Newest Articles
Energy Efficient Hot and Cold Water
ChExpress-August 18, 2009
ChExpress-August 4, 2009
ChExpress-July 21, 2009
ChExpress-July 7, 2009
ChExpress-June 23, 2009
ChExpress-June 9, 2009
ChExpress-May 26, 2009
Electrical Process Tomography
Biodiesel: The Road Ahead
Methanol Plant Capacity Enhancement
Plate and Frame Heat Exchangers: Preliminary Design
Compressor Surging Under Control
Plant and Equipment Wellness, Part 1: Observing Variability



smalllogo.gif (6368 bytes)

Download a Printable Version Here (Adobe Acrobat Format)

Correlations for Convective Heat Transfer

More on Shell and Tube Exchangers from Cheresources.com:
FREE Resources
Article: Basics of Vaporization
Questions and Answers: Heat Transfer
Experienced-Based Rules for Heat Exchangers and Evaporators
ChE Links: Search for "Heat Transfer"
Students: Ask a Question in our Forums
Professionals: Ask a Question in our Forums
Purchase / Subscription Resources
Book: Available Titles
Online Store: Shell and Tube Exchanger Specification Sheet
Online Store: Heat Transfer Category

In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for single-phase
convective flow in different geometries as well as a few equations for heat transfer processes with change of phase. Note that all equations are for mean Nusselt numbers and mean heat transfer coefficients. The following cases are treated:

  1. Forced Convection Flow Inside a Circular Tube
  2. Forced Convection Turbulent Flow Inside Concentric Annular Ducts
  3. Forced Convection Turbulent Flow Inside Non-Circular Ducts
  4. Forced Convection Flow Across Single Circular Cylinders and Tube Bundles
  5. Forced Convection Flow over a Flat Plate
  6. Natural Convection
  7. Film Condensation
  8. Nucleate Pool Boiling

1 Forced Convection Flow Inside a Circular Tube

equation 1

All properties at fluid bulk mean temperature (arithmetic mean of inlet and outlet temperature).

Nusselt numbers Nu0 from sections 1-1 to 1-3 have to be corrected for temperature-dependent fluid properties according to section 1-4.

1-1 Thermally developing, hydrodynamically developed laminar flow (Re < 2300)

Constant wall temperature:

equation 2 (Hausen)

Constant wall heat flux:

equation 3 (Shah)

1-2 Simultaneously developing laminar flow (Re < 2300)

Constant wall temperature:

equation (Stephan)

Constant wall heat flux:

equation

which is valid over the range 0.7 < Pr < 7 or if Re Pr D/L < 33 also for Pr > 7.

1-3 Fully developed turbulent and transition flow (Re > 2300)

Constant wall heat flux:

equation (Petukhov, Gnielinski)

whereequation

Constant wall temperature:

For fluids with Pr > 0.7 correlation for constant wall heat flux can be used with negligible error.

1-4 Effects of property variation with temperature

Liquids, laminar and turbulent flow:

equation

Subscript w: at wall temperature, without subscript: at mean fluid temperature

Gases, laminar flow:

Nu = Nu0

Gases, turbulent flow:

equation

Temperatures in Kelvin


2 Forced Convection Flow Inside Concentric Annular Ducts, Turbulent (Re > 2300)

figure

Dh = Do - Di

equation

equation

All properties at fluid bulk mean temperature (arithmetic mean of inlet and outlet temperature).

Heat transfer at the inner wall, outer wall insulated:

equation (Petukhov and Roizen)

Heat transfer at the outer wall, inner wall insulated:

equation (Petukhov and Roizen)

Heat transfer at both walls, same wall temperatures:

equation (Stephan)


3 Forced Convection Flow Inside Non-Circular Ducts, Turbulent (Re > 2300)

Equations for circular tube with hydraulic diameter

equation

equation

equation


4 Forced Convection Flow Across Single Circular Cylinders and Tube Bundles

equation

equation

equation

D = cylinder diameter, um = free-stream velocity, all properties at fluid bulk mean temperature. Correction for temperature dependent fluid properties see section 4-4.

4-1 Smooth circular cylinder

equation (Gnielinski)

where equation

equation

Valid over the ranges 10 < Rel < 107 and 0.6 < Pr < 1000

4-2 Tube bundle

Transverse pitch ratio equation

Longitudinal pitch ratio equation

Void ratio equation for b > 1

equation for b < 1

Nu0,bundle = fANul,0 (Gnielinski)

Nul,0 according to section 4-1 with equation instead of Rel.

Arrangement factor fA depends on tube bundle arrangement.

In-line arrangement: equation figure

Staggered arrangement: equation figure

4-3 Finned tube bundle

figure

equation

equation

In-line tube bundle arrangement:

equation (Paikert)

Staggered tube bundle arrangement:

equation (Paikert)

4-4 Effects of property variation with temperature

Liquids:

equation

Subscript w: at wall temperature, without subscript: at mean fluid temperature.

Gases:

equation

equation

Temperatures in Kelvin.


5 Forced Convection Flow over a Flat Plate

figure

equation

All properties at mean film temperature equation

Laminar boundary layer, constant wall temperature:

equation (Pohlhausen)

valid for ReL < 2·105, 0.6 < Pr < 10

Turbulent boundary layer along the whole plate, constant wall temperature:

equation (Petukhov)

Boundary layer with laminar-turbulent transition:

equation (Gnielinski)


6 Natural Convection

All properties atequation

equation L = characteristic length (see below)

 

Nu0

"Length" L

Vertical wall

0.67

H

Horizontal cylinder

0.36

D

Sphere

2.00

D

For ideal gases: equation (temperature in K)

equation (Churchill, Thelen)

valid for 10-4 < Gr Pr < 4·1014,

0.022 < Pr < 7640, and constant wall temperature


7 Film Condensation

All properties without subscript are for condensate at the mean temperature equation

Exception: equation = vapor density at saturation temperature Ts

7-1 Laminar film condensation

Vertical wall or tube:

equation (Nusselt)

Tw = mean wall temperature

Horizontal cylinder:

equation (Nusselt)

Tw = const.

7-2 Turbulent film condensation

For vertical wall

Re = C Am

equation

Recrit = 350

turbulent film: equation (Grigull)


8 Nucleate Pool Boiling

equation

Tw = temperature of heating surface

Ts = saturation temperature

Heat transfer at ambient pressure:

equation (Stephan and Preußer)

' saturated liquid

'' saturated vapor

Bubble departure diameter equation

Angle equation = equation rad for water
= 0.0175 rad for low-boiling liquids
= 0.611 rad for other liquids

For water in the range of 0.5 bar < p < 20 bar and 104 W/m2 < equation < 106 W/m2
the following equation may be applied:

equation (Fritz)


List of Symbols

cp specific heat capacity at constant pressure
D, d diameter
g gravitational acceleration
h mean heat transfer coefficient
symbol enthalpy of evaporation
H height
k thermal conductivity
L length
symbol heat flux
T temperature
u flow velocity
symbol thermal diffusivity
symbol coefficient of thermal expansion
symbol dynamic viscosity
symbol kinematic viscosity
symbol density
symbol surface tension

Subscripts

h hydraulic
i inside
m mean
o outside
s saturation
w wall

Dimensionless numbers

Gr Grashof number
Nu mean Nusselt number
Pr Prandtl number
Re Reynolds number

References

  1. Churchill, S.W.: Free convection around immersed bodies. Chapter 2.5.7 of Heat Exchanger Design Handbook, Hemisphere (1983).
  2. Fritz, W.: In VDI-Wärmeatlas, Düsseldorf (1963), Hb2.
  3. Gnielinski, V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forschung im Ingenieurwesen 41, 8-16 (1975).
  4. Gnielinski, V.: Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung. Forschung im Ingenieurwesen 41, 145-153 (1975).
  5. Grigull, U.: Wärmeübergang bei der Kondensation mit turbulenter Wasserhaut. Forschung im Ingenieurwesen 13, 49-57 (1942).
  6. Hausen, H.: Neue Gleichungen für die Wärmeübertragung bei freier und erzwungener Strömung. Allg. Wärmetechnik 9, 75-79 (1959).
  7. Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. VDI Z. 60, 541-546 and 569-575 (1916).
  8. Petukhov, B.S.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv. Heat Transfer 6, 503-565 (1970).
  9. Petukhov, B.S. and L.I. Roizen: High Temperature 2, 65-68 (1964).
  10. Pohlhausen, E.: Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z. Angew. Math. Mech. 1, 115-121 (1921).
  11. Shah, R.K.: Thermal entry length solutions for the circular tube and parallel plates. Proc. 3rd Natnl. Heat Mass Transfer Conference, Indian Inst. Technol Bombay, Vol. I, Paper HMT-11-75 (1975).
  12. Stephan, K.: Wärmeübergang und Druckabfall bei nicht ausgebildeter Laminarströmung in Rohren und ebenen Spalten. Chem.-Ing.-Tech. 31, 773-778 (1959).
  13. Stephan, K.: Chem.-Ing.-Tech. 34, 207-212 (1962).
  14. Stephan, K. and P. Preußer: Wärmeübergang und maximale Wärmestromdichte beim Behältersieden binärer und ternärer Flüssigkeitsgemische. Chem.-Ing.-Tech. 51, 37 (1979).
  15. VDI-Wärmeatlas, 7th edition, Düsseldorf 1994.

 

By: Dr. Bernhard Spang, Associate Content Writer (read the author's Profile)
b.spang@gmx.net

 

ChE Plus Subscriber - Click Here for a Printable Version

Send this Page to a Friend

Fill out your email address to
receive notification of site updates
and instantly receive five technical
questions and answers
!
Email Address:
First Name:
Last Name:

State:

Country:

Industry:

Position:

Signup Remove