room In 

– 

10 

Yes 

– 

– 

– 

Central medical and surgical supply 

  Soiled or decontamination room 

In 

– 

Yes 

No 

– 

68–73 (20–23) 

  Clean workroom 

Out 

– 

– 

No 

30-60 

75 (24) 

 Sterile 

storage 

Out 

– 

– 

– 

(Max.) 

70 

– 

 

 

 

background image

 

 

214 

 

 

Air movement 

Minimum 

Minimum 

AII air 

 

relationship 

air changes 

total air 

exhausted 

Recirculated 

Relative 

Design 

 

to adjacent 

of outdoor 

changes per 

directly to 

by means of 

humidity

8

 temperature

9

 

Area designation 

area

2

 air 

per 

hour

3

 hour

4, 5

 outdoors

6

 room 

units

7

 

(%) 

(degrees F [C]) 

 

Service

 

Food preparation center

20

 – 

– 

10 

– 

No 

– 

– 

Ware washing 

In 

– 

10 

Yes 

No 

– 

– 

Dietary day storage 

In 

– 

– 

– 

– 

– 

Laundry, 

general 

– 

– 10 

Yes  – – – 

Soiled linen (sorting and storage) 

In 

– 

10 

Yes 

No 

– 

– 

Clean linen storage 

Out 

– 

– 

– 

– 

– 

Soiled linen and trash chute room 

In 

– 

10 

Yes 

No 

– 

– 

Bedpan 

room 

In 

– 10 

Yes  – – – 

Bathroom 

In 

– 10 –  – – 

75 

(24) 

Janitor’s closet 

In 

– 

10 

Yes 

No 

– 

– 

 

 

 

Notes:

 

 

1.  The ventilation rates in this table cover ventilation for comfort, as well as for asepsis and odor control in areas of acute care hospitals that directly affect patient care and are 

determined based on health-care facilities being predominantly “No Smoking” facilities.  Where smoking may be allowed, ventilation rates will need adjustment.  Areas where 

specific ventilation rates are not given in the table shall be ventilated in accordance with ASHRAE Standard 62, 

Ventilation for Acceptable Indoor Air Quality

, and ASHRAE 

Handbook - HVAC Applications

.  Specialized patient care areas, including organ transplant units, burn units, specialty procedure rooms, etc., shall have additional ventilation 

provisions for air quality control as may be appropriate.  OSHA standards and/or NIOSH criteria require special ventilation requirements for employee health and safety within 

health-care facilities. 

 

2.  Design of the ventilation system shall provide air movement which is generally from clean to less clean areas.  If any form of variable air volume or load shedding system is 

used for energy conservation, it must not compromise the corridor-to-room pressure balancing relationships or the minimum air changes required by the table. 

 

3.  To satisfy exhaust needs, replacement air from the outside is necessary.  Table B2 does not attempt to describe specific amounts of outside air to be supplied to individual 

spaces except for certain areas such as those listed.  Distribution of the outside air, added to the system to balance required exhaust, shall be as required by good engineering 

practice.  Minimum outside air quantities shall remain constant while the system is in operation. 

 

4.  Number of air changes may be reduced when the room is unoccupied if provisions are made to ensure that the number of air changes indicated is reestablished any time the 

space is being utilized.  Adjustments shall include provisions so that the direction of air movement shall remain the same when the number of air changes is reduced.  Areas not 

indicated as having continuous directional control may have ventilation systems shut down when space is unoccupied and ventilation is not otherwise needed, if the maximum 

infiltration or exfiltration permitted in Note 2 is not exceeded and if adjacent pressure balancing relationships are not compromised.  Air quantity calculations must account for 

filter loading such that the indicated air change rates are provided up until the time of filter change-out. 

 

5.  Air change requirements indicated are minimum values.  Higher values should be used when required to maintain indicated room conditions (temperature and jumidity), based 

on the cooling load of the space (lights, equipment, people, exterior walls and windows, etc.). 

background image

 

 

215 

 

6.  Air from areas with contamination and/or odor problems shall be exhausted to the outside and not recirculated to other areas.  Note that individual circumstances may require 

special consideration for air exhaust to the outside, (e.g., in intensive care units in which patients with pulmonary infection are treated) and rooms for burn patients. 

 

7.  Recirculating room HVAC units refer to those local units that are used primarily for heating and cooling of air, and not disinfection of air.  Because of cleaning difficulty and 

potential for buildup of contamination, recirculating room units shall not be used in areas marked “No.”  However, for airborne infection control, air may be recirculated within 

individual isolation rooms if HEPA filters are used.  Isolation and intensive care unit rooms may be ventilated by reheat induction units in which only the primary air supplied from 

a central system passes through the reheat unit.  Gravity-type heating or cooling units such as radiators or convectors shall not be used in operating rooms and other special care 

areas.  See this table’s Appendix I for a description of recirculation units to be used in isolation rooms (A7). 

 

8.  The ranges listed are the minimum and maximum limits where control is specifically needed.  The maximum and minimum limits are not intended to be independent of a 

space’s associated temperature.  The humidity is expected to be at the higher end of the range when the temperature is also at the higher end, and vice versa. 

 

9.  Where temperature ranges are indicated, the systems shall be capable of maintaining the rooms at any point within the range during normal operation.  A single figure indicates 

a heating or cooling capacity of at least the indicated temperature.  This is usually applicable when patients may be undressed and require a warmer environment. Nothing in these 

guidelines shall be construed as precluding the use of temperatures lower than those noted when the patients' comfort and medical conditions make lower temperatures desirable.  

Unoccupied areas such as storage rooms shall have temperatures appropriate for the function intended. 

 

10.  National Institute for Occupational Safety and Health (NIOSH) criteria documents regarding “Occupational Exposure to Waste Anesthetic Gases and Vapors,” and “Control of 

Occupational Exposure to Nitrous Oxide” indicate a need for both local exhaust (scavenging) systems and general ventilation of the areas in which the respective gases are utilized. 

 

11.  Differential pressure shall be a minimum of 0.01" water gauge (2.5 Pa).  If alarms are installed, allowances shall be made to prevent nuisance alarms of monitoring devices. 

 

12.  Some surgeons may require room temperatures which are outside of the indicated range.  All operating room design conditions shall be developed in consultation with 

surgeons, anesthesiologists, and nursing staff. 

 

13.  The term “trauma room” as used here is the operating room space in the emergency department or other trauma reception area that is used for emergency surgery.  The “first 

aid room” and/or “emergency room” used for initial treatment of accident victims may be ventilated as noted for the “treatment room.”  Treatment rooms used for bronchoscopy 

shall be treated as Bronchoscopy rooms.  Treatment rooms used for cryosurgery procedures with nitrous oxide shall contain provisions for exhausting waste gases. 

 

14.  In a ventilation system that recirculates air, HEPA filters can be used in lieu of exhausting the air from these spaces to the outside.  In this application, the return air shall be 

passed through the HEPA filters before it is introduced into any other spaces. 

 

15.  If it is not practical to exhaust the air from the airborne infection isolation room to the outside, the air may be returned through HEPA filters to the air-handling system  
exclusively

 serving the isolation room. 

 

16.  Total air changes per room for patient rooms, labor/delivery/recovery rooms, and labor/delivery/recovery/postpartum rooms may be reduced to 4 when supplemental heating 

and/or cooling systems (radiant heating and cooling, baseboard heating, etc.) are used. 

 

17.  The protective environment airflow design specifications protect the patient from common environmental airborne infectious microbes (i.e., 

Aspergillus

 spores).  These special 

ventilation areas shall be designed to provide directed airflow from the cleanest patient care area to less clean areas.  These rooms shall be protected with HEPA filters at 99.97 

percent efficiency for a 0.3 µm sized particle in the supply airstream.  These interrupting filters protect patient rooms from maintenance-derived release of environmental microbes 

from the ventilation system components.  Recirculation HEPA filters can be used to increase the equivalent room air exchanges.  Constant volume airflow is required for consistent 

ventilation for the protected environment.  If the facility determines that airborne infection isolation is necessary for protective environment patients, an anteroom should be  

background image

 

 

216 

 

provided.  Rooms with reversible airflow provisions for the purpose of switching between protective environment and airborne infection isolation functions are not acceptable. 

 

18.  The infectious disease isolation room described in these guidelines is to be used for isolating the airborne spread of infectious diseases, such as measles, varicella, or 

tuberculosis.  The design of airborne infection isolation (AII) rooms should include the provision for normal patient care during periods not requiring isolation precautions.  

Supplemental recirculating devices may be used in the patient room to increase the equivalent room air exchanges; however, such recirculating devices do not provide the outside 

air requirements.  Air may be recirculated within individual isolation rooms if HEPA filters are used.  Rooms with reversible airflow provisions for the purpose of switching 

between protective environment and AII functions are not acceptable. 

 

19.  When required, appropriate hoods and exhaust devices for the removal of noxious gases or chemical vapors shall be provided (see Section 7.31.D14 and 7.31.D15 in the AIA 

guideline [reference 120] and NFPA 99). 

 

20.  Food preparation centers shall have ventilation systems whose air supply mechanisms are interfaced appropriately with exhaust hood controls or relief vents so that exfiltration 

or infiltration to or from exit corridors does not compromise the exit corridor restrictions of NFPA 90A, the pressure requirements of NFPA 96, or the maximum defined in the 

table. The number of air changes may be reduced or varied to any extent required for odor control when the space is not in use.  See Section 7.31.D1.p in the AIA guideline 

(reference 120). 

 

Appendix I:

 

 

A7.  Recirculating devices with HEPA filters may have potential uses in existing facilities as interim, supplemental environmental controls to meet requirements for the control of 

airborne infectious agents.  Limitations in design must be recognized.  The design of either portable or fixed systems should prevent stagnation and short circuiting of airflow.  The 

supply and exhaust locations should direct clean air to areas where health-care workers are likely to work, across the infectious source, and then to the exhaust, so that the health-

care worker is not in position between the infectious source and the exhaust location.  The design of such systems should also allow for easy access for scheduled preventative 

maintenance and cleaning. 

 

A11.  The verification of airflow direction can include a simple visual method such as smoke trail, ball-in-tube, or flutterstrip.  These devices will require a minimum differential 

air pressure to indicate airflow direction. 

 

 

 

 

 

 

background image

 

 

217 

 

Table B.3.  Pressure relationships and ventilation of certain areas of nursing facilities

1

 

Notes:  This table is Table 8.1 in the AIA guidelines, 2001 edition.  Superscripts used in this table refer to notes following the table. 

 

 

 

Air movement 

Minimum 

Minimum 

AII air 

 

relationship 

air changes 

total air 

exhausted 

Recirculated 

Relative 

Design 

 

to adjacent 

of outdoor 

changes per 

directly to 

by means of 

humidity

7

 temperature

8

 

Area designation 

area

2

 air 

per 

hour

3

 hour

4

 outdoors

5

 room 

units

6

 

(%) 

(degrees F [C]) 

 

Resident room 

– 

– 

– 

9

 70–75 

(21–24) 

Resident unit corridor 

– 

– 

– 

– 

9

 – 

Resident gathering areas 

– 

– 

– 

– 

– 

Toilet room 

In 

– 

10 

Yes 

No 

– 

– 

Dining rooms 

– 

– 

– 

– 

75 (24) 

Activity rooms, if provided 

– 

– 

– 

– 

– 

Physical therapy 

In 

– 

– 

– 

75 (24) 

Occupational therapy 

In 

– 

– 

– 

75.(24) 

Soiled workroom or soiled holding 

In 

10 

Yes 

No 

– 

– 

Clean workroom or clean holding 

Out 

– 

– 

(Max. 70) 

75 (24) 

Sterilizer exhaust room 

In 

– 

10 

Yes 

No 

– 

– 

Linen and trash chute room, if provided 

In 

– 

10 

Yes 

No 

– 

– 

Laundry, general, if provided 

– 

10 

Yes 

No 

– 

– 

Soiled linen sorting and storage 

In 

– 

10 

Yes 

No 

– 

– 

Clean linen storage 

Out 

– 

Yes 

No 

– 

– 

Food preparation facilities

10 

– 2 

10 

Yes No 

– 

– 

Dietary warewashing 

In 

– 

10 

Yes 

No 

– 

– 

Dietary storage areas 

– 

– 

Yes 

No 

– 

– 

Housekeeping rooms 

In 

– 

10 

Yes 

No 

– 

– 

Bathing rooms 

In 

– 

10 

Yes 

No 

– 

75 (24) 

 

 

 

Notes: 

 

1.  The ventilation rates in this table cover ventilation for comfort, as well as for asepsis and odor control in areas of nursing facilities that directly affect resident care and are 

determined based on nursing facilities being predominantly “No Smoking” facilities.  Where smoking may be allowed, ventilation rates will need adjustment.  Areas where 

specific ventilation rates are not given in the table shall be ventilated in accordance with ASHRAE Standard 62, 

Ventilation for Acceptable Indoor Air Quality,

 and ASHRAE 

Handbook - HVAC Applications.

  OSHA standards and/or NIOSH criteria require special ventilation requirements for employee health and safety within nursing facilities. 

 

2.  Design of the ventilation system shall, insofar as possible, provide that air movement is from clean to less clean areas.  However, continuous compliance may be impractical 

with full utilization of some forms of variable air volume and load shedding systems that may be used for energy conservation.  Areas that do require positive and continuous 

control are noted with “Out” or “In” to indicate the required direction of air movement in relation to the space named.  Rate of air movement may, of course, be varied as needed  

background image

 

 

218 

 

 

within the limits required for positive control.  Where indication of air movement direction is enclosed in parentheses, continuous directional control is required only when the 

specialized equipment or device is in use or where room use may otherwise compromise the intent of movement from clean to less clean.  Air movement for rooms with dashes 

and nonpatient areas may vary as necessary to satisfy the requirements of those spaces.  Additional adjustments may be needed when space is unused or unoccupied and air 

systems are deenergized or reduced. 

 

3.  To satisfy exhaust needs, replacement air from outside is necessary.  Table B.3 does not attempt to describe specific amounts of outside air to be supplied to individual spaces 

except for certain areas such as those listed.  Distribution of the outside air, added to the system to balance required exhaust, shall be as required by good engineering practice. 

 

4.  Number of air changes may be reduced when the room is unoccupied if provisions are made to ensure that the number of air changes indicated is reestablished any time the 

space is being utilized.  Adjustments shall include provisions so that the direction of air movement shall remain the same when the number of air changes is reduced.  Areas not 

indicated as having continuous directional control may have ventilation systems shut down when space is unoccupied and ventilation is not otherwise needed. 

 

5.  Air from areas with contamination and/or odor problems shall be exhausted to the outside and not recirculated to other areas.  Note that individual circumstances may require 

special consideration for air exhaust to outside. 

 

6.  Because of cleaning difficulty and potential for buildup of contamination, recirculating room units shall not be used in areas marked “No.”  Isolation rooms may be ventilated 

by reheat induction units in which only the primary air supplied from a central system passes through the reheat unit.  Gravity-type heating or cooling units such as radiators or 

convectors shall not be used in special care areas. 

 

7.  The ranges listed are the minimum and maximum limits where control is specifically needed.  See A8.31.D in the AIA guideline (reference 120) for additional information. 

 

8.  Where temperature ranges are indicated, the systems shall be capable of maintaining the rooms at any point within the range.  A single figure indicates a heating or cooling 

capacity of at least the indicated temperature.  This is usually applicable where residents may be undressed and require a warmer environment.  Nothing in these guidelines shall be 

construed as precluding the use of temperatures lower than those noted when the residents’ comfort and medical conditions make lower temperatures desirable.  Unoccupied areas 

such as storage rooms shall have temperatures appropriate for the function intended. 

 

9.  See A8.31.D1 in the AIA guideline (reference 120). 

 

10.  Food preparation facilities shall have ventilation systems whose air supply mechanisms are interfaced appropriately with exhaust hood controls or relief vents so that 

exfiltration or infiltration to or from exit corridors does not compromise the exit corridor restrictions of NFPA 90A, the pressure requirements of NFPA 96, or the maximum 

defined in the table.  The number of air changes may be reduced or varied to any extent required for odor control when the space is not in use. 

 
 

 

background image

 

 

219

Table B.4.  Filter efficiencies for central ventilation and air conditioning systems in 
general hospitals*

 

Note:  This table is Table 7.3 in the AIA guidelines, 2001 edition. 

 

 

 

Filter bed 

Filter bed 

 Number 

of 

No.1 

No. 

Area designation 

filter beds 

(%) 

(%)

 

 

 

All areas for inpatient care, treatment, and 

30 

90 

diagnosis, and those areas providing direct 

service or clean supplies, such as sterile and 

clean processing, etc. 

 

Protective environment room 

30 

99.97 

 

Laboratories 1 

80 

– 

 

Administrative, bulk storage, soiled holding areas, 

30 

– 

food preparation areas, and laundries 

 

*  Additional roughing or prefilters should be considered to reduce maintenance required for filters with efficiency higher 

       than 75 percent.  The filtration efficiency ratings are based on average dust sopt efficiency per ASHRAE 52.1–1992. 

 

 

Table B.5.  Filter efficiencies for central ventilation and air conditioning systems in 
outpatient facilities*

 

Note:  This table is Table 9.1 in the AIA guidelines, 2001 edition. 

 

 

 

Filter bed 

Filter bed 

 

Number of  

No. 1 

No. 2+ 

Area designation 

filter beds 

(%) 

(%)

 

 

 

All areas for patient care, treatment, and/or 

30 

90 

diagnosis, and those areas providing direct service 

or clean supplies such as sterile and clean processing, 

etc. 

 

Laboratories 1 

80 

– 

 

Administrative, bulk storage, soiled holding areas, 

30 

– 

food preparation areas, and laundries 

 

 

*  Additional roughing or prefilters should be considered to reduce maintenance required for main filters.  The filtration 

       efficiency ratings are based on dust spot efficiency per ASHRAE 52.1–1992. 

+  These requirements do not apply to small primary (e.g., neighborhood) outpatient facilities or outpatient facilities that do 

       not perform invasive applications or procedures. 

 
 
 
 

background image

 

 

220 

Table B.6.  Filter efficiencies for central ventilation and air conditioning systems in 
nursing facilities

 

Note:  This table is Table 8.2 in the AIA guidelines, 2001 edition. 

 

 

Minimum 

Filter bed 

Filter bed 

 

number of  

No. 1 

No. 2 

Area designation 

filter beds 

(%)* 

(%)* 

 

 

All areas for inpatient care, treatment, and/or 

30 

80 

diagnosis, and those areas providing direct  

service or clean supplies 

 

Administrative, bulk storage, soiled holding, 

30 

– 

laundries, and food preparation areas 

 

 

*  The filtration efficiency ratings are based on average dust spot efficiency as per ASHRAE 52.1–1992. 

 

 

Table B.7.  Filter efficiencies for central ventilation and air conditioning systems in 
psychiatric hospitals

 

Note:  This table is Table 11.1 in the AIA guidelines, 2001 edition. 

 

 

Minimum 

Filter bed 

Filter bed 

 

number of  

No. 1 

No. 2 

Area designation 

filter beds 

(%)* 

(%)* 

 

All areas for inpatient care, treatment, and 

30 

90 

diagnosis, and those areas providing direct 

services 

 

Administrative, bulk storage, soiled holding, 

30 

– 

laundries, and food preparation areas 

 

 

*  The filtration efficiency ratings are based on average dust spot efficiency as per ASHRAE 52.1–1992. 

 

 

 

Appendix C.  Water

 

 

 

1.  Biofilms

 

 

Microorganisms have a tendency to associate with and stick to surfaces.  These adherent organisms can 

initiate and develop biofilms, which are comprised of cells embedded in a matrix of extracellularly 

produced polymers and associated abiotic particles.

1438

   It is inevitable that biofilms will form in most 

water systems.  In the health-care facility environment, biofilms may be found in the potable water 

supply piping, hot water tanks, air conditioning cooling towers, or in sinks, sink traps, aerators, or 

shower heads.  Biofilms, especially in water

 

systems, are not present as a continuous slime or

 

film, but

 

background image

 

 

221

are more often scanty and heterogeneous in nature.

1439

   Biofilms may form under stagnant as well as 

flowing conditions, so storage tanks, in addition to water system piping, may be vulnerable to the 

development of biofilm, especially if water temperatures are low enough to allow the growth of 

thermophilic bacteria (e.g., 

Legionella

 spp.).  Favorable conditions for biofilm formation are present if 

these structures and equipment are not cleaned for extended periods of time.

1440

 

 

Algae, protozoa, and fungi may be present in biofilms, but the predominant microorganisms of water 

system biofilms are gram-negative bacteria.  Although most of these organisms will not normally pose a 

problem for healthy individuals, certain biofilm bacteria (e.g., 

Pseudomonas aeruginosa, Klebsiella 

spp., 

Pantoea agglomerans

, and 

Enterobacter cloacae

) all may be agents for opportunistic infections for 

immunocompromised individuals.

1441, 1442

   These biofilm organisms may easily contaminate indwelling 

medical devices or intravenous (IV) fluids, and they could be transferred on the hands of health-care 

workers.

1441–1444

   Biofilms may potentially provide an environment for the survival of pathogenic 

organisms, such as 

Legionella pneumophila 

and 

E. coli

 O157:H7.  Although the association of biofilms 

and medical devices provides a plausible explanation for a variety of health-care–associated infections, 

it is not clear how the presence of biofilms in the water system may influence the rates of health-care–

associated waterborne infection. 

 

Organisms within biofilms behave quite differently than their planktonic (i.e., free floating) 

counterparts.  Research has shown that biofilm-associated organisms are more resistant to antibiotics 

and disinfectants than are planktonic organisms, either because the cells are protected by the polymer 

matrix, or because they are physiologically different.

1445–1450

   Nevertheless, municipal water utilities 

attempt to maintain a chlorine residual in the distribution system to discourage microbiological growth.  

Though chlorine in its various forms is a proven disinfectant, it has been shown to be less effective 

against biofilm bacteria.

1448

   Higher levels of chlorine for longer contact times are necessary to 

eliminate biofilms. 

 

Routine sampling of health-care facility water systems for biofilms is not warranted.  If an 

epidemiologic investigation points to the water supply system as a possible source of infection, then 

water sampling for biofilm organisms should be considered so that prevention and control strategies can 

be developed.  An established biofilm is is difficult to remove totally in existing piping.  Strategies to 

remediate biofilms in a water system would include flushing the system piping, hot water tank, dead 

legs, and those areas of the facility’s water system subject to low or intermittent flow.  The benefits of 

this treatment would include a) elimination of corrosion deposits and sludge from the bottom of hot 

water tanks, b) removal of biofilms from shower heads and sink aerators, and c) circulation of fresh 

water containing elevated chlorine residuals into the health-care facility water system. 

 

The general strategy for evaluating water system biofilm depends on a comparision of the 

bacteriological quality of the incoming municipal water and that of water sampled from within facility’s 

distribution system.  Heterotrophic plate counts and coliform counts, both of which are routinely run by 

the municipal water utility, will at least provide in indication of the potential for biofilm formation.  

Heterotrophic plate count levels in potable water should be <500 CFU/mL.  These levels may increase 

on occasion, but counts consistently >500 CFU/mL would indicate a general decrease in water quality.  

A direct correlation between heterotrophic plate count and biofilm levels has been demonstrated.

1450

   

Therefore, an increase in heterotrophic plate count would suggest a greater rate and extent of biofilm 

formation in a health-care facility water system.  The water supplied to the facility should also contain 

<1 coliform bacteria/100 mL.  Coliform bacteria are organisms whose presence in the distribution 

system could indicate fecal contamination.  It has been shown that coliform bacteria can colonize 

biofilms within drinking water systems.  Intermittant contamination of a water system with these 

organisms could lead to colonization of the system. 

 

background image

 

 

222 

Water samples can be collected from throughout the health-care facility system, including both hot and 

cold water sources; samples should be cultured by standard methods.

945

   If heterotrophic plate counts in 

samples from the facility water system are higher than those from samples collected at the point of 

water entry to the building, it can be concluded that the facility water quality has diminished.  If 

biofilms are detected in the facility water system and determined by an epidemiologic and 

environmental investigation to be a reservoir for health-care–associated pathogens, the municipal water 

supplier could be contacted with a request to provide higher chlorine residuals in the distribution 

system, or the health-care facility could consider installing a supplemental chlorination system. 

 

Sample collection sites for biofilm in health-care facilities include a) hot water tanks; b) shower heads; 

and c) faucet aerators, especially in immunocompromised patient-care areas.  Swabs should be placed 

into tubes containing phosphate buffered water, pH 7.2 or phosphate buffered saline, shipped to the 

laboratory under refrigeration and processed within 24 hrs. of collection.  Samples are suspended by 

vortexing with sterile glass beads and plated onto a nonselective medium (e.g., Plate Count Agar or 

R2A medium) and selective media (e.g., media for 

Legionella

 spp. isolation) after serial dilution.  If the 

plate counts are elevated above levels in the water (i.e. comparing the plate count per square centimeter 

of swabbed surface to the plate count per milliliter of water), then biofilm formation can be suspected.  

In the case of an outbreak, it would be advisable to isolate organisms from these plates to determine 

whether the suspect organisms are present in the biofilm or water samples and compare them to the 

organisms isolated from patient specimens. 

 

2.  Water and Dialysate Sampling Strategies in Dialysis

 

 

In order to detect the low, total viable heterotrophic plate counts outlined by the current AAMI 

standards for water and dialysate in dialysis settings, it is necessary to use standard quantitative culture 

techniques with appropriate sensitivity levels.

792, 832, 833

   The membrane filter technique is particularly 

suited for this application because it permits large volumes of water to be assayed.

792, 834

   Since the 

membrane filter technique may not be readily available in clinical laboratories, the spread plate assay 

can be used as an alternative.

834

   If the spread plate assay is used, however, the standard prohibits the 

use of a calibrated loop when applying sample to the plate.

792

   The prohibition is based on the low 

sensitivity of the calibrated loop.  A standard calibrated loop transfers 0.001 mL of sample to the culture 

medium, so that the minimum sensitivity of the assay is 1,000 CFU/mL.  This level of sensitivity is 

unacceptable when the maximum allowable limit for microorganisms is 200 CFU/mL.  Therefore, when 

the spread plate method is used, a pipette must be used to place 0.1–0.5 mL of water on the culture 

medium. 

 

The current AAMI standard specifically prohibits the use of nutrient-rich media (e.g., blood agar, and 

chocolate agar) in dialysis water and dialysate assays because these culture media are too rich for 

growth of the naturally occurring organisms found in water.

792

   Debate continues within AAMI, 

however, as to the most appropriate culture medium and incubation conditions to be used.  The original 

clinical observations on which the microbiological requirements of this standard were based used 

Standard Methods Agar (SMA), a medium containing relatively few nutrients.

666

   The use of tryptic soy 

agar (TSA), a general purpose medium for isolating and cultivating microorganisms was recommended 

in later versions of the standard because it was thought to be more appropriate for culturing bicarbonate-

containing dialysate.

788, 789, 835

   Moreover, culturing systems based on TSA are readily available from 

commercial sources.  Several studies, however, have shown that the use of nutrient-poor media, such as 

R2A, results in an increased recovery of bacteria from water.

1451, 1452

   The original standard also 

specified incubation for 48 hours at 95°F–98.6°F (35°C–37°C) before enumeration of bacterial colonies.  

Extending the culturing time up to 168 hours, or 7 days and using incubation temperatures of 73.4°F–

82.4°F (23°C–28°C) have also been shown to increase the recovery of

 

bacteria.

1451, 1452

   Other 

background image

 

 

223

investigators, however, have not found such clear cut differences between culturing techniques.

835, 1453

   

After considerable discussion, the AAMI Committee has not reached a consensus regarding changes in 

the assay technique, and the use of TSA or its equivalent for 48 hours at 95°F–98.6°F (35°C–37°C) 

remains the recommended method.  It should be recognized, however, that these culturing conditions 

may underestimate the bacterial burden in the water and fail to identify the presence of some organisms.  

Specifically, the recommended method may not detect the presence of various NTM that have been 

associated with several outbreaks of infection in dialysis units.

31, 32

   In these instances, however, the 

high numbers of mycobacteria in the water were related to the total heterotrophic plate counts, each of 

which was significantly greater than that allowable by the AAMI standard.  Additionally, the 

recommended method will not detect fungi and yeast, which have been shown to contaminate water 

used for hemodialysis applications.

1454

   Biofilm on the surface of the pipes may hide viable bacterial 

colonies, even though no viable colonies are detected in the water using sensitive culturing 

techniques.

1455

  Many disinfection processes remove biofilm poorly, and a rapid increase in the level of 

bacteria in the water following disinfection may indicate significant biofilm formation.  Therefore, 

although the results of microbiological surveillance obtained using the test methods outlined above may 

be useful in guiding disinfection schedules and in demonstrating compliance with AAMI standards, they 

should not be taken as an indication of the absolute microbiological purity of the water.

792

  

 

Endotoxin can be tested by one of two types of assays a) a kinetic test method [e.g., colorimetric or 

turbidimetric] or b) a gel-clot assay.  Endotoxin units are assayed by the 

Limulus

 Amebocyte Lysate 

(LAL) method.  Because endotoxins differ in their activity on a mass basis, their activity is referred to a 

standard 

Escherichia coli

 endotoxin.  The current standard (EC-6) is prepared from 

E. coli

 O113:H10.  

The relationship between mass of endotoxin and its activity varies with both the lot of LAL and the lot 

of control standard endotoxin used.  Since standards for endotoxin were harmonized in 1983 with the 

introduction of EC-5, the relationship between mass and activity of endotoxin has been approximately 

5–10 EU/ng.  Studies to harmonize standards have led to the measurement of endotoxin units (EU) 

where 5 EU is equivalent to 1 ng 

E. coli

 O55:B5 endotoxin.

1456

  

 

In summary, water used to prepare dialysate and to reprocess hemodialyzers should not contain a total 

microbial count >200 CFU/mL as determined by assay on TSA agar for 48 hrs. at 96.8°F (36°C), and 

<2 endotoxin units (EU) per mL.  The dialysate at the end of a dialysis treatment should not contain 

>2,000 CFU/mL.

31, 32, 668, 789, 792

 

 

 

 

3.  Water Sampling Strategies and Culture Techniques for Detecting 
Legionellae

 

 

 

Legionella

 spp. are ubiquitous and can be isolated from 20%–40% of freshwater environments, 

including man-made water systems.

1457, 1458

   In health-care facilities, where legionellae in potable water 

rarely result in disease among immunocompromised patients, courses of remedial action are unclear. 

 

Scheduled microbiologic monitoring for legionellae remains controversial because the presence of 

legionellae is not necessarily evidence of a potential for causing disease.

1459

   CDC recommends 

aggressive disinfection measures for cleaning and maintaining devices known to transmit legionellae, 

but does not recommend regularly scheduled microbiologic assays for the bacteria.

396

  However, 

scheduled monitoring of potable water within a hospital might be considered in certain settings where 

persons are highly susceptible to illness and mortality from 

Legionella

 infection (e.g., hematopoietic 

stem cell transplantation units and solid organ transplant units).

9

   Also, after an outbreak of 

background image

 

 

224 

legionellosis, health officials agree monitoring is necessary to identify the source and to evaluate the 

efficacy of biocides or other prevention measures. 

 

Examination of water samples is the most efficient microbiologic method for identifying sources of 

legionellae and is an integral part of an epidemiologic investigation into health-care–associated 

Legionnaires disease.  Because of the diversity of plumbing and HVAC systems in health-care facilities, 

the number and types of sites to be tested must be determined before collection of water samples.  One 

environmental sampling protocol that addresses sampling site selection in hospitals might serve as a 

prototype for sampling in other institutions.

1209

   Any water source that might be aerosolized should be 

considered a potential source for transmission of legionellae.  The bacteria are rarely found in municipal 

water supplies and tend to colonize plumbing systems and point-of-use devices.  To colonize, 

legionellae usually require a temperature range of 77°F–108°F (25°C–42.2°C) and are most commonly 

located in hot water systems.

1460

   Legionellae do not survive drying.  Therefore, air-conditioning 

equipment condensate, which frequently evaporates, is not a likely source.

1461

  

 

Water samples and swabs from point-of-use devices or system surfaces should be collected when 

sampling for legionellae (Box C.1).

1437

   Swabs of system surfaces allow sampling of biofilms, which 

frequently contain legionellae.  When culturing faucet aerators and shower heads, swabs of surface areas 

should be collected first; water samples are collected after aerators or shower heads are removed from 

their pipes.  Collection and culture techniques are outlined (Box C.2).  Swabs can be streaked directly 

onto buffered charcoal yeast extract agar (BCYE) plates if the pates are available at the collection site.  

If the swabs and water samples must be transported back to a laboratory for processing, immersing 

individual swabs in sample water minimizes drying during transit.  Place swabs and water samples in 

insulated coolers to protect specimens from temperature extremes. 

 

Box C.1.  Potential sampling sites for Legionella spp. in health-care facilities*

 

 

 

•  Potable water systems 

 

 

incoming water main, water softener unit, holding tanks, cisterns, water heater tanks  

 

 

   (at the inflows and outflows) 

 

 • 

 

Potable water outlets, especially those in or near patient rooms

 

 

 

faucets or taps, showers 

 

 

•  Cooling towers and evaporative condensers

 

 

 

makeup water (e.g., added to replace water lost because of evaporation, drift, or leakage), 

 

 

   basin (i.e., area under the tower for collection of cooled water), sump (i.e., section of basin 

 

 

   from which cooled water returns to heat source), heat sources (e.g., chillers) 

 

 

•  Humidfiers (e.g., nebullizers)

 

 

 

bubblers for oxygen, water used for respiratory therapy equipment 

 

 

•  Other sources

 

 

 

decorative fountains, irrigation equipment, fire sprinkler system (if recently used), whirlpools, 

 

 

   spas 

 

 

*  Material in this box is adapted from reference 1209. 

 

 

 

 

background image

 

 

225

Box C.2.  Procedures for collecting and processing environmental specimens for 
Legionella
 spp.*

 

 

 

1.

 

Collect water (1-liter samples, if possible) in sterile, screw-top bottles. 

2.

 

Collect culture swabs of internal surfaces of faucets, aerators, and shower heads in a sterile, 

screw-top container (e.g., 50 mL plastic centrifuge tube).  Submerge each swab in 5–10 mL of 

sample water taken from the same device from which the sample was obtained. 

3.

 

Transport samples and process in a laboratory proficient at culturing water specimens for 

Legionella

 spp. as soon as possible after collection.+ 

4.

 

Test samples for the presence of 

Legionella

 spp. by using semiselective culture media using 

procedures specific to the cultivation and detection of 

Legionella

 spp.§¶ 

 

*  Material in this table is compiled from references1209, 1437, 1462–1465. 

+  Samples may be transported at room temperature but must be protected from temperature extremes.  Samples not processed 

       within 24 hours of collection should be refrigerated. 

§  Detection of 

Legionella

 spp. antigen by the direct fluorescent antibody technique is not suitable for environmental samples. 

¶  Use of polymerase chain reaction for identification of 

Legionella

 spp. is not recommended until more data regading the 

       sensitivity and specificity of this procedure are available. 

 

 

 

 

4.  Procedure for Cleaning Cooling Towers and Related Equipment

 

 

I.    Perform these steps prior to chemical disinfection and mechanical cleaning. 

A.  Provide protective equipment to workers who perform the disinfection, to prevent their exposure 

to chemicals used for disinfection and aerosolized water containing 

Legionella 

spp.  Protective 

equipment may include full-length protective clothing, boots, gloves, goggles, and a full- or 

half-face mask that combines a HEPA filter and chemical cartridges to protect against airborne 

chlorine levels of up to 10 mg/L. 

B.  Shut off cooling tower. 

1.  Shut off the heat source, if possible. 

2.  Shut off fans, if present, on the cooling tower/evaporative condenser (CT/EC). 

3.  Shut off the system blowdown (i.e., purge) valve. 

4.  Shut off the automated blowdown controller, if present, and set the system controller to 

manual. 

5.  Keep make-up water valves open. 

6.  Close building air-intake vents within at least 30 meters of the CT/EC until after the cleaning 

procedure is complete. 

7.  Continue operating pumps for water circulation through the CT/EC. 

 

II.   Perform these chemical disinfection procedures. 

A.  Add fast-release, chlorine-containing disinfectant in pellet, granular, or liquid form, and follow 

safety instructions on the product label.  Use EPA-registered products, if available.  Examples 

of disinfectants include sodium hypochlorite (NaOCl) or calcium hypochlorite (Ca[OCl]

2

), 

calculated to achieve initial free residual chlorine (FRC) of 50 mg/L:  either a) 3.0 lbs [1.4 kg] 

industrial grade NaOCl [12%–15% available Cl] per 1,000 gallons of CT/EC water; b) 10.5 lbs 

[4.8 kg] domestic grade NaOCl [3%–5% available Cl] per 1,000 gallons of CT/EC water; or c) 

background image

 

 

226 

0.6 lb [0.3 kg] Ca[OCl]

2

 per 1,000 gallons of CT/EC water.  If significant biodeposits are 

present, additional chlorine may be required.  If the volume of water in the CT/EC is unknown, 

it can be estimated (in gallons) by multiplying either the recirculation rate in gallons per minute 

by 10 or the refrigeration capacity in tons by 30.  Other appropriate compounds may be 

suggested by a water-treatment specialist. 

B.  Record the type and quality of all chemicals used for disinfection, the exact time the chemicals 

were added to the system, and the time and results of FRC and pH measurements. 

C.  Add dispersant simultaneously with or within 15 minutes of adding disinfectant.  The dispersant 

is best added by first dissolving it in water and adding the solution to a turbulent zone in the 

water system.  Automatic-dishwasher compounds are examples of low- or nonfoaming, silicate-

based dispersants.  Dispersants are added at 10–25 lbs (4.5–11.25 kg) per 1,000 gallons of 

CT/EC water. 

D.  After adding disinfectant and dispersant, continue circulating the water through the system.  

Monitor the FRC by using an FRC-measuring device with the DPD method (e.g., a swimming-

pool test kit), and measure the pH with a pH meter every 15 minutes for 2 hours.  Add chlorine 

as needed to maintain the FRC at >10 mg/L.  Because the biocidal effect of chlorine is reduced 

at a higher pH, adjust the pH to 7.5–8.0.  The pH may be lowered by using any acid (e.g., 

nuriatic acid or sulfuric acid used for maintenance of swimming pools) that is compatible with 

the treatment chemicals. 

E.  Two hours after adding disinfectant and dispersant or after the FRC level is stable at >10 mg/L, 

monitor at 2-hour intervals and maintain the FRC at >10 mg/L for 24 hours. 

F.  After the FRC level has been maintained at >10 mg/L for 24 hours, drain the system.  CT/EC 

water may be drained safely into the sanitary sewer.  Municipal water and sewerage authorities 

should be contacted regarding local regulations.  If a sanitary sewer is not available, consult 

local or state authorities (e.g., a department of natural resources or environmental protection) 

regarding disposal of water.  If necessary, the drain-off may be dechlorinated by dissipation or 

chemical neutralization with sodium bisulfite. 

G.  Refill the system with water and repeat the procedure outline in steps 2–7 in I-B above. 

 

III.  Perform mechanical cleaning. 

A.  After water from the second chemical disinfection has been drained, shut down the CT/EC. 

B.  Inspect all water-contact areas for sediment, sludge, and scale.  Using brushes and/or a low-

pressure water hose, thoroughly clean all CT/EC water-contact areas, including the basin, sump, 

fill, spray nozzles, and fittings.  Replace components as needed. 

C.  If possible, clean CT/EC water-contact areas within the chillers. 

 

IV.  Perform these procedures after mechanical cleaning. 

A.  Fill the system with water and add chlorine to achieve an FRC level of 10 mg/L. 

B.  Circulate the water for 1 hour, then open the blowdown valve and flush the entire system until 

the water is free of turbidity. 

C.  Drain the system. 

D.  Open any air-intake vents that were closed before cleaning. 

E.  Fill the system with water.  The CT/EC may be put back into service using an effective water-

treatment program. 

 

 

 

 

 

 

 

background image

 

 

227

 

 

 

 

5.  Maintenance Procedures Used to Decrease Survival and Multiplications 
of Legionella
 spp. in Potable-Water Distribution Systems

 

 

Wherever allowable by state code, provide water at >124°F (>51°C) at all points in the heated water 

system, including the taps.  This requires that water in calorifiers (e.g., water heaters) be maintained at 

>140°F (>60°C).  In the United Kingdom, where maintenance of water temperatures at >122°F (>50°C) 

in hospitals has been mandated, installation of blending or mixing valves at or near taps to reduce the 

water temperature to <109.4°F (<63°C) has been recommended in certain settings to reduce the risk for 

scald injury to patients, visitors, and health care workers.

726

   However, 

Legionella 

spp. can multiply 

even in short segments of pipe containing water at this temperature.  Increasing the flow rate from the 

hot-water-circulation system may help lessen the likelihood of water stagnation and cooling.

711, 1465

   

Insulation of plumbing to ensure delivery of cold (<68°F [<20°C]) water to water heaters (and to cold-

water outlets) may diminish the opportunity for bacterial multiplication.

456

   Both dead legs and capped 

spurs within the plumbing system provide areas of stagnation and cooling to <122°F (<50°C) regardless 

of the circulating water temperature; these segments may need to be removed to prevent colonization.

704

   

Rubber fittings within plumbing systems have been associated with persistent colonization, and 

replacement of these fittings may be required for 

Legionella 

spp. eradication.

1467

 

 

Continuous chlorination to maintain concentrations of free residual chlorine at 1–2 mg/L (1–2 ppm) at 

the tap is an alternative option for treatment.  This requires the placement of flow-adjusted, continuous 

injectors of chlorine throughout the water distribution system.  Adverse effects of continuous 

chlorination can include accelerated corrosion of plumbing (resulting in system leaks) and production of 

potentially carcinogenic trihalomethanes.  However, when levels of free residual chlorine are below 3 

mg/L (3 ppm), trihalomethane levels are kept below the maximum safety level recommended by the 

EPA.

727, 1468, 1469

 

 

 

 

background image

 

 

228 

Appendix D.  Insects and Microorganisms

 

 

Table D.1.  Microorganisms isolated from arthropods in health-care settings 

Insect Microorganism 

category Microorganisms  References 

Gram-negative bacteria 

Acinetobacter 

spp

.; Citrobacter freundii; 

Enterobacter 

spp

., E. cloacae; Escherichia 

coli; Flavobacterium 

spp

.; Klebsiella 

spp

.; 

Proteus 

spp

.; Pseudomonas 

spp

., P. 

aeruginosa, P. fluorescens, P. putida; 
Salmonella 

spp

.; Serratia 

spp

., S. 

marcescens; Shigella boydii 

1048, 1051, 1056, 

1058, 1059, 1062 

Gram-positive bacteria 

Bacillus 

spp

.; Enterococcus faecalis; 

Micrococcus 

spp

.; Staphylococcus aureus, 

S. epidermidis; Streptococcus 

spp

., S. 

viridans 

1056, 1058, 1059 

Acid-fast bacteria 

Mycobacterium tuberculosis 

1065 

Fungi 

Aspergillus niger

Mucor

 spp.; 

Rhizopus 

spp. 

1052, 1059 

Cockroaches 

Parasites 

Endolimax nana; Entamoeba coli 

1059 

Gram-negative bacteria 

Acinetobacter 

spp

.; Campulobacter fetus 

subsp

. Jejuni; Chlamydia 

spp.

; Citrobacter 

fruendii; Enterobacter 

spp

.; Escherichia 

coli; Helicobacter pylori; Klebsiella 

spp

.; 

Proteus 

spp.

; Pseudomonas aeruginosa; 

Serratia marcescens; Shigella 

spp

1047, 1048, 1050, 

1053–1055, 1060 

Gram-positive bacteria 

Bacillus 

spp

.; Enterococcus faecalis; 

Micrococcus 

spp

.; Staphylococcus 

spp. 

(coagulase-negative)

, S. aureus; 

Streptococcus 

spp

., S. viridans 

1048, 1060 

Fungi / yeasts 

Candida 

spp

.; Geotrichum 

spp

1060 

Parasites 

Endolimax nana; Entamoeba coli 

1060 

Houseflies 

Viruses Rotaviruses 

1049 

Gram-negative bacteria 

Acinetobacter 

spp

.; Escherichia coli; 

Klebsiella 

spp

.; Neisseria sicca; Proteus 

spp

.; Providencia 

spp

.; Pseudomonas 

aeruginosa, P. fluorescens 

1057 

Ants 

Gram-positive bacteria 

Bacillus 

spp

., B. cereus, B. pumilis; 

Clostridium cochlearium, C. welchii; 
Enterococcus faecalis; Staphylococcus 

spp. 

(coagulase-negative)

, S. aureus; 

Streptococcus pyrogenes 

1057 

Gram-negative bacteria 

Acinetobacter 

spp

.; Citrobacter freundii; 

Enterobacteraerogenes; Morganella 
morganii 

1048 

Spiders 

Gram-positive bacteria 

Staphylococcus 

spp. (coagulase-negative) 

1048 

Bram-negative bacteria 

Acinetobacter 

spp.

; Burkholderia cepacia; 

Enterbacter agglomerans, E. aerogenes; 
Hafnia alvei; Pseudomonas aeruginosa 

1048 

Mites, midges 

Gram-positive bacteria 

Staphylococcus 

spp. (coagulase-negative) 

1048 

Gram-negative bacteria 

Acinetobacter calcoaceticus; Enteobacter 
cloacae 

1048 

Mosquitoes 

Gram-positive bacteria 

Enterococcus 

spp

.; Staphylococcus 

spp. 

(coagulase-negative)

 

1048 

 

 

 

 

background image

 

 

229

Appendix E.  Information Resources

 

 

 

The following sources of information may be helpful to the reader.  Some of these are available at no 

charge, while others are available for purchase from the publisher. 

 

Air andWater

 

 

Jensen PA, Schafer MP.  Sampling and characterization of bioaerosols.  NIOSH Manual of 

Analytical Methods; revised 6/99.   www.cdc.gov/niosh/nmam/pdfs/chapter-j.pdf 

 

American Institutes of Architects.  

Guidelines for Design and Construction of Hospital and 

Health Care Facilities.

  Washington DC; American Institute of Architects Press; 2001.  AIA, 

1735 New York Avenue, NW, Washington DC 20006.  1-800-AIA-3837 or (202) 626-7541 

 

ASHRAE.  Standard 62, and Standard 12-2000.  These documents may be purchased from:  

American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. 1791 Tullie 

Circle, NE, Atlanta GA 30329   1-800-527-4723 or (404) 636-8400. 

 

University of Minnesota websites:   www.dehs.umn.edu         Indoor air quality site:   

www.dehs.umn.edu/resources.htm#indoor       Water infiltration and use of the wet test 

(moisture) meter:     www.dehs.umn.edu/remangi.html 

 

The CDC website for bioterrorism information contains the interim intervention plan for 

smallpox.  The plan discusses infection control issues both for home-based care and hospital-

based patient management.   www.bt.cdc.gov/agent/smallpox/response-plan/index.asp  

 

Environmental Sampling

 

 

ISO.  Sterilization of medical devices – microbiological methods, Part 1.  ISO standard 11737-

1.  Paramus NJ; International Organization for Standardization; 1995. 

 

Animals in Health-Care Facilities

 

 

Service animal information with respect to the Americans with Disabilities Act.  Contact the 

U.S. Department of Justice ADA Information Line at (800) 514-0301 (voice) or (800) 514-0383 

(TDD), or visit the ADA website at:   www.usdoj.gov/crt/ada/adahom1.htm 

 

Regulated Medical Waste

 

 

U.S. Environmental Protection Agency.  This is the Internet address on their Internet web site 

that will link to any state for information about medical waste rules and regulations at the state 

level:   www.epa.gov/epaoswer/other/medical/stregs.htm 

 

General Resources 

 

APIC Text of Infection Control and Epidemiology.  Association for Professionals in Infection 

Control and Epidemiology, Inc.  Washington DC; 2000.  (Two binder volumes, or CD-ROM) 

 

Abrutyn E, Goldmann DA, Scheckler WE.  Saunders Infection Control Reference Service, 2

nd

 

Edition.  Philadelphia PA; WB Saunders; 2000. 

 

ECRI publications are available on a variety of healthcare topics.  Contact ECRI at (610) 825-

6000.   CRI, 5200 Butler Pike, Plymouth Meeting, PA 19462-1298. 

 

 

 

 

 

 

background image

 

 

230 

Appendix F.  Areas of Future Research 

 

Air

 

•    Standardize the methodology and interpretation of microbiologic air sampling (e.g., determine action 

levels or minimum infectious dose for aspergillosis, and evaluate the significance of airborne 

bacteria and fungi in the surgical field and the impact on postoperative SSI). 

•    Develop new molecular typing methods to better define the epidemiology of health-care–associated 

outbreaks of aspergillosis and to associate isolates recovered from both clinical and environmental 

sources. 

•    Develop new methods for the diagnosis of aspergillosis that can lead reliably to early recognition of 

infection. 

•    Assess the value of laminar flow technology for surgeries other than for joint replacement surgery. 

•    Determine if particulate sampling can be routinely performed in lieu of microbiologic sampling for 

purposes such as determining air quality of clean environments (e.g., operating rooms, HSCT units). 

 

Water

 

•    Evaluate new methods of water treatment, both in the facility and at the water utility (e.g., ozone, 

chlorine dioxide, copper/silver/monochloramine) and perform cost-benefit analyses of treatment in 

preventing health-care–associated legionellosis. 

•    Evaluate the role of biofilms in overall water quality and determine the impact of water treatments 

for the control of biofilm in distribution systems. 

•    Determine if the use of ultrapure fluids in dialysis is feasible and warranted, and determine the action 

level for the final bath. 

•    Develop quality assurance protocols and validated methods for sampling filtered rinse water used 

with AERs and determine acceptable microbiologic quality of AER rinse water. 

 

Environmental Services

 

•    Evaluate the innate resistance of microorganisms to the action of chemical germicides, and 

determine what, if any, linkage there may be between antibiotic resistance and resistance to 

disinfectants. 

 

Laundry and Bedding

 

•    Evaluate the microbial inactivation capabilities of new laundry detergents, bleach substitutes, other 

laundry additives, and new laundry technologies. 

 

Animals in Health-Care Facilities

 

•    Conduct surveillance to monitor incidence of infections among patients in facilities that use animal 

programs, and conduct investigations to determine new infection control strategies to prevent these 

infections. 

•    Evaluate the epidemiologic impact of performing procedures on animals (e.g., surgery or imaging) in 

human health-care facilities. 

 

Regulated Medical Waste

 

•    Determine the efficiency of current medical waste treatment technologies to inactivate emerging 

pathogens that may be present in medical waste (e.g., SARS-coV). 

•    Explore options to enable health-care facilities to reinstate the capacity to inactivate microbiological 

cultures and stocks on-site. 

 

 

background image

 

 

231

Index—Parts I and IV

 

 

 

A 

AAMI standards ..................................59, 60, 62, 222, 223 

Acinetobacter 

spp. ...........................11, 20, 43, 44, 99, 104 

aerators ................................47, 48, 94, 220–222, 224, 225 

aerosols... 12, 27, 41, 47, 56, 59, 67, 75, 76, 78, 80, 85, 89, 

90, 98, 106, 111, 113, 114 

AIA guidelines.............................17, 18, 19, 25, 37, 39, 99 

AII rooms ................................................................. 35–37 

air changes per hour (ACH).......6, 12, 16, 18, 31, 111, 210 

air conditioners ........................................................... 8, 22 

air conditioning systems ............................... 13, 20, 57, 59 

air filtration................................................................... 111 

air intakes ............................................................... 31, 226 

air sampling ...............................26, 29, 89, 90, 91, 93, 210 

airborne infection isolation (AII)................................ 6, 19 

airborne transmission...................................................... 12 

air-fluidized beds .......................................................... 104 

alcohol-based hand rubs ................................................. 53 

alkaline glutaraldehyde................................................... 70 

allergens............................................................ 17, 80, 107 

American Institute of Architects (AIA) .......................... 13 

Americans with Disabilities Act........................... 108, 110 

amplified stocks and cultures................................ 114, 115 

Animal Assisted Activities ................................... 106, 107 

Animal Assisted Therapy ..................................... 106, 107 

animal bites................................................................... 107 

animal handler .............................................................. 107 

animal patient ............................................................... 110 

Animal Welfare Act...................................................... 112 

anterooms ................................................12, 25, 33, 36–38 

ants ................................................................................. 81 

ASHRAE............................................................ 13, 47, 49 

aspergillosis...............................7, 8, 16, 19, 21, 35, 79, 80 

Aspergillus fumigatus

............................................. 7, 8, 29 

Aspergillus

 spp. .........................5, 7, 20, 21, 28, 32, 34, 81 

automated cyclers ........................................................... 65 

automated endoscope reprocessor....................... 50, 69, 70 

autopsy suites/rooms................................................. 12, 87 

B 

bacterial spores ................................................... 73, 84, 89 

bank of filters.................................................................. 14 

barrier ............................................................................. 34 

barrier precautions/protection......................... 74, 109, 116 

barriers................................................................ 27, 31, 33 

bassinets.......................................................................... 76 

biofilms..................................46, 54, 64, 71, 220–222, 224 

biosafety level............................................................... 114 

bioterrorism ............................................................ 89, 114 

bird droppings....................................................... 9, 20, 22 

birthing tanks............................................................ 67, 69 

blood.. 12, 64, 69, 75, 77–79, 86, 87, 98, 99, 102, 113, 116 

bloodborne pathogens............................................. 73, 116 

boil water advisory ................................................... 51, 52 

C 

calibrated loop .............................................................. 222 

carpet cleaning................................................................ 79 

carpet tiles....................................................................... 79 

carpeting ..................................................22, 25, 52, 78, 79 

cats.........................................................105, 106, 108, 109 

chain of infection........................................................ 4, 87 

chemical germicides ................................73, 74, 77, 80, 84 

chloramine/chloramine-T ............................................... 68 

chlorine....................................46, 50, 53, 69, 84, 221, 226 

chlorine bleach........................................................ 78, 101 

chlorine residual ............................50, 68, 69, 94, 101, 221 

cleaning .. 68, 70–72, 74, 78, 80, 83, 85, 86, 107, 109, 112, 

225 

cleaning cloths................................................................ 75 

cleaning solutions ..................................................... 75, 76 

Clostridium difficile

.................................................... 5, 84 

cloth chairs...................................................................... 79 

cockroaches .................................................................... 81 

coliform bacteria........................................................... 221 

colonization .......................42–44, 68, 70, 83, 99, 106, 227 

colony counts................................................................ 211 

commissioning.......................................................... 29, 89 

construction ..... 7, 13, 14, 21, 23, 26, 27, 29, 31, 37, 76, 89 

construction workers........................................... 24, 26, 31 

contact precautions ......................................................... 85 

contact time ................................................ 74, 84, 88, 221 

contaminants..........................................14, 18, 19, 59, 210 

contaminated fabrics....................................... 98, 101, 102 

contingency plans ..................................................... 21, 50 

continuous chlorination ................................................ 227 

cooling tower...........................41, 53, 55, 57–59, 220, 225 

copper/silver ions............................................................ 54 

copper-8-quinolinolate.................................................... 35 

Creutzfeldt-Jakob disease ....................................... 86, 116 

Cryptosporidium parvum

................................................ 46 

D 

dead legs........................................................... 59, 64, 221 

decorative fountains.......................................... 47, 49, 224 

demolition..................................................... 23, 25, 26, 29 

dental unit water lines..................................................... 71 

detergent/disinfectant................................................ 74–76 

dialysate.................................................................... 59–62 

dialysis machines............................................................ 64 

dialysis water................................................................ 222 

dialyzer ........................................................................... 62 

dialyzer membranes........................................................ 61 

background image

 

 

232 

dialyzer reprocessing ...................................................... 59 

dioctylphthalate (DOP) particle test................................ 15 

direct contact........................6, 41, 67, 85, 86, 98, 108, 111 

direct threat................................................................... 109 

disinfectant fogging ........................................................ 75 

disinfectant residuals ...................................................... 96 

disinfectants...................................................... 21, 76, 225 

disinfecting ........................71, 74, 80, 83, 85, 86, 112, 226 

disinfection ................................................... 63, 64, 68, 70 

dispersant...................................................................... 226 

disposal (of medical waste)........................................... 113 

distribution system.................................................. 94, 221 

dogs ...................................................... 105, 106, 108, 109 

drift eliminators .............................................................. 58 

drinking water................................................................. 71 

droplet nuclei .............................................. 6, 7, 10, 12, 89 

droplets ..................................................... 6, 55, 85, 86, 89 

dry cleaning .................................................................. 102 

drying.............................................................................. 11 

dual-duct system ............................................................. 20 

duct cleaning................................................................... 21 

ductwork................................................................... 20, 22 

dust ....................................8, 20, 24, 27, 30, 32, 74, 79, 93 

dust-spot test................................................................... 15 

E 

education......................................................................... 24 

electrical generators........................................................ 53 

emergency....................................................................... 53 

endotoxin .................................................... 60–62, 64, 223 

engineering controls........................................................ 36 

enteric viruses................................................................. 85 

environmental cultures.............................................. 83, 88 

Environmental Protection Agency (EPA).... 21, 73–75, 77, 

103, 227 

environmental sampling............................................ 88, 95 

environmental surfaces ...11, 44, 71, 72, 74, 82–86, 88, 98, 

107 

environmental surveillance ....................................... 54, 55 

EPA registration.................................................. 73, 76, 83 

EPA-registered germicides ........................... 75, 78, 85, 86 

evaporative condensers....................................... 41, 57–59 

exclusion (of a service animal) ..................................... 109 

exotic animals............................................................... 110 

F 

fan-coil units................................................................... 18 

faucets..........................................47, 54, 94, 222, 224, 225 

fecal contamination......................................................... 84 

FIFRA..................................................................... 75, 103 

filter efficiency ......................................................... 27, 29 

filtration .......................................................................... 15 

fire codes ........................................................................ 31 

fish........................................................................ 105, 108 

fish tanks....................................................................... 108 

flies ................................................................................. 81 

flooding........................................................................... 51 

floors............................................................. 25, 75, 82, 83 

flowers ............................................................................ 80 

flush times....................................................................... 51 

flutter strips......................................................... 20, 34, 36 

fomites ................................................................ 3, 4, 7, 85 

Food and Drug Administration (FDA).............. 69, 73, 103 

free residual chlorine ................................ 51, 54, 225–227 

fungal spores...8, 15, 16, 19–21, 26–28, 31, 34, 38, 79, 89, 

93 

fungi..................................................................................8 

furniture .............................................................. 52, 79, 82 

G 

gram-negative bacteria...11, 41, 42, 48, 50, 60, 63, 64, 221 

gram-positive bacteria............................................... 11, 84 

H 

hand hygiene............................................. 25, 71, 107, 109 

hand transferral ..........................3, 44, 65, 82–84, 106, 221 

handwashing ......................................... 25, 80, 84, 99, 107 

hantaviruses .................................................................... 12 

hematopoietic stem cell transplant....................................6 

hemodiafiltration............................................................. 62 

hemodialysis ......................................... 59, 60, 62, 64, 223 

hemodialysis patients........................................................7 

hemofiltration ................................................................. 62 

HEPA filtration/filters........6, 12, 14, 15, 17, 31, 32, 36, 76 

hepatitis B virus .................................................. 40, 73, 98 

heterotrophic plate counts............. 51, 62, 66, 95, 221–223 

high-flux membranes ...................................................... 61 

high-level disinfectants................................................... 73 

high-level disinfection ........................................ 60, 69, 72 

high-temperature flushing............................................... 50 

high-touch surfaces............................................. 75, 83–85 

holding tank .................................................................... 47 

hospital disinfectant ........................................................ 73 

hot water system ....................................................... 51, 54 

hot water tanks................................................ 53, 220–222 

hot water temperature ..................................................... 49 

housekeeping surfaces ........................ 3, 64, 72, 74–77, 83 

HSCT patients............................................................. 6, 37 

HSCT units ........................................... 11, 26, 79, 80, 107 

Hubbard tanks................................................................. 68 

human health-care facilities .................................. 110, 111 

human immunodeficiency virus...................................... 73 

humidifiers.......................................................... 17, 23, 41 

humidity............................................ 13, 14, 17, 20, 38, 90 

HVAC systems ................13, 14, 16, 17, 19–21, 27, 30, 51 

hydrotherapy equipment ........................................... 67–69 

hydrotherapy pools ......................................................... 68 

hydrotherapy tanks.............................................. 67, 68, 82 

hygienically-clean laundry.............................. 98–100, 102 

hyperchlorination.......................................... 50, 53, 54, 59 

background image

 

 

233

I, J 

iatrogenic cases............................................................... 87 

ice machines and ice..................................... 25, 48, 65, 66 

ice-storage chests............................................................ 66 

immunocompromised patients....6, 7, 9, 26, 29–31, 34, 42, 

47, 56, 66, 80, 107, 108, 223 

impaction................................................................ 90, 211 

impactors .................................................................. 28, 93 

impingement..................................................... 90, 93, 211 

impingers...................................................................... 211 

inactivation studies ......................................................... 87 

incineration........................................................... 113, 114 

incubators (nursery)........................................................ 76 

indirect transmission......................................................... 6 

indirect contact ............................................................... 41 

indoor air .................................................21, 24, 26, 27, 90 

industrial-grade HEPA filter......................... 16, 31, 38, 39 

infection-control risk assessment (ICRA).... 26, 29, 31, 35, 

108, 111 

influenza viruses............................................. 6, 12, 73, 85 

innate resistance.................................................. 72, 73, 84 

insects....................................................................... 67, 81 

insulation material .......................................................... 20 

intermediate-level disinfectants ...............73, 78, 83, 85, 86 

intermediate-level disinfection ....................................... 72 

isolation/isolation areas .................................... 11, 36, 100 

 

JCAHO ......................................................... 13, 14, 51, 59 

L 

laboratories . 12, 13, 32, 47, 78, 79, 83, 105, 111, 112, 114, 

222 

laboratory confirmation .................................................. 55 

laminar airflow ................................................... 18, 34, 38 

laser plumes.................................................................... 40 

laundry............................................................................ 49 

laundry bags ................................................................. 100 

laundry chutes............................................................... 100 

laundry cycles............................................................... 101 

laundry disinfection ...................................................... 101 

laundry facility................................................................ 99 

laundry packaging................................................. 100, 101 

laundry process................................................. 98, 99, 102 

laundry services.............................................................. 99 

laundry transport................................................... 100, 101 

Legionella pneumophila

....................................... 210, 221 

Legionella 

spp. ... 41, 42, 50, 54–57, 59, 71, 222, 223, 225, 

227 

legionellae .................................................41, 54, 211, 223 

legionellosis...................................................... 53–56, 224 

Legionnaires disease..............................41, 47, 57, 58, 224 

liquid chemical sterilant.................................................. 70 

low-level disinfectants.................................. 72, 73, 83, 86 

low-level disinfection ............................................... 60, 64 

M 

manufacturer’s instructions...........67, 69, 74,  86, 102, 116 

material safety data sheets (MSDS).......................... 75, 87 

mattress cover......................................................... 77, 104 

mattresses ............................................................... 77, 104 

medical equipment.................................................... 74, 83 

medical equipment surfaces............................................ 72 

medical gas piping.......................................................... 30 

medical records............................................................... 51 

medical waste ............................................... 112, 113, 117 

medical waste management .......................................... 112 

membrane filtration .................................... 70, 95, 96, 222 

methicillin-resistant 

Staphylococcus aureus

 (MRSA) ... 82, 

83, 104, 105 

microbial inactivation ..................................................... 72 

microbial resistance ........................................................ 70 

microbiologic air sampling ............................................. 27 

microbiologic cultures and stocks................................. 112 

microbiologic sampling .................................................. 64 

microbiologic sampling of laundry............................... 102 

microbiological wastes ......................................... 112, 114 

moisture.............................................20, 24, 32, 51, 70, 96 

moisture meters............................................................... 51 

molecular typing............................................................. 28 

monochloramine ............................................................. 54 

mop heads....................................................................... 75 

multidisciplinary team .............................................. 23, 91 

municipal water ................................................ 47, 50, 224 

municipal water systems/utilities............................ 45, 221 

Mycobacterium tuberculosis

..................... 5, 7, 10, 73, 114 

myiasis............................................................................ 81 

N 

negative air pressure .....6, 12, 18, 19, 21, 36, 99, 100, 104, 

111 

neutralizer chemicals ...................................................... 96 

NIOSH............................................................................ 40 

nontuberculous mycobacteria (NTM).5, 41, 44–46, 60, 63, 

70, 71, 223 

O 

operating rooms .....13, 15, 17, 34, 38, 76, 82, 87, 109, 111 

opportunistic infections ................................................ 4, 5 

organic matter................................................................. 78 

OSHA ......................................13, 73, 77, 79, 98, 100, 113 

outdoor air ...............................................14, 15, 18, 25, 91 

oxygen-based laundry detergents.................................. 101 

P 

particle sampling................................................. 27, 33, 89 

performance measures ...................................................... 2 

periodic culturing............................................................ 57 

peritoneal dialysis..................................................... 64, 65 

background image

 

 

234 

personal protective equipment .....77, 98, 99, 112, 114, 225 

persons with disabilities........................................ 108, 109 

person-to-person transmission .................................. 12, 85 

pest control ..................................................................... 82 

phenolics......................................................................... 76 

pillows .......................................................................... 104 

pipes.................................................. 64, 69, 221, 223, 224 

planktonic organisms .................................................... 221 

plastic enclosures............................................................ 31 

plastic wrapping.............................................................. 74 

Pneumocystis carinii

......................................................... 9 

pneumonia ................................................................ 42, 55 

point-of-use fixtures.......................................... 47, 51, 224 

polyvinylchloride (PVC)........................................... 46, 64 

pools ............................................................................... 67 

positive air pressure .................................................. 18, 38 

potable water................................................................. 220 

potted plants................................................................ 8, 80 

pressure differentials............................... 18, 19, 25, 30, 38 

primates ........................................................ 105, 106, 111 

prions ...................................................................... 86, 116 

privacy curtains............................................................... 75 

product water ............................................................ 64, 70 

protective environment (PE)............. 6, 18, 19, 34, 56, 108 

Pseudomonas aeruginosa

.5, 11, 20, 42, 68, 70, 71, 73, 79, 

80, 96, 104, 221 

pseudo-outbreaks ...................................................... 44, 70 

pyrogenic reactions................................................... 60, 61 

Q 

quality assurance................................................. 89, 94, 95 

R 

R2A media.................................................................... 222 

rank order........................................................................ 27 

recirculation.............................................................. 16, 18 

recirculation loops .......................................................... 46 

recreational equipment.................................................... 69 

reduced nutrient media.................................................... 94 

reducing agent................................................................. 94 

relative humidity............................................................. 17 

renovation ..................................................... 13, 14, 23, 37 

repairs ............................................................................. 31 

reprocess hemodialyzers......................................... 61, 223 

research animals............................................................ 111 

reservoirs ...................3, 6, 41, 42, 71, 79, 83, 95, 105, 211 

resident animals ............................................................ 107 

respirable particles.............................................. 27, 28, 90 

respirators ................................................................. 26, 40 

respiratory protection................................................ 36, 78 

respiratory syncytial virus (RSV) ......................... 6, 12, 85 

respiratory therapy equipment ...................................... 224 

return air ......................................................................... 14 

return temperature........................................................... 54 

reverse osmosis (RO).............................. 52, 54, 59, 60, 63 

rewiring........................................................................... 25 

rinse water monitoring.................................................... 70 

RODAC plates.............................................................. 102 

rodents ............................................................................ 67 

rooftops........................................................................... 30 

S 

Sabouraud dextrose agar................................................. 96 

sample/rinse methods...................................................... 97 

sanitary sewer ....................................................... 116, 117 

SARS .............................................................................. 86 

SARS-CoV ..................................................................... 86 

scalding..................................................................... 49, 51 

screens ............................................................................ 82 

scrub suits ................................................................. 98, 99 

sealed windows............................................. 19, 26, 29, 89 

sedimentation.................................................... 90, 93, 211 

select agents.......................................................... 114, 115 

self-closing doors............................................................ 19 

semicritical device .......................................................... 70 

service animal ............................................... 105, 108–110 

settle plates ................................................. 28, 90, 93, 211 

sewage spills................................................................... 51 

sharps containers........................................................... 113 

shock decontamination ................................................... 51 

shower heads................47, 49, 54, 220, 221, 222, 224, 225 

showers ..................................................................... 47, 48 

skin antiseptics................................................................ 73 

smallpox.......................................................................... 36 

smallpox virus............................................................. 7, 12 

smoke tubes ........................................................ 20, 34, 36 

sodium hydroxide ........................................................... 87 

sodium hypochlorite 67, 69, 73, 77, 83, 84, 87, 88, 94, 225 

solid-organ transplant program ....................................... 56 

sorting (laundry) ..................................................... 98, 100 

Spaulding classification ............................................ 71, 98 

spills.................................................................... 75, 77, 79 

standard precautions ............................................. 100, 111 

standards ....................................2, 14, 71, 88, 90, 112, 223 

Staphylococcus aureus

...............10, 11, 38, 64, 73, 99, 104 

state codes/regulations .............................................. 55, 69 

steam jet........................................................................ 101 

steam sterilization (of medical waste)................... 113, 114 

sterile water..................................................................... 55 

storage tanks ............................................................. 63, 64 

streptococci............................................................... 10, 38 

supplemental treatment methods..................................... 53 

surgical gowns and drapes ............................................ 103 

surgical site infections (SSI) ............................... 11, 38, 65 

surgical smoke ................................................................ 40 

surveillance........................................... 26, 51, 57, 99, 223 

swabs ............................................................................ 224 

T 

tacky mats....................................................................... 76 

tap water ........................................... 42, 44, 57, 65, 66, 70 

TB patients...................................................................... 38 

temperature (air) ........................................... 13, 14, 17, 89 

temperature (water)................40, 45, 49, 68, 101, 221, 227 

background image

 

 

235

thermostatic mixing valves............................................. 49 

transport and storage (of medical waste) ...................... 113 

treated items/products............................................. 79, 103 

tryptic soy agar ................................................. 94, 96, 222 

tub liners......................................................................... 68 

tuberculocidal claim ....................................................... 73 

tuberculosis (TB) ............................................................ 35 

U 

ultrapure dialysate........................................................... 61 

ultraviolet germicidal irradiation (UVGI)14, 16, 17, 36, 38 

uniforms.................................................................... 98, 99 

V 

vacuum breakers....................................................... 47, 50 

vacuum cleaners ....................................................... 76, 79 

vacuuming ...................................................................... 79 

vancomycin-resistant enterococci (VRE) ..3, 5, 82, 83, 105 

vancomycin-resistant 

Staphylococcus aureus

 (VRSA)... 83 

variable air ventilation.............................................. 20, 38 

varicella-zoster virus (VZV)................................... 5, 7, 40 

vase water....................................................................... 81 

vegetative bacteria .......................................................... 73 

ventilation rates .............................................................. 18 

ventilation systems ............................................... 8, 9, 111 

viable particles............................................................ 9, 91 

viral hemorrhagic fever................................................... 12 

viral particles .................................................................. 11 

viruses....................................................................... 11, 85 

visual monitoring device................................................. 34 

volumetric air samplers................................................... 29 

volumetric sampling methods......................................... 28 

W 

wallboard.............................................................. 8, 22, 52 

walls ............................................................................... 25 

washing machines and dryers ....................................... 102 

water conditioning .......................................................... 68 

water distribution systems .............................. 64, 221, 227 

water droplets ................................................................. 58 

water pipes...................................................................... 46 

water pressure................................................................. 50 

water quality ............................................................. 71, 94 

water sampling.......................................... 54, 94, 221, 224 

water stagnation............................................................ 227 

water treatment system ................................................... 63 

waterborne transmission ................................................. 46 

weight-arrestance test ..................................................... 15 

wet cleaning.................................................................... 79 

whirlpool spas..................................................... 59, 67, 69 

whirlpools................................................................. 68, 69 

window chutes................................................................ 33 

windows.................................................................... 22, 59 

wood ................................................................. 8, 9, 15, 35