background image

Tethers In Space Handbook 

TSS-1 

Third Edition 

December 1997 

SEDS-2 

M.L. Cosmo and E.C. Lorenzini 

Smithsonian Astrophysical Observatory 

Prepared for 

NASA Marshall Space Flight Center 

background image

Tethers In Space Handbook 

Edited by 

M.L. Cosmo and E.C. Lorenzini 

Smithsonian Astrophysical Observatory 

for 

NASA Marshall Space Flight Center 

Grant NAG8-1160 monitored by C.C. Rupp 

M.L. Cosmo and E.C. Lorenzini, Principal Investigators 

Third Edition 

December 1997 

The Smithsonian Astrophysical Observatory 

is a member of the 

Harvard-Smithsonian Center for Astrophysics 

Front Cover:  (left) Photo of TSS-1 taken from the Shuttle cargo bay, 1992; 

(right) Photo of SEDS-2 in orbit taken from the ground, 1994. 

background image

1.2 The Small Expendable Deployer System (SEDS): SEDS-1 and SEDS-2 

Missions 

The  SEDS project started as a Small Business Innovative  Research  contract  awarded t o 

Joe Carroll by NASA MSFC. SEDS hardware proved to  be able to succesfully deploy  a  20  km 
tether in space. Both flights of SEDS-1 (March 29, 1993)  and SEDS-2 (March 9, 1994) flew 
as secondary payloads on Delta II launches of GPS satellites.  After  the  third  stage separation 
the end-mass was deployed from  the  second stage. SEDS-1 demonstrated the capability of 
deorbiting a 25 kg payload from LEO.  SEDS-2, on  the other end, demonstrated the  use of a 
closed loop control law to deploy a tethered payload along the local vertical. 

SEDS‘  hardware, as shown in figure 1.9, consists of a deployer, brake/cutter  and 

electronics box. All the components that are in contact with the tether, except for the  brake 
post,  are coated with teflon. The deployer consists of baseplate, core, tether  and canister. 
The tether is wound around the  core. In addition there  are  three  Light  Emitting  Diodes 
(LED). Two of the  LED‘s are used to  count the turns of deployed tether, while the third is 
used to  check when the tether is almost completely unwound. The canister provides a 
protective cover for the tether and  restrains it during deployment. The tether material is 
SPECTRA-1000. 

Figure 1.9  SEDS and Endmass on the Delta Second Stage 

The brake/cutter components are: brake post, stepper  motor, tensiometer, temperature 

sensor, pyro cutter, exit guide.  The tether post is coated with hard anodize. The stepper 
motor is used to wrap or unwrap the tether to vary the  deployment  tension  and the  resulting 
deployment velocity. The brake mechanism is a friction  multiplier and the  multiplier 
function is proportional to the friction surface area between the tether  and brake post.  SEDS 
functional diagram is shown in figure 1.10. 

15

 

background image

Figure 1.10  SEDS Functional Diagram

 The main differences between SEDS 1 and SEDS-2 are shown in table 1. SEDS-2 closed 

loop  was implemented by deploying the tether according to  a pre-mission profile. The 
deployment control logic acted on the brake mechanism by increasing or decreasing the 
deployment velocity to follow the  profile  and bring the payload at the end of the tether 
deployment to a smooth stop along the local vertical. 

Table 1. Main differences between SEDS-1 and SEDS-2 

Tether Cutter Pyrotechnics 

Active 

Inactive 

Control Law 

Open Loop 

Closed Loop 

Tether Solder Lumps 

Study Tension Pulses 

None 

Tether Fabrication 

Tether Application 

Cortland/Hughes 

Mission Initiation 

Prior to Depletion Burn 

After Depletion Burn 

Brake Usage 

Minor 

Significant after 1 Km 

Tether Stabilization 

None 

Yes 

SEDS-1 

SEDS-2

 

The end-mass payload (EMP)  was developed by NASA LaRC in order to  monitor the 

dynamics of a tethered susbsatellite. EMP consisted of three primary science sensors: a three-
axis  accelerometer, a three axis tensiometer  and a three  axis magnetometer. The EMP 
measured 40.6X30.5X20.3 cm and weighted about  26  kg.  The  end-mass  was completely 
autonomous and carried its own battery,  electronics,  computer  and S-band telemetry system. 
As schematic of EMP is shown in fig. 1.11. The three axis tensiometer was also developed a t 
NASA LaRC. 

SEDS-1 mission objectives were to demonstrate that SEDS hardware could be used t o 

deploy a paylod at the end of a 20  km-long  tether  and study its reentry after the tether was 
cut. The orbit chosen had an inclination of 34 degrees and a perigee altitude of 190 km and 

16

 

background image

Figure 1.11  Schematic of SEDS EMP 

an apogee altitude of 720 km. The  EMP transmitted  over 7900  seconds of data 

before burning into the  atmosphere  (1Hz  sampling rate for the magnetometer  and 8 Hz for 
the tensiometers and accelerometers). As predicted, SEDS-1 reentry was off the coast  of 
Mexico (see fig. 1.12a). NASA stationed personnel at Cabo San Lucas,  Puerto Vallarta and 
Manzanillo to make photographic and video observations.  The Puerto Vallarta site was able 
to obtain observational data as shown in figure 1.12b 

Figure 1.12a SEDS-1 EMP reentry 
trajectory 

Figure 1.12b Observational Data of SEDS-
1 reentry 

SEDS-2 mission objectives were to  demonstrate the feasibility of deploying a payload 

with a closed-loop control  law (i.e. a predetermined trajectory)  and bring it to  a small final 
angle (<10 degrees) along the local vertical. A secondary objective was to study the long term 
evolution of a tethered system. The orbit this time was chosen to  be circular with an altitude 
of about 350 km. The SEDS-2 tether was allegedly cut by a micrometeroid or debris after five 
days.  The EMP transmitted over 39,000 seconds of  data  before  the battery died (1 Hz 
sampling rate for all the three primary science sensors). 

17

 

background image

SEDS-1 and SEDS-2 Flight Data 

SEDS data base is available  through anonymous ftp at the node optimu@gsfc.nasa.gov 

(128.183.76.209) SEDS1 data are in the  subdirectory /pub/projects/tether/SEDSMission1 and 
SEDS-2  data are in the directory /pub/projects/tether/SEDSMission2. Each directory is 
organized in different subdirectories with deployer  data,  EMP  data,  radar, etc..  Each content 
of a directory is described in a read.me file. 

SEDS-1 

The turn counter data are shown in Figure 1.13a, the tension  at  the  deployer  is shown in 

figure 1.13b and the tether rate in 1.13c. In order to  compute  the tether length and its rate, 
the turns had to be mapped and converted into deployed length. Note that the velocity at the 
end of the deployment  was about 7 m/s explaining the huge jump in tension and the 
consequent rebounds. 

Figure 1.13a. SEDS Deployer Turns

 

Counts

 

Figure 1.13b. SEDS Deployer Tension

 

Figure 1.13c. SEDS Deployer 10-sec Average Length Rate

 

18

 

background image

The magnetometer and tension  moduli at  the EMP are shown in figures 1.13d and 

1.13e, respectively. Note that the magnetometer was affected by a bias estimated  to  be 3065 
nT, -3355 nT and -4188 nT on the x, y and z axes, respectively.   Procedures on  the  data 
calibration and validation are given at the ftp site as well as are described in  several  papers 
presented at the Washington Conference. 

Figure 1.13d. EMP Magnetometer Modulus 

Figure 1.13e. EMP Tension Modulus 

SEDS-2 

The tether deployment rate and the tension at the deployer are shown in figure 1.14a, 

and 1.14b,  respectively.  The  deployment  law was so effective that the final tether rate was 
about 2 cm/s. As computed by the modulus of the EMP tension, shown in fig 1.14c,  the  final 
libration was about 4 degrees, and it was confirmed also by the radar tracking. Even in SEDS-2 
the magnetometer signal was affected by a  bias anomaly that was estimated to be -1128 nT, 
1312 nT, and 2644 nT on the x,y and z axes, respectively. 

Figure 1.14a. Tether Rate 

Figure 1.14b. Tension at Deployer

 

19

 

background image

Figure 1.14c. EMP Tension Modulus 

Contacts for the SEDS Project: 

• 

J.Harrison , H.Frayne Smith, K.Mowery, C.C. Rupp  - NASA/MSFC 

• 

J.Carroll - Tether Applications 

• 

J. Glaese - Control Dynamics 

• 

M.L. Cosmo, E.C.Lorenzini, G.E. Gullahorn -SAO 

• 

T.Finley ,R.Rhew, J.Stadler - NASA/LaRC 

• 

W.Webster - NASA/GSFC 

20