background image

The Late Show with Rob!  Tonight’s 

Special Guest: Hydrazine

Robert Matunas

December 8

th

, 2004

Last One of the Year!!

Schmidt, E. W., 

Hydrazine and Its Derivatives

, Wiley-Interscience, New York, 2

nd

edn., 2001

Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines,

Chem. Soc. Rev., 

2001

30

, 205-213

background image

The Late Show with Rob!  Tonight’s 

Special Guest: Hydrazine

Robert Matunas

January 5

th

, 2005

Happy New Year!!!

Schmidt, E. W., 

Hydrazine and Its Derivatives

, Wiley-Interscience, New York, 2

nd

edn., 2001

Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines,

Chem. Soc. Rev., 

2001

30

, 205-213

background image

The Late Show with Rob!  Tonight’s 

Special Guest: Hydrazine

Robert Matunas

January 12

th

, 2005

(Third Time’s the Charm!)

Schmidt, E. W., 

Hydrazine and Its Derivatives

, Wiley-Interscience, New York, 2

nd

edn., 2001

Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines,

Chem. Soc. Rev., 

2001

30

, 205-213

background image

The Late Show with Rob!  Tonight’s 

Special Guest: Hydrazine

Robert Matunas

January 19

th

, 2005

(I’ve Forgotten Everything)

Schmidt, E. W., 

Hydrazine and Its Derivatives

, Wiley-Interscience, New York, 2

nd

edn., 2001

Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines,

Chem. Soc. Rev., 

2001

30

, 205-213

background image

Overview

Historical development of hydrazine (and friends)

Industrial outlook on hydrazine compounds

Selected synthetic methods for preparing simple 
alkyl hydrazines

Some Myers Hydrazine Chemistry

background image

It All Started with H. Emil Fischer (1852-1919)…

NH

2

N

N

HNO

2

Sulfite salts

H

N

NH

2

Phenylhydrazine!

Phenylhydrazine was the first hydrazine compound 

discovered; Fischer synthesized it serendipitously in 

1875 by reduction of the corresponding diazonium salt.

Fischer, E. 

Ber. Dtsch. Chem. Ges., 

1875

8

, 589.

background image

Some “Sweet” Synthesis

Fischer had been working on sugar syntheses, but lacked methods for obtaining the pure 

compounds.  Imagine making a sugar from scratch and then failing to isolate it!  

Phenylhydrazine to the rescue!

CHO
CHOH

(CHOH)

3

CH

2

OH

Sugar

PhNHNH

2

HC

CHOH

(CHOH)

3

CH

2

OH

NNHPh

HC

C

(CHOH)

3

CH

2

OH

NNHPh

PhNHNH

2

O

PhNHNH

2

HC

C

(CHOH)

3

CH

2

OH

NNHPh
NNHPh

Osazone

AcOH

AcOH

AcOH

Fischer, E. 

J. Am. Chem. Soc., 

1890

12

, 340-8.

Fischer, E. 

Ber. Dtsch. Chem. Ges., 

1884

17

, 579.

background image
background image

Some Other Early Fischer Syntheses…

Fischer used some of the following strategies to prepare ~20 different 

hydrazines, all before free hydrazine itself was known. 

NH

R

1

R

2

nitrosation

N

R

1

R

2

NO

reduction

N

R

1

R

2

NH

2

N

H

N

H

O

R

R

nitrosation

N

N

H

O

R

R

NO

hydrolysis

reduction

N

N

H

O

R

R

NH

2

HN NH

2

R

HN NH

2

Ph

N NH

Ph

Bz

Bz

benzoylation

methylation

debenzoylation

N N

Ph

Bz

Bz

CH

3

N N

Ph

H

H

CH

3

The last preparation of a 1,2-disubstituted hydrazine anticipates the 

modern dependence on protecting groups in synthesis.

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

background image

…but Preparing Free Hydrazine Itself Took Time

Curtius eventually prepared free hydrazine (as the hydrate) via a circuitous route.  The year was 

1887, already 12 years after the discovery of phenylhydrazine.  Since that time, about 20 other 

hydrazine derivatives were already known!

EtO

O

H

N
N

2

KOH

HN

N N

NH

CO

2

K

KO

2

C

H

+

HN

N N

NH

CO

2

H

HO

2

C

H

+

H

2

N NH

2

2

+  2

HO

O

OH

O

Hydrazine!

Curtius, 

J. Prakt. Chem. 

1889

39

, 107-39.

background image

Molecular Properties of Hydrazine

Of the possible conformations for hydrazine, the gauche form is favored.

N

N

H

H

H

H

1.45

Å

1.02

Å

112

°

Bond Strengths:

N-N: ~ 50-60 kcal/mol

N-H: ~ 80-90 kcal/mol

Rotational Barrier:

6-10 kcal/mol

(vs. ~ 3 kcal/mol for ethane)

background image

Hydrazine Production Today

Of the many methods available, the Raschig process is still in use (discovered 1907):

NH

3

  + NaOCl

ClNH

2

+ NaOH

ClNH

2

  +  NH

3

  +  NaOH

H

2

NNH

2

  +  NaCl  +  H

2

O

Optimal ratio of reactants is 

33:1 NH

3

:NaOCl!

The only waste produced is brine, but this is still a 

significant issue on plant scale.

H

2

NNH

2

  +  ClNH

2

2 NH

4

Cl +  N

2

The major side reaction is destruction of the product 

hydrazine by further reaction with chloramine.

background image

An Improved Process for Hydrazine Production: The 

Atofina-PCUK “Cycle”

R

1

R

2

O +  NH

3

R

1

R

2

NH

- H

2

O

O

O

R

3

R

3

R

1

R

2

NH

O

+  R

3

OR

3

+ NH

3

- H

2

O

R

1

R

2

N

NH

2

R

1

R

2

O

R

1

R

2

N N

R

1

R

2

- H

2

O

+ 2 H

2

O

H

2

NNH

2

  !

R

1

, R

2

= Me or Et; R

3

= H

Raschig Process: 4 tons NaCl/ton of hydrazine; 60% yield (based on NH

3

); 125 kWh/ton hydrazine required

Atofina-PCUK: No byproducts; >80% yield (based on NH

3

); 16 kWh/ton hydrazine required

background image

Hydrazine in the Wonderful World Around Us

Free hydrazine on the Earth is not known (because of air oxidation), but was assumed to be 
present in the primordial environment.

One major application of hydrazine today is as a rocket fuel (along with methylhydrazine as 
well).  First developed by Germany for powering prototype jet engines in the Messerschmitt 
ME163 (WWII), simple hydrazines are still in use today by NASA for specific applications 
requiring certain types of thrust.  For example, the International Space Station uses 
dimethylhydrazine for propulsion to maintain orbit and control attitude.

Aside from pesticides and pharmaceuticals, the other major hydrazine application is in the 
deoxygenation of boiler feed water.  This decomposition is catalyzed by metals such as 
copper and cobalt, and most likely also by metallic species leached gradually from pipe 
systems (especially nickel).

H

2

NNH

2

+ O

2

N

2

  + 2 H

2

O

background image

Naturally Occurring Hydrazines

N

Me

N

O

H

H

Gyromitrin, from the false morel

mushroom, 

Gyromitra esculenta

HO

O

NH

2

H

N

O

N

H

OH

Agaritine, from the N.A. commercial

mushroom, 

Agaricus bisporus, 

777 

million lbs. grown in 1996

H

2

N

OH NH

2

H

N

O

N
CH

3

OH

O

Negamycin, antibiotic from 

Streptomyces purpeofuscus

N

HN

CH

3

O

NH

2

OH

O

Linatine, found in linsead

meal and flax

background image

Some Synthetic Hydrazines with Useful Properties

N

O

NHNH

2

Isoniazid (TB)

N

O

N

H

H

N

Iproniazid (early antidepressant,

but toxic)

N

N

NHNH

2

Hydralazine

(antihypertensive)

N

N

F

3

C

SO

2

NH

2

Celebrex

(NSAID)

N

N

N

NH

2

SMe

O

Sencor

(Herbicide)

NH

NH

O

O

Maleic hydrazide

(plant growth retardant)

Maleic hydrazide is marketed under the amusing trade names Slo-Gro, Royal Slow-Gro, Slows-It, 

De-Sprout, De-Cut, Fair Plus, Sprout Stop, and Super Sucker-Stuff

background image

The Woes of Hydrazine Alkylation

Direct alkylation of hydrazine is problematic for the same reason that direct alkylation of 

primary amines is problematic: overalkylation is competitive with monoalkylation.

H

2

N

NH

2

RX

Base

HN

NH

2

N

NH

2

N NH

2

+

+

R

R

R

R

R

R

X

-

Whoa!

H

2

N

NH

2

CD

3

I

Base

HN

NH

2

N

NH

2

+

CD

3

CD

3

D

3

C

HN

NH

CD

3

CD

3

+

56.1%

42.4%

1.5%

Anthoni, U.; Larsen, C.; Nielsen, P.H.  

Acta Chem. Scand.

1968

22

, 1025-1035.

background image

Direct Alkylation

Can

Sometimes Be Feasible…

Direct alkylation can occasionally be feasible if (1) the electrophile is very bulky; (2) the 

electrophile contains an EWG; or (3) an activated alkene is used.

H

2

N

NH

2

Ph

3

CCl

N

H

NH

2

Ph

3

C

H

2

N

NH

2

EWG

R

H

2

N

H

N

R

EWG

H

2

N

NH

2

X

R

O

N

H

NH

2

R

O

(1)

(2)

(3)

background image

Some Strategies for Monsubstituted Hydrazines

These procedures are invariably reliant on protecting groups of one 

form or another.  An important limitation is that only activated

primary

electrophiles are viable in these reactions.

HN NH

2

Ph

2

OP

RBr/PTC

NaOH

N NH

2

Ph

2

OP

R

HCl

N NH

2

H

R

HN N

Boc

Bu

4

NHSO

4

, KOH

RBr, PhCH

3

, 80 

o

C

N N

Boc

R

2N HCl (2 eq.)

THF, reflux, 3h

N NH

2

H

R

N

O

O

NH

Boc

Ph

3

P, DEAD

ROH

N

O

O

N

Boc

R

MeNHNH

2

H

2

N N

Boc

R

TFA

H

2

N N

H

R

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

Meyer, K. G.  

Synlett

2004

13

, 2355-2356.

background image

More on Monosubstitution

Reductions of hydrazones and hydrazides also leads to monosubstituted

hydrazines, including ones with secondary alkyl groups.

R

1

R

2

O

H

2

NNH

2

R

1

R

2

N NH

2

H

2

/cat. or 

NaCNBH

3

, etc.

R

1

R

2

H

N NH

2

H

N NH

2

R

O

LAH/AlCl

3

H

N NH

2

R

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

background image

1,1-Disbustituted Hydrazines

HN NH

2

R

1

R

2

X

N NH

2

R

1

R

2

N H

R

1

R

2

1) Nitrosation
2) Reduction

N NH

2

R

1

R

2

N H

R

1

R

2

H

2

N-X

X = -Cl, -OSO

3

H

N NH

2

R

1

R

2

N H

R

1

R

2

N

O

R

P

+

N NH

R

1

R

2

P

Deprotection

N NH

2

R

1

R

2

More on that oxaziridine later…

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

background image

1,2-Disubstituted Hydrazines

A bit more troublesome than the 1,1-disubstituted case:

N NH

2

H

Ph

2

OP

R

1

Br/PTC

N NH

2

R

1

Ph

2

OP

N N

R

1

Ph

2

OP

H

Ac

AcCl

R

2

Br/PTC

HCl

N N

R

1

Ph

2

OP

R

2

Ac

N N

H

R

1

H

R

2

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

background image

“Higher” Hydrazines?

No pain, no gain!

N N

Cbz

H

H

H

TsCl, pyr, 

98%

N N

Cbz

H

Ts

H

N N

Cbz

H

Ts

Boc

Boc

2

O, DMAP,

MeCN, 99%

BnBr, K

2

CO

3

, TBAHS, 

MeCN, 3 d, quant.

N N

Cbz

PhH

2

C

Ts

Boc

Mg, MeOH,

sonication, 98%

N N

Cbz

PhH

2

C

H

Boc

MeI, K

2

CO

3

-NaOH, 

TBAHS, PhH, quant.

N N

Cbz

PhH

2

C

CH

3

Boc

1) TFA, DCM, 93-99%

2) 

p

-FC

6

H

4

COCl, pyr., 99%

N N

Cbz

PhH

2

C

CH

3

O

p

-FC

6

H

4

1) TFA (reflux)

2) 

p

-FC

6

H

4

SO

2

Cl, 72%

N N

p

-FC

6

H

4

SO

2

PhH

2

C

CH

3

O

p

-FC

6

H

4

Grehn, L.; Lönn, H.; Ragnarsson, U.  

Chem. Commun.

1997

, 1381-1382.

Greahn, L.; Nyasse, B.; Ragnarsson, U.  

Synthesis

1997

, 1429-1432.

background image

Incorporation of Secondary Alkyl Groups

Using the same triprotected starting material, a single branched substituent can be introduced first by 

the usual condensation/reduction sequence.  Surprisingly, the orthogonally 

N,N

-diprotected motif 

was apparently unknown before this time. 

N N

Cbz

H

Ts

Boc

H

2

 / 5% Pd/C, 

MeOH, 81%

N N

H

H

Ts

Boc

1) neat acetone, 81%
2) NaBH

4

, THF/EtOH

N N

Ts

Boc

H

Grehn, L.; Ragnrasson, U.  

Tetrahedron

1999

55

, 4843-4852.

background image

The Oxaziridine…

The oxaziridine reagent can be used to prepare Boc-protected peptidomimetics, but the 

reaction is hampered by a facile side reaction.  This can be overcome by utilizing 

protected amino acids (but proline works OK by itself!).

NC

N

O

Boc

R

1

NH

CO

2

H

R

2

+

R

1

N

CO

2

H

R

2

NH

Boc

NC

CHO

+

R

1

NH

CO

2

H

R

2

R

1

N

CO

2

H

R

2

CN

Side

Reaction!

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

background image

An Unusual Approach

Some trisubstituted hydrazines can be accessed by displacement of a 

benzotriazole moiety.

HN NH

Ph

Ph

+  R

1

CHO  +

N

H

N

N

DCM, rt, 3 A mol. sieves or

PhH, reflux, Dean-Stark

N NH

Ph

Ph

N

R

1

N

N

N NH

Ph

Ph

N

R

1

N

N

+

R

2

MgX

o

C --> RT

N NH

Ph

Ph

R

2

R

1

X

ZnBr

N NH

Ph

Ph

X

R

1

 = H

R

1

 = H, Et, 

n

-Pr, cyclohexyl

R

2

 = Et, Ph, allyl

X = O, 62%

X = S, 53%

68-99%

Ragnarsson, U.

Chem. Soc. Rev.  

2001

30

, 205-213.

Katritzky, A. R.; Qiu, G.; Yang, B.  

J. Org. Chem.

1997

62

, 8210-8214.

background image

Isoniazid Studies: Hydrazines in Action

To study the mechanism of action of Isoniazid, 

15

N labeled analogs were required.  

Here, the hydrazine was made by an electophilic amination protocol.

N*

O

O

K

+

O

2

N

NO

2

ONH

2

+

N*

O

O

NH

2

DMF, rt,

1h, 88%

4-C

6

H

4

NCO

2

H, CO(Im)

2

THF, reflux, 60 h, 78%

N*

O

O

H

N

O

N

N

2

H

4

, H

2

O, 

15 min, rt, 70%

N

CONHN*H

2

Isoniazid

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

Brosse, N.; Pinto, M. F.; Jamart-Gregoire, B.  

J. Chem. Soc. Perkin Trans, 1

1998

, 3685-3688.

background image

Isoniazid Continued…

Preparation of the other singly labeled Isoniazid…

N*

O

O

Boc

2

O, DMAP, 

Et

3

N,THF, rt, 65%

NH

2

N*

O

O

N

Boc

Boc

H

2

NNH

2

, EtOH/H

2

O,

- 20 

o

C, 2 h, 87%

N* N

Boc

Boc

H

H

4-C

6

H

4

N-CO

2

H, CO(Im)

2

,

THF, reflux, 72 h, 75%

N

CON*HN(Boc)

2

3 M HCl, AcOEt,

quant.

N

CON*HNH

2

2 HCl

Isoniazid (HCl salt)

Ragnarsson, U.

Chem. Soc. Rev., 

2001

30

, 205-213.

Brosse, N.; Pinto, M. F.; Jamart-Gregoire, B.  

J. Chem. Soc. Perkin Trans, 1

1998

, 3685-3688.

background image
background image

The Beginning of the Myers TBS-Tosylhydrazones

A one-pot hydrazone preparation is followed by conversion to an 

E

olefin with overall apparent 

olefin migration.  Note that prior to silylation, the tosylhydrazone typically undergoes 1,4-addition 

of organolithiums rather than 1,2-addition.

CH

3

N

H

NH

Ts

TBSOTf, NEt

3

,

THF, -78 

o

C

CH

3

N

H

N

Ts

TBS

CH

3

O

H

TsNHNH

2

THF, RT

(in one

pot)

1) 

n

-BuLi, THF, -78 

o

C

2) AcOH, CF

3

CH

2

OH,

    -20 

o

C

CH

3

CH

3

CH

3

CH

3

+

E

:

Z

= 12:1

Myers, A. G.; Kukkola, P. J.  

J. Am. Chem. Soc.

1990

112

, 8208-8210.

background image

So what’s the mechanism?  Not this one!

CH

3

N

H

N

Ts

TBS

CH

3

HN

N

Ts

TBS

CH

3

1) 

n

-BuLi

2) AcOH

Attempted

workup

CH

3

HN

N

S

CH

3

OTBS

O

PhCH

3

Stable to chromatography

HF

.

Et

3

N

CH

3

HN

NH

Ts

CH

3

X

CH

3

CH

3

No product formation under the reaction 

conditions, but slow formation at RT with

lower stereoselectivity

Myers, A. G.; Kukkola, P. J.  

J. Am. Chem. Soc.

1990

112

, 8208-8210.

background image

The More Likely Mechanism

CH

3

CH

3

N

H

N

Ts

TBS

CH

3

HN

N

Ts

TBS

CH

3

1) 

n

-BuLi

2) AcOH

- HO

2

SPhCH

3

CH

3

N

N

TBS

CH

3

CH

3

H

H

N

HN

Minimal

A

1,3

 strain

CH

3

H

N

HN

H

CH

3

Not-so-minimal

A

1,3

 strain

Protodesilylation

E

-isomer

Z

-isomer

Myers, A. G.; Kukkola, P. J.  

J. Am. Chem. Soc.

1990

112

, 8208-8210.

background image

And Some Examples

Where A

1,3

strain begins to diminish, A

1,2

strain can start taking over:

H

3

C

CHO

CH

3

CH

3

1) Hydrazone formation

2)

Li

Et

H

3

C

CH

3

CH

3

CH

3

Et

90% (

E

:

Z

 = 2:1)

via:

R

H

H

N NH

Et

vs.

H

H

N NH

Et

R

H

3

C

CHO

CH

3

CH

3

1) Hydrazone formation
2)

Li

CH

3

H

3

C

CH

3

CH

3

Et

CH

3

83% (

E

:

Z

 > 20:1)

CH

3

via:

R

H

CH

3

N NH

CH

3

vs.

H

CH

3

N NH

CH

3

R

Myers, A. G.; Kukkola, P. J.  

J. Am. Chem. Soc.

1990

112

, 8208-8210.

background image

And a Few Hindered Cases

Importantly, no racemization occurs with nonracemic aldehyde precursors.

O

O

O

O

O

CHO

H

3

C

CH

3

H

3

C

CH

3

1) Hydrazone formation

2)

Li

CH

3

CH

3

O

O

O

O

O

H

3

C

CH

3

H

3

C

CH

3

CH

3

CH

3

O

O

O

O

O

CHO

H

3

C

CH

3

H

3

C

CH

3

1) Hydrazone formation

2)

Li

O

O

O

O

O

H

3

C

CH

3

H

3

C

CH

3

O

O

O

O

O

CHO

H

3

C

CH

3

H

3

C

CH

3

1) Hydrazone formation

2)

Li

Et

O

O

O

O

O

H

3

C

CH

3

H

3

C

CH

3

n-

Pr

CH

3

CH

3

81% (

E:Z

 >20:1)

86% (

E:Z

 >20:1)

79% (

E:Z

 = 1:1)

Myers, A. G.; Kukkola, P. J.  

J. Am. Chem. Soc.

1990

112

, 8208-8210.

background image

How About Some Saturation?

If both the hydrazone and the lithium reagent are saturated, then you can get a 

nice, reductive coupling for a net C-C (sp

3

-sp

3

) bond formation.

Ph

N

H

NTBS

Ts

CH

3

Li

Ph

CH

3

CH

3

H

3

CCH

3

1)

, -78 

o

C, THF

2) AcOH, TFE,

-78 

o

C --> RT

94%

Ph

LiN

NTBS

Ts

CH

3

t

-BuLi

CH

3

H

3

CCH

3

AcOH, TFE

Ph

N

N

H

CH

3

CH

3

H

3

CCH

3

Ph

CH

3

CH

3

H

3

CCH

3

+  N

2

Myers, A. G.; Movassaghi, M.  

J. Am. Chem. Soc.

1998

120

, 8891-8892.

background image

Evidence for Those Radicals…

…comes from TEMPO trapping and fragmentation of a cyclopropyl group.

Ph

H

N

N

TBS

Ts

1) 

n

-BuLi, THF, -78 

o

C

2) AcOH, TFE, TEMPO

-78 

o

C --> RT

Ph

O

N

H

3

C

CH

3

CH

3

CH

3

CH

3

93%

Ph

H

N

N

TBS

Ts

t

-BuLi

Ph

CH

3

H

3

C CH

3

83%

Myers, A. G.; Movassaghi, M.  

J. Am. Chem. Soc.

1998

120

, 8891-8892.

background image

But There Can Be Competition for Radical vs. [1,5] 

H-Shift Pathways

As with the previous olefin coupling, when pendant unsaturation is appropriately positioned within 

the molecule, the [1,5] H-shift can be operative (and is preferred).

N

H

N

TBS

Ts

N

N

H

CH

3

1) 

n

-BuLi, -78 

o

C

2) AcOH, TFE,

-78

 o

C --> RT

X

CH

3

[1,5]

CH

3

81%

CH

3

N

HN

H

- N

2

Myers, A. G.; Movassaghi, M.  

J. Am. Chem. Soc.

1998

120

, 8891-8892.

background image

Some Examples of the Reductive Coupling

O

O

O

O

O

H

3

C

CH

3

H

3

C

CH

3

H

N

N

Ts

TBS

O

O

O

O

O

H

3

C

CH

3

H

3

C

CH

3

R

RLi

R = 

t

-Bu, 87%

R = Ph, 78%

Ph

Li

CH

3

CH

3

CH

3

Ph

H

N

N

TBS

Ts

CH

3

+

Ph

CH

3

Ph

CH

3

CH

3

CH

3

94%

Ph

H

N

N

TBS

Ts

+

OLi

N
CH

3

CH

3

THF, -20 

o

C

Ph

N

CH

3

CH

3

O

97%

Even an amide enolate is basic enough for this protocol, but 

lithium acetylides and Grignard reagents are not.

Myers, A. G.; Movassaghi, M.  

J. Am. Chem. Soc.

1998

120

, 8891-8892.

background image

Some 

Limitations

of the Reductive Coupling

Very bulky nucleophiles work OK, but the reaction does suffer when bulky 

hydrazones are used.  Fortunately, a solution to the problem is available.

H

N N Ts

n

-BuLi

H

N N S

H

O

O

CH

3

TBS

+

39%

52%

H

N N SO

2

Ar

Ar = 2,4,6-triisopropylbenzene

n

-BuLi

95%

TBS

TBS

Myers, A. G.; Movassaghi, M.  

J. Am. Chem. Soc.

1998

120

, 8891-8892.

background image

An Example from the World of Synthesis

A late-stage usage of Myers’ coupling chemistry was planned as shown below.  

Unfortunately, it failed in this case, and a lengthier route was needed.

R

2

O

OR

2

H

H

H

R

1

O

N

H

N

SO

2

Ar

TBS

Ar = ?

Li

R

2

O

OR

2

H

H

H

R

1

O

X

R

1

 = TBS, R

2

 = Me

R

1

 = TBS, R

2

 = Me

R

1

 = H, R

2

 = SO

3

Na, Adociasulfate 1

Bogenstätter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L.  

J. Am. Chem. Soc.

1999

121

, 12206-7.

background image

And Another!

OH

HO

HO

OH

(-)-Cylindrocyclophane F

I

OMe

MeO

MeO

OMe

MOMO

N

N

H

3

CPhO

2

S

TBS

+

RCM

Myers reductive alkylation

In the forward direction, this transformation, along with MOM deprotection, 

proceeded in a combined 73% yield.  Subsequent RCM and further deprotections

led nicely to the natural product.

Smith, A. B.; Kozmin, S. A.; Paone, D. V.  

J. Am. Chem. Soc.

1999

121

, 7423-4.

background image

Wolff-Kishner Revisited

R

1

R

2

O

R

1

R

2

In the original procedure (1911), preformed hydrazones were added to hot, solid KOH, or heated 

with NaOEt in EtOH in a sealed tube at 160-200 ºC.  The most common modification now in use is 
the Huang-Minlon version, which calls for heating the carbonyl compound with hydrazine and alkali 

in a high-boiling ethereal solvent at ~ 200 ºC.  Obviously, milder conditions for this classic 

transformation would be of value.

Kishner, N.  

Zh. Russ. Fiz.-Khim. O-va., Chast. Khim.

1911

43

, 582.

Huang-Minlon.  

J. Am. Chem. Soc.

1946

68

, 2487.

background image

The Mechanism

N

R

R

NH

2

+   B

-

M

+

N

R

R

NH M

+

+  B-H

N

R

R

NH M

+

B'-H  +

+  nS

*

B'

N

R

R

N

H

M

+

+

+   H

+

(S)

n

N

R

R

N

H

fast

C

H

R

R

+   N

2

C

H

R

R

fast

+   B-H

H

2

CR

2

   +   B

-

B' +   H

+

(S)

n

fast

B'-H  + nS

Szmant, H. H.  

Angew. Chem. Int. Ed.

1968

7

, 120-128.

background image

More Woes of the Traditional Wolff-Kishner

R

H

O

H

2

NNH

2

R

H

N

NH

2

SiO

2

, moisture,

or just sitting around

R

H

N

N

H

R

Azine!

A major drawback of the Wolff-Kishner reduction is the competitive formation of the azine

byproduct.  This is particularly problematic for aldehyde hydrazones, with many hydrazones having 

lifetimes only on the order of several hours.  Since silyl groups are often “proton surrogates,” using 

a TBS-protected hydrazone instead would seem to be a good idea, but these compounds are not 

formed as easily as one might think:

H

2

N NH

TBS

2

HN NH

TBS

TBS

+   H

2

NNH

2

R

1

N

R

2

H

N

TBS

R

1

N

R

2

NH

2

R

1

N

R

2

N

R

2

R

1

+

+

H

2

N NH

TBS

R

1

O

R

2

Bode, K.; Klingebiel, U.  

Adv. Organomet. Chem.

1996

40

, 1.

background image

The More TBS the Merrier: A Simple Alternative

R

1

R

2

O

N N

H

TBS

H

TBS

0.01 mol% Sc(OTf)

3

,

neat, 0 

o

C --> RT

R

1

R

2

N

N

H

TBS

+   TBSOH

(BTBSH)

•BTBSH is 

less

nucleophilic than TBS-hydrazine, but Sc(OTf)

3

compensates for this.

•The TBSOH byproduct formed is less nucleophilic than the H

2

O produced when TBS-hydrazine is 

employed, thereby preventing self-hydrolysis of the hydrazine.
•BTBSH is 

not

prone to disproportionation like the TBS-hydrazine.

•TBSOH is volatile enough to be removable under vacuum, and excess BTBSH doesn’t affect later 
chemistry, so purification after this step is usually unnecessary.

The product hydrazones are indefinitely stable when properly stored.

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

A Few Examples

H

O

H

OBz

O

O

BTBSH, 0.01 mol% Sc(OTf)

3

,

DCM

H

N

H

OBz

O

O

N

H

TBS

>95%

N

O

OH

OH

O

HCl  2H

2

O

Ph

H

O

BTBSH, 0.01 mol% Sc(OTf)

3

,

neat

Ph

H

N

N

H

TBS

>95%

N

O

OTBS

OH

N N

TBS

H

BTBSH, 1 mol% Sc(OTf)

3

,

CHCl

3

91%

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

And Now: A Modified Wolff-Kishner Reduction

PhO

H

O

1) BTBSH, cat. Sc(OTf)

3

2) KO

t

-Bu, HO

t

-Bu,

DMSO, 100 

o

C, 24 h

PhO

CH

3

92%; 96% "without

evacuation"

PMP

CH

3

O

1) BTBSH, cat. Sc(OTf)

3

2) KO

t

-Bu, HO

t

-Bu,

DMSO, RT, 24 h

PMP

CH

3

94%; 93% "without

evacuation"

O

CH

3

H

3

C

H

H

H

H

H

CH

3

H

HO

CH

3

O

1) BTBSH, cat. Sc(OTf)

3

2) KO

t

-Bu, HO

t

-Bu,

DMSO, RT or 100 

o

C, 24 h

O

CH

3

H

3

C

H

H

H

H

H

CH

3

H

RO

CH

3

RT: R=TBS, 91%; 91% "without 
evacuation"
100 

o

C: R=H, 95%; 96%

"without evacuation"

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

What About A Direct Comparison?

In this complex setting, the modified conditions gave a yield ~15% 

higher than the traditional Wolff-Kishner conditions.

O

CH

3

H

3

C

H

H

H

H

H

CH

3

H

HO

CH

3

O

1) BTBSH, cat. Sc(OTf)

3

2) KO

t

-Bu, HO

t

-Bu,

DMSO, 100 

o

C, 24 h

O

CH

3

H

3

C

H

H

H

H

H

CH

3

H

HO

CH

3

A: 95%; 96% "without 

evacuation"

B: 79%

A

B

OR

H

2

NNH

2

, KOH,

diethylene glycol, 195 

o

C

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

Iodides, Anyone?

Barton reported these new reactions of hydrazones in 1962:

HO

CH

3

CH

3

O

HO

CH

3

CH

3

I

1) H

2

NNH

2

2) I

2

, Et

3

N

O

H

1) H

2

NNH

2

2) I

2

, Et

3

N

I

I

70%

Barton, D. H. R.; O’Brien, R. E.; Sternhell, S.  

J. Chem. Soc.  

1962, 

470-476.

background image

A Useful Mechanistic Dichotomy

Here’s a mechanistic picture for their formation:

N

R

NH

2

I

2

, Et

3

N

N

R

N

I

H

- HI

N

R

N

"I

+

"

N

R

N

I

- N

2

I

R

R'

R'

R'

R'

R'

H

-H

+

I

-

I

R

R'

I

R

R'

I

Depending on the availability of 

β

-hydrogens, either vinyl 

iodides or 

gem

-diiodides (or mixtures) are obtainable.

Barton, D. H. R.; O’Brien, R. E.; Sternhell, S.  

J. Chem. Soc.  

1962, 

470-476.

background image

More Bang for the Buck for the TBS Hydrazones

If the TBS hydrazones work for Wolff-Kishner reactions, then 

why not for the Barton iodide reactions?

Br

O

1) BTBSH, cat. Sc(OTf)

3

2) Slow add'n to THF soln. of

I

2

 and TMG at 0 

o

C

Br

I

85%

N

O

OH

OH

O

HCl  2H

2

O

1) BTBSH, cat. Sc(OTf)

3

2) Slow add'n to THF soln. of

I

2

 and TMG at 0 

o

C

N

O

OH

OH

I

84%

tetrasub. : trisub. = 57:43

PMP

O

1) BTBSH, cat. Sc(OTf)

3

2) Slow add'n to THF soln. of

I

2

 and TMG at 0 

o

C

PMP

PMP

PMP

I

I

I

62            :               17           :               21

71%

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

As for the 

Gem-

Diiodides…

These reactions are serviceable as well, even where 

competitive vinyl iodide formation is possible.

Ph

H

O

1) BTBSH, 0.01 mol% Sc(OTf)

3

2) I

2

, Et

3

N, MeOH, THF, -10 

o

C --> RT

Ph

I

I

64%

H

O

H

OBz

O

O

1) BTBSH, 0.01 mol% Sc(OTf)

3

2) I

2

, Et

3

N, MeOH, THF, -10 

o

C --> RT

I

I

H

OBz

O

O

62%

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

Other Halides Needn’t Be Left Out!

PMP

H

O

1) BTBSH, 0.01 mol% Sc(OTf)

3

2) CuCl

2

, Et

3

N, MeOH, THF, -10 

o

C --> RT

PMP

Cl

Cl

86%

1) BTBSH, 0.01 mol% Sc(OTf)

3

2) CuBr

2

, Et

3

N, MeOH, THF, -10 

o

C --> RT

76%

O

O

O

H

3

C

H

3

C

Br

O

O

H

3

C

H

3

C

O

O

H

3

C

H

3

C

Br

Br

O

O

O

H

3

C

H

3

C

1) BTBSH, 0.01 mol% Sc(OTf)

3

2) Br

2

, BTMG, CH

2

Cl

2

, RT

65% (with 7%

dibromide)

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 5436-5445.

background image

And for Something Completely Different…

Esterification with in-situ generated diazoalkanes!

R

R'

N

N

H

TBS

2-chloropyridine, CH

2

Cl

2

,

-78 

o

C

I

F

F

Ph

R

R'

N

N

HO

R''

O

O

R''

O

R

R'

-78 

o

C --> RT

Two simple examples:

Ph

H

O

HO

O

PMP

1.5 eq.

O

O

PMP

Ph

86%

HO

O

Br

H

3

CO

H

3

CO

H

O

1.5 eq.

O

O

Br

H

3

CO

H

3

CO

90%

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 12222-12223.

background image

And Finally, A Few More Examples

H

O

H

OBz

O

O

3 eq.

NO

2

HO

O

NO

2

O

O

H

OBz

O

O

84%

OH

H

H

3

C

HO

O

O

CO

2

H

H

3

CO

H

3

CO

NO

2

O

H

3 eq.

OH

H

H

3

C

HO

O

O

O

O

O

2

N

OCH

3

OCH

3

82%

CO

2

H

HO

2

C

HO

2

C

CO

2

H

CO

2

H

CO

2

H

H

2

O

O

H

18 eq.

CO

2

Bn

BnO

2

C

BnO

2

C

CO

2

Bn

CO

2

Bn

CO

2

Bn

53%

Furrow, M. E.; Myers, A. G.  

J. Am. Chem. Soc.

2004

126

, 12222-12223.

background image

Document Outline