background image

 
 

                                                                                                                                                                                                                                                        
 
 

 
 
 

 

TIA 
STANDARD 

 

   
        ANSI/TIA-968-A-2002 
    Approved:  October 29, 2002
 

Telecommunications  

Telephone Terminal Equipment  

Technical Requirements for 
Connection of Terminal Equipment  
to the Telephone Network 
 
TIA-968-A 

 (Upgrade and Revision of TIA/EIA/IS-968)  
 
 
  OCTOBER 2002 
 
 

 
TELECOMMUNICATIONS INDUSTRY ASSOCIATION   

 

   Representing the telecommunications industry in  
   association with the Electronic Industries Alliance    

 

   Adopted by ACTA 
   

 January 15, 2003

 

background image

PREFACE

 

 
This document, TIA-968-A, 

Telecommunications – Telephone Terminal Equipment â€“ Technical 

Requirements for Connection of Terminal Equipment to the Telephone Network,

 has been 

established pursuant to the Federal Communication Commission’s (“FCC”) Report and Order in 
the 2000 Biennial Review of Part 68 of the Commission’s Rules and Regulations, CC Docket No. 
99-216, FCC 00-400, adopted November 9, 2000 and released December 21, 2000 (“Order” or 
“R&O”).  The Order privatized the process by which technical criteria for the prevention of harm 
are established for customer premises or terminal equipment that may be sold for connection to 
the telephone network, and for the approval of such equipment to demonstrate compliance with 
the relevant technical criteria.  The Order directed the industry to establish the Administrative 
Council on Terminal Attachments (“ACTA”) as the balanced and open body that would assume 
the Commission’s Part 68 role for those items privatized in the Order (Section 68.602).  This 
document was created for submission to ACTA by the TIA Subcommittee TR-41.9, Technical 
Regulatory Considerations. It is intended to fulfill the FCC’s requirement to establish technical 
criteria for Telephone Terminal Equipment labeling requirements for Part 68 of Title 47 of the 
Code of Federal Regulations.  
 

Notice of Disclaimer and Limitation of Liability 

 
THE INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED “AS IS” AND “AS 
AVAILABLE.”  SUCH INFORMATION IS DIRECTED SOLELY TO PROFESSIONALS WHO 
HAVE THE APPROPRIATE DEGREE OF EXPERIENCE TO UNDERSTAND AND INTERPRET 
ITS CONTENTS, AND ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION IS 
AT THE USER’S OWN DISCRETION AND AT ITS OWN RISK. 
 
ALL WARRANTIES, EXPRESS OR IMPLIED, ARE DISCLAIMED, INCLUDING WITHOUT 
LIMITATION, ANY AND ALL WARRANTIES CONCERNING THE ACCURACY OF THE 
INFORMATION, ITS FITNESS OR APPROPRIATENESS FOR A PARTICULAR PURPOSE OR 
USE, ITS MERCHANTABILITY AND ITS NON-INFRINGEMENT OF ANY THIRD PARTY’S 
INTELLECTUAL PROPERTY RIGHTS.  ACTA (TOGETHER WITH ITS MEMBERS, AFFILIATES 
AND SPONSORS, EXPRESSLY DISCLAIMS ANY AND ALL RESPONSIBILITIES FOR THE 
ACCURACY OF THE INFORMATION AND MAKES NO REPRESENTATIONS OR 
WARRANTIES REGARDING THE INFORMATION’S COMPLIANCE WITH ANY APPLICABLE 
STATUTE, RULE OR REGULATION. 
 
ACTA, AND ITS MEMBERS, AFFILIATES AND SPONSORS, EXPRESSLY DISCLAIM, AND 
SHALL NOT BE LIABLE, FOR, ANY AND ALL DAMAGES, DIRECT OR INDIRECT, ARISING 
FROM OR RELATING TO ANY USE OF THE INFORMATION CONTAINED HEREIN, 
INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF 
PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF CONTRACT, 
BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR 
OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, EXCEPT FOR 
SUCH DAMAGES AS MAY RESULT DIRECTLY FROM ACTA’S INTENTIONALLY UNLAWFUL 
OR GROSSLY NEGLIGENT ACTS.  THE FOREGOING NEGATION OF DAMAGES IS A 
FUNDAMENTAL ELEMENT OF THE USE OF THE INFORMATION AND DATA CONTAINED 
HEREIN, AND THIS INFORMATION WOULD NOT BE PUBLISHED BY ACTA WITHOUT SUCH 
LIMITATIONS.

 

background image

 NOTICE 

 

 
TIA Engineering Standards and Publications are designed to serve the public interest through 
eliminating misunderstandings between manufacturers and purchasers, facilitating 
interchangeability and improvement of products, and assisting the purchaser in selecting and 
obtaining with minimum delay the proper product for their particular need.  The existence of 
such Standards and Publications shall not in any respect preclude any member or non-member of 
TIA from manufacturing or selling products not conforming to such Standards and Publications.  
Neither shall the existence of such Standards and Publications preclude their voluntary use by 
Non-TIA members, either domestically or internationally. 
 
Standards and Publications are adopted by TIA in accordance with the American National 
Standards Institute (ANSI) patent policy.  By such action, TIA does not assume any liability to 
any patent owner, nor does it assume any obligation whatever to parties adopting the Standard or 
Publication. 

 

This Standard does not purport to address all safety problems associated with its use or all 
applicable regulatory requirements.  It is the responsibility of the user of this Standard to 
establish appropriate safety and health practices and to determine the applicability of regulatory 
limitations before its use. 
 
(From Standards Proposal No. 3-0016-URV, formulated under the cognizance of the TIA TR-41.9 
Subcommittee on Technical Regulatory Considerations.) 
 

        Published by 

 



TELECOMMUNICATIONS INDUSTRY ASSOCIATION 2002 

 

Standards and Technology Department 

 

2500 Wilson Boulevard 

 

Arlington, VA 22201 U.S.A. 

 

PRICE:  Please refer to current Catalog of 

TIA TELECOMMUNICATIONS INDUSTRY ASSOCIATION STANDARDS  

AND ENGINEERING PUBLICATIONS 

 or call Global Engineering Documents, USA and Canada  

(1-800-854-7179) International (303-397-7956) 

or search online at  http://www.tiaonline.org/standards/search_n_order.cfm 

 

 
 

 

 

All rights reserved 

 

      

 

Printed 

in 

U.S.A. 

 

 

background image

 

 

 
 
 

PLEASE!

 

 
 

DON'T VIOLATE

 

 

THE

 

 

LAW!

 

 
 
 
 
     This document is copyrighted by the TIA and may not be reproduced without 
     permission. 
 
     Organizations may obtain permission to reproduce a limited number of copies 
     through entering into a license agreement.  For information, contact: 
 
 
 
 

Global Engineering Documents 

 

15 Inverness Way East 

 

Englewood, CO 80112-5704 U.S.A. or call 

 

U.S.A. and Canada 1-800-854-7179, International (303) 397-7956 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 
 

NOTICE OF DISCLAIMER AND LIMITATION OF LIABILITY

 

 
 

The document to which this Notice is affixed has been prepared by one or more Engineering 

Committees of the Telecommunications Industry Association (“TIA”).  TIA is not the author of the 
document contents, but publishes and claims copyright to the document pursuant to licenses and 
permission granted by the authors of the contents. 

TIA Engineering Committees are expected to conduct their affairs in accordance with the 

TIA Engineering Manual (“Manual”), the current and predecessor versions of which are available at 

http://www.tiaonline.org/standards/sfg/engineering_manual.cfm

.  TIA’s function is to administer  the 

process, but not the content, of document preparation in accordance with the Manual and, when 
appropriate, the policies and procedures of the American National Standards Institute (“ANSI”). 

THE USE OR PRACTICE OF CONTENTS OF THIS DOCUMENT MAY INVOLVE THE 

USE OF INTELLECTUAL PROPERTY RIGHTS (“IPR”), INCLUDING PENDING OR ISSUED 
PATENTS, OR COPYRIGHTS, OWNED BY ONE OR MORE PARTIES.  TIA MAKES NO 
SEARCH OR INVESTIGATION FOR IPR.  WHEN IPR CONSISTING OF PATENTS AND 
PUBLISHED PATENT APPLICATIONS ARE CLAIMED AND CALLED TO TIA’S 
ATTENTION, A STATEMENT FROM THE HOLDER THEREOF IS REQUESTED, ALL IN 
ACCORDANCE WITH THE MANUAL.  TIA TAKES NO POSITION WITH REFERENCE TO, 
AND DISCLAIMS ANY OBLIGATION TO INVESTIGATE OR INQUIRE INTO, THE SCOPE 
OR VALIDITY OF ANY CLAIMS OF IPR. 

ALL WARRANTIES, EXPRESS OR IMPLIED, ARE DISCLAIMED, INCLUDING 

WITHOUT LIMITATION, ANY AND ALL WARRANTIES CONCERNING THE ACCURACY 
OF THE CONTENTS, ITS FITNESS OR APPROPRIATENESS FOR A PARTICULAR PURPOSE 
OR USE, ITS MERCHANTABILITY AND ITS NON-INFRINGEMENT OF ANY THIRD 
PARTY’S INTELLECTUAL PROPERTY RIGHTS.  TIA EXPRESSLY DISCLAIMS ANY AND 
ALL RESPONSIBILITIES FOR THE ACCURACY OF THE CONTENTS AND MAKES NO 
REPRESENTATIONS OR WARRANTIES REGARDING THE CONTENT’S COMPLIANCE 
WITH ANY APPLICABLE STATUTE, RULE OR REGULATION. 

TIA SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR 

INDIRECT, ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED 
HEREIN, INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, 
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF 
BUSINESS, LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON 
BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), 
PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES.  THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL 
ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD 
NOT BE PUBLISHED BY TIA WITHOUT SUCH LIMITATIONS. 

 

 

background image

 

 

background image

  

TIA-968-A 

 
 

CONTENTS 

 

1

 

GENERAL .................................................................................................................................... 1

 

1.1

 

S

COPE

..................................................................................................................................... 1

 

1.2

 

N

ORMATIVE 

R

EFERENCES

...................................................................................................... 2

 

1.3

 

D

EFINITIONS

........................................................................................................................... 2

 

2

 

CONDITIONS ON USE OF TERMINAL EQUIPMENT...................................................... 23

 

3

 

TERMINAL EQUIPMENT APPROVAL PROCEDURES................................................... 25

 

4

 

TECHNICAL REQUIREMENTS ............................................................................................ 27

 

4.1

 

L

ABELING

............................................................................................................................. 27

 

4.2

 

E

NVIRONMENTAL SIMULATION

............................................................................................ 27

 

4.3

 

L

EAKAGE CURRENT LIMITATIONS

........................................................................................ 32

 

4.4

 

H

AZARDOUS 

V

OLTAGE LIMITATIONS

................................................................................... 34

 

4.5

 

S

IGNAL POWER LIMITATIONS

................................................................................................ 42

 

4.6

 

T

RANSVERSE BALANCE LIMITATIONS

.................................................................................. 68

 

4.7

 

O

N

-

HOOK IMPEDANCE LIMITATIONS

.................................................................................... 80

 

4.8

 

B

ILLING PROTECTION

........................................................................................................... 85

 

5

 

COMPLAINTS PROCEDURES .............................................................................................. 89

 

6

 

CONNECTORS.......................................................................................................................... 91

 

6.1

 

S

PECIFICATIONS

.................................................................................................................... 91

 

6.2

 

C

ONFIGURATIONS

............................................................................................................... 136

 

6.3

 

C

ONFIGURATIONS USED TO CONNECT MULTI

-

LINE COMMUNICATIONS SYSTEMS SUCH AS 

P

RIVATE 

B

RANCH 

E

XCHANGE 

(PBX) 

AND KEY TELEPHONE SYSTEMS

.......................................... 136

 

ANNEX A (NORMATIVE) ............................................................................................................. 139

 

ANNEX B (INFORMATIVE) ......................................................................................................... 144

 

ANNEX C (INFORMATIVE) ......................................................................................................... 157

 

ANNEX D (INFORMATIVE) ......................................................................................................... 159

 

ANNEX E (INFORMATIVE) ......................................................................................................... 161

 

 

 

background image

TIA-968-A 
 
 

LIST OF FIGURES 

 

FIGURE 1.1 2-WIRE LOOP SIMULATOR FOR LOOP START AND GROUND START 
CIRCUITS.......................................................................................................................................... 10 

FIGURE 1.2 LOOP SIMULATOR FOR REVERSE BATTERY CIRCUITS ............................ 11 

FIGURE 1.3 LOOP SIMULATOR CIRCUIT FOR 4-WIRE LOOP START AND GROUND 
START ................................................................................................................................................ 12 

FIGURE 1.4 LOOP SIMULATOR CIRCUIT FOR 4-WIRE REVERSE BATTERY CIRCUITS

............................................................................................................................................................. 13 

FIGURE 1.5 E&M TYPES I & II SIGNALING............................................................................. 14 

FIGURE 1.6 E&M TYPES I & II SIGNALING............................................................................. 15 

FIGURE 1.7 OFF PREMISES LOOP SIMULATOR.................................................................... 16 

FIGURE 1.8 ALTERNATIVE TERMINATION ........................................................................... 17 

FIGURE 1.9 LOOP SIMULATOR CIRCUIT â€“ VOICEBAND METALLIC CHANNELS...... 18 

FIGURE 1.10 LADC IMPEDANCE SIMULATOR FOR METALLIC VOLTAGE TESTS .... 19 

FIGURE 1.11 ZERO LEVEL DECODER TEST CONFIGURATION FOR SUB-RATE AND 
1.544 MBPS DIGITAL CHANNELS ............................................................................................... 20 

FIGURE 1.12 SIMULATOR CIRCUIT FOR PSDS TYPE II IN ANALOG MODE ................. 21 

FIGURE 4.1 SIMPLIFIED SURGE GENERATOR...................................................................... 31 

FIGURE 4.2 OPEN CIRCUIT VOLTAGE WAVESHAPE, T

R

 X T

D

.......................................... 31 

FIGURE 4.3 SHORT CIRCUIT CURRENT WAVESHAPE, T

R

 X T

D

........................................ 31 

FIGURE 4.4 RINGING VOLTAGE TRIP CRITERIA................................................................. 40 

FIGURE 4.5 RESISTIVE TERMINATIONS ................................................................................. 55 

FIGURE 4.6 ISOLATED PULSE TEMPLATE AND CORNER POINTS FOR ISDN PRA 
AND1.544 MBPS EQUIPMENT ...................................................................................................... 63 

FIGURE 4.7 ILLUSTRATIVE TEST CIRCUIT FOR TRANSVERSE BALANCE (ANALOG)

............................................................................................................................................................. 74 

FIGURE 4.8 ILLUSTRATIVE TEST CIRCUIT FOR TRANSVERSE BALANCE (DIGITAL)

............................................................................................................................................................. 75 

FIGURE 4.9 OFF-HOOK TERMINATION OF MULTIPORT EQUIPMENT FOR PORTS 
NOT UNDER TEST .......................................................................................................................... 76 

 ii 

background image

TIA-968-A 

FIGURE 4.10 REQUIRED TERMINATION FOR CONNECTIONS TO NON-APPROVED 
EQUIPMENT ..................................................................................................................................... 77 

FIGURE 4.11(A) TRANSVERSE BALANCE REQUIREMENTS FOR ISDN BRA, 1.544 
MBPS (INCLUDING ISDN PRA) AND ADSL ............................................................................... 78 

FIGURE 4.11(B) TRANSVERSE BALANCE REQUIREMENTS FOR PSDS AND SUB-RATE 
SERVICES .......................................................................................................................................... 78 

FIGURE 4.12 REQUIRED TERMINATION FOR CONNECTIONS TO NON-APPROVED 
EQUIPMENT ..................................................................................................................................... 79 

FIGURE 6.1  VIEW OF MINIATURE 6-POSITION PLUG ........................................................ 92 

FIGURE 6.2  6-POSITION PLUG MECHANICAL SPECIFICATION...................................... 93 

FIGURE 6.3  6-POSITION PLUG MECHANICAL SPECIFICATION (CONTINUED).......... 94 

 FIGURE 6.4  6-POSITION PLUG PLUG/JACK CONTACT SPECIFICATION..................... 95 

FIGURE 6.5  6-POSITION PLUG MINIMUM PLUG SIZE ........................................................ 97 

FIGURE 6.6  6-POSITION PLUG MAXIMUM PLUG SIZE ....................................................... 98 

FIGURE 6.7  6-POSITION JACK MECHANICAL SPECIFICATION ...................................... 99 

FIGURE 6.8  6-POSITION JACK MECHANICAL SPECIFICATIONS (CONTINUED)...... 100 

FIGURE 6.9  VIEW OF MINIATURE 8-POSITION PLUG, UNKEYED ................................ 103 

FIGURE 6.10  8-POSITION UNKEYED PLUG MECHANICAL SPECIFICATION............. 104 

FIGURE 6.11  8-POSITION UNKEYED PLUG, MECHANICAL SPECIFICATION 
(CONTINUED)................................................................................................................................. 105 

FIGURE 6.12  8-POSITION UNKEYED PLUG, PLUG/JACK CONTACT SPECIFICATION

............................................................................................................................................................ 106 

FIGURE 6.13  8-POSITION UNKEYED PLUG, MINIMUM PLUG SIZE .............................. 108 

FIGURE 6.14  8-POSITION UNKEYED PLUG, MAXIMUM PLUG SIZE  ............................ 109 

FIGURE 6.15  8-POSITION SERIES JACK, CONTACT SPECIFICATION .......................... 110 

FIGURE 6.16  8-POSITION SERIES JACK, MECHANICAL SPECIFICATION.................. 111 

FIGURE 6.17  8-POSITION SERIES JACK, MECHANICAL SPECIFICATION 
(CONTINUED)................................................................................................................................. 112 

FIGURE 6.18  50-POSITION MINIATURE RIBBON PLUG .................................................... 115 

FIGURE 6.19  50-POSITION MINIATURE RIBBON PLUG SIZING GAUGE...................... 116 

iii 

background image

TIA-968-A 
 
 

FIGURE 6.20  50-POSITION MINIATURE RIBBON PLUG CONTINUITY GAUGE ......... 117 

FIGURE 6.21  50-POSITION MINIATURE RIBBON PLUG HOOD ENVELOPE................ 118 

FIGURE 6.22  50-POSITION MINIATURE RIBBON JACK.................................................... 120 

FIGURE 6.23  50-POSITION MINIATURE RIBBON JACK SIZING GAUGE ..................... 121 

FIGURE 6.24  50-POSITION MINIATURE RIBBON JACK CONTINUITY GAUGE ......... 122 

FIGURE 6.25  3-POSITION PLUG, PLUG ASSEMBLY ........................................................... 123 

FIGURE 6.26  3-POSITION PLUG, DETAIL.............................................................................. 124 

FIGURE 6. 27  3-POSITION PLUG, DETAIL............................................................................. 125 

FIGURE 6.28  VIEW OF MINIATURE 8-POSITION PLUG, KEYED.................................... 126 

FIGURE 6.29  8-POSITION KEYED PLUG, MECHANICAL SPECIFICATION ................. 127 

FIGURE 6.30  8-POSITION KEYED PLUG, MECHANICAL SPECIFICATION 
(CONTINUED) ................................................................................................................................ 128 

 FIGURE 6.31  8-POSITION KEYED PLUG, PLUG/JACK CONTACT SPECIFICATION 129 

FIGURE 6.32  8-POSITION KEYED PLUG, MAXIMUM PLUG SIZE  ................................. 131 

FIGURE 6.33  8-POSITION KEYED PLUG, MINIMUM PLUG SIZE.................................... 132 

FIGURE 6.34  VIEW OF MINIATURE 8-POSITION KEYED JACK..................................... 133 

FIGURE 6.35  8-POSITION KEYED JACK, MECHANICAL SPECIFICATION ................. 134 

 

 

LIST OF TABLES 

 

TABLE 4.1 VOLTAGE APPLIED FOR VARIOUS COMBINATIONS OF ELECTRICAL 
CONNECTIONS................................................................................................................................ 33 

TABLE 4.2 TYPE I E&M, DC POTENTIALS............................................................................... 35 

TABLE 4.3 TYPE II E&M, DC POTENTIALS ............................................................................. 36 

TABLE 4.4 TABLE SUMMARY OF RING-TRIP REQUIREMENTS....................................... 41 

TABLE 4.5 PROGRAMMING RESISTORS ................................................................................. 45 

TABLE 4.6 ALLOWABLE NET AMPLIFICATION BETWEEN PORTS (SEE NOTES 1, 3, 4, 
AND 5) ................................................................................................................................................ 46 

 iv 

background image

TIA-968-A 

TABLE 4.7—VALUES FOR K AND AVERAGE OUTPUT POWER......................................... 59 

TABLE 4.8 MINIMUM ADDITIONAL ATTENUATION FOR SUBRATE TERMINAL 
EQUIPMENT ..................................................................................................................................... 59 

TABLE 4.9 ATTENUATION CURVE FOR SUBRATE TERMINAL EQUIPMENT............... 61 

TABLE 4.10 TRANSVERSE BALANCE TEST CRITERIA ........................................................ 69 

TABLE 4.11 FREQUENCY RANGES OF TRANSVERSE BALANCE REQUIREMENTS  
FOR EQUIPMENT CONNECTING TO DIGITAL SERVICES.................................................. 73 

TABLE 4.12 SIMULATED RINGING VOLTAGES AND IMPEDANCE LIMITATIONS...... 80 

TABLE 4.13 ........................................................................................................................................ 83 

TABLE A.1 CROSS-REFERENCE TO BODY TEXT ................................................................ 144 

TABLE A.2 CROSS-REFERENCE TO FIGURES...................................................................... 151 

TABLE A.3 CROSS-REFERENCE TO TABLES........................................................................ 154 

 

background image

TIA-968-A 
 
 

FOREWORD 

 (This foreword is not part of this Standard.) 

 
The Federal Communications Commission (FCC), in its Report & Order, FCC 00-400, on 
CC Docket No. 99-216, mandated creation of the Administrative Council for Terminal 
Attachments (ACTA).  In 47 CFR 68.7(b) ACTA was charged to adopt and publish technical 
criteria to prevent harms to the telephone network submitted to it by standards development 
organizations accredited by the American National Standards Institute (ANSI). 
 
The first version of this document was an interim standard (IS) whose contents were 
identical to the criteria in Part 68 of Title 47 of the Code of Federal Regulations at the time 
the Report & Order was issued. One objective of this updated version is to advance the 
document from an IS to an ANSI approved standard. Additionally, the following changes 
have been made in this version: 
1)  The encoded analog content requirement for V.90 and V.92 modems has been relaxed. 
2)  Requirements for stutter dial tone detection devices previously in TIA/EIA-IS-883 have 

been incorporated. 

3)  Requirements for ADSL modems previously in TIA/EIA-IS-883 have been incorporated 

and revised. 

4)  Out-of-band metallic voltage limits for analog voice-band and Local Area Data Channel 

(LADC) TE have been extended from 6 MHz to 30 MHz. 

5)  Transverse balance requirements for ADSL modems and other TE have been clarified. 
6)  Connector wiring configurations have been removed and T1.TR.5-1999 is now 

referenced. 

7)  Alternative frequency domain signal power limits have been added for digital sub-rate 

TE. 

8)  The encoded analog content requirement has been extended to other applicable TE . 
9)  Minor editorial corrections and clarifications. 
 
The standard was produced by Working Group TR-41.9.1 of Subcommittee TR-41.9, 
Technical Regulatory Considerations.  It was developed in accordance with ANSI and 
TIA/EIA procedural guidelines and represents the consensus position of the Working Group 
and its parent Subcommittee, which served as the formulating group.  It has also received 
the concurrence of Engineering Committee TR-41, User Premises Telecommunications 
Requirements.  Committee approval of this standard does not necessarily imply that all 
members voted for its approval.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi 

background image

TIA-968-A 

 
 

Working Group TR-41.9.1 acknowledges the contribution made by the following individuals 
in the development of this version of this Standard. 
 
 

Name Representing 

Larry Bell  

ADTRAN, Inc. 

Trone T Bishop, Jr 

Verizon Communications 

Cliff Chamney 

Sprint 

Phillip Havens 

Teccor Electronics 

Tim Lawler 

Cisco Systems 

Henry Mar 

Industry Canada 

Anh Nguyen 

Underwriters Laboratories 

Clint Pinkham 

ATLINKS USA Inc. 

Scott Roleson 

Hewlett-Packard Company 

John Shinn 

Sanmina Homologation Service 

Greg Slingerland 

Mitel Networks 

Tailey Tung 

Siemens 

Peter Walsh 

Paradyne Corporation 

Stephen R Whitesell 

VTech 

 

 
 

 

Suggestions for improvement of this Standard are welcome.  They should be sent to: 

 

Telecommunications Industry Association 

Engineering Department 

Suite 300 

2500 Wilson Boulevard 

Arlington, VA 22201 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vii 

background image

TIA-968-A 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[This page intentionally left blank] 

 viii 

background image

  

TIA-968-A 

 
 

1 GENERAL 

1.1 SCOPE 

This standard specifies technical criteria for terminal equipment approved in accordance 
with 47 CFR 68 for direct connection to the public switched telephone network, including 
private line services provided over wireline facilities owned by providers of wireline 
telecommunications. These technical criteria are intended to protect the telephone network 
from the harms defined in 47 CFR 68.3. Conformance to the technical criteria in this 
standard will not assure compatibility with wireline carrier services.

 

 

Except for the grandfathered terminal equipment identified in Annex A, the technical criteria 
in this standard apply to the direct connection: 

 

a)  Of all terminal equipment to the public switched telephone network, for use 

in conjunction with all analog services other than party line service; 

b)  Of all terminal equipment to channels furnished in connection with foreign 

exchange lines (customer-premises end), the station end of off-premises 
stations associated with PBX and Centrex services, trunk-to-station tie lines 
(trunk end only) and switched service network station lines (CCSA and 
EPSCS); 

c)  Of all PBX (or similar) systems to private line services for tie trunk type 

interfaces and off premises station lines; 

d)  Of all terminal equipment to subrate and 1.544 Mbps digital services; 
e)  Of approved terminal equipment or approved protective circuitry to Local 

Area Data Channels and to channels which are similar to Local Area Data 
Channels that are obtained as special assemblies; 

f)  Of all terminal equipment or systems to voiceband private line channels for 

2-point and multipoint private line services (excluding those identified in 
Category II, AT&T Tariff F.C.C. No. 260 or subsequent revisions) that utilize 
loop start, ringdown or inband signaling; or voiceband metallic channels; 

g)  Of the types of test equipment specified in section 1.3.56; 

h) 

Of all terminal equipment to Public Switched Digital Service (PSDS) Type I, 
II,or III;

 

i)  Of all terminal equipment to the Integrated Services Digital Network (ISDN)

 

Basic Rate Access (BRA) or Primary Rate Access (PRA).  

j)  Of all terminal equipment to ADSL services 

 
These criteria apply to terminal equipment approved after publication of this document. 
Previously approved TE retains its status under the requirements in effect at the time the TE 
was approved. All TE shall continue to comply with the requirements in effect when the TE 
was approved. Equipment grandfathered by FCC action is identified in Annex A along with 
the conditions that allow such TE to be connected without approval. 

 

background image

` TIA-968-A 
 

TE that is modified shall be re-approved under the requirements in effect at the time of the 
modification, not necessarily those requirements in effect at the time of the prior approval. 
Except as other wise specified herein, A modification is any change that affects the 
compliance of TE to this standard. Repair to TE, where no modification has occurred, does 
not require re-approval. 
 
Requirements retained by the Commission in 47 CFR Part 68, including hearing aid 
compatibility and volume control, are not covered in this standard. 
 
Two categories of specifications are used in this standard, mandatory requirements and 
recommendations. Mandatory requirements are designated by the word "shall" and 
recommendations by the word "should". 

1.2 NORMATIVE REFERENCES 

The following standard contains provisions which, through reference in this text, constitute 
provisions of this Standard.  At the time of publication, the editions indicated were valid.  All 
standards are subject to revision, and parties to agreements based on this Standard are 
encouraged to investigate the possibility of applying the most recent editions of the 
standards indicated below.  ANSI and TIA maintain registers of currently valid national 
standards published by them.  Informative references are provided in Annex B. 
 

1)  47 CFR Part 68, Code of Federal Regulations (CFR), Title 47, FCC Part 68, 

Connection of Terminal Equipment to the Telephone Network. 

 

2)  ITU-T Recommendation G.711, 1993, 

General Aspects of Digital Transmission 

Systems - Terminal Equipment - Pulse Code Modulation (PCM) of Voice 
Frequencies.

 

 

3) 

TIA/EIA TSB 31-B, Part 68 Rationale and Measurement Guidelines. 

1.3 DEFINITIONS 

For the purposes of this Standard, the following definitions apply: 
 

NOTE:  

Informative definitions are included in Annex B. 

 2 

background image

TIA-968-A 

 
 

1.3.1 

Approved protective circuitry:

 Separate, identifiable and discrete electrical circuitry 

designed to protect the telephone network from harm, which is approved in 
accordance with the rules and regulations in 68.7(b) and Subpart C of 47 CFR Part 
68. 

1.3.2 

Approved terminal equipment:

 Terminal equipment that is approved in accordance 

with the rules and regulations in 68.7(b) and Subpart C of 47 CFR Part 68. 

1.3.3 

Asymmetric Digital Subscriber Line (ADSL) Modem:

 A modem having transmit 

signal characteristics meeting the spectral response and aggregate power level 
limitations of this 

standard. 

The term should be interpreted to include variations such 

as splitterless ADSL and Rate Adaptive DSL (RADSL) modems that have similar 
transmit signal characteristics meeting these limitations.

 

1.3.4 

Auxiliary leads:

 Terminal equipment leads at the interface, other than telephone 

connections and leads otherwise defined in this Standard, which leads are to be 
connected either to common equipment or to circuits extending to central office 
equipment.  

1.3.5 

Capture level:

 Equipment with AGC (Automatic Gain Control) signal power limiting 

has virtually no output signal for input levels below a certain value. At some input 
signal power, the output level will become significant (usually corresponding to the 
expected output level) for the service application. The input level at which this occurs 
is defined as the ‘‘capture level.’’ 

1.3.6 

Central-office implemented telephone:

 

A telephone executing coin acceptance 

requiring coin service signaling from the central office. 

1.3.7 

Channel equipment:

 Equipment in the private line channel of the telephone network 

that furnishes telephone tip and ring, telephone tip-1 and ring-1, and other auxiliary 
or supervisory signaling leads for connection at the private line channel interface 
(where tip-1 and ring-1 is the receive pair for 4-wire telephone connections). 

1.3.8 

Coin-implemented telephone:

 

A telephone containing all circuitry required to 

execute coin acceptance and related functions within the instrument itself and not 
requiring coin service signaling from the central office. 

1.3.9 

Coin service:

 Central office implemented coin telephone service. 

1.3.10 

Companion terminal equipment:

 

Companion terminal equipment represents the 

terminal equipment that would be connected at the far end of a network facility and 
provides the range of operating conditions that the terminal equipment that is being 
approved would normally encounter.  

1.3.11 

Continuity leads:

 Terminal equipment continuity leads at the network interface 

designated CY1 and CY2 which are connected to a strap in a series jack 
configuration for the purpose of determining whether the plug associated with the 
terminal equipment is connected to the interface jack. 

background image

` TIA-968-A 
 

1.3.12 

Digital milliwatt:

 A digital signal that is the coded representation of a 0 dBm, 1000 

Hz sine wave. 

1.3.13 

Direct connection:

 

Connection of terminal equipment to the telephone network by 

means other than acoustic and/or inductive coupling. 

1.3.14 

Dual Tone Multi Frequency (DTMF):

 

network control signaling is a method of 

signaling using the voice transmission path. The method employs 16 distinct signals 
each composed of two voice band frequencies, one from each of two geometrically 
spaced groups designated ‘‘low group’’ and ‘‘high group.’’ The selected spacing 
assures that no two frequencies of any group combination are harmonically related. 

1.3.15 

E&M leads:

 

Terminal equipment leads at the interface, other than telephone 

connections and auxiliary leads, which are to be connected to channel equipment 
solely for the purpose of transferring supervisory signals conventionally known as 
Types I and II E&M and schematically shown in Figures 1.5 and 1.6. 

1.3.16 

Encoded analog content:

 The analog signal contained in coded form within a data 

bit stream. 

1.3.17 

Equivalent power:

 The power of the analog signal at the output of a zero level 

decoder, obtained when a digital signal is the input to the decoder.  

1.3.18 

Grandfathered terminal equipment:

 Terminal equipment of a type allowed to be 

directly connected to the telephone network under the provisions of 47 CFR Part 68 
before the effective date of this standard. 

1.3.19 

Inband signaling private line interface:

 

The point of connection between an 

inband signaling voiceband private line and terminal equipment or systems where 
the signaling frequencies are within the voiceband. All tip and ring leads shall be 
treated as telephone connections for the purposes of fulfilling approval conditions. 

1.3.20 

Instrument-implemented telephone:

 

A telephone containing all circuitry required to 

execute coin acceptance and related functions within the instrument itself and not 
requiring coin service signaling from the central office. 

1.3.21 

ISDN basic rate interface:

 

A two-wire interface between the terminal equipment and 

ISDN BRA. The tip and ring leads shall be treated as telephone connections for the 
purpose of fulfilling approval conditions. 

1.3.22 

ISDN Primary Rate Interface:

 A four-wire interface between the terminal equipment 

and 1.544 Mbps ISDN PRA. The tip, ring, tip-1, and ring-1 leads shall be treated as 
telephone connections for the purpose of fulfilling approval conditions. 

1.3.23 

Local area data channel (LADC) leads:

 Terminal equipment leads at the interface 

used to transmit and/or receive signals which may require greater than voiceband 
frequency spectrum over private line metallic channels designated Local Area Data 
Channels (LADC). These leads shall be treated as ‘‘telephone connections’’ as 
defined in this section or as tip and ring connections where the term ‘‘telephone 

 4 

background image

TIA-968-A 

 
 

connection’’ is not used. 

1.3.24 

Local area data channel simulator circuit:

 A circuit for connection in lieu of a Local 

Area Data Channel to provide the appropriate impedance for signal power tests. The 
schematic of Figure 1.10 is illustrative of the type of circuit that shall be used over the 
given frequency ranges. When used, the simulator shall be operated over the 
appropriate range of loop resistance for the equipment under test, under all voltages 
and polarities that the terminal under test and a connected companion unit are 
capable of providing. 

1.3.25 

Longitudinal voltage:

 One half of the vector sum of the potential difference 

between the tip connection and earth ground, and the ring connection and earth 
ground for the tip, ring pair of 2- wire and 4-wire connections; and, additionally for 4-
wire telephone connections, one half of the vector sum of the potential difference 
between the tip-1 connection and earth ground and the ring-1 connection and earth 
ground for the tip-1, ring-1 pair (where tip-1 and ring-1 are the receive pair).  

1.3.26 

Loop simulator circuit:

 A circuit that simulates the network side of a 2-wire or 4-

wire telephone connection during testing. The required circuit schematics are shown 
in Figure 1.1 for 2-wire loop or ground start circuits, Figure 1.2 for 2-wire reverse 
battery circuits, Figure 1.3 for 4-wire loop or ground start circuits, Figure 1.4 for 4-
wire reverse battery circuits, and Figure 1.9 for voiceband metallic channels. Figure 
1.8 is an alternative termination for use in the 2-wire loop simulator circuits. Other 
implementations may be used provided that the same dc voltage and current 
characteristics and ac impedance characteristics will be presented to the equipment 
under test as are presented in the illustrative schematic diagrams. When used, the 
simulator shall be operated over the entire range of loop resistance as indicated in 
the Figures, and with the indicated polarities and voltage limits. Whenever loop 
current is changed, sufficient time shall be allocated for the current to reach a 
steady-state condition before continuing testing. 

1.3.27 

Make-busy leads:

 Terminal equipment leads at the network interface designated 

MB and MB1. The MB lead shall be connected by the terminal equipment to the MB1 
lead when the corresponding telephone line is to be placed in an unavailable or 
artificially busy condition. 

1.3.28 

Metallic Voltage:

 The potential difference between the tip and ring connections for 

the tip, ring pair of 2-wire and 4-wire connections and additionally for 4-wire 
telephone connections, between the tip-1 and ring-1 connections for the tip-1, ring-1 
pair (where tip-1 and ring-1 are the receive pair). 

1.3.29 

Multi-port equipment:

 Equipment that has more than one telephone connection 

with provisions internal to the equipment for establishing transmission paths among 
two or more telephone connections. 

1.3.30 

Network port:

 An equipment port of approved protective circuitry which port faces 

the telephone network. 

1.3.31 

Off-premises line simulator circuit:

 A load impedance for connection, in lieu of an 

background image

` TIA-968-A 
 

off-premises station line, to PBX (or similar) telephone system loop start circuits 
(Figure 1.7) during testing. The schematic diagram of Figure 1.7 is illustrative of the 
type of circuit which shall be used; alternative implementations may be used 
provided that the same dc voltage and current characteristics and ac impedance 
characteristics of Figure 1.7 shall be presented to the equipment under test as are 
presented in the illustrative schematic diagram. When used, the simulator shall be 
operated over the entire range of loop resistances as indicated in Figure 1.7, and 
with the indicated polarities. Whenever loop current is changed, sufficient time shall 
be allocated for the current to reach a steady-state condition before continuing 
testing. 

1.3.32 

Off-premises station interface:

 The point of connection between PBX telephone 

systems (or similar systems) and telephone company private line communication 
facilities used to access approved station equipment located off the premises. 
Equipment leads at this interface are limited to telephone tip and ring leads 
(designated T(OPS) and R(OPS)) where the PBX employs loop-start signaling at the 
interface. Unless otherwise noted, all T(OPS) and R(OPS) leads shall be treated as 
telephone connections for purposes of fulfilling approval conditions. 

1.3.33 

One-port equipment:

 Equipment that has either exactly one telephone connection, 

or a multiplicity of telephone connections arranged so that no transmission occurs 
among such telephone connections, within the equipment. 

1.3.34 

Overload Point:

 For signal power limiting circuits incorporating automatic gain 

control method, the “overload point” is the value of the input signal that is 15 dB 
greater than the capture level.  For signal power limiting circuits incorporating peak 
limiting method, the ”overload point” is defined as the input level at which the 
equipment’s through gain decreases by 0.4 dB from its nominal constant gain.  

1.3.35 

Power connections:

 The connections between commercial power and any 

transformer, power supply rectifier, converter or other circuitry associated with 
approved terminal equipment or approved protective circuitry. The following are not 
power connections. (a) Connections between approved terminal equipment or 
approved protective circuitry and sources of non-hazardous voltages (see section 
4.4.4.4 for a definition of non-hazardous voltages). (b) Conductors that distribute any 
power within approved terminal equipment or within approved protective circuitry.  (c) 
Green wire ground (the grounded conductor of a commercial power circuit that is UL-
identified by a continuous green color). 

1.3.36 

Private line channel:

 Telephone company dedicated facilities and channel 

equipment used in furnishing private line service from the telephone network for the 
exclusive use of a particular party or parties. 

1.3.37 

PSDS Type II Analog Mode Loop Simulator Circuit:

 A circuit simulating the 

network side of the two-wire telephone connection that is used for testing terminal 
equipment to be connected to the PSDS Type II loops.  Figure 1.12

 

shows the type 

of circuit that shall be used.  Other test circuit configurations may be used provided 
they operate at the same DC voltage and current characteristics and AC impedance 
characteristics presented in the illustrated circuit.  When utilized, the simulator should 
be operated over the entire range of loop resistances, and with the indicated voltage 

 6 

background image

TIA-968-A 

 
 

limits and polarities. Whenever the loop current is changed, sufficient time shall be 
allowed for the current to reach a steady-state condition before continuing testing. 

1.3.38 

Public Switched Digital Service Type I (PSDS Type I):

 This service functions only 

in a digital mode. It employs a transmission rate of 56 kbps on both the transmit and 
receive pairs to provide a four-wire full duplex digital channel. Signaling is 
accomplished using bipolar patterns that include bipolar violations. 

1.3.39 

Public Switched Digital Service Type II (PSDS Type II):

 This service functions in 

two modes, analog and digital. Analog signaling procedures are used to perform 
supervisory and address signaling over the network. After an end-to-end connection 
is established, the switched Circuit Data Service Unit SCDSU) is switched to the 
digital mode. The time compression multiplexing (TCM) transmission operated at a 
digital transmission speed of 144 kbps to provide full-duplex 56 kbps on the two-wire 
access line. 

1.3.40 

Public Switched Digital Service Type III (PSDS Type III):

 This service functions 

only in a digital mode. It uses a time compression multiplexing (TCM) rate of 160 
kbps, over one pair, to provide two full-duplex channels – an 8 kbps signaling 
channel for supervisory and address signaling, and a 64 kbps user data channel on a 
two-wire access line. 

1.3.41 

Ringdown private line interface:

 The point of connection between ringdown 

voiceband private line service and terminal equipment or systems that provide 
ringing (20 or 30 Hz) in either direction for alerting only. All tip and ring leads shall be 
treated as telephone connections for the purposes of fulfilling approval conditions. 
On 2-wire circuits the ringing voltage is applied to the ring conductor with the tip 
conductor grounded. On 4-wire circuits the ringing voltage is simplexed on the tip 
and ring conductors with ground simplexed on the tip-1 and ring-1 conductors.  

1.3.42 

Specialty adapters:

 Adapters that contain passive components such as resistive 

pads or bias resistors typically used for connecting data equipment having fixed-loss 
loop or programmed data jack network connections to key systems or PBXs. 

1.3.43 

Stutter dial tone: 

Interrupted dial tone. Typically, the cadence is 0.1 s on, 0.1 s off 

and the interruptions are only for the first few seconds of dial tone. Stutter dial tone is 
used to provide an audible signal to the equipment user in support of certain network 
features. 

1.3.44 

Stutter dial tone detection device: 

Terminal equipment that is designed to 

automatically go off-hook and determine the presence or absence of stutter dial tone. 

1.3.45 

Sub-rate digital service:

 A digital service providing for the full-time simultaneous 

two-way transmission of digital signals at synchronous speeds of 2.4, 4.8, 9.6 or 56 
kbps. 

1.3.46 

Switched Circuit Data Service Unit (SCDSU):

 A CPE device, with PSDS 

functionality, located between the Network Interface and the data terminal 
equipment. (It also is sometimes referred to as Network Channel Terminating 

background image

` TIA-968-A 
 

Equipment). 

1.3.47 

Telephone Connection:

 Connection to telephone network tip and ring leads for 2-

wire and 4-wire connections and, additionally, for 4-wire telephone connections, tip-1 
and ring-1 leads and all connections derived from these leads. The term ‘‘derived’’ as 
used here means that the connections are not separated from telephone tip and ring 
or from telephone tip-1 and ring-1 by a sufficiently protective barrier. Provisions of 
this Standard that apply specifically to telephone network tip and ring pairs shall also 
apply to telephone network tip-1 and ring-1 pairs unless otherwise specified. In 4-
wire connections, leads designated tip and ring at the interface are for transmitting 
voice frequencies toward the network and leads designated tip-1 and ring-1 at the 
interface are for receiving voice frequencies from the network. 

1.3.48 

Telephone Network:

 The public switched network and those private lines which are 

defined in section 1.1 of this standard.

 

1.3.49 

Terminal Equipment (TE):

 Communications equipment located on customer 

premises at the end of a communications link, that is used to permit the stations 
involved to accomplish the provision of telecommunications or information services

.

 

1.3.50 

Terminal Port:

 An equipment Port of approved protective circuitry which port faces 

remotely-located terminal equipment.  

1.3.51 

Test Equipment:

 Equipment connected at the customer’s premises that is used on 

the customer’s side of the network interfaces to measure characteristics of the 
telephone network, or to detect and isolate a communications fault between a 
terminal equipment entity and the telephone network. Approval is required for test 
equipment capable of functioning as portable traffic recorded or equipment capable 
of transmitting or receiving test tones; except approval is not required for devices 
used by telephone companies solely for network installation and maintenance 
activities such as hand-held data terminals, linesmen’s handsets, and subscriber line 
diagnostic devices. 

1.3.52 

Tie trunk transmission interfaces:  

a) 

2-Wire:

 A 2-wire transmission interface with a path that is essentially 

lossless (except for 2-dB switched pad operation, or equivalent) between 
the interface and the 2-wire or 4-wire, transmission reference point of the 
terminal equipment. 

b) 

4-Wire lossless:

 A 4-wire transmission interface with a path that is 

essentially lossless (except for 2 dB switched pad operation, or equivalent) 
between the interface and the 2-wire or 4-wire transmission reference point 
of the terminal equipment; and 

c) 

Direct Digital Interface:

 An interface between a digital PBX and a digital 

transmission facility. 

d) 

Digital Tandem 4-Wire Interface:

 A 4-wire digital interface between digital 

terminal equipment and a digital transmission facility operating at 1.544 
Mbps or sub-rate connecting terminal equipment that provide tandem 
connections. 

 8 

background image

TIA-968-A 

 
 

e) 

Digital Satellite 4-wire Interface:

 A 4-wire digital interface between digital 

terminal equipment and a digital transmission facility operating at 1.544 
Mbps or sub-rate connecting terminal equipment that does not provide 
tandem connections to other digital terminal equipment. 

1.3.53 

Voiceband:

 For the purpose of this standard, the voiceband for analog interfaces is 

the frequency band from 200 Hz to 3995 Hz. 

1.3.54 

Voiceband metallic private line channel interface:

 The point of connection 

between a voiceband metallic private line channel and terminal equipment or 
systems where the network does not provide any signaling or transmission 
enhancement. Approved terminal equipment or systems may use convenient 
signaling methods so long as the signals are provided in such a manner that they 
cannot interfere with adjacent network channels. All tip and ring leads shall be 
treated as telephone connections for the purpose of fulfilling approval conditions. 

1.3.55 

Zero Level Decoder:

 The zero level de-coder shall comply with the ” = 255 PCM 

encoding law as specified in ITU–T G.711 for voiceband encoding and decoding. 
See also Figure 1.11 

1.3.56 

1.544 Mbps digital CO 4-wire interface:

 A 4-wire digital interface between digital 

terminal equipment and a digital transmission facility operating at 1.544 Mbps 
connecting to a serving central office. 

1.3.57 

1.544 Mbps digital service:

 A full-time dedicated private line circuit used for the 

transmission of digital signals at a speed of 1.544 Mbps. 

background image

` TIA-968-A 
 

 

 

C

1

 = 500 ”F – 10% + 50% 

 

R

1

 = 600 

℩

 

±

 1% 

 
 

Condition V 

(V) 

Switch Position

For Test 

R

2

 + R

L

 

Min 42.5 

 

Max 56.5 

Both 

Continuously variable over 

400 to 1740 

℩

 

2 105  2 

2000 

℩

 

 

NOTES: 
 

1.  Means shall be used to generate, at the point of tip and ring connections to the 

terminal equipment or protective circuitry, the parameters of dc line current and ac 
impedance that are generated by the illustrative circuit depicted above (as 
appropriate for the equipment under test). 

 
2.  In the Transverse Balance Limitation section 4.6, the use of the "dc portion of the 

loop simulator circuit" is specified.  In such case components of R

1

 and C

1

 shall be 

removed. 

 
3.  Tests for compliance shall be made with either R

1

 = 600 

℩

 or R

1

 replaced by the 

alternative configuration shown in Figure 1.8. 

 

Figure 1.1 2-Wire Loop Simulator for Loop Start and Ground Start Circuits 

 10 

background image

TIA-968-A 

 
 

 

C

1

 = 500 ”F – 10% + 50% 

 

R

1

 = 600 

℩

 

±

 1% 

 
 

R

2

 + R

L

 

Continuously variable over 400 to 2450 

℩

 

 

NOTE:

  The notes for Figure 1.1 also apply to this Figure. 

Figure 1.2 Loop Simulator for Reverse Battery Circuits 

 

11 

background image

` TIA-968-A 
 

 

 
 

SW = Polarity Switch 
L

1

 = L

2

 = L

3

 = L

4

  > 5 H (Resistance = R

L1

, R

L2

, R

L3

, R

L4

R

1

 = R3 = 600 

℩

 

±

 1% 

C

1

 = C

2

 = 500 ”F – 10% + 50% 

 

Condition V 

(Volts) 

Switch Position

For Test 

R

2

 + R

L

 

Min = 42.6 

Max = 56.5 

Both 

Continuously 

Variable over 

400 to 1740 

℩

 

2 105  2 

2000 

℩

 

 

4

3

4

3

2

1

2

1

L

L

L

L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

+

+

+

=

 

 

Figure 1.3 Loop Simulator Circuit for 4-Wire Loop Start and Ground Start 

 12 

background image

TIA-968-A 

 
 

 

 

L

1

 = L

2

 = L

3

 = L

4

  > 5 H (Resistance = R

L1

, R

L2

, R

L3

, R

L4

R

1

 = R

3

 = 600 

℩

 

±

 1% 

C

1

 = C

2

 = 500 ”F – 10% + 50%

 

 
 

R

2

 + R

L

 

Continuously variable over 400 to 2450 

℩

 

 

4

3

4

3

2

1

2

1

L

L

L

L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

+

+

+

=

 

Figure 1.4 Loop Simulator Circuit for 4-Wire Reverse Battery Circuits 

13 

background image

` TIA-968-A 
 

Approved Terminal Equipment on “A” Side of Interface 

 

 

Figure 1.5 E&M Types I & II Signaling 

 14 

background image

TIA-968-A 

 
 

Approved Terminal Equipment on “B” Side of Interface 

 

Figure 1.6 E&M Types I & II Signaling  

15 

background image

` TIA-968-A 
 

 

 

 

R

+ R

L

 continuously variable 

over the following range 

Condition 

Switch 

Position 
For Test 

Class A 

Class B 

Class C 

1 1 

Up to 200 

℩

 

Up to 800 

℩

 

Up to 1800 

℩

 

2 2  N.A. 

200 to 2300 

℩

 

900 to 3300 

℩

 

 

The minimum current for all resistance ranges shall be 16 mA. 

NOTES:  

1.  Means shall be used to generate, at the point of tip (T OPS) and ring (R OPS) 

connections to the PBX, the range of resistance and impedance that are employed 
by the illustrative circuit depicted above. 

 
2.  In the Transverse Balance Limitation section 4.6 the use of the dc portion of the loop 

simulator is specified.  In such cases, R

1

 and C

1

 shall be removed. 

 
3.  Tests for compliance shall be made with either R

1

 = 600 

℩

 or replaced by the 

alternative termination specified in Figure 1.8. 

Figure 1.7 Off Premises Loop Simulator 

 16 

background image

TIA-968-A 

 
 

 

 

NOTE:  

When this alternative termination is used during signal power compliance 
testing, it shall replace R

1

 (600 

℩

) in the loop simulator circuit. 

Figure 1.8 Alternative Termination 

17 

background image

` TIA-968-A 
 

 

 

C

1

 = 500 ”F – 10% + 50% 

R

1

 = 600 

℩

 

±

 1% 

L = 10 H, Resistance = R

L

 

 

R

2

 + R

L

 are continuously variable from R

L

 to R

X

 
Where R

X

 = Signaling range of Equipment Under Test, and  

 

R

L

 << R

X

 

 

NOTE:  

For transverse balance measurements (section 4.6), the dc portion of the loop 
simulator shall be provided by removing R

1

 and C

1

. Companion terminal 

equipment grounds (including power supplies) shall be isolated from transverse 
balance circuit grounds. 

Figure 1.9 Loop Simulator Circuit – Voiceband Metallic Channels 

 18 

background image

TIA-968-A 

 
 

 

 

 

Resistances (

℩

), Capacitances (”F), Tolerances (

±

 2%) 

R

V

 + R

P

 = 50 thru 3000 

℩

Z

P

 is the magnitude of the lowpass filter impedance that is (25 

℩

 dc) 3 k

℩

 

from 10 Hz to 6 kHz. 
R

P

/2 = dc resistance of lowpass filter, Z

P

 in parallel with 428.7 

℩

 

Figure 1.10 LADC Impedance Simulator for Metallic Voltage Tests 

 

19 

background image

` TIA-968-A 
 

 

 

NOTES: 

The decoder shall have a resistive 600 

℩

 output impedance and shall be 

terminated in a resistance of 600 

℩

 

The Zero Level Decoder shall comply with the 255 Pulse code modulation 
encoding ”-law specified in ITU-T Recommendation G.711. 

 

Figure 1.11 Zero Level Decoder Test Configuration for Sub-rate and 1.544 MBPS 

Digital Channels 

 

 20 

background image

TIA-968-A 

 
 

 

 

≄

 10 H (Resistance = R

L

R

1

 = 600 

℩

 

±

 1% 

C

1

 = 500 ”F, - 10%, + 50% 

 

Test Conditions for Analog Mode 

V (Volts) 

R

2

 + R

L

 (

℩

Min Max 

Continuously 

Variable

 

36 

46 

610 to 1510 

 

Figure 1.12 Simulator Circuit for PSDS Type II in Analog Mode 

 

21 

background image
background image

  

TIA-968-A 

 
 

2  CONDITIONS ON USE OF TERMINAL EQUIPMENT 

The conditions on use of the Terminal Equipment are provided in Subpart B of 47 CFR Part 
68. 
 

23 

background image

  

TIA-968-A 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left intentionally blank. 

 

24 

background image

  

TIA-968-A 

 
 

3  TERMINAL EQUIPMENT APPROVAL PROCEDURES 

The Terminal Equipment Approval Procedures are provided in Subpart C of 47 CFR Part 68. 
 
 

25 

background image

  

TIA-968-A 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left intentionally blank. 

 
 

26 

background image

  

TIA-968-A 

 
 

4 TECHNICAL REQUIREMENTS 

4.1 LABELING 

The labeling of Terminal Equipment shall follow the requirements prescribed by the 
Administrative Council on Terminal Attachment (ACTA). 

4.2 ENVIRONMENTAL SIMULATION 

Unpackaged Approved Terminal Equipment and Approved Protective Circuitry shall comply 
with all the criteria specified in this standard, both prior to and after application of the 
mechanical and electrical stresses specified in this section 4.2, notwithstanding that certain 
of these stresses may result in partial or total destruction of the equipment. Both telephone 
line surges, Type A and Type B, shall be applied as specified in sections 4.2.2 and 4.2.3. 
Different failure criteria apply for each surge type. 

4.2.1 Mechanical 

Shock 

4.2.1.1  Hand-Held Items Normally Used at Head Height: 18 random drops from a height of 

1.5 meters onto concrete covered with 3 mm asphalt tile or similar surface. 

4.2.1.2  Table (Desk) - Top Equipment 0–5 kg: Six random drops from a height of 750 mm 

onto concrete covered with 3 mm asphalt tile or similar surface. 

4.2.1.3  The drop tests specified in section 4.2.1 shall be performed as follows: The unit 

shall be positioned prior to release to ensure as nearly as possible that for every six 
drops there is one impact on each of the major surfaces and that the surface to be 
struck is approximately parallel to the impact surface. 

4.2.2  Telephone Line Surge – Type A 

4.2.2.1 Metallic: 

 

4.2.2.1.1  Two metallic voltage surges (one of each polarity) shall be applied between any 

pair of connections on which lightning surges may occur; this includes: 

a)  tip to ring; 
b)  tip-1 to ring-1; and 

c)  For a 4-wire connection that uses simplexed pairs for signaling, tip to ring-

1 and ring to tip-1. 

27 

background image

` TIA-968-A 
 

4.2.2.1.2  The surge shall have an open circuit voltage waveform in accordance with Figure 

4.2 having a front time (t

f

) of 10 ”s maximum and a decay time (t

d

) of 560 ”s 

minimum, and shall have a short circuit current waveshape in accordance with 
Figure 4.3 having a front time (t

f

) of 10 ”s maximum and a decay time (t

d

) of 560 

”s minimum. The peak voltage shall be at least 800 V and the peak short circuit 
current shall be at least 100 A.  

4.2.2.1.3  Surges shall be applied as follows: 

a)  With the equipment in all states that can affect compliance with the 

requirements of this standard. If an equipment state cannot be achieved by 
normal means of power, it shall be achieved artificially; 

b)  With equipment leads not being surged (including telephone connections, 

auxiliary leads, and terminals for connection to non-approved equipment) 
terminated in a manner that occurs in normal use; 

c)  Under reasonably foreseeable disconnection of primary power sources, 

with primary power cords plugged and unplugged, if so configured. 

4.2.2.2 Longitudinal: 

4.2.2.2.1  Two longitudinal voltage surges (one of each polarity) shall be applied to any pair 

of connections on which lightning surges may occur. This includes the tip-ring pair 
and the tip-1—ring-1 pair, to earth grounding connections, and to all leads 
intended for connection to non-approved equipment, connected together. Surges 
shall be applied as follows: 

a)  With the equipment in all states that can affect compliance with the 

requirements of this Standard. If an equipment state cannot be achieved 
by normal means of power, it shall be achieved artificially; 

b)  With equipment leads not being surged (including telephone connections, 

auxiliary leads, and terminals for connection to non-approved equipment) 
terminated in a manner that occurs in normal use; 

c)  Under reasonably foreseeable disconnection of primary power sources, as 

for example, with primary power cords plugged and unplugged. 

 

4.2.2.2.2  The surge shall have an open circuit voltage waveform in accordance with Figure 

4.2 with a front time (t

f

) of 10 ”s maximum and a decay time (t

d

) of 160 ”s 

minimum, and shall have a short circuit current waveshape in accordance with 
Figure 4.3 having a front time (t

f

) of 10 ”s maximum and a decay time (t

d

) of 160 

”s minimum. The peak voltage shall be at least 1500 V and the peak short circuit 
current shall be at least 200 A. 

 28 

background image

TIA-968-A 

 
 

4.2.2.3  Failure Modes resulting from application of Type A telephone line surges: 

Regardless of operating state, equipment and circuitry are allowed to be in violation 
of the transverse balance requirements of sections 4.6.2 and 4.6.3 and, for terminal 
equipment connected to Local Area Data Channels, the longitudinal signal power 
requirements of section 4.5.5.2 if: 

a)  Such failure results from an intentional, designed failure mode that has the 

effect of connecting telephone or auxiliary connections with earth ground; 
and,  

b)  If such a failure mode state is reached, the equipment is designed so that 

it would become substantially and noticeably unusable by the user, or an 
indication is given (e.g. an alarm), in order that such equipment can be 
immediately disconnected or repaired. 

 

The objective of (a) is to allow for safety circuitry to either open-circuit, which would cause 

a permanent on-hook condition, or to short-circuit to ground, as a result of an 
energetic lightning surge. Off-hook tests would be unwarranted if the off-hook 
state cannot be achieved. A short to ground has the potential for causing 
interference resulting from longitudinal imbalance, and therefore designs shall 
be adopted which will cause the equipment either to be disconnected or 
repaired rapidly after such a state is reached, should it occur in service. 

4.2.3  Telephone Line Surge – Type B 

4.2.3.1 Metallic

Two metallic voltage surges (one of each polarity) shall be applied to equipment 
between any pair of connections on which lightning surges may occur; this 
includes: 

a)  tip to ring; 

b)  tip-1 to ring-1; and 

c)  For a 4-wire connection that uses simplexed pairs for signaling, tip to ring-1 

and ring to tip-1. 

 

The surge shall have an open circuit voltage waveform in accordance with Figure 4.2 

having a front time (t

f

) of 9 ”s 

±

 30% and a decay time (t

d

) of 720 ”s ± 20% and 

shall have a short circuit current waveshape in accordance with Figure 4.3 
having a front time (t

f

) of 5 ”s 

±

 30% and a decay time (t

d

) of 320 ”s ± 20%. 

The peak voltage shall be at least 1000 V and the peak short circuit current 
shall be at least 25 A. The wave shapes are based on the use of ideal 
components in Figure 4.1 with S2 in Position M. Surges shall be applied: 

a)  With the equipment in all states that can affect compliance with the 

requirements of this standard. If an equipment state cannot be achieved by 
normal means of power, it shall be achieved artificially. 

b)  With equipment leads not being surged (including telephone connections, 

auxiliary leads, and terminals for connection to non-approved equipment) 
terminated in a manner that occurs in normal use. 

29 

background image

` TIA-968-A 
 

c)  Under reasonably foreseeable disconnection of primary power sources, as 

for example, with primary power cords plugged and unplugged. 

4.2.3.2 Longitudinal: 

Two longitudinal voltage surges (one of each polarity) shall be applied to any pair of 
connections on which lightning surges may occur. This includes the tip-ring pair 
and the tip-1 ring-1 pair to earth grounding connections and to all leads intended for 
connection to non-approved equipment, connected together. Surges shall be 
applied as follows: 

a) With the equipment in all states that can affect compliance with the 

requirements of this Standard. If an equipment state cannot be achieved by 
normal means of power, it shall be achieved artificially. 

b)  With equipment leads not being surged (including telephone connections, 

auxiliary leads, and terminals for connection to non-approved equipment) 
terminated in a manner that occurs in normal use. 

c)  Under reasonably foreseeable disconnection of primary power sources, as 

for example with primary power cords plugged and unplugged. 

 

 

For each output lead of the surge generator, with the other lead open, the 
surge shall have an open circuit voltage waveform in accordance with Figure 
4.2 having a front time (t

f

) of 9 ”s ± 30% and a decay time (t

d

) of 720 ”s ± 20% 

and shall have a short circuit current waveshape in accordance with Figure 4.3 
having a front time (t

f

) of 5 ”s ± 30% and a decay time (t

d

) of 320 ”s ± 20%. 

The peak voltage shall be at least 1500 V and the peak short circuit current 
shall be at least 37.5 A. The wave shapes are based on the use of ideal 
components in Figure 4.1 with S2 in Position L. 

4.2.3.3  Failure Modes resulting from application of Type B telephone line surges: Approved 

terminal equipment and approved protective circuitry shall withstand the energy of 
Surge Type B without causing permanent opening or shorting of the interface circuit 
and without sustaining damage that will affect compliance with this standard. 

 

 30 

background image

TIA-968-A 

 
 

 

 

Figure 4.1 Simplified Surge Generator 

 
 

 

Figure 4.2 Open Circuit voltage Waveshape, T

r

 x T

d

 

 
 

 

Figure 4.3 Short Circuit Current Waveshape, T

r

 x T

d

31 

background image

` TIA-968-A 
 

4.2.4  Power Line Surge 

4.2.4.1  Six power line surges (three of each polarity) shall be applied between the phase 

and neutral terminals of the ac power line while the equipment is being powered. 
The surge shall have an open circuit voltage waveform in accordance with Figure 
4.2 having a front time (t

f

) of 2 ”s maximum and a decay time (t

d

) of 10 ”s minimum 

and shall have a short circuit current waveshape in accordance with Figure 4.3 with 
a front time (t

f

) of 2 ”s maximum and a decay time (t

d

) of 10 ”s minimum. The peak 

voltage shall be at least 2500 V and the peak short circuit current shall be at least 
1000 A. Surges shall be applied: 

4.2.4.1.1  With the equipment in all states that can affect compliance with the requirements 

of this Standard. If an equipment state cannot be achieved by normal means of 
power, it may be achieved artificially; 

4.2.4.1.2  With equipment leads not being surged (including telephone connections, 

auxiliary leads, and terminals for connection to non-approved/non-certified 
equipment) terminated in a manner that occurs in normal use. 

4.2.4.2  Failure Modes resulting from application of power line surge. Approved terminal 

equipment and approved protective circuitry shall comply with all the criteria in this 
standard, both prior to and after the application of the power line surge specified in 
4.2.4, notwithstanding that this surge may result in partial or total destruction of the 
equipment under test. 

4.3  LEAKAGE CURRENT LIMITATIONS 

Approved terminal equipment and approved protective circuitry shall have a voltage applied 
to the combination of points listed in the table below.  The test voltage shall be ac of 50 or 
60 Hz rms. 
 

a)  All telephone connections; 
b)  All power connections; 
c)  All possible combinations of exposed conductive surfaces on the exterior 

of such equipment or circuitry including grounding connection points, but 
excluding terminals for connection to other terminal equipment; 

d)  All terminals for connection to approved protective circuitry or non-

approved equipment; 

e)  All auxiliary lead terminals; 
f) 

All E&M lead terminals, and 

g)  All PR, PC, CY1 and CY2 leads. 

 

 32 

background image

TIA-968-A 

 
 

Table 4.1 Voltage Applied For Various Combinations Of Electrical Connections 

 

Voltage Source Connected Between: 

AC Value* 

(a) and (b)  (See Notes 1, 2, 3) 

1500 

(a) and (c)  (See Notes 1, 2) 

1000 

(a) and (d)  (See Notes 1, 2) 

1000 

(a) and (e)  (See Notes 1, 2) 

1000 

(a) and (f)  (See Notes 1, 2) 

1000 

(a) and (g)  (See Notes 1, 2) 

1000 

(b) and (c)  (See Note 3) 

1500 

(b) and (d)  (See Note 3) 

1500 

(b) and (e)  (See Note 3) 

1500 

(b) and (f)  (See Note 3) 

1500 

(b) and (g)  (See Note 3) 

1500 

(c) and (e)  (See Notes 1,2) 

1000 

(c) and (f)  (See Notes 1,2) 

1000 

(d) and (e)  (See Note 2) 

1000 

(d) and (f)  (See Note 2) 

1000 

(e) and (f)  (See Note 2) 

1000 

* Value to which test voltage is gradually increased. 
 

NOTES:

  1. Gradually increase the voltage from zero to the values listed in the Table 

over a 30-second time period, and then maintain the voltage for one minute. 
The current in the mesh formed by the voltage source and these points shall 
not exceed 10 mA

P

 at any time during this 90-second interval. 

 

2. Equipment states necessary for compliance with the requirements of this 
section that cannot be achieved by normal means of power shall be achieved 
artificially by appropriate means. 

 

3. A telephone connection, auxiliary lead, or E&M lead that has an intentional 
dc conducting path to earth ground at operational voltages (such as a ground 
start lead), may be excluded from the leakage current test in that operational 
state. Leads or connections excluded for this reason shall comply with the 
requirements of 4.4.5.1. 

 

4. A telephone connection, auxiliary lead, or E&M lead that has an intentional 
dc conducting path to earth ground for protection purposes at the leakage 

33 

background image

` TIA-968-A 
 

current test voltages (such as through a surge suppressor), may have the 
component providing the conducting path removed from the equipment for the 
leakage current test in that operational state. Components removed for this 
reason shall comply with the requirements of section 4.4.5.2. 

 

5. Filter paths, such as capacitors used in EMI filters, are left in place during 
leakage current testing, since these components can be a path for excessive 
leakage. 

 

6. For multi-unit equipment inter-connected by cables, that is evaluated and 
approved as an interconnected combination or assembly, the specified 10 mA 
peak maximum leakage current limitation other than between power connection 
points and other points, may be increased as described here to accommodate 
cable capacitance. The leakage current limitation may be increased to (10N + 
0.13L) mA

P

 where L is the length of interconnecting cable in the leakage path in 

meters and N is the number of equipment units that the combination or 
assembly will place in parallel across a telephone connection. 

 

7. RF filters and surge protectors on the line side of power supplies may be 
disconnected before making leakage measurements (section 4.3).  As an 
alternative to disconnecting these filters and surge protectors, this 
measurement may be made using a dc voltage equal to the peak ac test 
voltage. 

4.4  HAZARDOUS VOLTAGE LIMITATIONS 

4.4.1  General: Under no condition of failure of approved terminal equipment or approved 

protective circuitry that can be conceived to occur in the handling, operation or repair 
of such equipment or circuitry, shall the open circuit voltage on telephone 
connections exceed 70 V

P

 after one second, except for voltages for network control 

signaling, alerting and supervision. 

4.4.1.1  Type I E&M Leads.

 

Approved terminal equipment shall comply with the following 

requirements for terminal equipment on the ‘‘A’’ or ‘‘B’’ side of the interface as 
shown in Figure 1.5 and Figure 1.6. 

4.4.1.1.1  The dc current on the E lead shall not exceed 100 mA. 

4.4.1.1.2  The maximum dc potentials to ground shall not exceed the following when 

measured across a resistor of 20 k

℩

 Â± 10%: 

 

 34 

background image

TIA-968-A 

 
 

Table 4.2 Type I E&M, DC Potentials 

 

E LEAD 

M LEAD 

TE on “B” side originates 

signals to network on E 

lead. 

±

 5 V 

±

 5 V 

TE on “A” side originates 

signals to network on M 

lead 

-56.5 V; no positive 

potential with respect to 

ground. 

-56.5 V; no positive 

potential with respect to 

ground. 

4.4.1.2  The maximum ac potential between E&M leads and ground reference shall not 

exceed 5 V

P

4.4.1.2.1  M lead protection shall be provided so that voltages to ground do not exceed 60 

V. For relay contact implementation, a power dissipation capability of 0.5 W shall 
be provided in the shunt path. 

4.4.1.2.2  If the approved terminal equipment contains an inductive component in the E 

lead, it shall assure that the transient voltage across the contact as a result of a 
relay contact opening does not exceed the following voltage and duration 
limitations: 

a) 300 V

P

b)  A rate of change of one V per ”s, and 
c)  60 V level after 20 ms. 

4.4.1.3  Type II E&M Leads. Approved terminal equipment shall comply with the following 

requirements: 

4.4.1.3.1  For terminal equipment on the ‘‘A’’ side of the interface, the dc current in the E 

lead shall not exceed 100 mA. The maximum ac potential between the E lead and 
ground shall not exceed 5 V

P

4.4.1.3.2  For terminal equipment on the ‘‘B’’ side of the interface, the dc current in the SB 

lead shall not exceed 100 mA. The maximum ac potential between the SB lead 
and ground shall not exceed 5 V

P

4.4.1.3.3  The maximum dc potentials to ground shall not exceed the following when 

measured across a resistor of 20 k

℩

 Â± 10%: 

35 

background image

` TIA-968-A 
 

Table 4.3 Type II E&M, DC Potentials 

 

E lead 

M lead 

SB lead 

SG lead 

TE on “B” side 

of the interface 

originates 

signals to 

network on E 

lead. 

±

 5 V 

±

 5 V 

-56.5 V; no 

positive 

potential with 

respect to 

ground 

±

 5 V 

TE on “A” side 

of the interface 

originates 

signals to 

network on M 

lead 

-56.5 V, no 

positive 

potential with 

respect to 

ground 

±

 5 V 

±

 5 V 

±

 5 V 

4.4.1.3.4  The maximum ac potential to ground shall not exceed 5 V

P

 on the following leads, 

from sources in the terminal equipment: 

a)  M, SG and SB leads for terminal equipment on the ‘‘A’’ side of the interface. 
b)  E, SG and M leads for terminal equipment on the ‘‘B’’ side of the inter-face. 

4.4.1.3.5  If the approved terminal equipment contains an inductive component in the (E) or 

(M) lead, it shall assure that the transient voltage across the contact as a result of 
a relay contact opening does not exceed the following voltage and duration 
limitations: 

a) 300 V

P

b)  A rate of change of one V / ”s, and  
c)  A 60 V level after 20 ms. 

4.4.1.4  Off premises station voltages 

4.4.1.4.1  Talking battery or voltages applied by the PBX (or similar systems) to all classes 

of OPS interface leads for supervisory purposes shall be negative with respect to 
ground, shall not be more than -56.5 V dc with respect to ground, and shall not 
have a significant ac component.  The ac component shall not exceed 5 V

P

unless otherwise controlled by section 4.5. 

4.4.1.4.2  Ringing signals applied by the PBX (or similar systems) to all classes of OPS 

interface leads shall comply with requirements in section 4.4.4. Ringing voltages 
shall be applied between the ring conductor and ground. 

4.4.1.5  Direct Inward Dialing (DID).  Voltages applied by the PBX (or similar systems) to 

DID interface leads for supervisory purposes shall be negative with respect to 
ground, shall not be more than -56.5 V dc with respect to ground, and shall not 
have a significant ac component.  The ac component shall not exceed 5 V

P

, where 

 36 

background image

TIA-968-A 

 
 

not otherwise controlled by section 4.5. 

4.4.1.6  Local Area Data Channel Interfaces

For Local Area Data Channel interfaces, 

during normal operating modes including terminal equipment initiated maintenance 
signals, approved terminal equipment shall ensure, except during the application of 
ringing (limitations specified in section 4.4.4), with respect to telephone connections 
(tip, ring, tip-1, ring-1) that: 

4.4.1.6.1  Under normal operating conditions, the rms current per conductor between short-

circuit conductors, including dc and ac components, does not exceed 350 mA. For 
other than normal operating conditions, the rms current between any conductor 
and ground or between short-circuited conductors, including dc and ac 
components, may exceed 350 mA for no more than 1.5 minutes; 

4.4.1.6.2  The dc voltage between any conductor and ground does not exceed 60 V. Under 

normal operating conditions it shall not be positive with respect to ground (though 
positive voltages up to 60 V may be allowed during brief maintenance states);  

4.4.1.6.3  AC voltages are less than 42.4 V

P

 between any conductor and ground. Terminal 

equipment shall comply while other interface leads are: 

a) Un-terminated, and 
b)  Individually terminated to ground 

Combined ac and dc voltages between any conductor and ground shall be: 
less than 42.4 V

P

 when the absolute value of the dc component is less than 

21.2 V; and less than (32.8 + 0.454 x V dc) when the absolute value of the dc 
component is between 21.2 and 60 V. 

4.4.1.7  Ringdown Voiceband Private Line and Voiceband Metallic Channel Interface.

 

During normal operation, approved terminal equipment for connection to ringdown 
voiceband private line interfaces or voiceband metallic channel interfaces shall 
ensure that: 

4.4.1.7.1  Ringing voltage shall not exceed the voltage and current limits specified in section 

4.4.4, and is: 

a)  Applied to the ring conductor with the tip conductor grounded for 2-wire 

interfaces, or 

b)  Simplexed on the tip and ring conductors with ground simplexed on the tip-1 

and ring-1 conductors for 4-wire interfaces. 

37 

background image

` TIA-968-A 
 

4.4.1.7.2  Except during the signaling mode or for monitoring voltage, there shall be no 

significant positive dc voltage (not over +5 V) with respect to ground: 

a)  For 2-wire ports between the tip lead and ground and the ring lead and 

ground and 

b)  For 4-wire ports between the tip lead and ground, the ring lead and ground, 

the tip-1 lead and ground, and the ring-1 lead and ground. 

4.4.1.7.3  The dc current per lead, under short circuit conditions shall not exceed 140 mA. 

4.4.2  Connection of non-approved equipment to approved terminal equipment or approved 

protective circuitry.  Leads to, or any elements having a conducting path to telephone 
connections, auxiliary leads or E&M leads shall: 

a)  Be reasonably physically separated and restrained from and be neither 

routed in the same cable as nor use the same connector as leads or 
metallic paths connecting power connections; 

b)  Be reasonably physically separated and restrained from and be neither 

routed in the same cable as nor use adjacent pins on the same connector 
as metallic paths that lead to non-approved equipment, when interface 
voltages are less than non-hazardous voltage source limits in section 4.4.3. 

 38 

background image

TIA-968-A 

 
 

 

4.4.3  Non-Hazardous voltage Source: A voltage source shall be considered a non-

hazardous voltage source if it conforms with the requirements of sections 4.2, 4.3 
and 4.4.2, with all connections to the source other than primary power connections 
treated as ‘‘telephone connections,’’ and if such source supplies voltages no greater 
than the following under all modes of operation and of failure: 

a)  AC voltages less than 42.4 V

P

b)  DC voltages less than 60 V; and 
c)  Combined ac and dc voltages between any conductor and ground are less 

than 42.4 V

P

 when the absolute value of the dc component is less than 21.2 

V, and less than (32.8 + 0.454 x V dc) when the absolute value of the dc 
component is between 21.2 and 60 V. 

4.4.4  Ringing Sources: Ringing sources shall meet all of the following restrictions: 

4.4.4.1  Ringing Signal Frequency.

 

The ringing signal shall use only frequencies whose 

fundamental component is equal to or below 70 Hz. 

4.4.4.2  Ringing Signal voltage. The ringing voltage shall be less than 300 V

P-P

 and less 

than 200 V peak-to-ground across a resistive termination of at least 1 M

℩

4.4.4.3  Ringing Signal Interruption Rate.

 

The ringing voltage shall be interrupted to create 

quiet intervals of at least one second (continuous) duration each separated by no 
more than 5 seconds. During the quiet intervals, the voltage to ground shall not 
exceed the voltage limits given in section 4.4.1.4.1. 

4.4.4.4  Ringing Signal Sources: Ringing voltage sources shall comply with the following 

requirements: 

a)  If the ringing current through a 500 

℩

 (and greater) resistor does not exceed 

100 mA

P-P

, neither a ring trip device nor a monitoring voltage is required. 

b)  If the ringing current through a 1500 

℩

 (and greater) resistor exceeds 100 

mA

P-P

, the ringing source shall include a current-sensitive ring trip device in 

series with the ring lead that will trip ringing as specified in Figure 4.4 in 
accordance with the following conditions: 

1) 

If the ring trip device operates as

 

specified in Figure 4.4 with R = 500

 

℩

 

(and greater), no monitoring voltage is required;

 

2) 

If, however, the ring trip device only operates as specified in Figure 4.4 
with R = 1500

 

℩

 (and greater) then the ringing voltage source shall also 

provide a monitoring voltage between 19 V dc and 56.5 V dc, negative 
with respect to ground, on the tip or ring conductor.

 

39 

background image

` TIA-968-A 
 

c)  If the ringing current through a 500 

℩

 (and greater) resistor exceeds 100 

mA

P-P

 but does not exceed 100 mA

P-P

 with 1500 

℩

 (and greater) 

termination, the ringing voltage source shall include either a ring trip device 
that meets the operating characteristics specified in Figure 4.4 with 500 

℩

 

(and greater) resistor, or a monitoring voltage as specified in section 
4.4.4.4 (b).  If the operating characteristics specified in section 4.4 are not 
met with both the 500 

℩

 and 1500 

℩

 terminations, then the terminal 

equipment under test fails (See Table 4.4). 

 
 
 

 

 

Figure 4.4 Ringing Voltage Trip Criteria 

 

 40 

background image

TIA-968-A 

 
 

Table 4.4 Table Summary of Ring-Trip Requirements 

Ringing Current 

(mA P-P) 

Function 

Required 

4.4.4.4 

R = 500 

℩

 

and greater 

R = 1500 

℩

 

and greater 

Ring-

Trip

 

Monitor 

voltage 

Ring-Trip Device Operates 

per Figure 4.4 

4.4.4.4(a) <100 <100 

Option

al 

Option

al 

Optional 

4.4.4.4(b)(1) N/A 

>100  Yes 

Option

al 

Yes for both resistances 

4.4.4.4(b)(2) N/A 

>100  Yes 

Yes 

Yes for R = 1500 

℩

 and 

greater 

No for R = 500 

℩

 and greater 

4.4.4.4(c) >100 <100 

Either Ring-Trip 

device or 

Monitor voltage 

shall be 

provided

 

Yes for R = 500 

℩

 and greater, 

if Ring-Trip device is used

 

4.4.5  Intentional paths to ground (as required by section 4.2) 

4.4.5.1  Connections with operational paths to ground: Approved terminal equipment and 

approved protective circuitry having an intentional dc conducting path to earth 
ground at operational voltages that was excluded during the leakage current test of  
section 4.3 shall have a dc current source applied between the following points: 

a)  Telephone connections, including tip, ring, tip-1, ring-1, E&M leads and 

auxiliary leads 

b)  Earth grounding connections 

 

For each test point, the current shall be gradually increased from zero to 1 A, 
then maintained  for one minute. The voltage between (a) and (b) shall not 
exceed 0.1 V at any time. In the event there is a component or circuit in the 
path to ground, the requirement shall be met between the grounded side of the 
component or circuit and the earth grounding connection. 

41 

background image

` TIA-968-A 
 

4.4.5.2  Connections with protection paths to ground. Approved terminal equipment and 

protective circuitry having an intentional dc conducting path to earth ground for 
protection purposes at the leakage current test voltage that was removed during 
the leakage current test of section 4.3 shall, upon its replacement, have a 50 or 60 
Hz voltage source applied between the following points: 

a)  Simplexed telephone connections, including tip and ring, tip-1 and ring-1, 

E&M leads and auxiliary leads, and; 

b)  Earth grounding connections. 

 

The voltage shall be gradually increased from zero to 120 V rms for approved 
terminal equipment, or 300 V rms for protective circuitry, then maintained for 
one minute. The current between (a) and (b) shall not exceed 10 mA

P

 at any 

time. As an alternative to carrying out this test on the complete equipment or 
device, the test may be carried out separately on components, subassemblies, 
and simulated circuits, outside the unit, provided that the test results would be 
representative of the results of testing the complete unit. 

4.5  SIGNAL POWER LIMITATIONS 

4.5.1  General: Limits on signal power shall be met at the interface for all 2-wire network 

ports and, where applicable to offered services, both transmit and receive pairs of all 
4-wire network ports. Signal power measurements shall be made using terminations 
as specified in each of the following limitations. The transmit and receive pairs for    
4-wire network ports shall be measured with the pair not under test connected to a 
termination equivalent to that specified for the pair under test. Through gain 
limitations shall apply only in the direction of transmission toward the network. 

4.5.2  Voiceband metallic signal power 

4.5.2.1  Limitations at the interface on internal signal sources not intended for network 

control signaling: 

4.5.2.1.1  The power of all signal energy other than live voice, in the 200–3995 Hz 

voiceband, delivered by approved terminal equipment or approved protective 
circuitry to the appropriate loop simulator — other than non-permissive data 
equipment or data protective circuitry shall not exceed -9 dBm when averaged 
over any 3-second interval. 

4.5.2.1.2  For 2-wire and 4-wire lossless tie trunk type interfaces, the maximum power of 

other than live voice signals delivered to a 600 

℩

 termination shall not exceed -15 

dBm when averaged over any 3-second interval. 

4.5.2.1.3  For OPS lines, the maximum power of other than live voice delivered to an OPS 

line simulator circuit shall not exceed -9 dBm, when averaged over any 3-second 
interval. 

 42 

background image

TIA-968-A 

 
 

4.5.2.1.4  For approved test equipment or approved test circuitry the maximum signal power 

delivered to a loop simulator circuit shall not exceed 0 dBm when averaged over 
any 3-second interval. 

4.5.2.1.5  For voiceband private lines using ringdown or inband signaling the maximum 

power of other than live voice signals delivered to a 600 

℩

 termination shall not 

exceed -13 dBm when averaged over any 3-second interval. 

4.5.2.1.6  For voiceband private lines using inband signaling in the band 2600 ±



150 Hz, the 

maximum power delivered to a 600 

℩

 termination shall not exceed -8 dBm during 

the signaling mode.  The maximum power delivered to a 600 

℩

 termination in the 

on-hook steady state supervisory condition shall not exceed -20 dBm. The 
maximum power of other than live voice signals delivered to a 600 

℩

 termination 

during the non-signaling mode and for other inband systems shall not exceed –13 
dBm when averaged over any 3-second interval. 

4.5.2.2  Limitations on internal signal sources primarily intended for network control 

signaling, contained in voice and data equipment. 

4.5.2.2.1  For all operating conditions of approved terminal equipment and approved 

protective circuitry, the maximum power in the frequency band below 3995 Hz 
delivered to a loop simulator circuit shall not exceed the following when averaged 
over any 3-second interval: 

a)  0 dBm when used for network control (DTMF); 
b)  0 dBm when DTMF is used for manual entry end-to-end signaling.  When 

the device is used for this purpose it shall not generate more than 40 
DTMF digits per manual key stroke; 

c)  -9 dBm in all other cases. 

4.5.2.2.2  For tie trunk applications, the maximum power delivered to a 600 

℩

 termination 

for approved terminal equipment and approved protective circuitry under all 
operating conditions shall not exceed -4 dBm over any 3-second interval. 

4.5.2.3  Approved one-port and multiport terminal equipment and protective circuitry with 

provision for through transmission from other terminal equipment, excluding data 
equipment and data protective circuitry that are approved in accordance with 
section 4.5. 

4.5.2.3.1  Where through-transmission equipment provides a dc electrical signal to 

equipment connected therewith (e.g. for powering of electro-acoustic 
transducers), dc conditions shall be provided which fall within the range of 
conditions provided by a loop simulator circuit unless the combination of the 
through-transmission equipment and equipment connected therewith is approved 
as a combination which conforms to sections 4.5.2 and 4.5.2.2. 

4.5.2.3.2  Through-transmission equipment to which remotely connected data terminal 

equipment may be connected shall not be equipped with or connected to either a 
Universal or Programmed Data Jack used in data configurations.  (See section 

43 

background image

` TIA-968-A 
 

4.5.2.4. ) 

4.5.2.4  Approved data circuit terminal equipment shall be capable of operation in at least 

one of the states discussed in sections 4.5.2.1, and 4.5.2.1.2, and 4.5.2.1.3. The 
output power level of the data circuit terminal equipment shall not be alterable, by 
the customer, to levels that exceed the signal power limits specified herein. 

4.5.2.4.1  Data circuit terminal equipment intended to operate with a programming resistor 

for signal level control shall not exceed the programmed levels given in Table 4.5. 

4.5.2.4.2  Data circuit terminal equipment intended to operate in the fixed loss loop (FLL) 

state shall not transmit signal power that exceeds -4 dBm, in the 200-3995 Hz 
voiceband, when averaged over any and all 3-second intervals. 

4.5.2.4.3  Data circuit terminal equipment shall not transmit signals from 200 to 3995 Hz that 

exceed -9 dBm, when averaged over any and all 3-second intervals. 

 44 

background image

TIA-968-A 

 
 

Table 4.5 Programming Resistors 

Programming Resistor 

R

P

* (

℩

Programmed Data 

Equipment Signal 

power output 

Short 0 

dBm 

150 -1 

dBm 

336 -2 

dBm 

569 -3 

dBm 

866 -4 

dBm 

1240 -5 

dBm 

1780 -6 

dBm 

2520 -7 

dBm 

3610 -8 

dBm 

5490 -9 

dBm 

9200 -10 

dBm 

19800 -11 

dBm 

Open -12 

dBm 

*Tolerance 1% 

 

4.5.2.5  Approved one-port and multi-port terminal equipment and protective circuitry with 

provision for transmission from ports to other equipment that is separately 
approved for the public switched network, or ports to other network interfaces. 

 

4.5.2.5.1  Approved terminal equipment and approved protective circuitry shall have no 

adjustments that will allow net amplification to occur in either direction of 
transmission in the through-transmission path within the 200–3995 Hz voiceband 
that will exceed the following:  

45 

background image

` TIA-968-A 
 

Table 4.6 Allowable Net Amplification Between Ports (See notes 1, 3, 4, and 5) 

To 

Tie Trunk Type Ports 

Integrated 

OPS 

Ports 

Public HCC 

From (see note 5) 

2/4-wire 

Sub-rate 

1.544 
Mbps 

Satellite 

4W 

Sub-rate 

1.544 
Mbps 

Tandem4

Services 

Trunk 

(2-wire) 

(2) 

Switched 

Network 

Ports 

(2-wire) 

Digital 

PBX-CO 

4-wire 

2/4 wire tie 

0 dB 

3 dB 

3 dB 

3 dB 

6 dB 

 

 

Sub-rate 1.544 Mbps 

Satellite 4W Tie 

0 dB 

 

3 dB 

3 dB 

6 dB 

 

 

Sub-rate 1.544 Mbps 

Tandem 4W Tie 

-3 dB 

0 dB 

0 dB 

0 dB 

3 dB 

 

 

Integrated Services 

Trunk 

-3 dB 

0 dB 

0 dB 

0 dB 

3 dB 

 

 

RTE Digital 

0 dB 

0 dB 

0 dB 

0 dB 

3 dB 

3 dB 

0 dB 

RTE (see note 2) 

PSTN/ 

OPS 

-3 dB 

-3 dB 

-3 dB 

-3 dB 

0 dB 

0 dB 

-3 dB 

OPS (see note 2) 

-2 dB 

1 dB 

1 dB 

1 dB 

4 dB 

4 dB 

1 dB 

Public Switched 

Network (2-wire) 

 

 

 

 

3 dB 

3 dB 

 

HCC Digital 

PBX-CO (4-wire) 

    

dB 

  

NOTES: 

1)  The source impedance for all measurements shall be 600 

℩

.  All ports 

shall be terminated in appropriate loop or private line channel simulator 
circuits or 600 

℩

 terminations. 

2)  These ports shall be for 2-wire on-premises station ports to separately 

approved terminal equipment. 

3)  These through gain limitations shall be applicable to multiport systems 

where channels are not derived by time or frequency compression 
methods.  Terminal equipment employing such compression techniques 
shall assure that equivalent compensation for through gain parameters 
shall be demonstrated. 

4)  Approved terminal equipment and approved protective circuitry may 

have net amplification exceeding the limitations of section 4.5.2.5.1 

 46 

background image

TIA-968-A 

 
 

provided that, for each network interface type to be connected, the 
absolute signal power levels specified in section 4.5 are not exceeded. 

5)  The indicated gain shall be in the direction that results when moving 

from the horizontal entry toward the vertical entry. 

6)  Approved terminal equipment or protective circuitry with the capability 

for through transmission from voiceband private line channels or 
voiceband metallic channels to other telephone network interfaces shall 
ensure that the absolute signal power levels specified in  section 4.5, for 
each telephone network interface type to be connected, are not 
exceeded.  

7) 

Approved terminal equipment or protective circuitry with the capability 
for through transmission from voiceband private line channels or 
voiceband metallic private line channels to other telephone network 
interfaces shall assure, for each telephone network interface type to be 
connected, that signals with energy in the 2450 to 2750 Hz band are not 
through transmitted unless there is at least an equal amount of energy 
in the 800 to 2450 Hz band within 20 ms of application of signal.

 

4.5.2.5.2  The insertion loss in through connection paths for any frequency in the 800 to 

2450 Hz band shall not exceed the loss at any frequency in the 2450 to 2750 Hz 
band by more than 1 dB (maximum loss in the 800 to 2450 Hz band minus 
minimum loss in the 2450 to 2750 Hz band plus 1 dB). 

4.5.2.6  For Tie Trunk Interfaces – Limitation on idle circuit stability parameters: For idle 

state operating conditions of approved terminal equipment and approved protective 
circuitry, the following limitations shall be met: 

4.5.2.6.1  For the two-wire interface: 

 

47 

background image

` TIA-968-A 
 

4.5.2.6.2  For the four-wire lossless interface: 

 

4.5.2.6.3  The following definitions shall apply to return loss requirements: 
 

a)  RL the return loss of 2-wire terminal equipment at the interface with respect 

to 600 

℩ 

+ 2.16 ”F  (i.e., Z

ref

 = 600 

℩ 

+ 2.16 ”F). 

 
 

 

 
b) RL

i

 the terminal equipment input (receive) port return loss with respect to 

600 

℩ 

(i.e., Z

ref

 = 600 

℩

). 

 

 

 
c) RL

0

 the terminal equipment output (transmit) port return loss with respect to 

600 

℩

 (i.e., Z

ref

 = 600 

℩

). 

 

 

 
d)  tl the transducer loss between the receive and transmit ports of the 4-wire 

PBX. 

 48 

background image

TIA-968-A 

 
 

 

 
e) tl

f

 is the transducer loss in the forward direction from the receive port to the 

transmit port of the PBX.  

 
f) Where 

I

is the current sent into the receive port and I

r

 is the current received 

at the transmit port terminated at 600 

℩

.  

 
g) tl

r

 is the transducer loss in the reverse direction, from the transmit port to the 

receive port of the PBX. 

 

 

 

h) Where I

i

 is the current sent into the transmit port and I

r

 is the current 

received at the receive port terminated at 600 

℩

. The source impedance of I

i

 

shall be 600 

℩

4.5.2.7  Approved terminal equipment and approved protective circuitry shall provide the 

following range of dc conditions to off-premises station (OPS) lines. 

4.5.2.7.1  DC voltages applied to the OPS interface for supervisory purposes and during 

network control signaling shall meet the limits specified in section 4.4.1.4.1. 

4.5.2.7.2  DC voltages applied to the OPS interface during the talking state shall meet the 

following requirements: 

4.5.2.7.2.1  The maximum open circuit voltage across the tip (T(OPS)) and ring (R(OPS)) 

leads for all classes shall not exceed 56.5 V, and  

4.5.2.7.2.2  Except for class A OPS interfaces, the maximum dc current into a short circuit 

across tip (T(OPS)) and ring (R(OPS)) leads shall not exceed 140 mA. 

4.5.2.7.2.3  Except for Class A OPS interfaces, the dc current into the OPS line simulator 

circuit shall be at least 20 mA for the following conditions (see Figure 1.7) 

 

49 

background image

` TIA-968-A 
 

 

R

2

 + R

L

 

Condition 

Class B 

Class C 

1 600 

1300 

2 1800 

2500 

 

 
 

 

4.5.3  Signal power in the 3995–4005 Hz frequency band 

4.5.3.1  Power resulting from internal signal sources contained in approved protective 

circuitry and approved terminal equipment (voice and data), not intended for 
network control signaling: For all operating conditions of approved terminal 
equipment and approved protective circuitry that incorporate signal sources other 
than sources intended for network control signaling, the maximum power delivered 
by such sources in the 3995–4005 Hz band to an appropriate simulator circuit, shall 
be 18 dB below maximum permitted power specified in section 4.5.2 for the 
voiceband. 

4.5.3.2  Terminal equipment with provision of through-transmission from other equipment: 

The loss in any through-transmission path of approved terminal equipment and 
approved protective circuitry at any frequency in the 600 to 4000 Hz band shall not 
exceed, by more than 3 dB, the loss at any frequency in the 3995 to 4005 Hz band, 
when measured into an appropriate simulator circuit from a source that appears as 
600 

℩

 across tip and ring. 

4.5.4  Longitudinal voltage at frequencies below 4 kHz 

4.5.4.1  The weighted rms voltage (see note) averaged over 100 ms that is resultant of all 

of the component longitudinal voltages in the 100 Hz to 4 kHz band after weighting 
according to the transfer function of f/4000 where f is the frequency in Hz, shall not 
exceed the maximum indicated under the conditions stated in section 4.5.7. 

NOTE:

 

Average magnitudes may be used for signals that have peak-to-rms ratios of 
20 dB and less. The rms limitations shall be used instead of average values if 
the peak-to-rms ratio of the interfering signal exceeds this value. 

 

Frequency range 

Maximum weighted 

rms voltage 

Impedance 

100 Hz to 4 kHz 

-30 dBV 

500 

℩

 

4.5.5  Voltage in the 4 kHz to 30 MHz frequency range-general case –2-wire and 4-wire 

lossless interface (except LADC). 

 

 

 50 

background image

TIA-968-A 

 
 

Except as noted, rms voltage as averaged over 100 ms at the telephone connections 
of approved terminal equipment and approved protective circuitry in all of the 
possible 8-kHz bands within the indicated frequency range and under the conditions 
specified in section 4.5.7 shall not exceed the maximum indicated below. For 
sections 4.5.5.1.1 and 4.5.5.2.1, ‘‘f’’ shall be the center frequency in kHz of each of 
the possible 8-kHz bands beginning at 8 kHz. 

4.5.5.1 Metallic 

voltage. 

4.5.5.1.1  4 kHz to 270 kHz: 
 

Center frequency (f) 

of 8-kHz band 

Max voltage in all 

8-kHz bands 

Metallic terminating 

impedance 

8 kHz to 12 kHz 

-(6.4 + 12.6 log f) dBV 

300 

℩

 

12 kHz to 90 kHz 

(23 – 40 log f) dBV 

135 

℩

 

90 kHz to 266 kHz 

-55 dBV 

135 

℩

 

 

4.5.5.1.2  270 kHz to 30 MHz. The rms value of the metallic voltage components in the 

frequency range of 270 kHz to 30 MHz shall, averaged over 2 ”s, not exceed -15 
dBV. This limitation applies with a metallic termination having an impedance of 
135 

℩

.

1

 

 

4.5.5.2 Longitudinal 

voltage 

4.5.5.2.1  4 kHz to 270 kHz. 
 
 
 
 
 
 
 

Center frequency (f) 

of 8-kHz band 

Max voltage in all 

8-kHz bands 

Longitudinal terminating 

impedance 

8 kHz to 12 kHz 

-(18.4 + 20 log f) dBV 

500 

℩

 

12 kHz to 42 kHz 

(3 – 40 log f) dBV 

90 

℩

 

42 kHz to 266 kHz 

-62 dBV 

90 

℩

 

 

                                                 

1

 A filter between the TE and the network interface may be necessary to meet this 

requirement. 

51 

background image

` TIA-968-A 
 

4.5.5.2.2  270 kHz to 6 MHz. The rms value of the longitudinal voltage components, in the 

frequency range of 270 kHz to 6 MHz shall not exceed -30 dBV with a longitudinal 
termination having an impedance of 90 

℩

4.5.6  LADC interface  

The metallic voltage shall comply with the general requirements in section 4.5.6.1 as 
well as the additional requirements specified in sections 4.5.6.2 and 4.5.6.3. The 
requirements apply under the conditions specified in section 4.5.7.  Terminal 
equipment for which the magnitude of the source and/or terminating impedance 
exceeds 300 

℩

, at any frequency in the range of 100 kHz to 6 MHz, at which the 

signal (transmitted and/or received) has significant power, shall be deemed not to 
comply with these requirements. A signal shall be considered to have ‘‘significant 
power’’ at a given frequency if that frequency is contained in a designated set of 
frequency bands that collectively have the property that the rms voltage of the signal 
components in those bands is at least 90% of the rms voltage of the total signal. The 
designated set of frequency bands shall be used in testing all frequencies. 

4.5.6.1  Metallic voltages—frequencies below 4 kHz 

4.5.6.1.1  Weighted rms voltage in the 10 Hz to 4 kHz frequency band. The weighted rms 

metallic voltage in the frequency band from 10 Hz to 4 kHz, averaged over 100 
ms that is the resultant of all the component metallic voltages in the band after 
weighting according to the transfer function of f/4000 where f is the frequency in 
Hz, shall not exceed the maximum indicated below under the conditions stated in 
section 4.5.7. 

 

Frequency Range 

Maximum voltage 

10 Hz to 4 kHz 

+3 dBV 

 

4.5.6.1.2  RMS voltage in 100 Hz bands in the frequency range 0.7 kHz to 4 kHz. The rms 

metallic voltage averaged over 100 ms in the 100-Hz bands having center 
frequencies between 750 Hz and 3950 Hz shall not exceed the maximum 
indicated below. 

 

Center freq (f) of 100-Hz bands 

Max voltage in all 100-Hz bands 

750 to 3950 Hz 

-6 dBV 

 

4.5.6.2  

Metallic voltages—frequencies above 4 kHz—LADC interface   

 

 

 52 

background image

TIA-968-A 

 
 

4.5.6.2.1  100-Hz bands over frequency range of 4 kHz to 270 kHz. The rms voltage as 

averaged over 100 ms in all possible 100-Hz bands between 4 kHz and 270 kHz 
for the indicated range of center frequencies and under the conditions specified in 
section 4.5.7 shall not exceed the maximum indicated below: 

 

Center freq (f) of all 100-Hz bands 

Max voltage in all 100-Hz bands 

4.05 kHz to 4.6 kHz 

0.5 dBV 

4.60 kHz to 5.45 kHz 

(59.2-90 log f) dBV 

5.45 kHz to 59.12 kHz 

(7.6-20 log f) dBV 

59.12 kHz to 266.00 kHz 

(43.1-40 log f) dBV 

Where f = center frequency in kHz of each of the possible 100-Hz bands. 

 

4.5.6.2.2  8-kHz bands over frequency range of 4 kHz to 270 kHz. The rms voltage as 

averaged over 100 ms in all of the possible 8-kHz bands between 4 kHz and 270 
kHz for the indicated range of center frequencies and under the conditions 
specified in section 4.5.7 shall not exceed the maximum indicated below: 

 

Center freq (f) of 8-kHz bands 

Max voltage in all 8-kHz bands 

8 kHz to 120 kHz 

(17.6—20 log f) dBV 

120 kHz to 266 kHz 

(59.2—40 log f) dBV 

Where f = center frequency in kHz of each of the possible 8-kHz bands 

 

4.5.6.2.3  RMS voltage at frequencies above 270 kHz. The rms value of the metallic voltage 

components in the frequency range of 270 kHz to 30 MHz, averaged over 2 ”s, 
shall not exceed -15 dBV with a metallic termination having an impedance of    
135 

℩

4.5.6.2.4  Peak voltage. The total peak voltage for all frequency components in the 4-kHz to 

6-MHz band shall not exceed 4.0 V. 

4.5.6.3  Longitudinal voltage.  

53 

background image

` TIA-968-A 
 

4.5.6.3.1  Frequencies below 4 kHz. The weighted rms voltage in the frequency band from 

10 Hz to 4 kHz, averaged over 100 ms is the resultant of all the component 
longitudinal voltages in the band after weighting according to the transfer function 
of f/4000, where f is the frequency in Hz. The resultant weighted rms voltage shall 
not exceed the maximum indicated below under the conditions stated in section 
4.5.7. 

 

Frequency Range 

Maximum RMS voltage 

10 Hz to 4 kHz 

-37 dBV 

 

4.5.6.3.2  4 kHz to 270 kHz. 
 

Center freq (f)  

of 8-kHz bands 

Max voltage  

in all 8-kHz bands 

Longitudinal 

terminating 

impedance 

8 to 12 kHz 

-(18.4+20 log f) dBV 

500 

℩

 

12 to 42 kHz 

(3–40 log f) dBV 

90 

℩

 

42 to 266 kHz 

-62 dBV 

90 

℩

Where f = center frequency in kHz of each of the possible 8-kHz bands. 

 

4.5.6.3.3  270 kHz to 6 MHz. The rms value of the longitudinal voltage components in the 

frequency range of 270 kHz to 6 MHz, averaged over 2 ms, shall not exceed -30 
dBV with a longitudinal termination having an impedance of 90 

℩

4.5.7  Requirements in sections 4.5.4, 4.5.5 and 4.5.6 shall apply under the following 

conditions:  

4.5.7.1  All approved terminal equipment, except equipment to be used on LADC, and all 

approved protective circuitry, shall comply with the limitations when connected to a 
termination equivalent to the circuit depicted in Figure 4.5 and when placed in all 
operating states of the equipment except during network control signaling. LADC 
approved terminal equipment shall comply with the metallic voltage limitations 
when connected to circuits of Figure 1.10 and shall comply with the longitudinal 
limitations when connected to circuits of Figure 4.5, as indicated. 

 

 54 

background image

TIA-968-A 

 
 

 

 

Figure 4.5 Resistive Terminations  

Note:  All resistor values are in ohms. 

55 

background image

` TIA-968-A 
 

4.5.7.2  All approved terminal equipment and approved protective circuitry shall comply with 

the limitations in the off-hook state over the range of loop currents that would flow 
with the equipment connected to an appropriate simulator circuit. 

4.5.7.3  Approved terminal equipment and approved protective circuitry with provision for 

through-transmission from other equipments shall comply with the limitations with a 
1000 Hz tone applied from a 600 

℩

 source (or, if appropriate a source which 

reflects a 600 

℩

 impedance across tip and ring) at the maximum level that would be 

applied during normal operation.  Approved protective circuitry for data shall also 
comply with the tone level 10 dB higher than the overload point. 

4.5.7.4  For approved terminal equipment or approved protective circuitry with non-

approved signal source input, such as music on hold, the out of band signal power 
requirements shall be met using an input signal with a frequency range of 200 Hz to 
20 kHz and the level set at the overload point. 

4.5.7.5  Except during the transmission of ringing (section 4.4.4) and Dual Tone Multi-

frequency (DTMF) signals, LADC approved terminal equipment shall comply with 
all requirements in all operating states and with loop current that may be drawn for 
such purposes as loop back signaling. The requirements in section 4.5.6.1 except 
in 4.5.6.1.1 and 4.5.6.1.2 shall also apply during the application of ringing. The 
requirement in 4.5.4 and the requirements in 4.5.6.1.1 and 4.5.6.1.2 shall apply 
during ringing for frequencies above 300 Hz and with the maximum voltage limits 
raised by 10 dB. DTMF signals which are used for the transmission of alpha-
numeric information and which comply with the requirements in 4.5.6.1.1, and in 
4.5.6.2 or 4.5.6.3 as applicable, shall be deemed to comply with the requirements 
in 4.5.6.1.2 provided that, for automatically originated DTMF signals, the duty cycle 
is less than 50%.  

4.5.7.6  LADC approved terminal equipment shall comply with all applicable requirements, 

except those specified in sections 4.5.6.1.1 and 4.5.6.1.2, during the transmission 
of each possible data signal sequence of any length. For compliance with 4.5.6.3.1, 
the limitation applies to the rms voltage averaged as follows: 

a)  For digital signals, baseband or modulated on a carrier, for which there are 

defined signal element intervals, the rms voltage shall be averaged over each 
such interval. Where multiple carriers are involved, the voltage is defined as 
the power sum of the rms voltages for the signal element intervals for each 
carrier. 

b)  For baseband analog signals, the rms voltage shall be averaged over each 

period (cycle) of the highest frequency of the signal (-3 dB point on the 
spectrum). For analog signals that are modulated on a carrier (whether or not 
the carrier is suppressed), it shall be averaged over each period (cycle) of the 
carrier. Where multiple  carriers are involved, the voltage is defined as the 
power sum of the rms voltage for each carrier.  

c)  For signals other than the types defined in section 4.5.7.6(a) and 4.5.7.6(b) 

and (1) above, the peak amplitude of the signal shall not exceed +1 dBV. 

4.5.7.7  Equipment shall comply with the requirements in section 4.5.6.1.1 and 4.5.6.1.2, 

 56 

background image

TIA-968-A 

 
 

during any data sequence that may be transmitted during normal use with a 
probability greater than 0.001. If the sequences transmitted by the equipment are 
application dependent, the user instruction material shall include a statement of any 
limitations assumed in demonstrating compliance of the equipment. 

4.5.7.8  In addition to the conditions specified in section 4.5.7.5, LADC approved terminal 

equipment which operates in one or more modes as a receiver, shall comply with 
requirements in 4.5.6.3 with a tone at all frequencies in the range of potential 
received signals and at the maximum power which may be received. 

4.5.8  Interference limitations for terminal equipment connecting to digital services 

4.5.8.1  Limitations on Terminal Equipment Connecting to Subrate Digital Services 
In addition to the requirements in 4.5.8.1.1 and 4.5.8.1.2, subrate TE shall meet either the 
PSD and average power requirements in 4.5.8.1.3 through 4.5.8.1.5 or the output pulse 
template and average power requirements in 4.5.8.1.6 and 4.5.8.1.7. 
 

4.5.8.1.1  Pulse repetition rate. The pulse repetition rate shall be synchronous with 2.4, 3.2, 

4.8, 6.4, 9.6, 12.8, 19.2, 25.6, 38.4, 56.0, or 72 kbps per second. 

4.5.8.1.2  Encoded analog content

 

If approved terminal equipment connecting to sub-rate services contains an analog-to-digital 
converter, or generates signals directly in digital form that are intended for eventual 
conversion into voiceband analog signals, the encoded analog content of the digital signal 
shall be limited as specified in Section 4.5.10. 

4.5.8.1.3  Equivalent PSD for maximum output.   
When applied to a 135 ohm resistor, the instantaneous amplitude of the PSD, obtainable 
from the registered terminal equipment, shall not exceed the PSD defined by the following 
limiting function, in dBm/Hz: 

 

10 log

A

2

( )

56000
fbaud

f

f3dB

ïŁ«ïŁŹ

ïŁ­

ïŁ¶

ïŁž

2

1

+

ïŁź

ïŁŻ

ïŁ°

ïŁč

ïŁș

ïŁ»

f

fbaud k

⋅

ïŁ«ïŁŹ

ïŁ­

ïŁ¶

ïŁž

2

1

+

ïŁź

ïŁŻ

ïŁ°

ïŁč

ïŁș

ïŁ»

⋅

ïŁźïŁŻ

ïŁŻ

ïŁŻ

ïŁŻïŁ°

ïŁčïŁș

ïŁș

ïŁș

ïŁșïŁ»

⋅

Additional_Attenuation

−

 

 
where “A” is equal to Âœ for 9.6 kbps and 12.8 kbps or 1 for all other rates, “fbaud” is equal to 
the baud rate, “f3dB” is equal to 1.3 times the baud rate times 1.05, “f” is the frequency, and 
“k” is defined in Table 4.7.  Additional attenuation is required at certain baud rates in the 
bands specified in Tables 4.8 and 4.9.  PSD shall be measured for frequencies between Âœ 
the baud rate and 20 times the baud rate.  If 20 times the baud rate is less than 80 kHz, then 
the upper frequency measurement bound shall be 80 kHz.  The resolution bandwidth for the 
PSD shall be less than or equal to 0.1 times the baud rate but no greater than 3 kHz. 

4.5.8.1.4  Average Power for non-Secondary Channel Rates.  

The average output power when a random signal sequence, (0) or (1) equiprobable 

57 

background image

` TIA-968-A 
 

in each pulse interval, is being produced as measured across a 135 ohm resistance 
shall not exceed the values shown in Table 4.7. 
 

4.5.8.1.5  Average Power for Secondary Channel Rates. 

The customer data shall be a random signal sequence, (0) or (1) equiprobable in 
each pulse interval.  The network control bit shall equal 1, and the framing pattern 
shall be (0) or (1) with equal probability.  The average output power as measured 
across a 135 ohm resistance shall not exceed the values shown in Table 4.7.  

 

4.5.8.1.6  Template for maximum output pulse. 

When applied to a 135 

℩

 resistor, the instantaneous amplitude of the largest 

isolated output pulse obtainable from the approved terminal equipment shall not 
exceed by more than 10% the instantaneous voltage defined by a template 
obtained as follows: The limiting pulse template shall be determined by passing 
an ideal 50% duty cycle rectangular pulse with the amplitude/pulse rate 
characteristics defined in Table 4.7 through a single real pole low pass filter 
having a cutoff frequency in Hz equal to 1.3 times the bit rate. For bit rates of 2.4, 
3.2, 4.8, 6.4, 9.6 and 12.8 kbps, the filtered pulses shall also be passed through a 
filter providing the additional attenuation in Table 4.8. 

 

 58 

background image

TIA-968-A 

 
 

Table 4.7—Values for k and average output power 

Line rate (kbps) 

User data rate (R) 

(kbps) 

Values for k 

Maximum average 

power (dBm) 

2.4 2.4 

0.00727798 

6.9 

3.2 

2.4 with SC

1

 0.00804454 

7.4 

4.8 4.8 

0.00727798 

6.9 

6.4 

4.8 with SC

1

 0.00804454 

7.4 

9.6 9.6 

0.00727798 

0.9 

12.8 

9.6 with SC

1

 0.00804454 

1.4 

19.2 19.2 

0.00727798 

6.9 

25.6 

19.2 with SC

1

 0.00804454 

7.4 

38.4 38.4 

0.00727798 

6.9 

51.2 

38.4 with SC

1

 0.00804454 

7.4 

56 56 

0.00727798 

6.9 

72 

56 with SC

1

 0.00795272 

7.4 

72 64 

0.00727798 

6.9 

1

SC: Secondary Channel  

 

Table 4.8 Driving Pulse Amplitude for Subrate Terminal Equipment 

Line Rate (kbps) 

User Data Rate  (kbps) 

Amplitude  (V) 

2.4 2.4 

1.66 

3.2 

2.4 with SC * 

1.66 

4.8 4.8 

1.66 

6.4 

4.8 with SC * 

1.66 

9.6 9.6 

0.83 

12.8 

9.6 with SC * 

0.83 

19.2 19.2 

1.66 

25.6 

19.2 with SC * 

1.66 

38.4 38.4 

1.66 

51.2 

38.4 with SC * 

1.66 

56 56 

1.66 

72 

56 with SC * 

1.66 

72 64 

1.66 

* SC: Secondary Channel. 

59 

background image

` TIA-968-A 
 

 

Table 4.9 Minimum Additional Attenuation for Subrate Terminal Equipment 

Line rate (R) (kbps)

 

Attenuation in frequency 

band 24–32 kHz (dB) 

Attenuation in frequency 

band 72–80 kHz (dB) 

2.4 5 1 

3.2 5 1 

4.8 13 9 

6.4 13 9 

9.6 17 8 

12.8 17  8 

 

The attenuation indicated may be reduced at any frequency within the band by 
the weighting curve of Table 4.9.  Minimum rejection shall never be less than 0 
dB; i.e., the weight shall not justify gain over the system without added 
attenuation. 

 60 

background image

TIA-968-A 

 
 

Table 4.10 Attenuation Curve for Subrate Terminal Equipment 

24–32 kHz band 

72–80kHz band 

Attenuation factor (dB) 

24 72 

-18 

25 73 -3 

26 74 -1 

27 75  0 

28 76  0 

29 77  0 

30 78 -1 

31 79 -3 

32 80 

-18 

4.5.8.1.7 Average power

The average output power when a random signal sequence, (0) 

or (1) equiprobable in each pulse interval, is being produced as measured across 
a 135 

℩

 resistance shall not exceed 0 dBm for 9.6 and 12.8 kbps or +6 dBm for 

all other rates shown in Table 4.7. 

4.5.8.1.8  Encoded analog content

If approved terminal equipment connecting to sub-rate 

services contains an analog-to-digital converter, or generates signals directly in 
digital form that are intended for eventual conversion into voiceband analog 
signals, the encoded analog content of the digital signal shall be limited as 
specified in Section 4.5.10.   

4.5.8.2  Limitations on Terminal Equipment Connecting to 1.544 Mbps Digital Services and 

ISDN PRA services. 

4.5.8.2.1  Pulse repetition rate:

 

The free running line rate of the transmit signal shall be 

1.544 Mbps with a tolerance of ± 32 ppm, i.e.,

 

± 50 bps.  

4.5.8.2.2  Output pulse templates.

 

The approved terminal equipment shall be capable of 

optionally delivering three sizes of output pulses. The output pulse option shall be 
selectable at the time of installation. 

4.5.8.2.2.1  Option A output pulse. When applied to a 100 

℩

 resistor, the instantaneous 

amplitude of the largest output pulse obtainable from the approved terminal 
equipment shall fall within the pulse template illustrated in Figure 4.6. The mask 
may be positioned horizontally as needed to encompass the pulse, and the 
amplitude of the normalized mask may be uniformity scaled to encompass the 
pulse. The baseline of the mask shall coincide with the pulse baseline. 

4.5.8.2.2.2  Option B output pulse.

 

When applied to a 100 

℩

 resistor, the instantaneous 

61 

background image

` TIA-968-A 
 

amplitude of the output from the approved terminal equipment obtained when 
Option B is implemented shall fall within the pulse template obtained by passing 
the bounding pulses permitted by Figure 4.6 through the following transfer 
function. 

0

1

2

2

3

3

0

1

2

2

d

S

d

S

d

S

d

n

S

n

S

n

V

V

in

out

+

+

+

+

+

=

 

 

where: 
 
n

= 1.6049 x 10

n

= 7.9861 x 10

-1 

n

= 9.2404 x 10

-8 

d

= 2.1612 x 10

d

= 1.7223 

d

= 4.575  x 10

-7 

d

= 3.8307 x 10

-14 

S

 

= j 

π

 f  

f = frequency 

(Hz) 

4.5.8.2.2.3  Option C output pulse.

 

When applied to a 100 

℩

 resistor, the instantaneous 

amplitude of the output from the approved terminal equipment obtained when 
Option C is implemented shall fall within the pulse template obtained by passing 
the pulses obtained in Option B through the transfer function in Option B a 
second time. 

 62 

background image

TIA-968-A 

 
 

 

Maximum Curve 

 

Nanoseconds (ns) 

-500 

-250 

-175 

-175 

-75 

175 

220 

500 

750 

Normalized amplitude  0.05 

0.05 

0.8 

1.2 1.2 1.05 1.05 

-0.05 

0.05 0.05 

 
Minimum Curve 

 

Nanoseconds 

(ns)  -500 -150 -150 -100

0  100 150 150 300 396 600 750

Normalized amplitude  -.05  -.05

0.5 

0.9  0.95

0.9 0.5 -0.45 -0.45 

-0.26 

-0.05 -0.05

 

 

The pulse amplitude shall be 2.4 to 3.6 V. (Use constant scaling factor to fit 
normalized template.) 

Figure 4.6 Isolated Pulse Template And Corner Points For ISDN PRA and1.544 Mbps 

Equipment 

63 

background image

` TIA-968-A 
 

4.5.8.2.3  Adjustment of signal voltage 

The signal voltage at the network interface shall be limited so that the range of 
pulse amplitudes received at the first telephone company repeater is controlled 
to ± 4 dB. This limitation shall be achieved by implementing the appropriate 
output pulse option as a function of telephone company cable loss as specified 
at time of installation.  

 

Terminal Equipment 

Cable loss at 772 kHz (dB)  

Output pulse 

Loss at 772 kHz 

15 to 22 

Option A 

7.5 to 15 

Option B 

7.5 

0 to 7.5 

Option C 

15 

 

4.5.8.2.4  Output power.  

The output power in a 3-kHz band about 772 kHz when an all ones signal 
sequence is being produced as measured across a 100 

℩

 terminating 

resistance shall not exceed +19 dBm. The power in a 3 kHz band about 1.544 
MHz shall be at least 25 dB below that in a 3-kHz band about 772 kHz. 

4.5.8.2.5  Encoded analog content.  

If approved terminal equipment connected to 1.544 Mbps digital services or 
ISDN PRA services contains an analog-to-digital converter, or generates 
signals directly in digital form that are intended for eventual conversion into 
voiceband analog signals, the encoded analog content of the sub-rate channels 
within the 1.544 Mbps or ISDN PRA signal shall be limited as specified in 
Section 4.5.10.. 

4.5.8.2.6  Unequipped sub-rate channels. The permissible code words for unequipped       

”-255 encoded sub-rate channels of terminal equipment connected to 1.544 Mbps 
digital services for ISDN PRA shall be limited to those corresponding to signals of 
either polarity, of magnitude equal to or less than X48, where code word, XN is 
derived by: 

 

XN = (255 – N) base 2 

 

XN = (127 – N) base 2 

4.5.8.3  Limitations on TE Connecting to PSDS (Types I, II and III). 

If PSDS (Types I, II and III) terminal equipment contains an analog to digital 
converter, or generates signals directly in digital form that are intended for eventual 
conversion into voiceband analog signals, the encoded analog content of the digital 
signal shall be limited as specified in Section 4.5.10.  

4.5.8.3.1  Pulse repetition rate. 

 64 

background image

TIA-968-A 

 
 

For PSDS (Type II) the pulse repetition rate shall be a maximum of (144,000 
±5) pulses per second; for PSDS (Type III) the pulse repetition rate shall be a 
maximum of (160,000 ± 5) pulses per second. 

4.5.8.3.2  Template for maximum output pulse. 

When applied to a 135 

℩

 resistor, the instantaneous amplitude of the largest 

isolated output pulse obtainable from the approved terminal equipment shall 
fall within the template of section 4.5.8.3.2 (a) for PSDS Type II or 4.5.8.3.2 
(b) for PSDS Type III. The limiting pulse template shall be defined by passing 
an ideal 50% duty cycle rectangular pulse within the amplitude/pulse rate 
characteristics of (a) or (b) through a 1-pole low-pass filter with a -3 dB 
frequency of 260 kHz. 

 

Pulse Characteristics Template 

4.5.8.3.2 (a) 

PSDS Type II 

4.5.8.3.2 (b) 

PSDS Type III 

Pulse Height  

2.6 V ± 5% 

2.4 V ± 5% 

Pulse Width  

(3472.2 ± 150) ns 

(3125 ±100) ns 

Max Rise or Fall Time -  

(From 10% to 90% points)  

100 ns 

(1.2 ± 0.2) ”s 

 

4.5.8.4  Limitations on terminal equipment connected to ISDN BRA. 

If approved terminal equipment connecting to an ISDN BRA interface contains an 
analog-to-digital converter, or generates signals directly in digital form that are 
intended for eventual conversion into voiceband analog signals, the encoded analog 
content of the bearer channels within the ISDN BRA signal  shall be limited as 
specified in Section 4.5.10.  
  

4.5.9  Signal Power Limitations for ADSL Terminal Equipment 

ADSL modems shall operate within the aggregate signal power limitations of 
4.5.9.1, the power spectral density limitations of 4.5.9.2 and the longitudinal output 
voltage limitations of 4.5.9.3. 

4.5.9.1  Aggregate signal power 

ADSL modems shall operate with an aggregate signal power of less than +13.0 
dBm into 100 

℩

 over the frequency range of 25.875 to 138 kHz. 

 
 
 
 
 
 
 

65 

background image

` TIA-968-A 
 

4.5.9.2  Power spectral density 

ADSL modem’s power spectral density (PSD) shall not exceed the PSD Mask as 
defined by the table below: 

 

Frequency Band 

(kHz) 

Equation for the PSD Mask 

(dBm/Hz) 

0.200 < f < 4

 

-97.5

 

4 < f < 25.875

 

-92.5 + 21.5 x log

2

 (f/4)

 

25.875 < f < 138

 

-34.5

 

138 < f < 307 

 

-34.5 - 48 x log

2

 (f/138)

 

307 < f < 1221

 

-90

 

1221 < f < 1630

 

-90 peak, with max power in the [f,f+1 MHz] window of 

(-90 - 48 X log

2

(f/1221) + 60) dBm

 

1630 < f < 30000

 

-90 peak, with max power in the [f,f+1 MHz] window of -50 

dBm

 

NOTES: 

1.) All PSD measurements are in 100 

℩

 . 

2.) The breakpoint frequencies and PSD values are exact; the indicated 
slopes are approximate. 
3.) Above 25.875 kHz, the peak PSD shall be measured with a minimum 
resolution bandwidth of 10 kHz. 
4.) The power in a 1 MHz sliding window is averaged over a 1 MHz 
bandwidth, starting at the measurement frequency. 

 
 

4.5.9.3  Longitudinal output voltage 

ADSL modems shall meet the voiceband longitudinal voltage limitations of 4.5.4.1 
as well as the limitations of 4.5.5.2.1 for a center frequency of 8 kHz, which covers 
the frequency span from 4 to 12 kHz. In addition, using the illustrative longitudinal 
output voltage measurement circuit in Figure 4.5, ADSL modems shall limit 
longitudinal output voltage to the values shown in the table below: 

 

Frequency Band 
(kHz)

 

Maximum Longitudinal Output Voltage (rms) in all 4 
kHz 
bands averaged over a minimum period of 1 second

 

10 < f < 211 

-50 dBV (or -51.3 dBV using a 3 kHz bandwidth) 

211 < f < 844 

-80 dBV (or -81.3 dBV using a 3 kHz bandwidth) 
 

 

NOTES: 

1.) The first frequency band is the operating band as defined by the 
frequency points at  which the PSD is approximately 30 dB down from the 
peak mask value. Alternatively, the measured 30 dB points may be used to 
define the operating band’s lower and upper frequency points. 
2.) The upper frequency point is four times the upper, operating band 
frequency. 
3.) The alternative requirements of -51.3 dBV and -81.3 dBV include a -1.3 
dB correction factor associated with using a 3 kHz bandwidth rather than the 
ideal 4 kHz bandwidth. 

 66 

background image

TIA-968-A 

 
 

 

4.5.10.  

Encoded Analog Content Limits. 

If approved terminal equipment contains an analog-to-digital converter or generates a data 
bit stream that is intended for eventual conversion into voiceband analog signals in the 
PSTN, the encoded analog content of the digital signal shall be limited as specified in this 
clause.  

The maximum equivalent power of encoded analog content derived by a zero level decoder 
test configuration shall not exceed the following limits when averaged over any 3-second 
time interval: 

-12 dBm for all signals other than live voice, V.90 or V.92 modems, or network 
control signals. 

- 6 dBm for V.90 or V.92 modems. 

-3 dBm for network control signals. 

The zero level decoder test configuration is intended to simplify measurement of the 
maximum encoded analog signal.  The use of a zero level encoder for test purposes shall 
not be interpreted as permission to exceed the encoded analog content limits given above 
when analog or digital loss is inserted in the PSTN connection by wireline carriers.  

67 

background image

` TIA-968-A 
 

4.6  TRANSVERSE BALANCE LIMITATIONS 

4.6.1  Technical description and application 

 

The Transverse Balance

m-l

, coefficient is expressed as: 

 

Balance

 m l

 = 20 log

10

 [

e

M  

/ e

L

4.6.1.1 Where 

e

L

 is the longitudinal voltage produced across a longitudinal termination Z

1

 

and e

M

 is the metallic voltage across the tip-ring or tip-1 and ring-1 interface of the 

input port when a voltage (at any frequency between f

1

 and f

2

, see Table  4.11) is 

applied at all values of dc loop current that the port under test is capable of drawing 
when attached to the appropriate loop from a balanced source with a metallic 
impedance Z

0

 (see Table  4.11) The source voltage shall be set such that e

M

 = E 

(Volts) (see Table  4.11 when a termination of Z

0

 is substituted for the terminal 

equipment.) 

4.6.1.2  The minimum transverse balance coefficient specified in this section (as 

appropriate) shall be equaled or exceeded for all 2-wire network ports, OPS line 
ports and the transmit pair (tip and ring) and receive pair (tip-1 and ring-1) of all 4-
wire network ports simulator circuits at all values of dc loop current that the port 
under test is capable of drawing when attached to the appropriate loop (See Figure 
1.4). An illustrative test circuit that satisfies the above conditions is shown in Figure 
4.7 for analog and Figure 4.8 for digital and sub-rate; other means may be used to 
determine the transverse balance coefficient specified herein, provided that 
adequate documentation of the appropriateness, precision, and accuracy of the 
alternative means is provided. 

4.6.1.3  The minimum transverse balance requirements specified below shall be equaled or 

exceeded under all reasonable conditions of the application of earth ground to the 
equipment or protective circuitry under test. 

 

 68 

background image

TIA-968-A 

 
 

Table 4.11 Transverse Balance Test Criteria 

 

Analog voiceband 

Sub-rate digital 

1.544 Mbps digital 

Longitudinal 

Termination - Z

l

 

500 

℩

 

See Table 4.11 

90 

℩

 

Metallic Source 
Impedance - Z

0

 

600 

℩

 135 

℩

 100 

℩

 

Lower Frequency - 

f

1

 

200 Hz 

200 Hz 

12 kHz 

Upper Frequency - 

f

2

 

4 kHz 

(see note) 

1.544 MHz 

Metallic voltage for 

Test - E 

0.775 V 

0.367 V 

0.316 V 

NOTE: 

The upper frequency shall equal the digital line rate for the sub-rate service 
under test (See Table  4.12.) 

4.6.2  Analog voiceband equipment 

All approved analog voiceband equipment shall be tested in the off-hook state. The 
minimum transverse balance requirement in the off-hook state shall be 40 dB, 
throughout the range of frequencies specified in Table  4.11. For some categories of 
equipment, transverse balance requirements also apply to the on-hook state. When 
both off-hook and on-hook requirements apply, they shall be: 

 

 

State Frequency 

(f) 

Balance 

Off-hook 

200 Hz 

≀

 f 

≀

 4000 Hz 

40 dB 

On-hook 

200 Hz 

≀

 f 

≀

 1000 Hz 

60 dB 

On-hook 

1000 Hz 

≀

 f 

≀

 4000 Hz 

40 dB 

4.6.2.1  For analog one-port 2-wire terminal equipment with loop-start, ringdown, or inband 

signaling or for voiceband metallic channel applications, both off-hook and on-hook 
requirements shall apply. 

4.6.2.2  For analog one port equipment with ground-start and reverse-battery signaling only 

off-hook requirements shall apply. 

4.6.2.3  For analog approved protective circuitry for 2-wire applications with loop-start, 

ringdown, or inband signaling; or for voiceband metallic channel applications, both 
off-hook and on-hook requirements shall apply. Criteria shall be met with either 
terminal of the interface to other equipment connected to earth ground. The 
interface to other equipment shall be terminated in an impedance that will be 

69 

background image

` TIA-968-A 
 

reflected to the telephone connection as 600 

℩

 in the off-hook state of the 

approved protective circuit, and the interface shall not be terminated in the on-hook 
state.  The arrangement of Figure 4.12 shall be used. 

4.6.2.4  For analog approved protective circuitry with ground-start and reverse-battery 

signaling only off-hook requirements shall apply. Criteria shall be met with either 
terminal of the interface to other equipment connected to earth ground. The 
interface to other equipment shall be terminated in an impedance that will be 
reflected to the telephone connection as 600 

℩

 in the off-hook state of the 

approved protective circuit. The arrangement of Figure 4.12 shall be used. 

4.6.2.5  For analog multi-port equipment with loop-start signaling both off-hook and on-hook 

requirements shall apply. Criteria shall be satisfied for all ports when all the ports 
not under test are terminated in their appropriate networks, as will be identified 
below, and when interface connections other than the ports are terminated in 
circuits appropriate to that interface. The minimum transverse balance coefficients 
shall also be satisfied for all values of dc loop current that the approved equipment 
is capable of drawing through each of its ports when these ports are attached to the 
loop simulator circuit specified in this standard. The termination for all ports other 
than the particular one whose transverse balance coefficient is being measured 
shall have a metallic impedance of 600

℩

 and a longitudinal impedance of 500 

℩

Figure 4.9 shows this termination. 

4.6.2.6  For analog multi-port equipment with ground-start and reverse-battery signaling, 

only off-hook requirements shall apply. Criteria shall be satisfied for all ports when 
all ports not under test are terminated in their appropriate networks as will be 
identified below, and when interface connections other than the ports are 
terminated in circuits appropriate to that interface. The minimum transverse 
balance coefficients shall be satisfied for all values of dc loop current that the 
approved equipment is capable of drawing through each of its ports when these 
ports are attached to the loop simulator circuit specified in this standard. The 
terminations for all ports other than the particular one whose transverse balance 
coefficient is being measured shall have a metallic impedance of 600 

℩

 and a 

longitudinal impedance of 500 

℩

. Figure 4.9 shows this termination. 

4.6.2.7  For analog approved terminal equipment and protective circuitry for 4-wire network 

ports, both the off-hook and on-hook requirements shall apply. The pairs not under 
test shall be terminated in a metallic impedance of 600 

℩

. Other conditions are as 

follows: 

4.6.2.7.1  For analog approved protective circuitry with loop-start, ground-start, reverse 

battery, ringdown, or inband signaling; or for voiceband metallic channel 
applications. Criteria shall be met with either terminal of the interface to other 
equipment connected to earth ground. The interface to other equipment shall be 
terminated in an impedance that will result in 600 

℩

 at each of the transmit and 

receive pairs of the 4-wire telephone connection in the off-hook state of the 
approved protective circuit, and the interface shall not be terminated in the on-
hook state. The arrangement of Figure 4.10 shall be used. 

 70 

background image

TIA-968-A 

 
 

4.6.2.7.2  For analog multiport equipment with loop start, ground start, and reverse battery, 

ringdown, or inband signaling; or for voiceband metallic channel applications. 
Criteria shall be satisfied for all network ports when all the ports not under test are 
terminated as defined below, and when interface connections other than the 
network ports are terminated in circuits appropriate to the interface. The criteria 
shall also be satisfied for all values of dc loop current that the approved 
equipment is capable of drawing through each port when the port is connected to 
the appropriate 4-wire loop simulator circuit. The terminations for both pairs of all 
network ports not under test shall have a metallic impedance of 600 

℩

 and a 

longitudinal impedance of 500 

℩

. Figure 4.9 shows this termination. 

4.6.2.8  For analog PBX equipment (or similar systems) with class B or class C off-

premises interfaces, only off-hook requirements shall apply. Criteria shall be 
satisfied for all off-premises station interface ports when these ports are terminated 
in their appropriate networks for their off-hook state, and when all other interface 
connections are terminated in circuits appropriate to that interface. The minimum 
transverse balance coefficients shall also be satisfied for all values of dc loop 
current that the approved PBX is capable of providing through off-premises station 
ports when these ports are attached to the off-premises line simulator circuit 
specified in this standard. 

4.6.2.9  For Type Z equipment with loop-start signaling, both off-hook and on-hook 

requirements shall apply. Equipment that has on-hook impedance characteristics 
that do not conform to the requirements of section 4.7 (e.g. Type Z), shall comply 
with minimum transverse balance requirements of 40 dB in the voiceband. See 
section 4.7.7 for conditions upon approval of ‘‘Type Z’’ equipment.  

4.6.3 Digital 

equipment 

The minimum transverse balance requirements for approved terminal equipment 
connected to digital terminal equipment shall be equaled or exceeded for the range 
of frequencies applicable for the equipment under test and under all reasonable 
conditions of the application of earth ground to the equipment. All such terminal 
equipment shall have a transverse balance in the acceptable region of either Figure 
4.11(a), or Figure 4.11(b), as appropriate, for the range of frequencies shown in 
Table  4.12, for the specified digital terminal equipment in question. The metallic 
impedance used for the transverse balance measurements for all sub-rate, PSDS 
and BRA services shall be 135 

℩

 and for 1.544 Mbps (including ISDN PRA) shall be 

100 

℩

. The longitudinal termination for 1.544 Mbps (including ISDN PRA), ISDN 

BRA, PSDS terminal equipment and sub-rate services shall be as defined in Table  
4.12.  

4.6.4 ADSL 

equipment 

In

 

addition to meeting the transverse balance limitations for analog voiceband 

equipment in Section 4.6.2, ADSL terminal equipment’s transverse balance shall 
equal or exceed the values in Figure 4.11(a) over the entire range of frequencies 
between 13.6 kHz to 1625 kHz (see Table 4.12).  Alternatively, a narrower frequency 
range may be used that is defined by the points at which the measured power 
spectral density is 20 dB down from the maximum level associated with both the 
maximum rate upstream and downstream signals. The metallic impedance used for 

71 

background image

` TIA-968-A 
 

the transverse balance measurements for ADSL shall be 100 

℩

. The longitudinal 

termination shall be 90 

℩

, see Table 4.12. 

 72 

background image

TIA-968-A 

 
 

Table 4.12 Frequency Ranges Of Transverse Balance Requirements  

for equipment connecting to digital services 

Digital Interface 

Frequency range 

(kHz) 

Longitudinal 

Termination (R

L

(

℩

Metallic 

Termination (R

M

(

℩

2.4 

0.2 to 2.4 

500 

135 

2.4 + SC 

0.2 to 3.2 

500 

135 

4.8 

0.2 to 4.8 

500 

135 

4.8 + SC 

0.2 to 6.4 

500 

135 

9.6 

0.2 to 9.6 

500 

135 

9.6 + SC (note) 

0.2 to 12.8 

500/90 

135 

19.2 (see note) 

0.2 to 19.2 

500/90 

135 

19.2 + SC (see 

note) 

0.2 to 25.6 

500/90 

135 

38.4  (see note) 

0.2 to 38.4 

500/90 

135 

38.4 + SC (see 

note) 

0.2 to 51.2 

500/90 

135 

56  (see note) 

0.2 to 56 

500/90 

135 

56 + SC (see note) 

0.2 to 72 

500/90 

135 

64  (see note) 

0.2 to 72 

500/90 

135 

BRA 

0.2 to 192 

500/90 

135 

DS1 (1544 kHz) 

12 to 1544 

90 

100 

ADSL 

13.6 to 1625 

90 

100 

 

NOTE:

 

For 0.2 to 12 kHz the longitudinal termination (R

L

) shall be 500 

℩

 and above 12 

kHz the longitudinal termination (R

L

) shall be 90 

℩

73 

background image

` TIA-968-A 
 

 

T

1

 

600 

℩

: 600 

℩

 split audio transformer 

C

1

, C

8 ”F, 400 V dc, matched to within 0.1% 

C

3

, C

4

 

100 to 500 pF adjustable trimmer capacitors 

Osc 

Audio oscillator with source resistance R

1

 less than or equal to 600 

℩

 

R

1

 

Selected such that Z

OSC

 + R

1

 = 600 

℩

 

R

L

 

500 

℩

  

NOTES: 

1. V

M

 shall not be measured at the same time as V

L

2.  The test circuit shall be balanced to 20 dB greater than the 

equipment standard for all frequencies specified (using trimmer 
capacitors C

3

 and C

4

), with a 600 

℩

 resistor substituted for the 

equipment under test. 

3.  Exposed conductive surfaces on the exterior of the equipment 

under test shall be connected to the ground plane for this test. 

4.  When the Terminal Equipment makes provision for an external 

connection to ground, the Terminal Equipment shall be connected 
to ground.  When the Terminal Equipment makes no provision for 
an external ground, the Terminal Equipment shall be placed on a 
ground plane that is connected to ground and has overall 
dimensions at least 50% greater than the corresponding 
dimensions of the Terminal Equipment.  The Terminal Equipment 
shall be centrally located on the ground plane without any 
additional connection to ground. 

Figure 4.7 Illustrative Test Circuit for Transverse Balance (Analog) 

 74 

background image

TIA-968-A 

 
 

 

T1 

100/135 

℩

:100/135 

℩

 wide-band transformer 

(100

℩

 for 1.544 Mbps devices and 135 

℩

 for sub-rate devices.) 

20 pF 
Differential 

Optimally a dual-stator air-variable RF capacitor that maintains a constant 
capacitance between stators while providing a variable capacitance from 
either stator to ground. 

3 pF 

Composition RF capacitor 

R

CAL

 

100/135 

℩

 (See Note 2) 

R

L

 

90/500 

℩

: A non-inductive precision resistor 

(chosen according to Table  4.12). 

 

NOTES: 

1. The 3 pF capacitor may be placed on either line of the test set, as 

required, to obtain proper balancing of the bridge. 

2. Use an R

CAL

 value of 100 

℩

 for 1.544 Mbps devices and 135 

℩

 for sub-

rate devices. 

3. The effective output impedance of the tracking generator shall match 

the appropriate test impedance.  See Note 2.  The spectrum analyzer's 
input shall be differentially balanced to measure V

M

4. The impedance of the Tracking Generator shall be chosen to match the 

Metallic Termination (R

M

) according to Table  4.12. 

5. The transformer should be a wide band transformer with a 1:1 

impedance ratio. 

Figure 4.8 Illustrative Test Circuit for Transverse Balance (Digital) 

75 

background image

` TIA-968-A 
 

 

 

 

NOTES: 

 

 

R

1

 

R

= R

3

 

R

4

 

for analog voiceband 

300 k

℩

, 300 

℩

 350 

℩

 

for sub-rate digital 

100 k

℩

, 67.5 

℩

 56.3 

℩

 

for 1.544 Mbps 

100 k

℩

, 50 

℩

 65 

℩

 

 

R

1

 is used to adjust termination balance. Balance of this termination shall be 

adjusted to: at least 60 dB between 200 and 1000 Hz; at least 40 dB between 
1000 and 4000 Hz; and at least 35 dB at 1.544 MHz. 

 

Figure 4.9 Off-Hook termination of Multiport Equipment for Ports Not under Test 

 76 

background image

TIA-968-A 

 
 

 

 

NOTES: 

1.  Z shall be selected so that the reflected impedance at tip-1 and 

ring-1 is 600 

℩

, 135 

℩

, or 100 

℩

 depending on service type of 

EUT. 

2. 

Configuration shown is for measurement-of receive pair.

 

Figure 4.10 Required Termination for Connections to Non-Approved Equipment 

77 

background image

` TIA-968-A 
 

 

 

Figure 4.11(a) Transverse Balance Requirements for ISDN BRA, 1.544 Mbps (including 
ISDN PRA) and ADSL 

 
  

 

 

Figure 4.11(b) Transverse Balance Requirements for PSDS and Sub-Rate Services 

 

 78 

background image

TIA-968-A 

 
 

 
 
 
 
 

 

NOTE:

 

Z shall be selected so that the reflected impedance at tip and ring is 600 

℩

, 135 

℩

, or 100 

℩

 depending on the service type of EUT 

Figure 4.12 Required termination for connections to non-approved equipment 

79 

background image

` TIA-968-A 
 

4.7  ON-HOOK IMPEDANCE LIMITATIONS 

4.7.1  General: Requirements in this section shall apply to the tip and ring conductors of    

2-wire interfaces. These requirements also shall apply to 4-wire loop-start or ground-
start interfaces, in the following configuration: 

4.7.1.1  The tip and ring conductors shall be connected together and treated as one of the 

conductors of a tip and ring pair. 

4.7.1.2  The tip-1 and ring-1 conductors shall be connected together and treated as the 

other conductor of a tip and ring pair. 

NOTE:

 

Throughout this section, references will be made to simulated ringing. Ringing 
voltages which shall be used and impedance limitations associated with 
simulated ringing are shown in Table  4.13. 

Table 4.13 Simulated Ringing Voltages and Impedance Limitations 

Ringing type

 

Range of compatible 

ringing frequencies 

(Hz)

 

Simulated ringing 

voltage 

superimposed on 

56.5 V dc

 

Impedance limitation 

(

℩

20± 3 

40 to 130 V rms 

1400 

 

30± 3 

40 to 130 V rms 

1000 

15.3 to 34 

40 to 130 V rms 

1600 

 

>34 to 49 

62 to 130 V rms 

1600 

 

>49 to 68 

62 to 150 V rms 

1600 

 

 80 

background image

TIA-968-A 

 
 

4.7.2  Limitations on individual equipment intended for operation on loop-start telephone 

facilities Approved terminal equipment and approved protective circuitry shall 
conform to the following limitations. 

4.7.2.1  On-hook resistance, metallic and longitudinal (up to 100 V dc). The on-hook dc 

resistance between the tip and ring conductors of a loop start interface, and 
between each of the tip and ring conductors and earth ground, shall be greater than 
5 M

℩

 for all dc voltages up to and including 100 V.  

4.7.2.2  On-hook resistance, metallic and longitudinal (100 V to 200 V dc).

 

The on-hook dc 

resistance between tip and ring conductors of a loop start interface, and between 
each of the tip and ring conductors and earth ground shall be greater than 30 k

℩

 

for all dc voltages between 100 and 200 V. 

4.7.2.3  DC current during ringing.

 

During the application of simulated ringing, as listed in 

Table  4.13, to a loop start interface, the total dc current shall not exceed 3.0 mA. 
The equipment shall comply for each ringing type that is listed as part of the ringer 
equivalence. 

4.7.2.4  Ringing frequency impedance (metallic).

 

During the application of simulated 

ringing, as listed in Table  4.13 to a loop start interface, the impedance between the 
tip and ring conductors (defined as the quotient of applied ac voltage divided by 
resulting true rms current) shall be greater than or equal to the value specified in 
Table  4.13. The equipment shall comply for each ringing type that is listed as part 
of the ringer equivalence. 

4.7.2.5  Ringing Frequency Impedance (longitudinal).

 

During the application of simulated 

ringing, as listed in Table  4.13, to a loop start interface, the impedance between 
each of the tip and ring conductors and ground shall be greater than 100 k

℩

. The 

equipment shall comply with each ringing type listed in the ringer equivalence. 

81 

background image

` TIA-968-A 
 

4.7.3  Limitations on individual equipment intended for operation on ground start telephone 

facilities 

Approved terminal equipment and approved protective circuitry shall conform to 
the following limitations: 

4.7.3.1  DC current during ringing 

During the application of simulated ringing, as listed in Table  4.13, to a ground 
start interface, the total dc current flowing between tip and ring conductors shall 
not exceed 3.0 mA. The equipment shall comply for each ringing type listed as 
part of the ringer equivalence. 

4.7.3.2  Ringing frequency impedance (metallic) 

During the application of simulated ringing, as listed in Table  4.13, to a ground 
start interface, the total impedance of the parallel combination of the ac 
impedance across tip and ring conductors and the ac impedance from the ring 
conductor to ground (with ground on the tip conductor) shall be greater than the 
value specified in Table  4.13. The equipment shall comply for each ringing 
type listed as part of the ringer equivalence. 

4.7.4  Ringer Equivalence Definition 

The ringer equivalence number shall be the value determined in section 4.7.4.1 
or 4.7.4.2, as appropriate, followed by the ringer type letter indicator 
representing the frequency range for which the number is valid. If Ringer 
Equivalence is to be stated for more than one Ringing Type, testing shall be 
performed at each frequency range to which Ringer Equivalence is to be 
determined in accordance with the above, and the largest resulting Ringer 
Equivalence Number so determined shall be associated with each Ringing 
Type letter designation for which it is valid. 

4.7.4.1  For individual equipment intended for operation on loop-start telephone facilities, 

the ringer equivalence shall be five times the impedance limitation listed in Table  
4.13, divided by the minimum measured ac impedance, as defined in section 
4.7.2.1.3, during the application of simulated ringing as listed in Table  4.13. 

4.7.4.2  For individual equipment intended for operation on ground-start telephone facilities, 

the ringer equivalence shall be five times the impedance limitation listed in Table  
4.13, divided by the minimum measured ac impedance, defined in section 4.7.3.2, 
during the application of simulated ringing as listed in Table  4.13. 

4.7.5  Maximum ringer equivalence 

All approved terminal equipment and approved protective circuitry that can 
affect the ringing frequency impedance shall be assigned a Ringer 
Equivalence. The sum of all such Ringer Equivalences on a given telephone 
line or loop shall not exceed 5. In some cases, a system that has a total Ringer 
Equivalence of 5 or more may not be usable on a given telephone line or loop. 

4.7.6  OPS interfaces for PBX with DID (ring trip requirement) 

PBX ringing supplies whose output appears on the off-premises interface leads 

 82 

background image

TIA-968-A 

 
 

shall not trip when connected to the following tip-to-ring impedance that 
terminates the off-premises station loop: A terminating impedance composed of 
the parallel combination of a 15 k

℩

 resistor and an RC series circuit (resistor 

and capacitor) whose ac impedance is as specified in Table  4.14. 

Table 4.14 

AC impedance (

℩)

 

Ringing freq (Hz)

 

Class B or C 

Class A 

20 ± 3 

7000/N 

1400 

30 ± 3 

5000/N 

1000 

N = Number of ringer equivalences, as specified by the manufacturer, which can be 
connected to the off-premises station loop. 

83 

background image

` TIA-968-A 
 

4.7.7  Type Z Ringers 

Equipment that has on-hook impedance characteristics that do not conform to 
the requirements of this section may be conditionally approved, notwithstanding 
the requirements of this section and provided that it is labeled with a Ringing 
Type designation ‘‘Z’’. It should be noted that approval of equipment bearing 
the designation ‘‘Z’’ does not necessarily confer any right of connection to the 
telephone network under these criteria. Any equipment approved with the type 
Z designation may only be used with the consent of the local telephone 
company, provided that the local telephone company does not discriminate in 
its treatment of equipment bearing the type Z designation. 

4.7.8  Transitioning to the Off-Hook State 

Except as provided in 4.7.8.1 and 4.7.8.2 below, approved terminal equipment and 
approved protective circuitry shall not by design leave the on-hook state by 
operations performed on tip and ring leads for any other purpose than to request 
service or answer an incoming call. Make-busy indications shall be transmitted by 
the use of make-busy leads only as defined in section 1.3.26.   
 

4.7.8.1  Manual programming of memory dialing numbers  

Terminal equipment the user places in the off-hook state for the purpose of 
manually placing telephone numbers in internal memory for subsequent automatic 
or repertory dialing shall be acceptable for connection to the telephone network 
provided it meets all other applicable requirements. 

4.7.8.2  Automatic stutter dial tone detection  

Terminal equipment that automatically goes off-hook for the purpose of checking 
for stutter dial tone shall be acceptable for connection to the telephone network 
provided it meets all other applicable requirements and all of the following 
specifications and conditions: 

a) the device performs no periodic testing for stutter dial tone; 
b) the device makes an off-hook stutter dial tone check no more than once 
after a subscriber completes a call, and completes the check no earlier than 4 
seconds after the subscriber hangs-up; 
c) the device makes an off-hook stutter dial tone check after an unanswered 
call no more than once; 
d) the device performs no off-hook stutter dial tone check after an 
unanswered incoming call if the visual message indicator is already lit; 
e) the device takes the line off-hook for no more than 2.1 seconds per stutter 
dial tone check. Since the equipment cannot begin checking for stutter dial 
tone until dial tone is present, this 2.1 second interval begins when dial tone 
is applied to the line. If dial tone is not applied within 3 seconds, the 
equipment should abandon the stutter dial tone check; 
f) the device synchronizes off-hook checks when multiple stutter dial tone 
detection and visual signaling devices are attached to the same line so that 
only one check is made per calling event for a single line; and, 
g) the device does not block dial tone to a subscriber attempting to initiate                            
a call as an off-hook stutter dial tone detection check is occurring. 

 

 84 

background image

TIA-968-A 

 
 

4.8 BILLING PROTECTION 

4.8.1  Call duration requirements on data equipment connected to the public switched 

network, or to tie trunks, or to private lines that access the public switched network.  

Approved data terminal equipment and approved protective circuitry shall 
comply with the following requirements when answering an incoming call, 
except in off-hook states in which the signals are transmitted and/or received 
by electro-acoustic transducers only. 

 

 

The preceding paragraph shall be applicable to approved terminal equipment 
and approved protective circuitry employed with digital services where such 
digital services are interconnected with the analog telephone network. 

4.8.1.1  Approved protective circuitry.

 

Approved protective circuitry connected to associated 

data equipment shall assure that the following signal power limitations are met for 
at least the first 2 seconds after the off-hook condition is presented to the telephone 
network in response to an incoming call: 

4.8.1.1.1  The total power of signals that appear at the protective circuitry/telephone network 

interface for delivery to the telephone network, when measured with the 
appropriate loop simulator circuit or a 600 ohm termination shall be limited to -55 
dBm within the voiceband ; and 

4.8.1.1.2  Signals that appear at the protective circuitry-associated data equipment interface 

for delivery to associated data equipment shall be limited as follows: for any 
received signal power (appearing at the protective circuitry-telephone network 
interface) up to 0 dBm ( within the voiceband), the power of signals delivered to 
associated data equipment shall be no greater than the signal power that would 
be delivered as a result of received signal power of -55 dBm. 

4.8.1.2  Approved terminal equipment.

 

 

Approved terminal equipment for data applications shall assure that, when an 
incoming telephone call is answered, the answering terminal equipment 
prevents both transmission and reception of data for at least the first two 
seconds after the answering terminal equipment transfers to the off-hook 
condition. For the purpose of this requirement, a fixed sequence of signals that 
is transmitted (and originated within) and/or received by the approved terminal 
equipment each time it answers an incoming call shall not be considered data, 
provided that such signals are for one or more of the following purposes: 

a)  Disabling echo control devices,  
b)  Adjusting automatic equalizers and gain controls, 
c)  Establishing synchronization, or 
d)  Signaling the presence and if required, the mode of operation, of the data 

terminal at the remote end of a connection. 

4.8.2  Voice and data equipment on-hook signal requirements for equipment connected to 

85 

background image

` TIA-968-A 
 

the public switched network, or to tie trunks, or to private lines that access the public 
switched network.

 

 

Approved protective circuitry and approved terminal equipment shall comply 
with the following: 

4.8.2.1  The total power delivered into a 2-wire loop simulator circuit or into the transmit and 

receive pairs of a 4-wire loop simulator or into a 600 

℩

 termination (where 

appropriate) in the on-hook state, by loop-start or ground-start equipment, shall not 
exceed -55 dBm within the voiceband. Approved protective circuitry shall also 
assure that for any input level up to 10 dB above the overload point, the power to a 
2-wire loop simulator circuit or the transmit and receive pairs of a 4-wire loop 
simulator circuit or into a 600 

℩

 termination (where appropriate) does not exceed 

the above limits.  

4.8.2.2  The total power delivered into a 2-wire loop simulator circuit or into the transmit and 

receive pairs of a 4-wire loop simulator circuit, in the on-hook state, by reverse 
battery equipment shall not exceed -55 dBm within the voiceband, unless the 
equipment is arranged to inhibit in-coming signals. 

4.8.3  Voice and data equipment loop current requirements for equipment connected to the 

public switched network 

The loop current through approved terminal equipment or approved protective 
circuitry, when connected to a 2-wire or 4-wire loop simulator circuit with the 
600 

℩

 resistor and 500 ”F capacitor of the 2-wire loop simulator circuit or both 

pairs of the 4-wire loop simulator circuit disconnected shall, for at least 5 
seconds after the equipment goes to the off-hook state that would occur when 
answering an incoming call: 

 86 

background image

TIA-968-A 

 
 

4.8.3.1  Be at least as great as the current obtained in the same loop simulator circuit with 

minimum battery voltage and a maximum loop resistance when a 200 

℩

 resistance 

is connected across the tip and ring of the 2-wire loop simulator circuit or connected 
across the tip/ring and tip-1/ring-1 conductors (tip and ring connected together and 
tip-1 and ring-1 connected together) of the 4-wire loop simulator circuit in place of 
the approved terminal equipment or approved protective circuitry; or 

4.8.3.2  Not decrease by more than 25% from its maximum value attained during this 5-

second interval; unless the equipment is returned to the on-hook state during the 
above 5-second interval. 

4.8.3.3  The  requirements of 4.8.3.1 and 4.8.3.2 shall also apply in the hold state and any 

off-hook state. 

4.8.4  Signaling interference requirements 

4.8.4.1  The signal power delivered to the network interface by the approved terminal 

equipment and from signal sources internal to approved protective circuitry in the 
2450 Hz to 2750 Hz band shall be less than or equal to the power present 
simultaneously in the 800 Hz to 2450 Hz band for the first 2 seconds after going to 
the off-hook state. 

4.8.4.2  Approved terminal equipment for connection to sub-rate or 1.544 Mbps digital 

services shall not deliver digital signals to the telephone network with encoded 
analog content energy in the 2450 to 2750 Hz band unless at least an equal 
amount of encoded analog energy is present in the 800 to 2450 Hz band for the 
first two seconds after going to the off-hook state. 

4.8.5  On-hook requirements for approved subrate and 1.544Mbps digital terminal 

equipment.  Approved terminal equipment and approved protective circuitry shall 
comply with the following: 

4.8.5.1  The total power delivered to the telephone network in the on-hook state as derived 

by a zero level decoder shall not exceed -55 dBm equivalent power for digital 
signals within the voiceband. 

4.8.5.2  Approved protective circuitry shall also assure that the power to a zero level 

decoder does not exceed the above limits for any input level up to 10 dB above the 
overload point. 

4.8.5.3  Reverse battery interface. The total power derived within the voiceband by a zero 

level decoder, in the on-hook state, by reverse battery equipment, shall not exceed 
-55 dBm, unless the equipment is arranged to inhibit incoming signals. 

4.8.6  Off-hook signal requirements for approved 1.544 Mbps terminal equipment 

Off-hook signal requirements for approved terminal equipment connecting to 
1.544 Mbps digital services. Upon entering the normal off-hook state, in 
response to alerting, for sub-rate channels, approved terminal equipment shall 

87 

background image

` TIA-968-A 
 

continue to transmit the signaling bit sequence representing the off-hook state 
for 5 seconds, unless the equipment is returned to the on-hook state during the 
above 5-second interval. 

4.8.7  Operating requirements for direct inward dialing.  

4.8.7.1  For approved terminal equipment, the off-hook state shall be applied within 0.5 

seconds of the time that: 

4.8.7.1.1  The terminal equipment permits the acceptance of further digits that may be used 

to route the incoming call to another destination. 

4.8.7.1.2  The terminal equipment transmits signals towards the calling party, except for the 

call progress tones, i.e.,

 

busy, reorder and audible ring, and the call is: 

a)  Answered by the called, or another station; 
b)  Answered by the attendant; 
c)  Routed to a customer controlled or defined recorded announcement, except 

for ‘‘number invalid,’’ ‘‘not in service’’ or ‘‘not assigned;’’ 

d)  Routed to a dial prompt; or 
e)  Routed back to the public switched telephone network or other destination 

and the call is answered. If the status of the answered call cannot be reliably 
determined by the terminal equipment through means such as, detection of 
answer supervision or voice energy, removal of audible ring, etc., the off-hook 
state shall be applied after an interval of not more than 20 seconds from the 
time of such routing. The off-hook state shall be maintained for the duration of 
the call. 

4.8.7.2  For approved protective circuitry: 

4.8.7.2.1  Approved protective circuitry shall block transmission incoming from the network 

until an off-hook signal is received from the terminal equipment. 

4.8.7.2.2  Approved protective circuitry shall provide an off-hook signal within 0.5s following 

the receipt of an off-hook signal from the terminal equipment and shall maintain 
this off-hook signal for the duration of the call. 

 
 

 88 

background image

  

TIA-968-A 

 
 

5 COMPLAINTS PROCEDURES 

The complaints procedures are provided in 47 CFR Part 68. 
 
 

89 

background image

  

TIA-968-A 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left intentionally blank. 

 
 

90 

background image

  

TIA-968-A 

 
 

6 CONNECTORS  

Connection of terminal equipment to the telephone network shall be made through a 
connector conforming to this section or by direct attachment to wiring installed by the 
provider(s) of wire line telecommunications including, but not limited to, splicing, bridging, 
twisting, and soldering. 

6.1 SPECIFICATIONS 

6.1.1 General 
 
The US customary units are shown in parentheses throughout this section.  US customary 
units were the original dimensional units used in designing the plugs and jacks shown in the 
following pages.  The dimensions shown without parenthesis are in SI (Systeme 
Internationale) units (i.e. the International System of measurement). The SI dimensional 
units are derived from the US customary units by multiplying inches by 25.4 to derive the 
exact conversion in millimeters with no rounding-off of the resulting decimal value.  The 
number of decimal places to which the conversion is taken by adding a particular number of 
zeroes to the right end of the resulting SI value, where required, is governed by the concept 
that when the calculated SI dimensional unit is divided by 25.4, the resulting inches 
calculation will be exactly that shown in the parenthesis (the original design dimension).  The 
conversion to SI force units, Newton (N), is rounded off to a number of decimal places that 
will result in the calculated SI force value being within less than 1% of the original US 
customary force unit value located adjacent in parenthesis (the original design value).  The 
rationale for this is that this will bring the force conversions to within the degree of accuracy 
of the force-measuring device and avoid the carrying of an unrealistic number of decimal 
places which would otherwise result from an exact conversion.  The plugs and jacks 
described in this section represent the standard connections to be used for connections to 
the telephone network.  The plug and jack designs shown are representative of generic 
types, and should not be interpreted as the only designs that may be used.  Design 
innovation and improvement is anticipated; but for interchangeability to be maintained, 
alternative designs (the “or equivalent” permitted in this standard) shall be compatible with 
the plugs and jacks shown.  The interface dimensions between mating plugs and jacks shall 
be maintained.  Hardware used to mount, protect, and enclose standard jacks is not 
described.  The only requirement on connecting blocks, housings, dust covers, outdoor 
boxes, and the like that contain standard network jacks is that they shall accept standard 
plugs with cordage.  For special purpose applications, plugs may be made longer than 
shown or adapted for direct use on equipment or apparatus without cordage.  The sliding 
modular plug used on the back of many modular wall telephone sets is an example of such 
a special purpose application.  It is the responsibility of the designers and manufacturers of 
communication equipment who use such plugs to assure that they are compatible with the 
hardware used to mount standard jacks with which they plan to interface.  For the purposes 
of this section, hard gold and contact performance equivalent to gold shall be determined in 
accordance with the standards detailed in TIA TSB 31-B.  

91 

background image

` TIA-968-A 
 

 

6.1.1.1  Miniature 6-position plug 

 
 
 

 

NOTE:

  This plug is depicted equipped with 4 contacts: it may be fabricated with its full 6 

contact capability. 

Figure 6.1  View of Miniature 6-Position Plug 

 

 

 92 

background image

TIA-968-A 

 
 

 

 

Figure 6.2  6-Position Plug Mechanical Specification 

93 

background image

` TIA-968-A 
 

 

 

Figure 6.3  6-Position Plug Mechanical Specification (continued) 

NOTES to Figures 6.2 and 6.3:  

1.  All plugs shall be capable of meeting the requirements of the plugs 

go and no-go gauges. 

2.  Section BB applies to any jack contact receiving slot that does not 

contain a plug contact. 

3.  The major cordage cross section should be 2.5400 mm (0.100 in) 

max. thick by 5.0800 mm (0.200 in) max. wide, with rounded 
corners.  It should exit the plug on the plug centerline.  Other 
cordage configurations are permitted but may inhibit the special 
features of some network jack enclosures. 

4.  The standard plug length shall be 11.6840 mm (0.460 in) max.  

Plugs may be made longer than standard or adapted for direct use 
on special cords, adapters with out cordage, and on apparatus or 
equipment subject to the limitations described in section 6.1.1.  
Plugs longer than standard could inhibit the special features of 
some network jack enclosures.  

5.  A 12.0396 mm (0.474 in) minimum tab length shall be required.  A 

maximum tab length should be no longer than 13.2080 mm (0.520 
in).  Longer tabs may be used with the same limitations as 
described in Note 4.   

6.  To obtain maximum plug guidance when 6-position plugs are 

inserted in 8-position jacks, the front plug nose should be extended 
to the 2.3368 mm (0.092 in) maximum.   

7.  These dimensions shall apply to the location of jack contact 

receiving slots.  Plug contacts should be centered axially in these 
slots.   

 94 

background image

TIA-968-A 

 
 

8.  The 6.0452/6.1722 mm (0.238/0.243 in) dimension normally shall be 

used to obtain maximum plug guidance in jacks with more than 6 
conductors.  A tolerance range of 5.9182/6.1722 mm (0.233/0.243 
in) is permitted, but could create targeting problems in 8-position 
jacks.   

9.  The center rib centerline shall be coincident with the plug width 

9.6520 mm (0.380 in) ref. center line within +/- 0.0762 mm (+/- 
0.003 in). 

 

 

 Figure 6.4  6-Position Plug Plug/Jack Contact Specification 

 

95 

background image

` TIA-968-A 
 

NOTES to Figure 6.4

:  

1.  The plug/jack contact interface shall be hard gold to hard gold and 

shall have a minimum gold thickness of 1.2700 ”m (0.050 mil) on 
each side of the interface.  The minimum contact force should be 
0.98 N (100 g).  Any non-gold contact material shall be compatible 
with gold and provide equivalent contact performance.  A smooth, 
burr-free surface shall exist at the interface in the area shown.   

2.  The jack contact design is based upon 0.4572 mm (0.018 in) spring 

temper phosphor bronze round wire in the modular plug blade and 
jack contact interface.  Other contact configurations that provide 
contact performance equal to or better than the preferred 
configurations and do not cause damage to the plug or jack are 
permitted.  The jack contact width should be 0.44958/0.49530 mm 
(0.0177/0.0195 in).  Deviations from the preferred jack contact width 
are permitted for round contacts as well as noncircular cross 
sectional shapes but they shall be compatible with existing plug 
configurations.  The requirements of Note 1 shall apply to all 
possible contact areas. 

3.  The configuration of the plug contact and the front plastic of the plug 

shall prevent jack contacts from being damaged during plug 
insertion into jacks.   

4.  This nominal contact angle should be provided between plugs and 

jacks with the plug latched into the jack.  This angle shall be less 
than 24° to avoid loss of electrical contact between the plug and 
jack.  The nominal contact angle shall be greater than 13° to avoid 
interference between jack contacts and the internal plastic in the 
plug. 

5.  To avoid loss of electrical contact, the dimension from datum B to 

the highest point ‘‘X’’ should be 5.0800 mm (0.200 in) max.  A 
dimension greater than 5.3594 mm (0.211 in) could result in loss of 
electrical contact between plugs and jacks.  The 5.3594 mm (0.211 
in) max. shall be considered an absolute maximum.   

6.  The 24° min. angle applies only to plugs with front plastic walls 

higher than 4.8260 mm (0.190 in). 

 

 96 

background image

TIA-968-A 

 
 

 

 

Figure 6.5  6-Position Plug Minimum Plug Size 

 

NOTES: 

 

1.  The plug shall not be capable of entering the gauge more than 

1.778 mm (0.070) beyond datum-a-(see Figure 6.2) with 8.90 N (2.0 
pounds) insertion force. 

2.  Non-toleranced dimensions given to three places shall be within ± 

0.0508 mm (0.002). 

3.  *6.604 mm (0.260) dimension shall be centrally located with respect 

to 9.7536 mm (0.384) minimum and 9.5377 mm (0.3755 in) 
minimum within ± 0.0508 mm (0.002 in). 

 

97 

background image

` TIA-968-A 
 

 

 

Figure 6.6  6-Position Plug Maximum Plug Size 

NOTES: 

 

1.  The plug shall be capable of insertion and latching into the gauge 

with 22.24 N (5 pounds) or less insertion force.   Plug latching bar 
shall be depressed so as not to interfere with the plug entry.   After 
insertion and latching, plug shall be capable of removal, with the 
latch depressed, with a removal force of 44.48 N (10 pounds) or 
less applied at an advantageous angle. 

2.  Dimensions given to three decimal places shall be within ± 0.0508 

mm (± 0.002 in). 

3.  Dimensions (a) and (b) shall be centrally located with respect to 

9.7536 mm (0.3840 in) max.  Jack opening width within ± 0.0254 
mm (0.001 in). 

4.  Drawings shall not be scaled for external configuration. 

 

 

 
 

 98 

background image

TIA-968-A 

 
 

6.1.1.2  Miniature 6-position jack 

6.1.1.2.1 [Reserved] 

 

NOTE:

 All notes follow Figure 6.8 unless specified 

 

 

 

Figure 6.7  6-Position Jack Mechanical Specification 

99 

background image

` TIA-968-A 
 

 100 

 

Figure 6.8  6-Position Jack Mechanical Specifications (continued) 

 

 

 

background image

TIA-968-A 

 
 

NOTES to Figures 6.7 and 6.8: 

 

1.  Front surface projections beyond the 1.2700 mm (0.050 in) min.  

shall be configured so as not to prevent finger access to the plug 
release catch (Reference Figure 6.12, 6-Position Plug, Mechanical 
Specifications).  A catch length greater than 1.2700 mm (0.050 in) 
should be used to provide greater breakout strength.   

2.  Surface Z need not be planar or coincident with the surface under 

the plug release catch.  Surface Z projections shall not prevent 
insertion, latching, and unlatching of the standard 6-position plug 
described in section 6.1.1.   

3.  The indicated plug stop surface should be used.  If some other 

internal feature is used as a plug stop, it shall be located so that the 
axial movement of a latched plug is no greater than 1.1430 mm 
(0.045 in).   

4.  To prevent mistargeting between the plug and jack contacts, the 

jack contacts shall be completely contained in their individual 
contact zones, 0.7112 mm (0.028 in) max. wide, where they extend 
into the jack openings.  There is no location requirement for jack 
contacts below these zones 5.8420 mm (0.230 in) max., but 
adequate contact separation shall be maintained to prevent 
electrical breakdown.  These shaded contact zones shall be 
centrally located, (included all locating tolerances), about the jack 
opening width 9.8806 mm (0.389 in) Ref, (Datum -W-).  Contacts 
located outside of these zones could result in mistargeting between 
the jack and plug contacts. 

5.  All inside and outside corners in the plug cavity shall be 0.3810 mm 

(0.015 in) radius max. unless specified.   

6.  These surfaces shall have 0°15’ maximum draft.   

7.  Relief inside the dotted areas on 3 sides of the jack opening is 

permitted.  The 6.8326 mm (0.269 in) Ref and 9.8806 mm (0.389 in) 
Ref Gauge Requirements shall be maintained in each corner, (ref.  
1.0160 mm (0.040 in) min), to assure proper plug/jack interface 
guidance.  There shall be a 0.8128 ± 0.1270 mm (0.032 ± 0.005)  
relief on the top side (opposite plug catch)  on jacks in connecting 
blocks which mount and connect portable wall telephones so as to 
assure interface with the special purpose sliding modular plug used 
on many wall telephone sets. 

8.  4.0640 mm (0.160 in) and 6.5278/6.8580 mm (0.257/0.270 in) 

dimensions shall be centrally located to jack opening width -W- 
within ± 0.1778 mm (± 0.007 in).   

9.  Minimum acceptable jack contact length.  When contact guide slots 

are used, the contacts shall always be contained inside the guide 
slots and the contacts shall move freely in the slots so as not to 
restrain plug insertion or damage jack contacts.   

10. Gauge Requirements:  

101 

background image

` TIA-968-A 
 

‱ 

GO: The jack shall be capable of accepting a 9.7536 mm x 6.7056 mm 
(0.3840 in x 0.2640 in) gauge and the gauge shall be capable of being 
removed with a maximum force of 8.9 N (2 pounds).   

‱ 

NO GO: The jack shall not accept either a 10.00760 mm x 6.45160 
mm (0.3940 in x 0.254 in) horizontal width of opening gauge or a 
6.95960 mm x 9.5504 mm (0.2740 in x 0.376 in) vertical height of 
opening gauge.  However, if either gauge is accepted the force 
necessary to remove the gauge shall be minimum 0.83 N (3.0 
ounces).   

‱ 

Removal force requirements shall not include forces contributed by 
contact springs nor shall external forces be applied to the jack that will 
affect these removal forces.   

‱ 

Gauges shall have a 0.7620 mm (0.030 in) radius on the nose and a 
0.3810 mm (0.015 in) radius on all edges with clearance provided for 
contacts.   

 102 

background image

TIA-968-A 

 
 

6.1.1.3  Miniature 8-position plug, unkeyed: 
 
 

 

 

Figure 6.9  View of Miniature 8-Position Plug, Unkeyed 

103 

background image

` TIA-968-A 
 

 

 

 

NOTE:

 All notes follow Figure 6.11 

 

Figure 6.10  8-Position Unkeyed Plug Mechanical Specification 

 

 

 104 

background image

TIA-968-A 

 
 

 
 
 

Figure 6.11  8-Position Unkeyed plug, Mechanical Specification (continued)  

 

NOTES for Figures 6.10 and 6.11:  

1.  All plugs shall be capable of meeting the requirements of the plug 

go and no-go gauges. 

2.  The standard plug height in the area shown shall be 8.0010 mm 

(0.315 in) maximum.  The standard plug length shall be 23.1140 
mm (0.910 in) maximum.  Plugs may be made longer than 
standard or adapted for direct use on special cords, adapters 
without cordage, apparatus or equipment subject to the limitations 
described in the introductory paragraphs of section 6.  Plugs 
longer and/ or higher than standard could inhibit the special 
features of some network jack enclosures.   

3.  A 14.6050 mm (0.575 in) minimum tab length shall be provided.  

The maximum tab length should be no longer than 15.8750 mm 
(0.625 in).  Longer tabs may be used with the same limitations 
described in Note 2.   

4.  To obtain maximum plug guidance in jacks, the front plug nose 

should be extended to the 2.3368 mm (0.092 in) maximum.   

5.  These dimensions shall apply to the location of jack contact 

receiving slots.  Plug contacts should be centered axially in these 
slots.  

The center rib centerline shall be coincident with the plug width 11.6840 mm ref.  (0.460 in 
ref.) centerline within 

±

 0.0762 mm (

±

 0.003 in). 

105 

background image

` TIA-968-A 
 

 

Figure 6.12  8-Position Unkeyed plug, Plug/Jack Contact Specification 

NOTES: 

 

1.  The plug/jack contact interface shall be hard gold to hard gold and 

shall have a minimum gold thickness of 1.2700 ”m (0.050 mil) on 
each side of the interface.  The minimum contact force shall be 
0.98 N (100 g).  Any non-gold contact material shall be compatible 
with gold and provide equivalent contact performance.  A smooth, 
burr-free surface shall exist at the interface in the area shown.   

2.  The jack contact design is based upon 0.4572 mm (0.018 in) 

spring temper phosphor bronze round wire in the modular plug 
blade and jack contact interface.  Other contact configurations that 
provide contact performance equal to or better than the preferred 
configurations and do not cause damage to the plug or jack are 

 106 

background image

TIA-968-A 

 
 

permitted.  Contact width should be 0.44958/0.49530 mm 
(0.0177/0.0195 in).  Deviations from the desirable jack contact 
width are permitted for round contacts as well as noncircular cross 
sectional shapes but they shall be compatible with existing plug 
configurations.  The requirements of Note 1 shall apply to all 
possible contract areas.   

3.  The configuration of the plug contact and the front plastic of the 

plug shall prevent jack contacts from being damaged during plug 
insertion into jacks.   

4.  This nominal contact angle should be provided between plugs and 

jacks with the plug latched into the jack.  This angle shall be equal 
to or less than 24° to avoid loss of electrical contact between the 
plug and jack.  The nominal contact angle shall be equal to or 
greater than 13° to prevent interference between jack contacts 
and the internal plastic in the plug.   

5.  To avoid loss of electrical contact, the dimension from datum B to 

the highest point ‘‘X’’ should be 5.0800 mm (0.200 in) max.  A 
dimension greater than 5.3594 mm (0.211 in) could result in loss 
of electrical contact between plugs and jacks.  The 5.3594 mm 
(0.211 in) max. shall be considered an absolute maximum.   

6.  The 24° min. angle shall apply only to plugs with front plastic walls 

higher than 4.8260 mm (0.190 in). 

107 

background image

` TIA-968-A 
 

 

 

Figure 6.13  8-Position Unkeyed Plug, Minimum Plug Size 

NOTES: 

 

1.  The plug shall not be capable of entering the gauge more than 

1.778 mm (0.070 in) beyond datum-a-(see Figure 6.10) with 8.90 
N (2.0 pounds) insertion force. 

2.  Non-toleranced dimensions given to four places shall be within 

± 0.0508 mm (± 0.002 in). 

3.  *6.2992 mm (0.248 in) dimension shall be centrally located with 

respect to 11.7856 mm (0.464 in) minimum and 11.58240 mm 
(0.4560 in) minimum within ± 0.0508 mm (± 0.002 in). 

 

 108 

background image

TIA-968-A 

 
 

Figure 6.14  8-Position Unkeyed Plug, Maximum Plug Size  

NOTES: 

 

1.  The plug shall be capable of insertion and latching into the gauge 

with 22.24 N (5 pounds) or less insertion force.   Plug latching bar 
shall be depressed so as not to interfere with the plug entry.   After 
insertion and latching, plug shall be capable of removal, with the 
latch depressed, with a removal force of 44.48 N (10 pounds) or 
less applied at an advantageous angle. 

2.  Dimensions given to four decimal places shall be within ± 0.0508 

mm (0.002). 

3.  Dimensions (a) and (b) shall be centrally located with respect to 

11.78560 mm (0.4640 in) max.   Jack opening width within 
± 0.0254 mm (0.001 in). 

4.  Drawings shall not be scaled for external configuration. 

 

 
 
 
 
 

109 

background image

` TIA-968-A 
 

6.1.1.4  Miniature 8-position series jack 

 

 

Figure 6.15  8-Position Series Jack, Contact Specification 

 110 

background image

TIA-968-A 

 
 

 

 

NOTE:

 All notes follow Figure 6.17 

 

Figure 6.16  8-Position Series Jack, Mechanical Specification 

111 

background image

` TIA-968-A 
 

 

Figure 6.17  8-Position Series Jack, Mechanical Specification (continued) 

 

NOTES to Figures 6.16 and 6.17: 

 

1.  Front surface projections beyond the 1.3970 mm (0.055 in) 

minimum shall be configured so as not to prevent finger access to 
the plug release catch (Reference Figure 6.2 and Figure 6.10, 6 
and 8-Position Plug, Mechanical Specifications).  A catch length 
greater than 1.3970 mm (0.055 in) should be provided for greater 
breakout strength and improved guidance when interfacing with a 
6-position plug.   

2.  Surface Z need not be planar or coincident with the surface under 

the plug release catch.  Surface Z projections shall not prevent 
insertion, latching, and unlatching of the standard 8-position plug 
on Figure 6.10. 

3.  The indicated plug stop surface should be provided.  If some other 

internal feature is used as a plug stop, it shall be located so that 

 112 

background image

TIA-968-A 

 
 

the axial movement of a latched plug is no greater than 1.1430 
mm (0.045 in).   

4.  To prevent mistargeting between the plug and jack contacts, the 

jack contacts shall be completely contained in their individual 
contact zones, (0.7112 mm (0.028 in) max.  wide), where they 
extend into the jack openings.  There is no location requirement 
for jack contacts below these zones (5.8420 mm (0.230 in) max.), 
but adequate contact separation shall be maintained to prevent 
electrical breakdown.  These shaded contact zones shall be 
centrally located, (include all locating tolerances), about the jack 
opening width 11.9126 mm (0.469 in) Ref, (Datum -W-).  Contacts 
located outside of these zones could result in mistargeting 
between the jack and plug contacts.   

5.  All inside and outside corners in the plug cavity shall be 0.3810 

mm (0.015 in) radius max. unless specified.   

6.  These surfaces shall have 0°15’ maximum draft.   

7.  Relief inside the dotted areas on both sides of the jack opening is 

permitted.  The 6.8326 mm (0.269 in) Ref and 11.9126 mm (0.469 
in) Ref Gauge Requirements shall be maintained in each of the 
corners indicated, (Ref.  1.5240 mm (0.060 in) min), to assure 
proper plug/jack interface guidance.   

8.  4.0640 mm (0.160 in) and 6.2992 mm (0.248 in) dimensions shall 

be centrally located to jack opening width -W- within ± 0.1270 mm 
(0.005 in).   

9.  The contact lengths shall be such that the contacts will always be 

contained inside the guide slots, and the contacts shall move 
freely in the slots so as not to restrain plug insertion or damage 
jack contacts.   

10. Gauge Requirements:  

‱ 

GO: The jack shall be capable of accepting an 11.7856 mm x 6.7056 
mm (0.4640 in x 0.2640 in) gauge and the gauge shall be capable of 
being removed with a maximum force of 8.9 N (2.0 pounds).   

‱ 

NO GO: The jack shall not accept either a 12.0396 mm x 6.4516 mm 
(0.4740 in x 0.254 in) horizontal width of opening gauge or a 6.9596 
mm x 11.5824 mm (0.2740 in x 0.456 in) vertical height of opening 
gauge.  However, if the gauge is accepted, the force necessary to 
remove the gauge shall be a minimum of 0.83 N (3.0 ounces).   

‱ 

Removal force requirements do not include forces contributed by 
contact springs nor shall external forces be applied to the jack that 
will affect these removal forces.   

‱ 

Gauges shall have a 0.7620 mm (0.030 in) radius on the nose and a 
0.3810 mm (0.015 in) radius on all edges with clearance provided for 
contacts.   

11. With no plug inserted, conductors 1 and 4 shall be bridged as well 

as conductors 5 and 8.  With a miniature 8-position plug inserted 
into the jack, the bridge connectors shall be broken and a series 

113 

background image

` TIA-968-A 
 

connection shall be made in both sides of the line.  With a 6-
position plug inserted, the bridged connections shall remain 
unbroken.   

12. The jack contact/bridging interface shall be hard gold to hard gold 

and shall have a minimum gold thickness of 1.2700 ”m (0.050 mil) 
on each side of the interface.  The minimum hard gold contact 
bridging force shall be 0.294 N (30 g).  Any non-gold contact 
material shall be compatible with gold and provide equivalent 
contact performance.   

6.1.1.5  50-position miniature ribbon plug  

6.1.1.5.1 Contact finish in the region of contact shall be gold, 0.7620 ”m (0.030 mil) 

minimum thickness, and should be electrodeposited hard gold.

1

  

6.1.1.5.2 â€˜â€˜Datum B’’ shall be the center line of contact cavities. 

6.1.1.5.3 The center line of each contact shall be located within 0.2286 mm (0.009 in) of 

true position with respect to ‘‘Datum B’’.

1

 

6.1.1.5.4 Contact width at region of contact shall be (1.143 ± 0.0508) mm (0.04 ± 0.002 in).

1

 

6.1.1.5.5 Center line of shell dimension indicated shall be within 0.1270 mm (0.005 in) of 

‘‘Datum B’’.

1

 

6.1.1.5.6 Center line of barrier dimension indicated shall be within 0.1270 mm (0.005 in) of 

‘‘Datum B’’.

1

 

6.1.1.5.7 â€˜â€˜Surface X’’ shall have a 0.1016 ”m (0.004 mil) finish or better; finishing shall be 

done in the direction of the arrow.

2

 

6.1.1.5.8 A force of not more than 178 N (40 pounds) shall be sufficient to fully insert the 

plug onto the sizing gauge shown on Figure 6.18.  The plug is fully inserted 
when ‘‘Surface A’’ of the plug 

1

 touches ‘‘Surface A’’ of the sizing gauge. 

6.1.1.5.9 After one insertion of the plug on the sizing gauge, Figure 6.19, a force of not 

more than 44.5 N (10 pounds) shall be sufficient to fully insert the plug on the 
continuity gauge shown in Figure 6.20.  The plug is fully inserted on the 
continuity gauge when ‘‘Surface A’’ of the plug 

1

 touches ‘‘Surface A’’ of the 

continuity gauge. 

6.1.1.5.10  When the plug is fully inserted on the continuity gauge, Figure 6.20, after 

having been inserted once on the sizing gauge, Figure 6.19, all contacts of the 
plug shall electrically contact the continuity gauge as determined by an 
electrical continuity test which applies an open circuit voltage of not more than 
10 Volts. Results greater than 200 

℩

 indicate test failure. 

 

1

 Figure 6.18. 

2

 Figures 6.19 and 6.20. 

 114 

background image

TIA-968-A 

 
 

 

 Figure 6.18  50-Position Miniature Ribbon Plug 

115 

background image

` TIA-968-A 
 

 

Figure 6.19  50-Position Miniature Ribbon Plug Sizing Gauge 

 116 

background image

TIA-968-A 

 
 

 

Figure 6.20  50-Position Miniature Ribbon Plug Continuity Gauge 

 

117 

background image

` TIA-968-A 
 

 
 

Figure 6.21  50-Position Miniature Ribbon Plug Hood Envelope 

6.1.1.6  50-position miniature ribbon jack 

6.1.1.6.1  Contact finish in the region of contact shall be gold, 0.7620 ”m (0.030 mil) 

minimum thickness, and should be electrodeposited hard gold.

1

  

6.1.1.6.2   â€˜â€˜Datum B’’ shall be considered the center line of contact cavities.   

6.1.1.6.3  The center line of each contact shall be located within 0.2286 mm (0.009 in) of 

true position with respect to ‘‘Datum B’’.

1

 

6.1.1.6.4  Contact width at region of contact shall be 1.1430± 0.0508 mm (0.045±0.002 in).

1

 

6.1.1.6.5  Center line of shell dimension indicated shall be within 0.1270 mm (0.005 in) of 

Datum B’’.

1

  

 118 

background image

TIA-968-A 

 
 

6.1.1.6.6  Center line of cavity dimension indicated shall be within 0.1270 mm (0.005 in) of 

Datum B’’.

1

  

6.1.1.6.7  â€˜â€˜Surface X’’ shall have a 0.1016 ”m (0.004 mil) finish or better; finishing shall be 

done in the direction of the arrow.

2

  

6.1.1.6.8  A force of not more than 134 N (30 pounds) shall be sufficient to fully insert the 

jack onto the sizing gauge shown on Figure 6.23.  The jack is fully inserted 
when ‘‘Surface A’’ of the jack 

1

 touches ‘‘Surface A’’ of the sizing gauge.   

6.1.1.6.9  After one insertion of the jack on the sizing gauge, Figure 6.23, a force of not 

more than 44.5 N (10 pounds) shall be sufficient to fully insert the jack on the 
continuity gauge shown in Figure 6.24.  The jack is fully inserted on the 
continuity gauge when ‘‘Surface A’’ of the jack 

1

 touches ‘‘Surface A’’ of the 

continuity gauge. 

6.1.1.6.10 When the jack is fully inserted on the continuity gauge, Figure 6.24, after having 

been inserted once on the sizing gauge, all contacts of the jack shall electrically 
contact the continuity gauge as determined by an electrical continuity test 
which applies an open circuit voltage of not more than 10 volts. Results greater 
than 200 

℩

 indicate test failure. 

1

 Figure 6.22. 

2

 Figures 6.23 and 6.24. 

 
 

119 

background image

` TIA-968-A 
 

 
 
 

Figure 6.22  50-Position Miniature Ribbon Jack 

 120 

background image

TIA-968-A 

 
 

 
 

Figure 6.23  50-Position Miniature Ribbon Jack Sizing Gauge 

121 

background image

` TIA-968-A 
 

 

Figure 6.24  50-Position Miniature Ribbon Jack Continuity Gauge 

 

NOTE:

 All linear dimensions are in mm (inches in parenthesis). 

 122 

background image

TIA-968-A 

 
 

 

6.1.1.7  3-Position weatherproof plug 
 
Contact blade material shall be brass, with minimum 7.62 ”m (0.30 mil) thick nickel plating. 

 
 
 

Figure 6.25  3-Position Plug, Plug Assembly 

123 

background image

` TIA-968-A 
 

 

 
 

NOTE:

 All linear dimensions are in mm (in). 

 

Figure 6.26  3-Position plug, Detail 

 

 124 

background image

TIA-968-A 

 
 

 

6.1.1.8  3-Position weatherproof jack 
Contact blade material shall be brass, with minimum 7.62 mm (0.30 mil) thick nickel plating.   

 
 
 
 

Figure 6. 27  3-Position Plug, Detail 

 

125 

background image

` TIA-968-A 
 

 

6.1.1.9  Miniature 8-Position plug, keyed 
 
 

 
 

Figure 6.28  View of miniature 8-position plug, keyed 

 126 

background image

TIA-968-A 

 
 

 
 

 

NOTE:  

All notes follow Figure 6.30

 

Figure 6.29  8-Position Keyed Plug, Mechanical Specification 

 
 

127 

background image

` TIA-968-A 
 

 

Figure 6.30  8-Position Keyed Plug, Mechanical Specification (continued) 

 
 

NOTES to Figures 6.29 and 6.30:   

1.  All plugs shall  meet the requirements of the plug go and no-go 

gauges.   

2.  The standard plug height in the area shown shall be 8.0010 mm 

(0.315 in) maximum.  The standard plug length shall be 23.1140 
mm (0.910 in) maximum.  Plugs may be made longer than 
standard or adapted for direct use on special cords, adapters 
without cordage, apparatus or equipment subject to the limitations 
described in section 6.1.1.  Plugs longer and/ or higher than 
standard could inhibit the special features of some network jack 
enclosures.   

3.  The minimum tab length shall be 14.6050 mm (0.575 in).  The 

maximum tab length normally shall be no longer than 15.8750 mm 
(0.625 in).  Longer tabs may be used with the limitations described 
in Note 2.   

4.  To obtain maximum plug guidance in jacks, the front plug nose 

should be extended to the 2.3368 mm (0.092 in) maximum.   

5.  These dimensions apply to the location of jack contact receiving 

slots.  Plug contacts should be centered axially in these slots.   

6.  The center rib centerline shall be coincident with the plug width, 

11.6840 mm ref (0.460 in ref.) center line within ± 0.0762mm (± 
0.003 in) 

 128 

background image

TIA-968-A 

 
 

 Figure 6.31  8-Position Keyed Plug, Plug/Jack Contact Specification 

 
 

129 

background image

` TIA-968-A 
 

NOTES to Figure 6.31:  

1.  The plug/jack contact interface shall be hard gold to hard gold and 

shall have a minimum gold thickness of 1.2700 ”m (0.050 mil) on 
each side of the interface.  The minimum contact force shall be 
0.98 N (100 g).  Any non-gold contact material shall be compatible 
with gold and provide equivalent contact performance.  A smooth, 
burr-free surface shall exist at the inter-face in the area shown.   

2.  The jack contact design is based upon 0.4572 mm (0.018 in) 

spring temper phosphor bronze round wire in the modular plug 
blade and jack contact interface.  Other contact configurations that 
provide contact performance equal to or better than the preferred 
configurations and do not cause damage to the plug or jack may 
be provided.  The jack contact width normally shall be 
0.44958/0.49530 mm (0.0177/0.0195 in).  Deviations from the 
preferred jack contact width are permitted for round contacts as 
well as noncircular cross sectional shapes but such deviations 
shall be compatible with existing plug configurations.  The 
requirements of Note 1 shall apply to all possible contact areas.   

3.  The configuration of the plug contact and the front plastic of the 

plug shall prevent jack contacts from being damaged during plug 
insertion into jacks.   

4.  This should be the nominal contact angle between plugs and jacks 

with the plug latched into the jack.  This angle shall be equal to or 
less than 24° to avoid loss of electrical contact between the plug 
and jack.  The nominal contact angle shall be equal to or greater 
than 13° to avoid interference between jack contacts and the 
internal plastic in the plug.   

5.  To avoid loss of electrical contact, the dimension from “Datum B” 

to the highest point “X” should be 5.0800 mm (0.200 in) max.  A 
dimension greater than 5.3594 mm (0.211 in) could result in loss 
of electrical contact between plugs and jacks.  The 5.3594 mm 
(0.211 in) max. shall be considered an absolute maximum.   

6.  The 25° min. angle shall apply only to plugs with front plastic walls 

higher than 4.8260 mm (0.190 in). 

 130 

background image

TIA-968-A 

 
 

 

Figure 6.32  8-Position Keyed Plug, Maximum Plug Size  

NOTES: 

1.  The plug shall be capable of insertion and latching into the gauge 

with 22.24 N (5 pounds) or less insertion force.   Plug latching bar 
shall be depressed so as not to interfere with the plug entry.   After 
insertion and latching, plug shall be capable of removal, with the 
latch depressed, with a removal force of 44.48 N (10 pounds) or 
less applied at an advantageous angle. 

2.  Dimensions given to four decimal places shall be within ± 0.0508 

mm (± 0.002 in). 

3.  Dimensions (a) and (b) shall be centrally located with respect to 

11.7856 mm (0.4640 in) max.  Jack opening width shall be within 
± 0.0254 mm (± 0.001 in). 

4.  Drawings shall not be scaled for external configuration. 

 
 

 

131 

background image

` TIA-968-A 
 

 

Figure 6.33  8-Position Keyed Plug, Minimum Plug Size 

NOTES: 

 

1.  The plug shall not enter the gauge more than 1.778 mm (0.070 in) 

beyond datum-a- (see Figure 6.29 with 8.90 N (2.0 pounds) 
insertion force. 

2.  Non-toleranced dimensions given to three places shall be within 

± 0.0508 mm (± 0.002). 

3.  *6.2992 mm  (0.248 in) dimension shall be centrally located with 

respect to 11.7856 mm (0.464 in) minimum and 11.5824 mm 
(0.4560 in) minimum within ± 0.0508 mm (0.002 in). 

 132 

background image

TIA-968-A 

 
 

6.1.1.10 Miniature 8-position keyed jack 

 

 
 

Figure 6.34  View of Miniature 8-Position Keyed Jack 

133 

background image

` TIA-968-A 
 

 
 

 

 

Figure 6.35  8-Position Keyed Jack, Mechanical Specification 

 

NOTES to Figure 6.35:  

1.  Front surface projections beyond the 1.3970 mm (0.055 in) 

minimum shall be configured so as not to prevent finger access to 
the plug release catch (Reference Figure 6.30 and 8-Position 
Plug, Mechanical Specifications).  A catch length should be 
greater than 1.3970 mm (0.055 in) to provide greater breakout 
strength and improved guidance when interfacing with a 6-position 
plug. 

2.  Surface Z need not be planar or coincident with the surface under 

the plug release catch.  Surface Z projections shall not prevent 
insertion, latching, and unlatching of the standard 8-position plug 
on Figure 6.29.   

3.  The indicated plug stop surface should be provided.  If some other 

internal feature is used as a plug stop, it shall be located so that 
the axial movement of a latched plug is no greater than 1.1430 

 134 

background image

TIA-968-A 

 
 

mm (0.045) in.   

4.  To prevent mistargeting between the plug and jack contacts, the 

jack contacts shall be completely contained in their individual 
contact zones 0.7112 mm (0.028 in) max wide, where they extend 
into the jack openings.  There is no location requirement for jack 
contacts below these zones (5.8420 mm (0.230 in) max), but 
adequate contact separation shall be maintained to prevent 
electrical breakdown.  These shaded contact zones shall be 
centrally located, (include all locating tolerances), about the jack 
opening width 11.9126 mm (0.469 in) Ref, (Datum–W–).  Contacts 
located outside of these zones could result in mistargeting 
between the jack and plug contacts.   

5.  All inside and outside corners in the plug cavity shall be 0.3810 

mm (0.015 in) radius max unless specified.   

6.  These surfaces shall have 0°15' maximum draft.   

7.  Relief inside the dotted areas on both sides of the jack opening 

shall be permitted.  The 6.8326 mm (0.269 in) Ref and 11.9126 
mm (0.469 in) Ref Gauge Requirements shall be maintained in 
each of the corners indicated, (Ref.  1.5240 mm (0.060 in) min), to 
assure proper plug/jack interface guidance.   

8.  4.0640 mm (0.160 in) and 6.2992 mm (0.248 in) dimensions shall 

be centrally located to jack opening width –W– within ± 0.1270 
mm (± 0.005 in).   

9.  The contact lengths shall be such that the contacts will always be 

contained inside the guide slots and the contacts shall move freely 
in the slots so as not to restrain plug insertion or damage jack 
contacts.   

10. Gauge Requirements:  

‱ 

GO: The jack shall be capable of accepting an 11.78560 x 6.70560 mm 
(0.4640 x 0.2640 in) gauge and the gauge shall be capable of being 
removed with a maximum force of 8.9 N (2.0 pounds).   

‱ 

NO GO: The jack shall not accept either a 12.03960 x 6.4516 mm 
(0.4740 x 0.254 in) horizontal width of opening gauge or a 6.95960 x 
11.5824 mm (0.2740 x 0.456 in) vertical height of opening gauge.  
However, if the gauge is accepted, the force necessary to remove the 
gauge shall be a minimum of 0.83 N (3.0 ounces).   

‱ 

Removal forces shall not include forces contributed by contact springs 
nor shall external forces be applied to the jack that will affect these 
removal forces.   

‱ 

Gauges shall have a 0.7620 mm (0.030 in) radius on the nose and a 
0.3810 mm (0.015 in) radius on all edges with clearance provided for 
contracts. 

135 

background image

` TIA-968-A 
 

6.2 WIRING CONFIGURATIONS 

The connectors specified in this standard shall be wired in accordance with any of the 
applicable wiring configurations provided in T1.TR.5-1999.  The applicable connector and 
connector wiring configuration for approved TE shall be identified in consumer instructions 
and product approval documentation. 

 
6.2.1  Universal Service Ordering Code 

A Universal Service Ordering Code (USOC) is specified in T1.TR5-1999 for each wiring 
configuration. These USOCs are generic service ordering codes that are used or recognized 
by most wireline carriers.  If a customer wishes to have the wireline carrier install a jack or 
wiring configuration, the appropriate USOC needs to be specified when the customer 
requests service installation. 

 

 
6.2.2   Default Connector Wiring Configuration 

In the absence of a request for a specific type of jack and wiring configuration, wireline 
carriers will typically install a 6-position non-keyed jack with the RJ11W (for wall mounted 
equipment) or RJ11C (for all other equipment) wiring configuration shown in Figure 6-36. 
 

 

 
 

1

2

3

4

5

6

Jack

to

Network

Plug

from

Customer

Installation

R

T

R
T

 

 

Figure 6-36 – RJ11C/W Network Interface Wiring Configuration

 

 

 136 

6.3  CONFIGURATIONS USED TO CONNECT MULTI-LINE 

COMMUNICATIONS SYSTEMS SUCH AS PRIVATE BRANCH 
EXCHANGE (PBX) AND KEY TELEPHONE SYSTEMS 

Any of the jack configurations specified in section 6.2, used singly, in multiple combinations, 
or combined in common mechanical arrays, may be used as the interface between multi-line 
equipment such as PBX and key telephone systems, and the telephone network. The 
telephone company and installation supervisor may mutually agree to use electrical 

background image

TIA-968-A 

 
 

connections alternative to those specified in section 6.2. 
 

137 

background image
background image

  

TIA-968-A 

 
 

Annex A (normative) 

Grandfathered Terminal Equipment 

(normative) 

 

A.1 Introduction  

This annex identifies terminal equipment (TE) that has been grandfathered by FCC action 
and identifies the conditions under which such TE may be connected to the public switched 
telephone network and services without approval. 

 
A.2 Grandfathered terminal equipment (other than PBX and key telephone systems) 
and protective circuitry.  

 
All terminal equipment (other than PBX and key telephone systems) and protective circuitry 
of a type directly connected to the public switched telephone network and services identified 
in 1.1(b) as of October 17, 1977, may be connected thereafter up to July 1, 1979—and may 
remain connected for life—without approval unless subsequently modified. 
 

A.3 Grandfathered systems (including, but not limited to, PBX and key telephone 
systems).  

 

a)  Entire systems, including their equipment, premises wiring, and protective 

apparatus (if any) directly connected to the public switched telephone 
network and services identified in 1.1(b) on June 1, 1978, may remain 
connected to the public switched telephone network and services identified in 
1.1(b) for life without approval, unless subsequently modified, except for 
modifications allowed under A.3(c). 

b)  New installations of equipments may be performed (including additions to 

existing systems) up to January 1, 1980, without approval of any equipments 
involved, provided that these equipments are of a type directly connected to 
the public switched telephone network or services identified in 1.1(b) as of 
June 1, 1978. These equipments may remain connected to the public 
switched telephone network or services identified in 1.1(b) for life without 
approval, unless subsequently modified, except for modifications allowed 
under A.3(c). 

c)   Modifications to systems and installations involving unapproved equipment: 

 

1)  Use of other than fully-protected premises wiring is a modification under 

1.1. As an exception to the general requirement that no modification is 
permitted to unapproved equipment whose use is permitted under 1.1, 
certain modifications are authorized here-in. 

2)  Other than fully-protected premises wiring may be used if it is qualified in 

accordance with the procedures and requirements of § 68.215. Since there 
is no ‘‘responsible party’’ of unapproved equipment, the training and 
authority required by § 68.215(c) will have to be received from the 
equipment’s manufacturer.  

139 

background image

` TIA-968-A 
 

3)  Existing separate, identifiable and discrete protective apparatus may be 

removed, or replaced with apparatus of lesser protective function, provided 
that any premises wiring to which the public switched telephone network or 
service identified in 1.1 is there-by exposed conforms to A.3(c)(2) above. 
Minor modifications to existing unapproved equipments are authorized to 
facilitate installation or premises wiring, so long as they are performed 
under the responsible supervision and control of a person who complies 
with § 68.215(c). Since there is no ‘‘responsible party’’ of unapproved 
equipment, the training and authority required by Â§ 68.215(c) will have to be 
received from the manufacturer of the equipment so modified. 

 

A.4 Grandfathered private branch exchange (or similar) systems for connection to 
private line type services (tie trunk type services, off-premises station lines, 
automatic identified outward dialing, and message registration): 

 

a)  PBX (or similar) systems, including their equipments, premises wiring, and 

protective apparatus (if any) directly connected to a private line type service 
on April 30, 1980 may remain connected to the private line type service for 
life without approval unless subsequently modified, except for modifications 
allowed under A.4(c). 

b)  New installations of equipments may be performed (including additions to 

existing systems) up to May 1, 1983 without approval of any equipments 
involved, provided that these equipments are of a type directly connected to a 
private line type service as of April 30, 1980. These equipments may remain 
connected to the private line type service for life without approval, unless 
subsequently modified, except for modifications allowed under A.4(c). 

c)  Modifications to systems and installations involving unapproved equipment: 

 

1)  Use of other than fully-protected premises wiring is a modification 

under 1.1. As an exception to the general requirement that no 
modification is permitted to unapproved equipment whose use is 
permitted under 1.1, certain modifications are authorized here-in. 

2)  Other than fully-protected premises wiring may be used if it is 

qualified in accordance with the procedures and requirements of Â§ 
68.215. Since there is no ‘‘responsible party’’ of unapproved 
equipment, the training and authority required by Â§ 68.215(c) will 
have to be received from the equipment’s manufacturer. 

3) 

Existing separate, identifiable and discrete protective apparatus may 
be removed, or replaced with apparatus of lesser protective 
function, provided that any premises wiring to which the private line 
type service is thereby exposed conforms to A.4(c)(2) above. Minor 
modifications to existing unapproved equipments are authorized to 
facilitate installation or premises wiring, so long as they are 
performed under the responsible supervision and control of a 
person who complies with § 68.215(c). Since there is no 
‘‘responsible party’ of unapproved equipment, the training and 
authority required by § 68.215(c) will have to be received from the 
manufacturer of the equipment so modified.

 

 140 

background image

TIA-968-A 

 
 

 

d)  PBX (or similar) systems connected with automatic identified outward dialing 

or message registered private line services of a type that complies with 
paragraphs A.4(3)(a) and A.4.(3)(b) of this section may remain connected for 
life without approval unless subsequently modified. 

 

A.5 Grandfathered terminal equipment for connection to local area data channels.  

 
All terminal equipment of a type directly connected to Local Area Data Channels or directly 
connected under special assembly tariff provisions to telephone company-supplied, non-
loaded, metallic, greater-than-voiceband circuits for the purpose of providing limited distance 
data transmission as of February 10, 1986, may be connected thereafter up to August, 10, 
1987, and may remain connected for life, without approval unless subsequently modified.  
 

A.6 Grandfathered terminal equipment for connection to subrate and 1.544 Mbps 
digital services.  

 

a)  Terminal equipment including premises wiring and protective apparatus (if 

any) directly connected to subrate or to 1.544 Mbps digital services on 
January 2, 1986, may remain connected and be reconnected to such digital 
services for life without approval, unless subsequently modified.  

b)  New installations of terminal equipments, including premises wiring and 

protective apparatus (if any) may be installed including additions to existing 
systems) up to June 30, 1987, without approval of any terminal equipment 
involved, provided that these terminal equipments are of a type directly 
connected to subrate or 1.544 Mbps digital services as of January 2, 1986. 
These terminal equipments may remain connected and be reconnected to 
such digital services for life without approval, unless subsequently modified. 

 

A.7 Grandfathered test equipment.  

 

a)  Test equipment directly connected to the telephone network on February 10, 

1986, is considered to be grandfathered and may remain connected to the 
telephone network for life without approval unless subsequently modified. 

b)  New installations of test equipment may be performed up to August 10, 1987 

without approval, provided that the test equipment is of a type directly 
connected to the public switched network or services identified in 1.1(a), (b), 
(c), (d), (e), and (f) for life without approval unless subsequently modified. 

 

A.8 Grandfathered terminal equipment or systems for connection to voiceband 
private line channels for 2-point and multipoint private line services that utilize loop 
start, ringdown, or inband signaling; or voiceband metallic channels.  

 

a)  Terminal equipment or systems, including premises wiring and protective 

apparatus (if any), directly connected to voiceband private lines for 2-point or 
multipoint service on February 10, 1986, may remain connected to that 
private line type service for life without approval unless subsequently 
modified, except for modifications allowed under A.8(c). 

141 

background image

` TIA-968-A 
 

b)  New installations of equipments may be installed (including additions to 

existing systems) up to August 10, 1987 without approval of any equipments 
involved, provided that these equipments are of a type directly connected to 
voiceband private lines for 2-point or multipoint services. These equipments 
may remain connected to the private line-type service for life without 
approval, unless subsequently modified, except for modifications allowed 
under A.8(c). 

c)   Modification to systems and installations involving unapproved equipment: 

 

1)  Use of other than fully-protected premises wiring is a modification under 

1.1. As an exception to the general requirements that no modification is 
permitted to unapproved equipment whose use is permitted under 1.1, 
certain modifications are authorized here-in. 

2)  Other than fully-protected premises wiring may be used if it is qualified in 

accordance with procedures and requirements of § 68.215. Since there is 
no â€˜â€˜responsible party’’ of unapproved equipment, the training and authority 
required by § 68.215(c) will have to be received from the equipment’s 
manufacturer. 

3)  

Existing separate, identifiable, and discrete protective apparatus may be 

removed or replaced with apparatus of lesser protective function, provided 
that any premises wiring to which the private line service is thereby 
exposed conforms to A.8(c)(2) of this section. Minor modifications to 
existing unapproved equipments are authorized to facilitate installation of 
premises wiring, so long as they are performed under the responsible 
supervision and control of a person who complies with § 68.215(c). Since 
there is no ‘‘responsible party’’ of unapproved equipment, the training and 
authority required by §68.215(c) will have to be received from the 
manufacturer of the equipment so modified. 

 

A.9 Terminal equipment, including its premises wiring directly connected to PSDS 
(Type I, II or III)  

 

a)  Terminal equipment, including its premises wiring directly connected to PSDS 

(Type I, II or III) on or before November 13, 1996, may remain for service life 
without approval, unless subsequently modified. Service life means the life of 
the equipment until retired from service. Modification means changes to the 
equipment that affect compliance with technical criteria in this standard or 47 
CFR Part 68 rules. 

b)  New installation of terminal equipment, including its premises wiring, may 

occur until May 13, 1998, without approval of any terminal equipment 
involved, provided that the terminal equipment is of a type directly connected 
to PSDS (Type I, II or III) as of November 13, 1996. This terminal equipment 
may remain connected and be reconnected to PSDS (Type I, II or III) for 
service life without approval unless subsequently modified. 

c)  Terminal equipment including premises wiring and protective apparatus (if 

any) directly connected to the network on April 20, 1998, may remain 
connected and be reconnected for life without approval, unless subsequently 
modified. New installations of terminal equipment, including premises wiring 

 142 

background image

TIA-968-A 

 
 

and protective apparatus (if any) may be installed (including additions to 
existing systems) up to May 19, 1999, without approval of any terminal 
equipment involved, provided that the terminal equipment is of a type directly 
connected to the network as of April 20, 1998. This terminal equipment may 
remain connected and be reconnected to the network for life without 
approval, unless subsequently modified. 

 

A.10 Terminal equipment, including premises wiring directly connected to ISDN BRA 
or PRA 

 

a)  Terminal equipment, including premises wiring directly connected to ISDN 

BRA or PRA on November 13, 1996, may remain connected to ISDN BRA or 
PRA for service life without approval, unless subsequently modified. 

b)  New installation of terminal equipment, including premises wiring, may occur 

until May 13, 1998, without approval of any terminal equipment involved, 
provided that the terminal equipment is of a type directly connected to ISDN 
BRA or PRA as of November 13, 1996. This terminal equipment may remain 
connected and be reconnected to ISDN BRA or PRA for service life without 
approval unless subsequently modified. 

 

A.11 Grandfathered central office implemented payphone equipment.  

 

a)  Terminal equipment, including its premises wiring, that is directly connected 

to a central-office-implemented telephone line on or before October 8, 1997, 
may remain for service life without approval, unless subsequently modified. 
Service life means that life of the equipment until retired from service. 
Modification means changes to the equipment that affect the part 68-related 
characteristics of that equipment at the network interface. 

b)  New installation of terminal equipment, including its premises wiring, may 

occur until April 8, 1999, without approval of any central-office-implemented 
telephone line equipment involved, provided that the terminal equipment is of 
a type directly connected to a central-office-implemented telephone line as of 
October 8,1997. This terminal equipment may remain connected and be 
reconnected to a central-office-implemented telephone line.   

 

143 

background image

` TIA-968-A 
 

Annex B (informative) 

Cross-Reference to 47 CFR Part 68 

This annex provides a cross-referenced index between 47 CFR Part 68 (October 2000), 47 
CFR Part 68 (February 2001), and this Standard. 

Table A.1 Cross-Reference to Body Text 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

Subpart A – General. 

Subpart A - General. 

 

68.1 Purpose. 

68.1 (no change) 

1.1 Scope 

68.2 Scope. 

(7) 68.2 (revised) Scope. 

1.2 Normative References 

68.3 Definitions. 

(8) 68.3 (revised) 
Definitions. 

1.3 Definitions 

68.4 Hearing aid-compatible 
telephones. 

68.4 (no change). 

 

68.5 Waivers. 

68.5 (no change). 

 

68.6 Telephones with 
volume control. 

68.6 (no change). 

 

 

(9) 68.7 (added) Technical 
criteria for terminal 
equipment. 

 

Subpart B. Conditions on 
Use of Terminal Equipment. 

Subpart B. 

2.0 Conditions on Use 

68.100 General. 

(10) 68.100 (revised) 
General. 

 

68.102 Registration 
requirements. 

(11) 68.102 (revised) 
Terminal equipment 
approval requirement. 

 

68.104 Means of 
connection. 

(12) Removed. 

 

 

(13) 68.105 (added) 
Minimum point of entry 
(MPOE) and demarcation 
point. 

 

68.106 Notification to 
telephone company. 

(14) 68.106 (revised) 
Notification to provider of 
wireline 

 

 144 

background image

TIA-968-A 

 
 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

telecommunications. 

68.108 Incidence of harm. 

(15) 68.108 (introductory 
text amended) Incidence of 
harm. 

 

68.110 Compatibility of the 
telephone network and 
terminal equipment. 

(16) 68.110 (revised) 
Compatibility of the public 
switched telephone network 
and terminal equipment. 

 

68.112 Hearing aid-
compatibility. 

68.112 (no change). 

 

68.160 Designation of 
Telecommunication 
Certification Bodies. 

68.160 (no change). 

 

68.162 Requirements for 
Telecommunication 
Certification Bodies. 

68.162 (no change). 

 

Subpart C – Registration 
Procedures.. 

(17 – change in title) 
Subpart C – Terminal 
Equipment Approval 
Procedures. 

3.0 Procedures 

68.200 Application for 
equipment registration. 

(18) Removed. 

 

 

(19) 68.201 (added) 
Connection to the public 
switched telephone network. 

 

68.202 Public notice. 

(20) Removed. 

 

68.204 Comments and 
replies. 

(20) Removed. 

 

68.206 Grant of application. 

(20) Removed. 

 

68.208 Dismissal and return 
of application. 

(20) Removed. 

 

68.210 Denial of application.  (20) Removed. 

 

68.211 Registration 
revocation procedures. 

(21) 68.211 (revised) 
Terminal equipment 
approval revocation 
procedures. 

 

68.212 Assignment of 
equipment registration. 

(22) Removed. 

 

145 

background image

` TIA-968-A 
 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

68.213 Installation of other 
than “fully protected” non-
system simple customer 
premises wiring. 

68.213 ((23) (b) - revised) 
Installation of other than 
“fully protected” non-system 
simple customer premises 
wiring. 

 

68.214 Changes in 
registered equipment and 
circuitry. 

(24) 68.214 (revised) 
Changes in other than “fully 
protected” premises wiring 
that serves fewer than four 
subscriber access lines. 

 

68.215 Installation of other 
than “fully protected” system 
premises wiring that serves 
more than four subscriber 
access lines. 

(25) 68.215 (amended) 
Installation of other than 
“fully protected” system 
premises wiring that serves 
more than four subscriber 
access lines. 

 

 

(25) Revised 68.215(a)(2), 
(a)(3), the first sentence of 
(d)(5), (e)(9), (g)(1) through 
(5), and by removing the 
note after (d)(2). 

 

68.216 Repair of registered 
terminal equipment and 
registered protective 
circuitry. 

(26) Removed. 

 

68.218 Responsibility of 
grantee of equipment 
registration. 

(27) 68.218 (revised) 
Responsibility of the party 
acquiring equipment 
authorization. 

 

68.220 Cross reference. 

(28) Removed. 

 

68.224 notice of non-
hearing aid compatibility. 

68.224 (no change). 

 

68.226 Registration of digital 
systems components. 

(29) Removed. 

 

Subpart D – Conditions for 
Registration. 

(30 – heading revised) 
Subpart D, Conditions for 
Terminal Equipment 
Approval. 

 

 

 

4.0 Tech Rqmts. 

68.300 Labeling 
requirements. 

(31) 68.300 (amended) 
Approval of terminal 

4.1 Labeling 

 146 

background image

TIA-968-A 

 
 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

equipment for connection to 
the public switched network. 

 

(31) revised 68.300(a), 
removed (b), redesignated 
(c) as (b). 

 

68.302 Environmental 
simulation. 

(32) Removed. 

4.2 Environmental Sim. 

68.304 Leakage current 
limitation. 

(32) Removed. 

4.3 Leakage Current Lim. 

68.306 Hazardous voltage 
limitations. 

(32) Removed. 

4.4 Hazardous Voltage Lim. 

68.308 Signal power 
limitations. 

(32) Removed. 

4.5 Signal Power Lim. 

68.310 Transverse balance 
limitations. 

(32) Removed. 

4.6 Transverse Bal. Lim. 

68.312 On-hook impedance 
limitations. 

(32) Removed. 

4.7 On-Hook Z Lim. 

68.314 Billing protection. 

(32) Removed. 

4.8 Billing Protection 

68.316 Hearing aid 
compatibility: Technical 
requirements. 

68.316 (no change). 

 

68.317 Hearing aid 
compatibility volume control: 
technical standards. 

68.317 (no change). 

 

68.318 Additional 
limitations. 

68.318 (no change). 

 

 

(33) 68.320 (added) 
Supplier’s Declaration of 
Conformity. 

 

 

(34) 68.321 (added) 
Location of responsible 
party. 

 

 

(35) 68.322 (added) 
Changes in name, address, 
ownership or control of 
responsible party. 

 

 

(36) 68.324 (added) 
Supplier’s Declaration of 
Conformity requirements. 

 

147 

background image

` TIA-968-A 
 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

 

(37) 68.326 (added) 
Retention of records. 

 

 

(38) 68.346 (added) 
Description of testing 
facilities. 

 

 

(39) 68.348 (added) 
Changes in equipment and 
circuitry subject to a 
Supplier’s Declaration of 
Conformity. 

 

 

(40) 68.350 (added) 
Revocation of Supplier’s 
Declaration of Conformity. 

 

 

(41) 68.354 (added) 
Numbering and labeling 
requirements for terminal 
equipment. 

 

Subpart E - Complaint 
Procedures. 

Subpart E, Complaint 
Procedures. 

5.0 Complaints. 

68.400 Content. 

(No change) 

 

68.402 Amended 
complaints. 

(No change) 

 

68.404 Number of copies. 

(No change) 

 

68.406 Service. 

(No change) 

 

68.408 Answers to 
complaints and amended 
complaints. 

(No change) 

 

68.410 Replies to answers 
or amended answers. 

(No change) 

 

68.412 Defective pleadings.  (No change) 

 

68.414 Hearing aid-
compatibility: Enforcement. 

(No change) 

 

 

(42) 68.415 (added) Hearing 
aid-compatibility and volume 
control informal complaints. 

 

 

(43) 68.417 (added) 
Informal complaints, form 
and content. 

 

 148 

background image

TIA-968-A 

 
 

47 CFR Part 68 

(October 2000) 

47 CFR Part 68 

(February 2001) 

TIA-968 

 

(44) 68.418 (added) 
Procedure; designation of 
agents for service. 

 

 

(45) 68.419 (added) 
Answers to informal 
complaints. 

 

 

(46) 68.420 (added) Review 
and disposition of informal 
complaints. 

 

 

(47) 68.423 (added) Actions 
by the Commission on its 
own motion. 

 

Subpart F – Connectors. 

(48) Removed. 

6.0 Connectors. 

68.500 Specifications. 

 

6.1 Specifications. 

68.502 Configurations. 

 

6.2 Configurations. 

68.504 Universal patent 
license agreement. 

 

6.3 Universal patent license 
agreement. 

68.506 Configurations used 
to connect multi-line 
communications systems 
such as Private Branch 
Exchange (PBX) and key 
telephone systems. 

 

6.4 Configurations used to 
connect multi-line 
communications systems 
such as Private Branch 
Exchange (PBX) and key 
telephone systems. 

 

(49) Subpart G (added) 
Administrative Council for 
Terminal Attachments. 

 

 

68.602 Sponsor of the 
Administrative Council for 
Terminal Attachments. 

 

 

68.604 Requirements for 
submitting technical criteria. 

 

 

68.608 Publication of 
technical criteria. 

 

 

68.610 Database of terminal 
equipment. 

 

 

68.612 Labels on terminal 
equipment. 

 

 

68.614 Oppositions and 
appeals. 

 

149 

background image

` TIA-968-A 
 

 

 150 

background image

TIA-968-A 

 
 

Table A.2 Cross-Reference to Figures 

47 CFR Part 68 

(Pre-Report & Order, CC 

Docket 99-216) 

47 CFR Part 68 

(Post-Report & Order, CC 

Docket 99-216) 

TIA-968 

68.3(a) (Removed) 1.1 

68.3(b) 

(Removed) 

1.2 

68.3(c) 

(Removed) 

1.3 

68.3(d) 

(Removed) 

1.4 

68.3(e)(i) 

(Removed) 

1.5 

68.3(e)(i) 

(Removed) 

1.6 

68.3(f) 

(Removed) 

1.7 

68.3(g) 

(Removed) 

1.8 

68.3(h) 

(Removed) 

1.9 

68.3(i) 

(Removed) 

1.10 

68.3(j) 

(Removed) 

1.11 

68.3(k) 

(Removed) 

1.12 

68.302(a) 

(Removed) 

4.1 

68.302(b) 

(Removed) 

4.2 

68.302(c) 

(Removed) 

4.3 

68.306(a) 

(Removed) 

4.4 

68.308(a) 

(Removed) 

4.5 

68.308(b) 

(Removed) 

4.6 

68.310-1(a) 

(Removed) 

4.7 

68.310-1(b) 

(Removed) 

4.8 

68.310(c) 

(Removed) 

4.9 

68.310(d) 

(Removed) 

4.10 

68.310(e) 

(Removed) 

4.11 

68.310(f) 

(Removed) 

4.12 

68.500(a)(1)(i) 

(Removed) 

6.1 

68.500(a)(2)(i) 

(Removed) 

6.2 

68.500(a)(1)(ii) 

(Removed) 

6.3 

68.500(a)(3)(i) 

(Removed) 

6.4 

151 

background image

` TIA-968-A 
 

47 CFR Part 68 

(Pre-Report & Order, CC 

Docket 99-216) 

47 CFR Part 68 

(Post-Report & Order, CC 

Docket 99-216) 

TIA-968 

68.500(a)(4)(i) (Removed) 

6.5 

68.500(a)(5)(i) 

(Removed) 

6.6 

68.500(b)(2)(i) (Removed) 

6.7 

68.500(b)(3)(i) (Removed) 

6.8 

68.500(c)(1)(i) (Removed) 

6.9 

68.500(c)(2)(i) (Removed) 

6.10 

68.500(c)(2)(ii) (Removed) 

6.11 

68.500(c)(3)(i) (Removed) 

6.12 

68.500(c)(4)(i) (Removed) 

6.13 

68.500(c)(5)(i) (Removed) 

6.14 

68.500(d)(3) (Removed) 

6.15 

68.500(d)(2)(i) (Removed) 

6.16 

68.500(d)(3)(i) (Removed) 

6.17 

68.500(e)(1) (Removed) 

6.18 

68.500(e)(2) (Removed) 

6.19 

68.500(e)(3) (Removed) 

6.20 

68.500(e)(4) (Removed) 

6.21 

68.500(f)(1) (Removed) 

6.22 

68.500(f)(2) (Removed) 

6.23 

68.500(f)(3) (Removed) 

6.24 

68.500(g)(1) (Removed) 

6.25 

68.500(g)(2) (Removed) 

6.26 

68.500(h) (Removed)  6.27 

68.500(i)(1)(i) (Removed) 

6.28 

68.500(i)(2)(i) (Removed) 

6.29 

68.500(i)(2)(ii) (Removed) 

6.30 

68.500(i)(3)(i) (Removed) 

6.31 

68.500(i)(4)(i) (Removed) 

6.32 

68.500(i)(5)(i) (Removed) 

6.33 

68.500(j)(1) (Removed) 

6.34 

 152 

background image

TIA-968-A 

 
 

47 CFR Part 68 

(Pre-Report & Order, CC 

Docket 99-216) 

47 CFR Part 68 

(Post-Report & Order, CC 

Docket 99-216) 

TIA-968 

68.500(j)(2)(i) (Removed) 

6.35 

153 

background image

` TIA-968-A 
 

Table A.3 Cross-Reference to Tables 

47 CFR Part 68 

(Pre-Report & Order, CC 

Docket 99-216) 

47 CFR Part 68 

(Post-Report & Order, CC 

Docket 99-216) 

TIA-968 

68.304(a) (Removed)  4.1 

68.306(a) 

(Removed) 

4.2 

68.306(b) 

(Removed) 

4.3 

68.306(c) 

(Removed) 

4.4 

68.308(a) 

(Removed) 

4.5 

68.308(b) 

(Removed) 

4.6 

68.308(c) 

(Removed) 

4.7 

68.308(d) 

(Removed) 

4.8 

68.308(e) 

(Removed) 

4.9 

68.310(a) 

(Removed) 

4.10 

68.310(b) 

(Removed) 

4.11 

68.312(a) 

(Removed) 

4.12 

68.312(b) 

(Removed) 

4.13 

 
 
 

 154 

background image
background image

  

TIA-968-A 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left intentionally blank. 

 
 

156 

background image

  

TIA-968-A 

 
 

Annex C (informative) 

Informative Definitions 

The following definitions are found in the 47 CFR Part 68, Subpart A, and are provided 
below as reference: 
 
C.1. 

Demarcation point (also point of interconnection):

 As used in this part, the point 

of demarcation and/or interconnection between the communications facilities of a 
provider of wireline telecommunications, and terminal equipment, protective 
apparatus or wiring at a subscriber’s premises. 

 

C.2. 

Essential telephones:

 Only coin-operated telephones, telephones provided for 

emergency use, and other telephones frequently needed for use by persons using 
such hearing aids. 

 

C.3. 

Harm:

 Electrical hazards to the personnel of providers of wireline 

telecommunications, damage to the equipment of providers of wireline 
telecommunications, malfunction of the billing equipment of providers of wireline 
telecommunications, and degradation of service to persons other than the user of the 
subject terminal equipment, his calling or called party.  

 
C.4. 

Hearing aid compatible:

 Except as used at 47 CFR Part 68.4(a)(3) and 68.414, the 

terms hearing aid compatible or hearing aid compatibility are used as defined in 
68.316, unless it is specifically stated that hearing aid compatibility volume control, 
as defined in 68.317, is intended or is included in the definition. 

 
C.5. 

Inside wiring or premises wiring:

 Customer-owned or controlled wire on the 

subscriber’s side of the demarcation point. 

 
C.6. 

Premises:

 As used herein, generally a dwelling unit, other building or a legal unit of 

real property such as a lot on which a dwelling unit is located, as determined by the 
provider of telecommunications service’s reasonable and nondiscriminatory standard 
operating practices. 

C.6.1

  Non-system premises wiring:

 Wiring that is used with up to four-line business and 

residence services, located at the subscriber’s premises. 

C.6.2 

Fully protected non-system premises wiring:

 Non-system premises wiring which 

is electrically behind approved (or grandfathered) equipment or protective circuitry 
that assures that electrical contact between the wiring and commercial power wiring 
or earth ground will not result in hazardous voltages at the telephone network 
interface. 

C.6.3 

Unprotected non-system premises wiring:

 All other non-system premises wiring. 

 
C.7. 

Private radio services:

 Private land mobile radio services and other 

communications services characterized by the Commission in its rules as private 

157 

background image

` TIA-968-A 
 

radio services. 

 
C.8. 

Responsible party:

 The party or parties responsible for the compliance of terminal 

equipment or protective circuitry intended for connection directly to the public 
switched telephone network with the applicable rules and regulations in this part and 
with the technical criteria published by the Administrative Council for Terminal 
Attachments. If a Telecommunications Certification Body certifies the terminal 
equipment, the responsible party is the holder of the certificate for that equipment. If 
the terminal equipment is the subject of a Supplier’s Declaration of Conformity, the 
responsible party shall be: the manufacturer of the terminal equipment, or the 
manufacturer of protective circuitry that is marketed for use with terminal equipment 
that is not to be connected directly to the network, or if the equipment is imported, 
the importer, or if the terminal equipment is assembled from individual component 
parts, the assembler. If the equipment is modified by any party not working under the 
authority of the responsible party, the party performing the modifications, if located 
within the U.S., or the importer, if the equipment is imported subsequent to the 
modifications, becomes the new responsible party. Retailers or original equipment 
manufacturers may enter into an agreement with the assembler or importer to 
assume the responsibilities to ensure compliance of the terminal equipment and to 
become the responsible party.  

 

C.9. 

Secure telephones:

 Telephones that are approved by the United States 

Government for the transmission of classified or sensitive voice communications. 

 
C.10. 

Terminal equipment:

 As used in this part, communications equipment located on 

customer premises at the end of a communications link, used to permit the stations 
involved to provide telecommunications or information services. 

 
 

 158 

background image

TIA-968-A 

 
 

Annex D (informative) 

Informative Definitions 

The following definitions previously were in 47 CFR 68.3. 
 
D.1. 

The following definitions were subdefinitions of “Demarcation Point” (see Annex C). 

D.1.1.

 Single-unit installations:

 For single unit installations existing as of August 13, 1990, 

and installations installed after that date the demarcation point shall be a point within 
30 cm (12 in) of the protector or, where there is no protector, within 30 cm (12 in) of 
where the telephone wire enters the customer’s premises, or as close thereto as 
practicable.  

D.1.2.

  Multiunit installations: 

a)  In multiunit premises existing as of August 13, 1990, the demarcation point shall be 

determined in accordance with the local carrier’s reasonable and non-discriminatory 
standard operating practices. Provided, however, that where there are multiple 
demarcation points within the multiunit premises, a demarcation point for a customer 
shall not be further inside the customer’s premises than a point twelve in from where 
the wiring enters the customer’s premises, or as close thereto as practicable.  

b)  In multiunit premises in which wiring is installed after August 13, 1990, including 

major additions or rearrangements of wiring existing prior to that date, the telephone 
company may establish a reasonable and nondiscriminatory practice of placing the 
demarcation point at the minimum point of entry. If the telephone company does not 
elect to establish a practice of placing the demarcation point at the minimum point of 
entry, the multiunit premises owner shall determine the location of the demarcation 
point or points. The multiunit premises owner shall determine whether there shall be 
a single demarcation point location for all customers or separate such locations for 
each customer. Provided, however, that where there are multiple demarcation points 
within the multiunit premises, a demarcation point for a customer shall not be further 
inside the customer’s premises than a point 30 cm (12 in) from where the wiring 
enters the customer’s premises, or as close thereto as practicable.  

c)  In multiunit premises with more than one customer, the premises owner may adopt a 

policy restricting a customer’s access to wiring on the premises to only that wiring 
located in the customer’s individual unit that serves only that particular customer. 

 
D.2. 

The following definitions were subdefinitions of Inside (premises) wiring. 

D.2.1. 

System premises wiring:

 Wiring which connects separately housed equipment 

entities or system components to one another, or wiring which connects an 
equipment entity or system component with the telephone network interface, located 
at the customer’s premises and not within an equipment housing. 

D.2.2.

  Fully protected systems premises wiring:

 Premises wiring that is either: No 

greater than 15 m (50 feet) in length (measured linearly between the points where it 

159 

background image

` TIA-968-A 
 

leaves equipment or connector housings) and approved as a component of and 
supplied to the user with the approved terminal equipment or protective circuitry with 
which it is to be used. Such wiring shall either be pre-connected to the equipment or 
circuitry, or may be so connected by the user (or others) if it is demonstrated in the 
approval application that such connection by the untrained will not result in harm, 
using relatively fail-safe means.  A cord that complies with the previous section either 
as an integral length or in combination with no more than one connectorized 
extension cord. If used, the extension cord shall comply with the requirements of 47 
CFR Part 68.200(h). Wiring located in an equipment room with restricted access, 
provided that this wiring remains exposed for inspection and is not concealed or 
embedded in the building’s structure, and that it conforms to 47 CFR Part 68.215(d).  
Electrically behind approved (or grandfathered) equipment, system components or 
protective circuitry which assure that electrical contact between the wiring and 
commercial power wiring or earth ground will not result in hazardous voltages or 
excessive longitudinal imbalance at the telephone network interface. 

D.2.3.

  Protected system premises wiring requiring acceptance testing for imbalance: 

Premises wiring which is electrically behind approved (or grandfathered) equipment, 
system components or circuitry which assure that electrical contact between the 
wiring and commercial power wiring will not result in hazardous voltages at the 
telephone network interface. 

D.2.4

  Unprotected system premises wiring:

 All other premises wiring. 

 160 

background image

  

TIA-968-A 

 
 

Annex E (informative) 

Informative References 

 
E.1. 

Part 68 Application Guide: A document produced by TIA TR41.11 Subcommittee on 
Administrative Regulatory Considerations to provide administrative guidance on Part 
68 implementation. 
(See also: 

www.tiaonline.org/standards/sfg/tr-41

 
E.2. 

Industry Canada, Standard CS-03, 

Standard for Terminal Equipment, Systems, 

Network Protection Devices and Connection Arrangements.

 

 
E.3.   ANSI T1.413-1998, 

Network and Customer Installation Interfaces – Asymmetric 

Digital Subscriber Line (ADSL) Metallic Interface 

 
E.4.   ANSI T1.417-2001, 

Spectrum Management for Loop Transmission Systems 

 
For additional information about references, contact the respective organizations at the 
following addresses: 
 

ANSI 

American National Standards Institute 
1819 L Street, NW 
Washington, DC 20036 
(212) 642-4900 
www.ansi.org 

 
FCC 

Federal Communications Commission 
445 12th St. SW 
Washington DC 20554 
(202) 418-0190 
www.fcc.gov 

 
ITU 

International Telecommunication Union 
Place des Nations 
CH-1211 Geneva 20 Switzerland 
+41 22 730 51 11 
www.itu.int 

 
TIA 

Telecommunications Industry Association 
2500 Wilson Blvd., Suite 300 
Arlington, VA 22201   USA 
(703) 907-7700 

www.tiaonline.org

 

 
 
 
 

161 

background image

` TIA-968-A 
 

 162 

 
 

REMOVE THE FOLLOWING BEFORE 
PUBLICATION 

 
 

TR41.9.1 Writing Committee

 â€“ 

Work Program & Revision Log

 

 

(This section is only for the writing groups convenience will be deleted from the final draft.)

 

 
 

Phil Havens, P.E.  Chair 
John Shinn, P.E.  Co-Editor 
Anh Nguyen, Co-Editor 
 
 
 
Draft 
Rev 

Date 

Description of Change 

Authorization 

1.0  

 

 

2.0  

 

 

3.0  

 

 

Contribution -005R2 adds transverse balance 
requirements- Tim L Cisco 
Contribution -017R1 ADSL req'mnts - Peter W Paradyne 
Contribution -020 Encoded Analog Content - Trone B 
Verizon 
Contribution -022 Frequency domain template - Larry Bell 
- Adtran 
Contribution -060R1 (from Nov 01) Stutter dial tone - 
Steve W Vtech 
Concept to add Annex to show revision history (see draft 
129 for example)

 

Vancouver  
Feb 2002

 

4.0 

1 May 2002 

Contribution -006 correct table in 4.5.5.2.1 - Tim L Cisco 

Crystal City 
May 2002 

 

 

 

 

 

 

 

 

 

background image
background image

Document Outline