background image

INRAD  Lithium  Niobate 

page 1 of 5 

 

 
 
 

Lithium Niobate (LiNbO

3

 

 

 

PHYSICAL  PROPERTIES 

 

Chemical Formula   

 

 

LiNbO

3

 

                                                                 congruently melting

1

 

 

Crystal Symmetry and Class   

 

trigonal, R3c 

 

Point 

Group 

     3m 

 

Lattice Constants

2

 

a =  5.15052(6) Å 

c = 13.86496(3) Å 

 

Density

2

      4.648(5) 

g/cm

3

 

 

Moh's Hardness 

 

 

 

 

 

Fracture Toughness

3

  

 

c-face 

 

0.67  MPam

1/2

 

x-face  

1.07 MPam

1/2

 

y-face  

1.17 MPam

1/2

 

 

Elastic Compliance

4

 at Constant Polarization (S

P

) and at Constant Field (S

E

) and Temperature 

Dependence

5

 

 

( TPa)

-1   

 

 

  ( TPa)-1  

 

 

 

(10

-4

/

°

K) 

S

P11

=  4.76   

 

 

S

E11

=  5.78 

 

 

(1/S

E11

)dS

E11

/dT=1.66 

S

P12

= -0.50   

 

 

S

E12

= - 1.01 

 

 

(1/S

E12

)dS

E12

/dT=0.28 

S

P13

= -1.20   

 

 

S

E13

= -1.47 

 

 

(1/S

E13

)dS

E13

/dT=1.94 

S

P14

=  1.02   

 

 

S

E14

= -1.02 

 

 

(1/S

E14

)dS

E14

/dT=1.33 

S

P33

=  4.19   

 

 

S

E33

=  5.02 

 

 

(1/S

E22

)dS

E22

/dT=1.60 

S

P44

=  9.3     

 

S

E44

= 17.0 

 

 

(1/S

E44

)dS

E44

/dT=2.05 

S

P66

= 10.5    

 

S

E66

= 13.6 

 

 

(1/S

E66

)dS

E66

/dT=1.43 

 

Stiffness

4

 at Constant Polarization (C

P

) and at Constant Field (C

E

) and Temperature Dependence

5

 

 

(GPa)   

        (GPa)   

 

 

 

 

(10

-4

/

°

K) 

C

P11

= 219   

 

C

E11

= 203  

 

(1/C

E11

)dC

E11

/dT=-1.74 

C

P12

=   37   

 

C

E12

=  53  

 

(1/C

E12

)dC

E12

/dT=-2.52 

C

P13

=   76   

 

C

E13

=  75  

 

(1/C

E13

)dC

E13

/dT=-1.59 

C

P14

=  -15   

 

C

E14

=    9  

 

(1/C

E14

)dC

E14

/dT=-2.14 

C

P22

= 252   

 

C

E22

= 245  

 

(1/C

E22

)dC

E22

/dT=-1.53 

C

P44

=   95   

 

C

E44

=  60  

 

(1/C

E44

)dC

E44

/dT=-2.04 

C

P66

=   91   

 

C

E66

=  75  

 

(1/C

E66

)dC

E66

/dT=-1.43 

 
 
 
 

background image

INRAD  Lithium  Niobate 

page 2 of 5 

 

 
 

 

OPTICAL AND ELECTRO-OPTICAL PROPERTIES 

 

Optical Symmetry   

 

uniaxial negative 

Optical Transmission   

 

0.400 

µ

m - 5.0 

µ

m  

Sellmeier Equation Constants

13 

n =( A +B/(

λ

2

+C)+D

λ

2

)

1/2

  ;     

λ

  in microns 

n

o

  A=4.9048     B=0.11768           C= -0.0475       

D= -0.027169 

n

e

  A=4.582        B=0.099169         C=-0.044432  D= -0.02195 

 

Calculated Refractive Index Values

13

 

n

o

( 1.064  

µ

m) = 2.2322 ;  n

e

( 1.064  

µ

m) = 2.1560 

n

o

( 2.060  

µ

m) = 2.1949 ;  n

e

( 2.060  

µ

m) = 2.1243 

n

o

( 3.500  

µ

m) = 2.1405 ;  n

e

( 3.500  

µ

m) = 2.0788 

 

Photoelastic Strain Coefficients at Constant Field

11

 

ρ

11

 = -0.026  

ρ

31

 =  0.17 

ρ

12

 =  0.08   

ρ

33

 =  0.07 

ρ

13

 =  0.13   

ρ

41

 = -0.151 

ρ

14

 = -0.08   

ρ

44

 =  0.146 

 

Temperature Variation of Refractive Index

13

 for 

λ

 = 1.0 µm – 4.0 µm 

dn

o

/dT = 3.3  x 10

-6

 /

°

dn

e

/dT = 37   x 10

-6

 /

°

 

Nonlinear d Coefficients

12,20

 

 

d

22

 =   2.4 pm/V 

d

31

 =  -4.52 pm/V 

d

33

 =  31.5 pm/V 

 

Effective Nonlinear Optical Coefficient 

d

eff

 = d

31

 sin

θ

 - d

22 

cos

θ

 sin 3

Φ

 

 

Electro Optic Coefficients  @ 0.633 

µ

m

23

 

r

13

T

 = 10  pm/V 

 

r

13

S

 =  8.6 pm/V 

 

 

r

22

T

 = 6.8 pm/V 

 

r

22

S

 =  3.4 pm/V 

 

 

r

33

T

 = 32.2 pm/V   

r

33

S

 = 30.8 pm/V 

 

 

r

51

T

 =  32  pm/V 

 

r

51

S

 = 28   pm/V 

 

 

 

Variation of Electro Optic Coefficient r

22

 with Wavelength

22

 

And Calculated Half-wave Voltage For 9mmx9mmx25mm Q-Switch 

V

1/4

 = 

λ

 d / ( 4 n

l r

22

r

22

T

  

 

 

 

     V

1/4

 

1.064 

µ

m = 5.6 pm/V   

 

 1.55 kVolts   

1.318 

µ

m = 5.4 pm/V   

 

 2.02 kVolts 

1.55  

µ

m  = 5.3 pm/V   

 

 2.44 kVolts 

2.10  

µ

m  = 5.2 pm/V   

 

 3.45 kVolts   

2.79  

µ

m  = 5.1 pm/V   

 

 4.78 kVolts 

2.94  

µ

m  = 5.1 pm/V   

 

 5.08 kVolts 

 

Damage Threshold

2

   

 

   3 J/cm

2

   @ 10 nsec 

 

 

 

background image

INRAD  Lithium  Niobate 

page 3 of 5 

 

 

 

 

THERMAL  AND  ELECTRICAL  PROPERTIES 

 

Melting Point

7

  

   1240

°

 C 

 

Curie Temperature

8

   1145

°

 C 

 

Thermal Conductivity

9

   

 4.  W/m

°

 

Thermal diffusivity

6

 

 

9 x 10

-7

  m

2

/sec 

 

Specific Heat

9

 

 

 

 

0.633  J/g

°

 

Thermal Expansion

10

              

α

a

 = 14.1 x 10

-6 

/

°

                                                      α

c

 =  4.1 x 10

-6 

/

°

K  

 

Resistivity

14

   

 

 

2 x 10

10

  

 - cm  @ 200

°

 C 

  
 

Dielectric Constants

16

 

 

K

11

S

 = 43 

 

K

11

T

 = 78 

K

33

S

 = 28 

 

K

33

T

 = 32 

 
 

Loss tangent

15

  @400 

°

 

x-axis Tan

δ

 =0.0006 

y-axis Tan

δ

 =0.001 

 
 
 
 
 
 

 
 

Typical Polish Specifications 

 

Wavefront Distortion: 

λ

 / 8 @ 633 nm 

 

 

Flatness:  

 

λ

 / 10 @ 633 nm 

 

 

Parallelism:  

 

1 arcseconds 

 

Scratch - Dig: 

 

 

10 - 5 

 

 
 
 
 
 

background image

INRAD  Lithium  Niobate 

page 4 of 5 

 

 
Description 
 
Lithium niobate is a ferroelectric material suitable for a variety of applications.  Its versatility 
is made possible by the excellent electro-optic, nonlinear, and piezoelectric properties of the 
intrinsic material.  It is one of the most thoroughly characterized electro-optic materials, and 
crystal growing techniques consistently produce large crystals of high perfection.  
 
Applications that utilize the large electro-optic coefficients of lithium niobate are optical 
modulation and Q-switching of infrared wavelengths.  Because the crystal is 
nonhygroscopic and has a low half-wave voltage, it is often the material of choice for Q-
switches in military applications.  The crystal can be operated in a Q-switch  configuration 
with zero residual birefringence and with an electric field that is transverse to the direction of 
light propagation.  Because piezoelectric ringing can be severe, piezoelectrically damped 
designs can be very useful.  The damage threshold of the intrinsic material at 1.06 microns 
with a 10 nsec pulse is approximately 3 J/cm

2

.  With appropriate AR coatings, a surface 

damage threshold of 300-500 MW/cm

2

 can be achieved for the same conditions. 

 
Applications that use the large nonlinear d coefficient of LiNbO

3

 include optical parametric 

oscillaton, difference frequency mixing to generate tunable infrared wavelengths, and 
second harmonic generation.  With a broad spectral transmission, which ranges from 0.4 

µ

m to 5.0 

µ

m with an OH

-

 absorption at 2.87 

µ

m, a large negative birefringence, and a large 

nonlinear coefficient, phasematching is an effective way to generate tunable wavelengths 
over a broad wavelength range. 
 
Lithium niobate is particularly effective for second harmonic generation of low power laser 
diodes in the 1.3 to 1.55 

µ

m range. 

 
For infrared generation by difference frequency mixing, the peak power limit is considerably 
lower than for 1.064 

µ

m, being about 40 MW/cm

2

.  Efficiencies for difference frequency 

mixing generally are smaller than shg efficicncies with KDP or BBO, which is due to the 
lower peak powers that can be tolerated by the crystal and the fact that the longer 
wavelength photons that are generated in the process are less energetic.  Typical powers 
for 10 nanosecond long pulses with 5 mm diameter beams are 30 mJ/pulse of 0.640 

µ

minus 40 mJ/pulse of 1.064 

µ

m to produce 2.5 mJ/pulse at 1.54  

µ

m, and 32 mJ/pulse of 

0.532 

µ

m minus 32 mJ/pulse of 0.640 

µ

m to produce 0.25 mJ/pulse at 3.42 

µ

m.  

 
INRAD offers lithium niobate in a variety of configurations.  Standard cuts are available as 
OPO crystals, Q-switches, difference frequency mixing crystals, autocorrelation crystals, 
and optical waveguide wafers. 
 
Please consult an INRAD sales engineer for assistance in crystal selection and packaging. 
 
At INRAD, all crystal growth, orientation, fabrication, polishing, and testing of LiNbO

3

 is done 

at one site so that you are assured of complete traceability and satisfaction with every 
crystal that you purchase.   
 
 

 
 
 
 
 

background image

INRAD  Lithium  Niobate 

page 5 of 5 

 

 
 

 
References 

 

 1. 

R.L.Byer, J.F.Young, and R.S.Feigelson, J.Appl.Phys. 

41

(6), 2320 (1970). 

 2. 

S.C.Abrahams and P.Marsh, Acta.Crystallog.Sec.B, 

42

, 61 (1986). 

 3. 

J.C.Lambropoulos and T.Fang, Dept. of Mech.Eng.& Center for Optics Manufacturing, Univ. of Rochester. 

 4. 

A.W.Warner, M.Onoe, and G.A.Coquin, J.Acoust.Soc.Am. 

42

(6), 1223 (1967). 

 5. 

R.T.Smith and F.S.Welsh, J.Appl.Phys. 

42

(6), 2219 (1971). 

 6. 

T.H.Lin, D.Edwards, R.E.Reedy, K.Das, W.McGinnis, and S.H.Lee, Ferroelectrics 

77

, 153 (1988). 

 7. 

J.R.Carruthers, G.E.Peterson, M.Grasso, and P.M.Bridenbaugh, J.Appl.Phys. 

42

, 1846, (1971). 

 8. 

J.C.Brice, The Properties of Lithium Niobate, EMIS Datareviews Series No.5, The Institute of Electrical 

Engineers (1989). 

 9. 

V.V.Zhdanova, V.P.Klyuev, V.V.Lemanov, I.A.Smirnov, and V.V.Tikhonov, Sov.Phys.-Solid State (USA) 

10

,(6) 

1360 (1968). 

10 

D.Taylor, The Properties of Lithium Niobate, EMIS Datareviews Series No.5, The Institute of Electrical 

Engineers (1989). 

11. 

L.P.Avakyants, D.F.Kiselev, and N.N.Shchitov, Sov.Phys.-Solid State 

18

, 899 (1976). 

12. 

R.C.Eckardt, H.Masuda, Y.X.Fan, and R.L.Byer IEEE J.Quant.Electron. 

26

(5), 922 (1990). 

13. 

S.D.Smith, H.D.Riccius, and R.P.Edwin, Opt.Comm., 

17

, 332 (1976) and 

20

, 188 (1977). 

14. 

A.V.Blistanov, Sov. Phys.-Cryst., 

6

, 688 (1983). 

15. K.Nassau,

et.al,

 J.Phys.Chem.Solids, 

27

, 989 (1966). 

16. 

I.P.Kaminow and E.H.Turner, Appl. Opt., 5, 1612 (1966). 

17. E.H.Turner, 

Appl.Phys.Lett., 

8

, 303 (1966). 

18. 

J.D.Zook, D.Chen, and G.N.Otto, Appl.Phys.Lett., 

11

, 159 (1967). 

19. 

P.V.Lenzo, E.G.Specer, and K.Nassau, Opt.Soc.Am., 

56

, 633 (1966). 

20. 

R.C.Miller and A.Savage, Appl.Phys.Lett., 

9

, 167 (1966). 

21. 

Miller, Norland, and Bridenbaugh, J.Appl.Phys., 

42

, 4145 (1971). 

22. INRAD 

data. 

23. 

I.P.Kaminow and E.H.Turner, “Handbook of Lasers” (R.J.Pressley, ed.), 447-459. Chemical Rubber Co., 

Cleveland, Ohio, 1971. 

 
 

 
 
 
 
 


Document Outline