background image

Foundation for the statistical treatment of Matter

Kevin Gibson

January 10, 2011

Motivation

Quantum Theory has proven a useful predictive tool for working with matter.  However 
an issue that most often remains unattended is the core meaning behind the theory. 
Instead of having a foundational theory to guide the development, various philosophical 
points of view are put forth such as wave-particle duality or the many worlds 
interpretation.  In this piece the notion of matter's wave-particle duality will be rejected 
in favor of a more statistical viewpoint.  This piece will begin with a brief introduction 
of probabilities before leading into the behavior of matter in general.  The results will be 
familiar to anyone who studies Quantum Theory.

Basic statistics with probabilities

To begin with consider that a series of N measurements.  Let A represents a potential 
discrete outcome.  The outcomes resulting in A can be expressed in a the proportion of 
all measurements.  As the size of the measurement sample goes to โˆž then this proportion 
would approach a number that can be called the 

probability

 of outcome A.

P

๎‚ž

A

๎‚Ÿ=

lim

N

๎‚Œ โˆž

N

A

N

                                                                                                    (1)

This same line of thought can be extended to cases where one wants both conditions A 
and B to be satisfied.

P

๎‚ž

A

and

B

๎‚Ÿ=

lim

N

๎‚Œโˆž

N

AB

N

                                                                                           (2)

Likewise one can speak of the probability that either A or B will be realized.  However 
one must use caution in using the definition set up in (1)  to not over-count the cases 
where both A and B are realized.

P

๎‚ž

A

or

B

๎‚Ÿ=

lim

N

๎‚Œโˆž

N

A

๎‚ƒ

N

B

โˆ’

N

AB

N

P

๎‚ž

A

or

B

๎‚Ÿ=

P

๎‚ž

A

๎‚Ÿ๎‚ƒ

P

๎‚ž

B

๎‚Ÿโˆ’

P

๎‚ž

A

and

B

๎‚Ÿ

                                                                    (3)

The two-slit experiment

Consider a beam consisting of bits of some form of matter passing through a barrier with 
two narrow slits placed close by each other.  The beam that passes through the slits is 
then projected onto a screen as shown in the figure on the following page.  

What would one expect the observed pattern to be with regards to where the bits of 

1.

background image

matter will end up on the screen?  We'll draw upon (3) to answer this question because 
we presume that the matter will hit a point on the screen after having passed through one 
slit or another but not both.  Moreover the positions that the matter can be found on the 
screen will lie on a continuum of possibilities rather than a discrete set.  Therefore 
probability densities 

ฯ

 need to be employed rather than probabilities themselves.

๎ƒ‡๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

                                                                                                        (4)

Equation (4) suggest a bimodal distribution on the screen, one distribution for each slit. 
The trouble however is that it does not always work.  Sometimes the distribution has 
multiple regions of high probability, and this is something that (4) cannot deliver.

What went wrong

Without intending to, an assumption was made in obtaining (4) for application to the 
two-slit experiment, and this is that the physics working on our matter is local.  In other 
words the measurement in one part of the experiment does not simultaneously alter the 
rest of the experiment.  Indeed when we stated earlier that the distribution of 
measurements would be bimodal, we inherently assumed a sum of distributions that 
would be the same independent of whether any measurement at the slits had been made. 
In this vein we could take the probabilities that the matter would reach a portion of the 
screen assumed that we knew which slit it passed through and use these even when such 
a measurement had not in fact taken place.  The task is now to reconstruct the statistics 
without making this assumption.  At the same time making sure that our modified 
statistical treatment can account for the outcomes of the above experiment.

2.

Beam

s
c

r
e

e
n

background image

In developing a new statistic a few criteria must be insisted upon.

โ—

We still want to be able to use the probabilities via the two slits as before.

โ—

The equation cannot produce negative probabilities.

โ—

Equation (4) can still be a valid equation in a special case, so we must allow for it 
to be a possible outcome.

โ—

If the matter cannot reach a point via one slit then the final probability must equal 
that of the other slit.  For example if 

๎ƒ‡

1

๎‚ž

x

๎‚Ÿ=

0

 then 

๎ƒ‡๎‚ž

x

๎‚Ÿ=๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

.

The first criteria can be satisfied by applying a correction term to (4).

๎ƒ‡๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ๎‚ƒ๎‚ญ ๎ƒ‡ ๎‚ž

x

๎‚Ÿ

                                                                                  (5)

To further aide in the task before us, consider three cases.

Equation (4) is valid

In this case the outcome must yield an earlier conclusion.

๎ƒ‡

0

๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

                                                                                           (6a)

Minimum probability

What is the minimal probability density possible for a given 

ฯ

1

(x) and 

ฯ

2

(x), other than 

zero, that matches our criteria?  The simplest candidate is

๎ƒ‡

min

๎‚ž

x

๎‚Ÿ=

๎‚ž

๎‚

๎ƒ‡

1

๎‚ž

x

๎‚Ÿโˆ’

๎‚

๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

๎‚Ÿ

2

                                                                                 

๎ƒ‡

min

๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿโˆ’

2

๎‚

๎ƒ‡

1

๎‚ž

x

๎‚Ÿโ‹…๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

                                                                 (6b)

The subtraction serves to minimize the probability while the square eliminates any 
negative results.  Moreover the last term in (6b) can be said to take on the role of the 
correction term in (5).

Maximum probability

So now what could be the maximum probability density?  There is no definite upper 
limit as to what a  probability density can be, however one can safely deduce that in this 
case the correction term in (5) would have to be positive and so.

๎ƒ‡

max

๎‚ž

x

๎‚Ÿโ‰ฅ๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

                                                                                         (6c)

Putting equations (5), (6a), (6b) and (6c) together suggests a methodology for combining 
probabilities.

๎ƒ‡๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ๎‚ƒ

2

๎‚

๎ƒ‡

1

๎‚ž

x

๎‚Ÿโ‹…๎ƒ‡

2

๎‚ž

x

๎‚Ÿโ‹…

cos

๎‚ฎ

                                                              (7)

3.

background image

A statistical view of matter

Equation (7) ties together all the previous pieces, and yet is still unsatisfactory.  One 
main reason is that it introduces a 

ฮ˜

 that is an unspecified quantity.

What is needed is an improved relation.  To do so a lesson can be taken from (6b) that 
allows for generalization.  Define 

ฮจ

 to be a complex number such that

๎ƒ‡๎‚ž

x

๎‚Ÿ=โˆฃ๎‚ต๎‚ž

x

๎‚Ÿโˆฃ

2

Let this new quantity be called the 

probability amplitude

.  Then let (7) be recreated by 

simply adding these amplitudes.

๎‚ต=๎‚ต

1

๎‚ƒ๎‚ต

2

                                                                                                          (8)

โˆฃ๎‚ตโˆฃ

2

=โˆฃ๎‚ต

1

๎‚ƒ๎‚ต

2

โˆฃ

2

๎ƒ‡๎‚ž

x

๎‚Ÿ=โˆฃ๎‚ต

1

โˆฃ

2

๎‚ƒโˆฃ๎‚ต

2

โˆฃ

2

๎‚ƒ

2

โˆฃ๎‚ต

1

โˆฃโ‹…โˆฃ๎‚ต

2

โˆฃ

cos

๎‚ž

๎ƒ‹

1

โˆ’๎ƒ‹

2

๎‚Ÿ

๎ƒ‡๎‚ž

x

๎‚Ÿ=๎ƒ‡

1

๎‚ž

x

๎‚Ÿ๎‚ƒ๎ƒ‡

2

๎‚ž

x

๎‚Ÿ๎‚ƒ

2

๎‚

๎ƒ‡

1

๎‚ž

x

๎‚Ÿโ‹…๎ƒ‡

2

๎‚ž

x

๎‚Ÿ

cos

๎‚ž

๎ƒ‹

1

โˆ’๎ƒ‹

2

๎‚Ÿ

                                                     (9)

Here 

ฯ†

1

 and 

ฯ†

2

 are the complex phases.  It can be seen by inspection that (9) is consistent 

with (7).  Moreover the unknown 

ฮ˜

 is now given significance as the difference in the 

complex phase of the respective probability amplitudes.

Illustration:  The toss of a die

Consider how the above can be applied to the real-world example of computing dice 
probability.  In particular, the probability that a die toss will produce either a 1 or a 6 
roll.  For simplicity let us assume that all amplitudes are either positive or negative but 
not complex.

Consistent with our earlier definition our probability amplitudes will be taken to be

๎‚ต

1

=

ยฑ

1

๎‚

6

                                                                                                           (10a)

๎‚ต

6

=

ยฑ

1

๎‚

6

                                                                                                           (10b)

We have two possible outcomes, one where the signs are the same and one where they 
are different.

P

same

=โˆฃ

1

๎‚

6

๎‚ƒ

1

๎‚

6

โˆฃ

2

=

2
3

                                                                                         (11a)

P

diff

=โˆฃ

1

๎‚

6

โˆ’

1

๎‚

6

โˆฃ

2

=

0

                                                                                           (11b)

While these answers may not look right they in fact are.  Consider that for a large 

4.

background image

number of rolls (a requirement if we are to speak of probabilities) both scenarios are 
equally likely.  So the actual probability will be the average of the two.

P

=

1
2

๎‚ž

P

same

๎‚ƒ

P

diff

๎‚Ÿ=

1
3

                                                                                         (12)

This last result is indeed the expected outcome.

Conclusion

The behavior of matter is different then what on might expect based on common 
experience.  Specifically the statistical nature of matter behaves in such a manner that 
probabilities can not, in general, be added together as previously supposed.  Rather one 
can work instead with probability amplitudes 

ฮจ

 defined such that:

โˆฃ๎‚ตโˆฃ

2

=

P

We add probability amplitudes largely the same as the probabilities earlier, except these 
amplitudes need not be positive numbers at all.

A more detailed analysis of the consequences is beyond the scope of this piece.

Contact Information

5.

background image

kevin.gibson@asu.edu
kevinlg@mesacc.edu

6.