icefoundry.org - physics toy and science toy portal
<< Back to Physics Toy Portal

How a Stirling Engine Works

A Low Temperature Stirling Engine is a closed cycle heat engine.

To understand how a Stirling Engine works, we need to identify its major components. Take a look at the picture below for a run down on the major parts.

stirling engine

How does a Stirling Engine work?

The Stirling Engine requires a temperature difference between two plates in order to run. In this case the plates are made from aluminium. This is a a good choice because aluminium is highly conductive.

In order to power the Stirling Engine, we need to have one plate hotter than the other. This is easily achieved by placing the Stirling Engine on a cup of hot water.

The gap between the two plates is sealed, containing a fixed volume of air. As the bottom plate warms up, the air between the plates expands, pushing up the piston that seals a hole in the top plate. This piston is attached to the flywheel by a metal rod.

As the piston rises, the flywheel is turned. The movement of the flywheel in turn pushes down a second rod which is attached to a displacer sitting loosely between the plates. As the displacer moves downwards, it pushes air away from the hot bottom plate and up to the top plate, which is cooler. This causes the air to contract and the piston is pulled back down again, turning the flywheel further.

The turning flywheel raises the displacer again, pushing air back to the hot plate, and so the cycle continues while there is still a sufficient temperature difference between the two plates.

Low Temperature Stirling Engine Running On Hot Coffee



Temperature Difference

Because the Stirling Engine needs a temperature difference between the top and bottom plate to run, you don't need a heat source to power it. Ice can work just as effectively. In the video below you can see a Stirling Engine running on dry ice. The bottom plate is kept cooler than the top. The air in contact with the bottom plate cools and contracts, pulling the piston down which turns the flywheel. The flywheel pushes the displacer down, moving air away from the cool plate to the warmer upper plate. The air warms and expands, pushing the piston back up.

As you can see, it isn't the input of heat that is important to running the Stirling Engine, but rather the creation of a significant temperature difference between the two plates. Eventually the temperature difference between the two plates will drop. Once the plates are nearly the same temperature, the Stirling Engine will no longer run.

Low Temperature Stirling Engine Running on Dry Ice



Where can you buy a Low Temperature Stirling Engine?

Low Temperature Stirling Engine

<< Back to Physics Toy Portal


The purpose of this site is to gather a collection of sources for rare and unusual physics toys and science curiosities. If you know of a physics toy or an interesting science product which you think should be on here but isn't, email me!