background image

Colenbrander – Measuring Vision and Vision Loss 

 

Measuring Vision and Vision Loss 

August Colenbrander, MD – San Francisco  

This manuscript is similar to Chapter 51 in Volume 5 

of Duane’s Clinical Ophthalmology, 2001 edition 

 

OUTLINE: 

ASPECTS OF VISION LOSS 
  Anatomical 

and 

Structural 

Changes 

           

 

 

Visual functions   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

  Functional 

vision 

                

  Societal 

and 

Economic 

Consequences 

          

 

 

Measurement   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

  Rehabilitation 

                 

ASSESSMENT of VISUAL ACUITY  

 

Historical developments   

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

 

Visual Acuity Measurement 

– 

Distance 

vision         14 

  Ranges 

of 

vision 

loss 

              14 

  Measurement 

considerations 

            14 

 

 

 

Choice of test distance for normal and near-normal vision   

 

 

15 

   Choice 

of 

test 

distance 

for 

low 

vision 

         15 

 

 

 

Choice of letter size progression, Use of preferred numbers 

 

 

17 

   Choice 

of 

contrast 

and 

illumination          18 

   Choice 

of 

visual 

acuity 

notation 

          19 

 

 

 

Choice of criterion  

 

 

 

 

 

 

 

 

 

 

 

 

 

20 

 

 

 

Choice of test symbols 

 

 

 

 

 

 

 

 

 

 

 

 

22 

 

 

Summary   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 

 

Visual Acuity Measurement 

– 

Near 

vision          25 

  Modified 

Snellen 

formula 

             25 

  Letter 

size 

notations 

for 

continuous 

text 

         29 

  Reading 

fluency 

               30 

 

 

Infant vision testing   

 

 

 

 

 

 

 

 

 

 

 

 

 

32 

ASSESSMENT of FUNCTIONAL VISION 
 

Functional Vision Estimates

   

 

 

 

 

 

 

 

 

 

 

  33 

  General 

ability 

score

   

 

 

 

 

 

 

 

 

 

 

 

  34 

 

 

Visual acuity score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34 

 

 

Visual field score   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 

 

 

Combining values  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37 

 

Direct Assessment of Visual abilities and Functional vision   

 

 

 

 

38 

 

Direct Assessment of Participation   

 

 

 

 

 

 

 

 

 

 

39 

 

Summary   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39 

REFERENCES   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 

 1 

background image

Colenbrander – Measuring Vision and Vision Loss 

ASPECTS OF VISION LOSS 

Since the visual system alone provides as much input to the brain as all other senses combined, 
it is not surprising that vision loss can have a devastating impact upon peoples lives.  The 
various chapters in this section deal with the prevalence and remediation of such impacts.  In 
this discussion, different observers have different points of view and therefore emphasize 
different aspects of vision loss and its consequences.  Clarity about these differences is 
important (

1

).  They will be discussed, using as a conceptual framework the four aspects of 

functional loss that were first introduced in the 

WHO Classification of Impairments, Disabilities 

and Handicaps (ICIDH) 

(

2

).  The aspects are distinct, although different publications may use 

slightly different terms to describe them as shown in Table 1. 

Two of the four aspects refer to the organ system, the other two refer to the person.  The first 
aspect is that of anatomical and structural changes.  The second aspect is that of functional 
changes at the organ level; examples are visual acuity loss and visual field loss.  The next 
aspect describes the generic skills and abilities of the individual.  The last aspect points to the 
social and economic consequences of a loss of abilities.  In colloquial use, persons with vision 
loss are often described as “blindâ€; this terminology is inappropriate since most people with 
vision loss are not 

blind,

 but have residual vision.  We will return to this issue when discussing 

ranges of vision loss. 

 

TABLE 1  â€“  Aspects of Vision Loss 

 

THE ORGAN 

THE PERSON 

ASPECTS: 

Structural change, 

Anatomical change 

Functional change at 

the Organ level 

Skills, Abilities of the 

individual 

Societal, Economic 

Consequences 

Neutral terms: 

Health Condition 

Organ Function 

Skills, Abilities 

Social Participation 

Loss, Limitation 

Disorder, Injury 

Impairment Disability  Handicap 

ICIDH-80(

2

): 

Disorder Impairment Disability  Handicap 

ICF(

3

): 

Structural change 

Functional change, 

Impairment 

Activity + 

Performance code 

Participation + 

Performance code 

Application to 

VISION: 

 

Eye diseases 

"visual functions"

 

measured 

quantitatively 

E.g.:  Visual Acuity

 

"functional vision"

 

described 

qualitatively 

E.g.:  Reading ability

 

 

Vision-related 
Quality of Life 

 

Legend:

  Vision loss can be approached from different points of view 

(see text)

.  The different 

aspects are sometimes described by different names.

 

 

Anatomical and Structural Changes 

This aspect describes the underlying disorders or diseases at the organ level.  Ophthalmoscopy 
and slitlamp biomicroscopy have given ophthalmology tools to describe anatomical changes in 
more detail than is possible for many other organ systems.  Most of the ophthalmic literature, 
including this textbook, is devoted to this aspect.  Yet, these changes give us relatively poor 
cues to the severity of their functional consequences. 

 2 

background image

Colenbrander – Measuring Vision and Vision Loss 

Visual functions 

This aspect describes 

functional changes

 

at the organ level

.  Here again, ophthalmology has 

developed unique tools that can measure 

visual functions,

 such as visual acuity and visual field, 

in great detail.  These tools are well developed and give objective measurements.  These 
measurements can be used for two purposes: to assist in diagnosing the underlying disorder or 
to predict the functional consequences 

(see Table 2).

  E.g.: Tests such as ERG and VEP are 

helpful in diagnosing the underlying condition, but are poor predictors of the functional 
consequences.  Since visual acuity loss can have many different causes, visual acuity testing 
adds little to the differential diagnosis, but can help in predicting the impact on Activities of Daily 
Living (ADL).  The Ishihara color test is good at diagnosing even minor red-green deficiencies 
for genetic studies, but overestimates the functional consequences.  The D15 color test on the 
other hand, was designed to be insensitive to minor deficiencies and to detect only those that 
might have functional consequences.  The discussion in this chapter will be oriented towards 
the functional consequences. 

 

TABLE 2 – Use of Visual Function Measurements 

ASPECTS: 

Structural change, 

Anatomical change 

Functional change at 

the Organ level 

Ability to perform 
Activities of Daily 

Living (ADL) 

Societal, Economic 

Consequences, 

Participation 

 

 

 

 

 

 

 

Diagnosis of underlying 

condition 

 Prediction 

of 

functional 

consequences 

 

 
Legend:

  Different tests serve different purposes 

(see text)

 

Functional vision 

This aspect reaches beyond the description of organ function by describing the 

skills and 

abilities

 

of the individual

.  It describes how well the individual is able to perform 

Activities of 

Daily Living (ADL)

, given the vision loss.  This aspect has been described under different 

names.  In the field of vision, the term 

functional vision

 is used.  In ICIDH-80 (

2

) loss (or lack) of 

ability was described as 

dis-ability

.  Its successor, ICIDH-2 (

3

) provides a taxonomy of 

activities 

and of the ability to perform them.  The use of the term disability is discouraged since it may 
have different meanings in different contexts.  (Having a disability may be a synonym for having 
an impairment; being disabled points to a loss of ability; being on disability points to an 
economic consequence.)  In the AMA 

Guides to the Evaluation of Permanent Impairment

 (

4

) the 

term impairment refers to organ function, impairment rating refers to an estimate of the ability to 
perform activities of daily living. 

Societal and Economic Consequences 

The last aspect describes the societal and economic consequences for the individual caused by 
an impairment or by a loss of ability.  In ICIDH-80 this aspect was described as 

handicap 

and 

measured in terms of 

loss of independence

; in ICIDH-2 it is described under the heading 

participation.

  Handicaps do not preclude participation.  The story of Helen Keller is one 

example of how some people can achieve full participation in spite of extraordinary handicaps. 

 3 

background image

Colenbrander – Measuring Vision and Vision Loss 

Measurement 

The different aspects are measured in very different ways.  Visual functions are measured with 
clinical tests, such as a letter chart, a tangent screen, a color test, etc.  Functional vision is 
assessed by the ability to perform generic 

Activities of Daily Living

 (ADL).  Different impairments 

will have different effects.  Visual acuity loss will affect activities such as reading ability and face 
recognition.  Visual field loss will be manifested primarily by difficulties in Orientation and 
Mobility (O&M) tasks.  The participation aspect looks beyond the ADL abilities to the actual 
environment.  How well is the individual able to hold a job and to earn a living?  What 
“reasonable accommodations†are mandated by statutes such as the Americans with Disabilities 
Act (ADA)?  Do difficulties in face recognition limit a person’s social activities?  This aspect is 
not limited to generic daily living skills, but can consider the effect of specific environmental 
conditions and demands.  Uncorrected myopia, for instance, would be a severe handicap for a 
hunter, but might be an asset for a watchmaker. 

Rehabilitation 

Improving the participation aspect is the ultimate goal of all medical and social interventions.  
There clearly are links between the aspects: a disorder may cause an impairment, an 
impairment may cause a loss of abilities, a loss of abilities may cause a lack of participation.  
However, these links are not rigid.  Medical and surgical interventions can reduce the 
impairment caused by a disorder.  Assistive devices may improve abilities in the face of a given 
impairment.  Changes in the human and physical environment may increase participation, 
regardless of reduced abilities.  The art of rehabilitation is to manipulate each of these links so 
that a given disorder results in the least possible loss of participation. 

The outcome of various interventions must be measured in different ways.  Visual acuity 
measurement is very useful as an outcome measure for medical and surgical interventions, but 
cannot be used to measure the outcome of rehabilitative interventions.  Rehabilitative effects 
must be judged by an improved ability to perform ADL activities.  This can be expressed in an 
ability profile. 

This chapter will pay much attention to visual acuity and visual acuity measurement.  The reader 
should keep in mind, however, that visual acuity is only one of many organ functions and that 
organ function is only one of the many aspects of vision loss.  Particularly among the elderly, 
measuring functions such as contrast sensitivity, glare sensitivity, vision at low luminance may 
reveal deficits that are missed by the usual visual acuity measurement at high contrast (

5

). 

 

 

ASSESSMENT of VISUAL ACUITY 

The visual function that is measured most often is visual acuity.  Here again, different users may 
measure different aspects of visual acuity.  Various basic aspects of visual acuity, such as 
detection, resolution, hyperacuity are discussed elsewhere.  In this chapter we will discuss the 
clinical testing of visual acuity, which is based on 

letter recognition

. Letter recognition is a rather 

complex function, it requires not only the optical ability to resolve the image, but also the 
cognitive ability to recognize it, and the motor ability to respond.  In young children, in 
developmentally delayed individuals and in elderly with a stroke, it may be their inability to 
respond, rather than optical factors, that limits their test performance. 

 4 

background image

Colenbrander – Measuring Vision and Vision Loss 

Historical developments 

Reading tests have been used since before the Middle Ages to test the function of the eye.  
Major changes started to occur in the middle of the 19

th

 century. 

1843.  

In 1843 Kuechler, a German ophthalmologist in Darmstadt, wrote a treatise advocating 

the need for standardized vision tests (

6

).  He developed a set of three charts, to avoid 

memorization.  Unfortunately, he was a decade too early.  His work was almost completely 
forgotten. 

1850.

  Around 1850 started what later would be called the Golden Age of Ophthalmology.  In 

1850, Franciscus Donders, from Utrecht, the Netherlands, visited William Bowman, of 
anatomical and histological fame, at an international conference in London.  There he met 
Albrecht von Graefe, who would become the father of German clinical ophthalmology.  Donders 
and von Graefe became lifelong friends (*).  With Bowman and Hermann von Helmholtz, who 
invented the ophthalmoscope in 1851, they became the foursome that would lead 
ophthalmology to become the first organ-oriented specialty.  In 1850 von Graefe had just 
opened his famous eye clinic in Berlin.  In 1852 Donders would open what would later become 
the Royal Dutch Eye Hospital in Utrecht. 

Footnote 
(*)  Donders later wrote:  â€œI had just seen Jaeger (Friedrich, Eduard’s father, ed.) 
performing cataract surgery alternately with the left and the right hand, when a young 
man stormed into the room embracing his preceptor.  It was Albrecht von Graefe.  
Jaeger thought that we would fit well together and we soon agreed.  Those were 
memorable days.  Von Graefe was my guide for all we heard in practical matters, 
and in scientific matters he listened eagerly to the smallest detail.  We lived together 
for a month to separate as brothers.  To have William Bowman and Albrecht von 
Graefe as friends became an incredible treasure on my life’s path.†

1854.

  Thus, the scene had changed considerably when, in 1854, Eduard von Jaeger, the son 

of a well-known ophthalmologist in Vienna, published a set of reading samples (

7

).  His reading 

samples were first published as an appendix to his book about 

Cataract

 

and Cataract Surgery

 

(

8

).  They became an immediate success as a means to document functional vision.  Since 

Vienna was an international center, he published samples in German, French and English and 
in a variety of Central European languages.  He used fonts that were available in the State 
Printing House in Vienna and labeled them with the numbers from the printing house catalogue. 

1861.

  Meanwhile Donders, who was a professor of physiology before he decided to 

concentrate on ophthalmology, was working on his epoch making studies on Refraction and 
Accommodation.  He clarified the nature of hyperopia as a refractive error, rather than as a form 
of “asthenopia†and brought the prescription of glasses from trial and error at the county fair to a 
scientific routine.  His work would be published in London in 1864 (

9

).  For this work, Donders 

not only needed reading samples for presbyopes, but also distance targets to use in the 
refractive process of myopes and hyperopes.  Initially, he had used some of the larger type 
samples from Jaeger’s publication as a distance target.  However, he felt the need for a more 
scientific method and for a measurement unit to measure visual function.  He coined the term 
“visual acuity†to describe the “sharpness of vision†and defined it as the ratio between a 
subject’s performance and a standard performance.  In 1861, he asked his co-worker and later 
successor Herman Snellen to devise a measurement tool. 

1862.

  In 1862 Snellen published his letter chart (

10

).  His most significant decision was not to 

use existing typefaces, but to design special targets, which he called optotypes.  He 
experimented with various targets designed on a 5x5 grid 

(Figure 1)

.  Eventually, he chose 

 5 

background image

Colenbrander – Measuring Vision and Vision Loss 

letters 

(Figure 2)

.  Some others published charts based on Donders’ formula in the same year, 

using existing typefaces rather than optotypes.  Snellen’s chart prevailed and spread quickly 
around the world.  One of the early big orders came from the British army, wanting to 
standardize the testing of recruits. 

 

 

 

 

Figure 1  Snellen – Experimental Charts – 1861 

Snellen apparently experimented with various targets designed on a 5x5 grid, prior to choosing letters 
as optotypes.  This chart remains in the Museum of the University of Utrecht. 

Figure 2  Snellen’s chart as published in 1862 

 

To implement Donders’ formula, Snellen defined â€œstandard vision†as the ability to recognize 
one of his optotypes when it subtended 5’ of arc.  This choice was inspired by the work of the 
English astronomer Robert Hooke, who, two centuries earlier (

11

), had found that the human eye 

can separate double stars when they are 1’ apart.  Since Snellen chose an external, physical 
standard, others could accurately reproduce his charts.  This was different from Jaeger’s 
samples, which were based on existing typefaces.  When others wanted to reproduce them, 
they had to use whatever typefaces were available locally.  This accounts for the wide variability 
among “Jaeger†samples. 

Donders and Snellen were well aware that their standard represented less than perfect vision 
and that most normal healthy eyes could do better.  Thus, it is wrong to refer to “20/20†

(1.0)

 

 6 

background image

Colenbrander – Measuring Vision and Vision Loss 

vision as “normalâ€, let alone as “perfect†vision.  Indeed, the connection between normal vision 
and standard vision is no closer than the connection between the standard American foot and 
the average length of “normal†American feet.  The significance of the 20/20 

(1.0)

 standard can 

best be thought of as the â€œlower limit of normal†or as a screening cut-off.  When used as a 
screening test, we are satisfied when subjects reach this level and feel no need for further 
investigation, even though the average visual acuity of healthy eyes is 20/16 

(1.25)

 or 20/12 

(1.6). 

While Snellen was preparing his chart, Donders already commissioned a study by one of his 
PhD students to document the normal changes in visual acuity with age (

12

), using prototypes of 

Snellen’s symbols.  The study was published in 1862, the same year that Snellen published his 
chart.  The similarity with more recent data 

(Table 3)

 is remarkable.   

 

TABLE 3: Visual Acuity Changes with Age 

Log 

MAR 

VAS 

 <20   20+   25+   30+   35+   40+   45+   50+   55+   60+   65+   70+   75+   80+   85+   90+ 

VA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.3 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/10 2.0 

 114  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 113                 

 

 

 112                 

 

 

 111                 

 

 

-0.2 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/12.5 1.6 

 109  

 

             

 

 

 108 

â–²

 

 

â–²â—

 

â—

 

â–²

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 107  

â—

 

 

 

â—

 

â—

 

 

 

 

 

 

 

 

 

 

 

 

 

 106       

â–²â—

 

 

 

 

 

 

 

 

 

 

 

 

-0.1 105 

 

 

 

 

 

 

 

â—

 

â—

 

 

 

 

 

 

 

 

20/16 1.25 

 104                 

 

 

 103          

â—

 

 

 

 

 

 

 

 

 

 102           

â—

 

â—

 

 

 

 

 

 

 

 101         

â–²

 

 

 

 

â—

 

 

 

 

 

 

100 

 

 

 

 

 

 

 

 

 

â– 

 

 

 

 

 

 

 

20/20 

1.0 

 

99 

 

 

 

 

 

 

 

 

 

 

▲■

 

 

 

 

 

 

 

 

 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+0.1 95 

 

 

 

 

 

 

 

 

 

 

 

â– 

 

â–²

 

 

 

 

20/25 0.8 

 

94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92 

 

 

 

 

 

 

 

 

 

 

 

 

â– 

 

 

 

 

 

 

 

91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+0.2 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

â– 

 

 

 

20/32 0.63 

 

89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+0.3 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/40 0.5 

 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 83  

â–²

 

Population 

study 

De 

Haan  1862         

 

 

 

82 

 

 

 

 

 

 

 

 

 

 

â– 

 

 

 

 

 81  

â—

 

Healthy 

subjects 

Elliott 

et 

al. 1995         

 

 

+0.4 80 

 

 

 

 

 

 

 

 

 

 

 

 

20/50 0.4 

 79  

â– 

 Average 

seniors 

Portnoy 

et 

al. 

1999         

 

 

 

78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

â– 

 

 

 

 77  

M,F 

Aborigines  Taylor  1981         

 

 

 

76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+0.5 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/63 0.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

background image

Colenbrander – Measuring Vision and Vision Loss 

Legend, Table 3:

  The chart demonstrates that it is a mistake to consider 20/20 as â€œaverageâ€, 

“normal†or “perfect†vision.  The gray band indicates standard vision (20/20, 1.0).  Average adult 
visual acuity is significantly better and does not drop to 20/20 until after age 60.

 

 

The “

â–²

†markers represent a study (

12

) using prototypes of Snellen’s test letters, published in 1862.  

The “

â—

†markers represent a recent meta-analysis of healthy eyes from several different studies (

13

).  

The “

â– 

†markers represent recent findings from an elderly population (including eyes with age-related 

changes) (

5

).  The “M†and the “F†markers represent data from male and female Australian 

Aborigines (

14

), which were found to have statistically significant better acuity than comparable 

Caucasians. 

The 1862 findings are remarkably similar to the recent data for healthy adults in the younger age 
groups and to those for unselected seniors in the older groups. 

 

Since Snellen’s days few major improvements in visual acuity measurement have been made.  
Many tried to devise better optotypes, but, as A. G. Bennet remarked in an exhaustive review of 
historical developments (

15

) while preparing for the British standard (

16

), “the road of visual 

acuity measurement is littered with stillborn chartsâ€.  Some developments, however, are worth 
mentioning. 

1868.

  In 1866 John Green of St. Louis had spent some time with Donders and Snellen and had 

written a small paper there about the measurement of astigmatism.  He developed his own 
chart, which he presented it to the American Ophthalmological Society in 1868(

17

), modifying a 

prior proposal from 1867.   

 

 

Figure 3  Segment of Green’s Chart, proposed in 1868. 

Legend:

 

Note that Green combined sans-serif letters and proportional spacing with a geometric 

progression, using what later would be known as the “preferred numbers†series 

(see text)

.  

Green’s proposals were not accepted.  A century later, his principles would be incorporated in 
international standards. 

 8 

background image

Colenbrander – Measuring Vision and Vision Loss 

Green’s chart featured sans-serif letters (Snellen used letters with serifs), proportional spacing 
of the characters and a geometric progression of letter sizes (10 steps = 10x), three features 
that are now part of standardized letter chart design.  He was a century too early; his proposals 
gained little acceptance.  Green went back to letters with serifs, because letters without serifs 
were said to â€œlook unfinishedâ€.  A century later, the British standard would choose sans-serif 
letters, because letters with serifs “look old fashionedâ€. 

 

1875.

  Snellen originally calibrated his charts in Parisian feet.  At the time there were some 

twenty different measurement systems used in Europe.  It is not surprising that the uniform 
Metric system (

18

) was gaining ground.  Snellen soon changed from 20 Parisian feet to 6 meters 

or, for adherents of the decimal system, to 5 meters.  Today, the 20 ft distance prevails in the 
U.S.A., 6 meters prevails in Britain, 5 or 6 meters are used in continental Europe.  Conversion 
between these different measurements is awkward.  In 1875 Felix Monoyer (*) of Lyons, 
France, proposed to replace the fractional Snellen notation with its decimal equivalent.  (E.g. 
20/40 = 0.5, 6/12 = 0.5, 5/10 = 0.5) (

19

).  Decimal notation makes it simple to compare visual 

acuity values, regardless of the original measurement distance and is used in large parts of 
Europe.  

(see Table 4)

 

Footnote 
(*)  Monoyer is also know for the introduction of the diopter (

20

) in 1872.  The diopter 

is the reciprocal of any metric distance; it greatly simplified lens formulas.  Earlier, 
the power of a lens was expressed by its focal distance (f).  Changing to the 
reciprocal of the focal distance (D) simplified the awkward formula  1/f

1

 + 1/f

2

 = 1/f

3

 to 

D

1

 + D

2

 = D

3

.  We will see later that the Diopter notation can also simplify Snellen’s 

formula when used for near vision. 

 

TABLE 4 – Equivalent Notations 

Equivalent Notations 

    

Parts of Europe   Britain 

  U.S.A.  

decimal   Low 

Vision 

    5/5 

  = 

6/6 

  = 

20/20 

 = 

1.0

 

  = 

1/1 

    5/10  = 

6/12  = 

20/40 

 = 

0.5

 

  = 

1/2 

    5/25  = 

6/30  = 

20/100 

 = 

0.2

 

  = 

1/5 

    5/50  = 

6/60  = 

20/200 

 = 

0.1

 

  = 

1/10 

See also Table 8 

Legend:

  Various notations may be used to express equivalent visual acuity values 

(see text, see 

also Table 8)

 

1888.  

Edmund Landolt had worked with Snellen in Utrecht and later became professor of 

ophthalmology in Paris.  In 1874 Snellen and Landolt had cooperated in publishing a major 
chapter on “Optometrology†(

21

), the science of measuring vision.  They recognized that not all 

of Snellen’s optotypes were equally recognizable.  This led Landolt to propose the broken ring 
symbol (1888), a symbol that has only one element of detail and varies only in its orientation 
(

22

).  Landolt’s C’s would become the preferred visual acuity measurement symbol for laboratory 

experiments, but gained only limited acceptance in clinical use. 

 

 9 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

 

         

         

 

 

 

 

 

 

 

 

 

         

         

 

 

 

 

 

 

 

 

 

         

         

 

 

 

 

 

 

 

 

 

         

         

 

 

 

 

 

 

 

 

 

         

         

 

 

 

 

 

 

 

 

Figure 4  Landolt C 

Legend:

 

Recognizing the differences in recognizability among letter optotypes, Landolt, in 1888, 

proposed the â€œLandolt C†or broken ring (

22

).  The various targets have only one critical detail and vary 

only in orientation.  They are widely used in laboratory studies and have been accepted as the 
standard against which other optotypes should be calibrated (

23

). 

1909.

  Relatively little happened in the period that followed.  Efforts at standardization were 

made, such as a standard proclaimed by the International Council of Ophthalmology in 1909 
(

24

).  Such documents were filed and never gained a wide following.  That clinicians did not feel 

an urgent need for standardization can be explained by the fact that the everyday letter chart 
uses do not require it.  For refractive correction any set of targets will do, since the only question 
is “better or worse?â€.  For screening the distinction between “within normal limits†and “not within 
normal limits†is the most important.  We have seen that Snellen’s standard is well positioned for 
screening purposes.  At the lower end, the difference between 20/200 

(0.1)

 and 20/400 

(0.05)

 is 

unimportant for screening purposes. 

After 1945 the interest in Low Vision rehabilitation was gaining ground.  It was recognized that 
the majority of those considered “industrially blind†actually had some level of useable vision.  In 
1952 the first Low Vision services were opened in New York at the Industrial Home for the Blind 
and at the New York Lighthouse.  For rehabilitation purposes the difference between 20/200 
and 20/400, which was unimportant for screening, became very important, since the patient with 
20/400 needs twice as much magnification as the patient with 20/200.  It is not surprising then, 
that major refinements in clinical visual acuity measurement came from individuals involved in 
Low Vision rehabilitation. 

1959.

  In 1959 Louise Sloan, the founder of the Low Vision service at the Wilmer Eye Institute of 

Johns Hopkins University designed a new optotype set of 10 letters (

25

(see Figure 7).

  She 

chose sans-serif letters, while maintaining Snellen’s 5x5 grid.  This in contrast to the British 
standard (16), which selected a 4x5 grid for its sans-serif letters.  She recognized that not all 
letters were equally recognizable.  To avoid this problem she proposed to use all ten letters on 
each line.  The larger letter sizes thus required more than one physical line. 

 

Louise Sloan also proposed a new letter size notation (

26

).  

To implement Donders’ definition of visual acuity as the ratio between a subject’s performance 
and a standard performance, Snellen had used the following formula: 

 

 

 

  

d

   

distance at which the 

subject

 recognizes the optotype 

 

 

V = ----

 = -------------------------------------------------------------------------------- 

 

 

 

  

D

  

distance at which a 

standard eye 

recognizes the optotype 

 10 

background image

Colenbrander – Measuring Vision and Vision Loss 

Sloan simplified this rather verbose definition and made use of the metric system implicit by 
introducing the term 

“M-unitâ€

 for the â€œdistance in meters at which a standard eye recognizes 

the optotype†(i.e. at which the optotype subtends 5 minutes of arc).  The formula then 
becomes: 

 

 

 

  

m

  

test distance  

(in 

meters) 

    note 

lower 

case 

m

 

 

 

V = ----

 = --------------------------------------- 

 

 

 

  

M

  

letter size   

(in M-units)  

 

 

 

note upper case M

 

In line with other definitions of measurement units in the SI system, this terminology allows us to 
define the measurement unit for visual acuity more easily by stating that: 
    

 

 

 

 

 

 

 

standard acuity

    

(1.0, 20/20)

  represents 

 

  the ability to recognize a  

standard letter size

  

(1 M-unit)

  

 

 

 

 

 

 

 

at a 

standard distance

  

(1 meter)

The relationship between the three variables: letter size, viewing distance and visual acuity can 
be demonstrated in the nomogram in Table 5.  Connecting the markers for any two of the 
variables with a straight line will point to the marker for the third variable.  It demonstrates that 
any letter size can represent any visual acuity value, depending on the viewing distance.  The 
gray scales represent the preferred, metric notations, as will be discussed later.  The non-metric 
scales are given for comparison.  The Jaeger numbers in this table are based on Jaeger's 
original print samples (

27

). 

1974.

  In the 1960’s the WHO had surveyed national definitions of “legal blindness†and found 

that 65 countries used as many different definitions.  In 1974 the World Health Assembly 
approved the 9

th

 Revision of the International Classification of Diseases (ICD-9) (

28

).  In it, the 

old dichotomy between “legally sighted†and “legally blind†was abandoned for a series of 
(numbered) ranges of vision loss.  In the same year, the International Council of Ophthalmology 
(ICO) (

29

) adopted the same ranges, extended them to include normal vision, and used the 

naming convention used in ICD-9-CM (

30

) and in this chapter. 

1976.

  In 1976, 

Ian Bailey 

and

 Jan Lovie

 (then at the Kooyong Low Vision Service in 

Melbourne) published a new chart (

31

), featuring a novel layout with five letters on each row and 

spacing between letters and rows equal to the letter size.  This layout standardized the crowding 
effect and the number of errors that could be made on each line.  Thus, the letter size became 
the only variable between the acuity levels.  Their charts have the shape of an inverted triangle 
and are much wider at the top than traditional charts.  Like Sloan, they followed a geometric 
progression of letter sizes. 

That same year, Hugh Taylor, also in Melbourne, used these design principles for an illiterate E 
chart (

32

), used to study the visual acuity of Australian Aborigines.  He found that, as a group, 

Australian Aborigenes had significantly better visual acuity than Europeans (

14

).  This is another 

reason not to regard 20/20 visual acuity as “normal†or as “perfect†vision.  

(see Table 3). 

1982.

  Based on the above work, Rick Ferris et al. of the 

National Eye Institute

 chose the 

Bailey-Lovie layout, implemented with Sloan letters, to establish a standardized method of 
visual acuity measurement for the Early Treatment of Diabetic Retinopathy Study (ETDRS) (

33

).  

These charts were used in all subsequent clinical studies, and did much to familiarize the 
profession with the new layout and progression 

(see Figure 5)

.  Data from the ETDRS were 

used to select letter combinations that give each line the same average difficulty, without using 
all letters on each line.  Since the Sloan letters (designed on a 5x5 grid, like Snellen’s) are wider 
than the British letters (designed on a 4x5 grid) used by Bailey and Lovie 

(see Figure 9)

, the 

ETDRS chart was designed for a 4m distance, not the 6m used by Bailey and Lovie.

 

 

 11 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

 

Figure 5  ETDRS chart 

Legend:

 This 

chart 

(

33

) combines the Bailey-Lovie layout with the Sloan letter set.  It is used in 

many clinical studies and is considered a U.S. standard. 

 

1984.  

The 

International Council of Ophthalmology

 approved a new 'Visual Acuity 

Measurement Standard', also incorporating the above features (

23

). 

----------------------------------------------------------------------------------------------------------------- 

Legend

 for Table 5. 

This table demonstrates the relationship between the three variables: letter size, viewing distance and 
visual acuity.  Connecting the markers for any two of the variables with a straight line will point to the 
marker for the third variable.   

The first column identifies the 

letter size

, in M-units, printer’s points and J-numbers.  The Jaeger sizes are 

based on Jaeger’s original samples (

27

).  Note that these differ from the ranges of J designations found on 

contemporary charts, as shown in Table 9. 

The second column indicates the 

viewing distance

. Expressed in diopters 

(see text)

, in metric units and in 

U.S. units. 

The third column indicates the 

visual acuity

.  Notations include the Snellen fraction for 1 meter 

(see text)

decimal notation and U.S. notation.  The numbers in the markers indicate the Visual Acuity Score (VAS) 

(see section on Assessment of Functional Vision and Table 13)

The grey columns indicate the preferred metric measurements.  In the range of normal and near-normal 
vision, the traditional visual acuity notations and distance measurement in meters are preferred.  For the 
Low Vision range, the 1-meter Snellen fraction is easier to use 

(see text)

.  For reading vision (closer than 

1 meter) it is useful to record the viewing distance in diopters, using the modified Snellen formula 1/V = M 
x D 

(see text)

The numbers in the markers for letter size and viewing distance allow the visual acuity score to be broken 
down into its components: letter credit + distance credit = visual acuity score 

(see text)

.  These linear 

values can be averaged and are helpful for statistical manipulations. 

 12 

background image

Colenbrander – Measuring Vision and Vision Loss 

TABLE 5 - Nomogram for the Calculation of Visual Acuity Values 

LETTER  SIZE 

 

VIEWING  DISTANCE 

 

VISUAL  ACUITY 

 ICD

40 M   

-30 

 

  

80 m  

145

250 ft 

 1/0.5  2.0 

115 

 20/10 

 

 

 

  

60 m  

140

200 ft 

 

 

 

 

30 M   

-25 

  J#24  

0.02 D  

50 m  

135

160 ft 

 1/0.6  1.6 

110 

 20/12 

 

 

 

  

40 m  

130

120 ft 

 

 

 

 

25 M   

-20 

 J#23  

30 m  

125

100 ft 

 1/0.8  1.2 

105 

 20/16 

 

 

 

  

25 m  

120

80 ft 

 

 

 

 

20 M   

-15 

  J#22  

0.05 D  

20 m  

115

60 ft 

 1/1   1.0 

100 

 

20/20 

 

 

 

  

16 m  

110

50 ft 

 

 

 

 

16 M   

-10 

 J#21  

12 m  

105

40 ft 

 1/1.2  0.8 

95 

 20/25 

Ran

ge of Norm

al Visi

on 

 

 

 

  

0.10 D  

10 m  

100

30 ft 

 

 

 

 

12 M   

-5 

100 p  J#20  

8 m  

95

25 ft 

 1/1.6  0.6 

90 

 20/30 

 

 

 

  

6 m  

90

20 ft 

 

 

 

 

10 M   

80 p  ---    

5 m  

85

16 ft 

 1/2   0.5 

85 

 20/40 

 

 

 

  

0.25 D  

4 m  

80

12 ft 

 

 

 

 

8 M   

60 p  J#19  

3 m  

75

10 ft 

 1/2.5  0.4 

80 

 20/50 

 

 

 

  

2.5 m  

70

8 ft  

 

 

 

 

6 M   

10 

50 p  J#18  

0.5 D  

2 m  

65

6 ft  

 1/3   0.3 

75 

 20/60 

Near-normal Vision 

 

 

 

  

1.6 m  

60

5 ft  

 

 

 

 

5 M   

15 

40 p  ---    

1.2 m  

55

50† 

 1/4   0.25 

70 

 20/80 

 

 

 

  

1 D  

1 m  

50

40†

 

 

 

 

 

4 M   

20 

32 p  J#17  

80 cm  

45

30† 

 1/5   0.2 

65 

 20/100 

 

 

 (16)  

 

60 cm  

40

25† 

 

 

 

 

3 M   

25 

24 p  J#15  

2 D   50 cm  

35

20† 

 1/6   0.16 

60 

 20/120 

 

 

 

  

2.5 D   40 cm  

30

16† 

 

 

 

 

2.5 M   

30 

20 p  J#14  

3 D   30 cm  

25

12† 

 1/8   0.12 

55 

 20/160 

Moder

ate Low 

Visio

 

 

 

  

4 D   25 cm  

20

10† 

 

 

 

 

2 M   

35 

16 p  J#13  

5 D   20 cm  

15

8†  

 1/10  0.1 

50 

 20/200 

 

 

 

  

6 D   16 cm  

10

6†  

 

 

 

 

1.6 M   

40 

12 p  J#12  

8 D   12 cm  

5†  

 1/12  0.08 

45 

 20/250 

 

 

 (11)  

 

10 D   10 cm  

4“   

 

 

 

 

1.2 M   

45 

10 p  J#10  

12 D  

8 cm  

-5

3“   

 1/16  0.06 

40 

 20/300 

 

 

 (8,9)   

15 D  

6 cm  

-10

2.5†

 

 

 

 

1 M   

50 

8 p  J# 7  

 

20 D  

5 cm  

-15

2†  

 1/20  0.05 

35 

 20/400 

Severe Low Vision 

 

 

  (6)    

25 D  

4 cm  

-20

1.6†

 

 

 

 

0.8 M   

55 

6 p  J# 5   

30 D  

3 cm  

-25

1.2†

 1/25  0.04 

30 

 20/500 

 

 

  (4)    

40 D   2.5 cm  

-30

1†  

 

 

 

 

0.6 M   

60 

5 p  J# 3   

50 D  

2 cm  

-35

0.8†

 1/30  0.03 

25 

 20/600 

   

 

  

60 D   1.6 cm  

-40

0.6†

 

 

 

 

0.5 M   

65 

4 p  J# 2   

80 D   1.2 cm  

-45

0.5†

 1/40  0.025 

20 

 20/800 

   

 

  

100 D  

1 cm  

-50

0.4†

 

 

 

 

0.4 M   

70 

3 p  J# 1   

125 D   0.8 cm  

-55

0.3†

 1/50  0.02 

15 

 20/1000 

Profoun

d Lo

w Visio

 

Formulas used: 

1/M 

 

 

 

 

 

 

=  m / M  = 

 

(visual acuity)

 

 

 

 

 

 

 

=  M x 1/m  = 

1/V 

   (magnification need)

 

 

Size 

credit 

 

 

 

 

Distance 

credit 

 

 

 

Acuity 

score 

 

 

 

 13 

background image

Colenbrander – Measuring Vision and Vision Loss 

 Visual Acuity Measurement â€“ Distance vision 

Ranges of vision loss 

Vision loss is not an all or none phenomenon.  Since the 1970’s the WHO has recognized this 
by replacing the simplistic dichotomy between those who are considered â€œlegally blind†and 
those who are considered â€œlegally sighted†with a set of ranges.  In ICD-9 (

28

) and ICD-9-CM (

30

the range of â€œLow Vision†took its place between the ranges of normal (or near-normal) vision 
and blindness (or near-blindness).  The word 

low

 indicates that these individuals do not have 

normal vision, the word 

vision

 indicates that they are not blind.  The ranges used in ICD-9-CM 

are listed in Table 6. 

Although these changes were made a quarter century ago, the use of the term “blindness†to 
denote partial vision loss is still prevalent.  This is regrettable, since it fosters misconceptions 
among patients and practitioners.  Patients tend to accept the statement that they 

are

 â€œlegally 

blind†as an irreversible verdict of hopelessness.  Telling them that they 

have

 â€œSevere Low 

Vision†(the corresponding ICD-9-CM term) tells them that they have a problem, but that there 
are ways to cope with this problem.  To call a patient with a severe vision loss “legally blind†is 
as preposterous as calling a patient with a severe heart ailment “legally deadâ€. 

 

Measurement considerations 

Letter recognition, upon which clinical visual acuity measurement is based, is a rather complex 
function, which involves not only optical factors, but also cognitive and motor abilities.  When 
choosing our test parameters we strive to keep the cognitive and motor requirements minimal, 
so that we measure mainly optical factors.  Within the group of optical factors, we strive to keep 
factors such as contrast and illumination optimized, so that the main remaining variable is 
magnification.  

Visual acuity can be thought of as the reciprocal of the magnification threshold for letter 
recognition.  Magnification is the factor on which Snellen’s formula is based.  If a subject needs 
letters that are twice as large or twice as close than those needed by a standard eye, the visual 
acuity is said to be 1/2 (20/40, 0.5), if the magnification need is 5x, the visual acuity is 1/5 
(20/100, 0.2), etc.  

It is not always possible to avoid the cognitive factors.  This is the case for infants 

(see Table 

11)

 and for pre-school children who do not yet know the entire alphabet.  Here we often use 

other methods such as grating detection or picture recognition.  It is important to realize that 
these are different tasks, which may have different magnification requirements.  Similar 
considerations exist for developmentally delayed individuals.  Sometimes it appears that the 
motor concept of directionality that is required to respond to tumbling E’s is a limiting factor.  
Testing with different modalities may help to give an insight into these non-optical factors.  In 
elderly patients with a stroke and macular degeneration, the question may arise whether 
inability to read is the result of the macular degeneration or of the stroke.  Failure to respond to 
larger print may point to cognitive, rather than optical factors.  In the following discussions it will 
be assumed that cognitive and motor factors are indeed trivial.  Even so, many choices remain 
to be made.  We will discuss the choice of test distance, the choice of letter size progression, 
the choice of criterion, the choice of contrast and illumination, the choice of visual acuity 
notation, and the choice of test symbols.  

 

 14 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

TABLE 6  â€“  Ranges of Visual Acuity Loss 

VISUAL ACUITY 

 

RANGES of Vision Loss 

 

(ICD-9-CM) 

Decimal 
notation 

US 

notation 

1 m 

notation 

 

STATISTICAL ESTIMATES

OF 

 READING ABILITY 

Range of 
 Normal 
 Vision 

1.6 
1.25 
1.0 
0.8 

20/12.5 
20/16 
20/20 
20/25 

1/0.63 
1/0.8 
1/1 
1/1.25 

 

Normal reading speed 

Normal reading distance 

Reserve capacity for small 

print  

 
 
(Near-) 
Normal 
Vision 

Near- 
 Normal 
 Vision 

0.63 
0.5 
0.4 
0.32 

20/32 
20/40 
20/50 
20/63 

1/1.6 
1/2 
1/2.5 
1/3.2 

 

Normal reading speed 

Reduced reading distance 

No reserve for small print 

Moderate 
 Low 
 Vision 

0.25 
0.2 
0.16 
0.125 

20/80 
20/100 
20/125 
20/160 

1/4 
1/5 
1/6.3 
1/8 

 

Near-normal with reading 

aids 

Uses low power magnifier 

or large print books

 

Severe 
 Low 
 Vision 

0.1 
0.08 
0.06 
0.05 

20/200 
20/250 
20/320 
20/400 

1/10 
1/12.5 
1/16 
1/20 

 

Slower than normal 

with reading aids 

Uses high power magnifiers 

 
 
 
 
Low 
Vision 

Profound 
 Low 
 Vision 

0.04 
0.03 
0.025 
0.02 

20/500 
20/630 
20/800 
20/1000 

1/25 
1/32 
1/40 
1/50 

 

Marginal with reading aids 

Uses magnifiers for spot 

reading, but may prefer 

talking books 

 
Near- 
Blindness 

0.016 
0.012 
0.010 
  less 

20/1250
20/1600
20/2000
   less 

1/63 
1/80 
1/100 
 less 

 

No visual reading 

Must rely on talking books, 

Braille or other non-visual 

sources 

 
 
(Near-) 
Blindness 

Total 
Blindness 

No Light Perception 

 

 

 

Legend:

  Ranges of vision loss as defined in ICD-9-CM, based on recommendations of the WHO and 

the International Council of Ophthalmology (ICO).  Note that the scale is not truncated at 20/20 

(1.0)

the range of normal vision includes 20/16 

(1.25)

 and 20/12 

(1.6)

.  

(See also Table 3).  

These ranges 

replace the outdated dichotomy between those who are “legally sighted†and those who are “legally 
blindâ€.  The level previously designated as â€œlegally blind†is now designated as â€œSevere Low Visionâ€. 

The various ranges correspond to eligibility ranges for various benefits.  In the U.S. special education 
assistance is generally available for those with Moderate Low Vision, a broader range of benefits is 
available at the Severe Low Vision level (formerly “legal blindnessâ€).  In Europe and in WHO 
statistics, blindness benefits generally start at the Profound Low Vision level.  

See Table 13 for a comparable table of ranges of Visual Field loss. 

 15 

background image

Colenbrander – Measuring Vision and Vision Loss 

Choice of test distance for Normal and near-normal vision 

The vast majority of patients seen in ordinary practice has visual acuities in the range of normal 
and near-normal vision 

(20/60 or better, ICD-9-CM, see Table 6)

.  For these patients the most 

commonly used testing distances are 20 ft, 6 m and 5 m.  These distances were chosen, not 
because they are especially appropriate for visual acuity measurement, but because at these 
distances the optical difference with infinity may be ignored.  Remember that the stimulus for the 
development of the letter chart came from Donders’ work on refraction.  Traditional chart 
designs reflect the emphasis on screening and on refractive use.  In the near-normal range the 
steps between letter sizes are small, for lower acuities they become larger, for acuities worse 
than 20/200 

(0.1)

 vague statements such as “count fingers†and “hand motions†are used. 

In 1973 Hoffstetter proposed the use of a 4-meter test distance (

34

) for use in smaller rooms.  

For visual acuity measurement this distance is as valid as any other distance, provided that it is 
properly entered into the Snellen formula.  Sloan liked the 4-m distance because it made for 
easy conversion to a 40-cm reading distance.  The ETDRS charts adopted it because charts 
with the Bailey-Lovie layout would have to be substantially wider if designed for 5 m or 6 m.  At 
4 meters, however, the accommodative demand becomes 0.25 diopters and can no longer be 
ignored.  Another option for small rooms is the use of mirrors. 

For young children, a test distance of 10 ft or 3 m is often recommended, because it is easier to 
hold their attention at the shorter distance. 

 

Choice of test distance for Low vision 

A much smaller group of patients has visual acuities in the Low Vision range 

(less than 20/60, 

ICD-9-CM, see Table 6)

.  For this group, the magnification need for visual rehabilitation 

becomes an important objective.  Kestenbaum (

35

) pointed out that the magnification need can 

be found by taking the reciprocal of the visual acuity (e.g.: 20/100 requires 100/20 = 5x, 20/200 
requires 200/20 = 10x).  Bringing the chart from 20 ft. 

(6 m)

 to 10 ft. 

(3 m)

 can double the 

measurement range, but bringing the chart to 1 meter extends it by a factor 6x.  Measuring at 1 
meter has the additional advantage that the Snellen fraction is as simple as possible (1/...) and 
can be converted easily to an equivalent for any other distance by multiplying numerator and 
denominator by the same number (e.g.: 1/20 = 20/400 = 5/100 = 6/120 = 0.05).  The 1-meter 
column in Table 6 shows that a 1-meter chart with letters up to 50 M can cover the entire Low 
Vision range down to 1/50 

(20/1000, 0.02)

.  Taking the same chart to 10 ft. would extend the 

measurement range only to 20/300 

(0.06)

At short distances, such as at 1 meter, it becomes critically important to maintain the viewing 
distance accurately.  A movement of only 10 cm (4â€) would introduce a 10% error.  This can be 
prevented with a 1-meter cord attached to the chart.  Such charts can be homemade or 
purchased commercially (

36

). 

Optical correction for refractive error is very important for this group, but the question â€œbetter or 
worse†looses significance when the patient cannot see the letters on a chart at 20 ft.  Being 
able to see several lines on a 1-meter chart can provide major encouragement and better 
responses to subjective refraction.  Presbyopic patients need a 1 D correction for the 1-meter 
distance.  This is easier to provide than a 1/3 D correction for a 10 ft 

(3m)

 distance (

37

). 

 

 16 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

 

Figure 6  1-meter chart 

Legend:

 

This chart is designed for measurement at 1 meter in the Low Vision range.  It allows 

accurate measurement of visual acuities from 1/50 (20/1000, 0.02) to 1/1 (20/20, 1.0).  A 1-meter 
cord is attached to maintain the viewing distance (

36

).   

 

Choice of Letter size progression 

Snellen’s original charts had small steps for the normal range and larger steps for the lower 
ranges.  Introduction of the decimal acuity notation (

19

)led to charts with visual acuity steps in 

0.1 increments.  On these charts the steps at the top of the scale, such as 0.9 – 1.0 â€“ 1.1, are 
too small to be practical.  If equal increments of the denominator were used, the steps at the 
bottom of the scale would be too small to be useful.  The only scale which can span the full 
range is a logarithmic scale, based on equal ratios between each pair of successive lines.  This 
is in accordance with Weber-Fechner’s law (

38

), which states that geometric increments in 

stimulus give rise to linear increments in sensation.  Westheimer (

39

) has shown that this also 

holds for visual acuity.  Table 7 compares various progressions. 

 

 17 

background image

Colenbrander – Measuring Vision and Vision Loss 

TABLE 7 – Various Letter size Progressions 

Snellen's  original  progressions  

(feet and metric) 

 

 

 

20/20

     -      20/30  -  20/40 - 20/50   -   20/70      -      20/100               -              

20/200

 

 

 

 

  

6/6

     -      6/8      -      6/12      -      6/18    -     6/24         -         6/36          -          

6/60

 

 

 

 

  

5/5

       -       5/6.6   -   5/10      -      5/15    -     5/20         -         5/30          -          

5/50

 

Decimal progression 

  

   1.2-1.1-

1.0

-0.9-0.8-0.7-0.6   -   0.5   -   0.4   -   0.3          -          0.2                 -                  

0.1

     -     0.0(NLP) 

 

 

 

(

too 

dense)              (too 

coarse) 

Geometric progression 

(“Preferred Numbersâ€) 

  

1.25   -    

1.0

   -   0.8   -   0.63  -   0.5   -   0.4   -  0.32  -   0.25   -   0.2   -   0.16   -   0.12   -   

0.10   

-   0.08 

 

Legend:

  The spacing in this table is proportional to the step sizes 

(see text)

.  Only a geometric 

progression maintains the same step size throughout. 

 

Use of Preferred numbers 

Various geometric progressions are possible.  The one that fits best with the decimal system is 
one in which 10 steps equal 10x, so that the same numbers repeat in each 10x interval, with 
only a shift in decimal place.  A very convenient feature of this series is that 3 steps equal 2x.  
When this series includes the values 1.0 and 10, it is known as the “Preferred Numbers†series.  
It is extensively used in international standards (*) and, indeed, is the subject of an international 
standard itself (

40

).  This is the series that Green used in 1868.   

An important characteristic of the preferred numbers series is that the product or quotient of two 
preferred numbers is again a preferred number.  Thus, if letter sizes and viewing distances 
follow the series, so will the resulting visual acuity numbers.  A visual acuity chart based on this 
feature was published by M.C. Colenbrander (

41

) in 1937.   

Sloan and Bailey both used the progression, but apparently were unaware of the preferred 
numbers standard.  For the Sloan and ETDRS charts this does not make a difference, since 
20 ft. and 4 m are both preferred numbers.  Bailey anchored his series at a 6-m viewing 
distance, which is 5% off the closest preferred number (6.3); therefore his letter sizes include 
values such as 19, 48 and 95 instead of 20, 50 and 100 

(see Table 8).  

For clinical use these 

5% differences may be ignored.  The tables in this chapter are based on the use of preferred 
numbers. 

Footnote 
(*)  Its use in standards goes back to Renard, a French army engineer, who used it 
in the 1870’s to reduce the number of cables for hot-air balloons from 400 to 17.  In 
his honor, the series is also known as Renard series.

 

 

Choice of Contrast and Illumination 

Contrast and illumination both influence visual acuity.  Fortunately, in the range of commonly 
used values this influence is minimal.  If contrast is reduced to a level where it does affect visual 
acuity, we speak of a contrast sensitivity test, which is discussed elsewhere.  If illumination is 
lowered to threshold values, we may speak of a dark adaptation test. 

 18 

background image

Colenbrander – Measuring Vision and Vision Loss 

Visual acuity is usually not affected until contrast drops below 20%.  Normal visual acuity charts 
have contrasts of 80% or better.  For use in a routine eye exam, 

projector charts

 in a dim or 

darkened room are generally preferred.  In the U.S. the average projector chart has a luminance 
of about 85 cd/m

2

; European charts are generally brighter, up to 300 cd/m

2

.  The lower 

luminance has the advantage that the pupil may be wider, so that refractive errors may be more 
obvious; the brighter charts have the advantage that they suffer less from stray light, which 
causes contrast degradation.  The ICO Visual Acuity Measurement Standard (

23

) recommends a 

range, which includes both the lower and the higher values. 

To predict the everyday performance of patients, a lighted 

printed chart

 in a lighted room is 

preferred.  Front lighting is easiest to implement.  Back lighting of a translucent chart on a light 
box gives the most even and most reproducible illumination.  The usual backlit ETDRS chart 
has an illumination level of about 200 cd/m

2

.  For patients with conditions such as albinism or 

rod dystrophy, it should be possible to reduce the illumination, which may result in a significant 
increase in visual acuity. 

A presentation method, which undoubtedly will gain more widespread use in the future, is 
presentation on a 

computer screen

.  This allows presentation of single letters, as well as 

presentation in a letter chart format.  It also allows control over parameters such as crowding, 
contrast and brightness. 

 

Choice of visual acuity notation 

The result of the visual acuity measurement may be recorded in a variety of ways. 

True Snellen fractions 

The notation promoted by Snellen was that of a 

true Snellen fraction

, in which the numerator 

indicates the actual test distance and the denominator indicates the actual size of the letter 
seen.  The advantage of this notation is that it indicates the actual test conditions.  The 
disadvantage is that it becomes awkward to compare visual acuity values, measured under 
different conditions.  This is especially true for projector charts where the projector magnification 
is often adjusted to accommodate fractional viewing distances. 

Snellen equivalents 

To overcome this difficulty, 

Snellen equivalents

 are used.  In Europe, the 

decimal equivalent

 of 

the Snellen value is used most often.  This notation is clear, because there is no numerator or 
denominator.  The notation becomes confusing when the decimal notation is converted back to 

pseudo-Snellen fraction

.  E.g. 5/25 

Æ

 0.2 

Æ

 2/10; the 2/10 fraction would suggest that the 

subject saw a 10 M letter at 2 meter, instead of a 25 M letter at 5 meter. 

In the 

U.S. notation

, a 20 ft. fraction is usually used as a Snellen equivalent.  E.g. in an 

examination lane of 18 ft. or 21 ft., the true Snellen fractions would be 18/18 or 21/21.  Instead 
the visual acuity is recorded as 20/20 in both cases.  Thus, seeing “20†as the numerator of a 
visual acuity fraction rarely implies that the actual measurement was made at 20 ft.

 

In Britain, the 6/6 notation is similarly used as a Snellen equivalent. 

Visual angle notation

 was used by Louise Sloan.  It refers to the visual angle of the stroke 

width of 5x5 letters.  Thus, 1' equals 20/20 

(1.0)

, 2’ equals 20/40 

(0.5)

, etc.  The visual angle is 

the reciprocal of the visual acuity value and equals the denominator of the 1-meter Snellen 
fraction.  Others have used the term 

MAR

.  In the context of physiological optics this term is 

usually interpreted as 

M

inimal 

A

ngle of 

R

esolution and best describes grating acuity; in the 

context of psychophysics and clinical testing it might be better interpreted as 

M

inimum 

A

ngle of 

R

ecognition, while in the context of vision rehabilitation it might be interpreted as 

MA

gnification 

 19 

background image

Colenbrander – Measuring Vision and Vision Loss 

R

equirement.  Since higher MAR values indicate poorer vision, MAR should be considered a 

measure of vision loss, not a measure of visual acuity. 

LogMAR notation

 was introduced by Bailey (

31

).  As the name implies it is the logarithm of the 

MAR value, thus converting a geometric sequence of letter sizes to a linear scale.  Like MAR, 
logMAR is a notation of 

vision loss

 since positive logMAR values indicate reduced vision, while 

normal vision (better than 20/20, 1.0) is indicated by negative logMAR numbers.  Standard 
vision 

(20/20, 1.0)

 equals 0 (i.e. no loss).  On a standard chart each line is equivalent to 0.1 

logMAR; thus +1.0 logMAR means 10 lines lost or 20/200 

(0.1)

, +2.0 logMAR means 20 lines 

lost or 20/2000 

(0.01)

.   

Since Bailey used the logMAR notation with a geometric progression of letter sizes, the term 
“logMAR chart†is often used to imply a geometric progression.  This is not necessarily so, a 
logarithmic scale could be applied to any progression.  The decimal values and reverse scale do 
not make the logMAR notation particularly user-friendly.  For everyday clinical practice Snellen 
equivalents are easier, since they relate directly to the measured quantities of letter size and 
viewing distance. 

The logMAR notation has gained widespread use in psychophysical studies, for statistical 
calculations and for graphical presentation of the results of multi-center clinical studies.  It 
provides a more scientific equivalent for the traditional clinical statement of “lines lost†or “lines 
gainedâ€, which is valid only when all steps between lines are equal.   

Visual Acuity Rating

 (VAR, Bailey) (

42

) and 

Visual Acuity Score

 (VAS, Colenbrander) (

43

) are 

two names given to a more user-friendly equivalent of the logMAR scale.  On the VAR or VAS 
20/20 

(1.0)

 is rated as “100â€, 20/200 

(0.1)

 is rated as “50†and 20/2000 

(0.01)

 is rated as “0â€.  On 

an ETDRS type chart, each line thus represents a 5-point increment.  The score can therefore 
be interpreted as a count of the total number of letters read, starting from 20/2000 

(0.01)

.  See 

Table 8 to relate the VAS or VAR, MAR and logMAR notations to various visual acuity levels.  
The VAR relates only to visual acuity, the VAS is part of a broader scoring system 

(see 

Functional Vision). 

The VAS, VAR and logMAR notations convert the geometric sequence of visual acuity values to 
a linear scale.  This is important if visual acuity values are to be averaged or subjected to other 
statistical calculations.  The difference between averaging on a geometric scale vs. a linear 
scale is best demonstrated with an example.  

What is the average of 20/20 and 20/200?

    

Averaging the denominators yields 20/110, a value too close to 20/200 (see Table 8).  
Averaging the decimal equivalents (1.0 and 0.1) yields 0.55, a value too close to 1.0.  On the 
VAS scale, the average of “100†and “50†is “75â€, which can be converted back to 20/63 or 0.32 
(rounded to 20/60 or 0.3), exactly halfway.  

 

Choice of criterion and rounding of values 

The recorded visual acuity value can be influenced by the choice of completion criterion and by 
rounding.  Most clinicians will record visual acuity in 

line-increments

 and consider a line read if 

more than half of the letters are read correctly (e.g. 3 of 5 on an ETDRS type chart).  A suffix 
such as –1 or +2 may be added to indicate 1 letter missed or 2 letters read on the next line.  
These suffixes are most meaningful if the number of letters on each line is constant.  On most 
charts the test-retest confidence limits are about +/- 2 letter-increments or about one half line-
increment (

44

).  For routine clinical use, where the patient generally reads each line only once, 

rounding to line values is common practice.  It is appropriate, since the rounding errors are of 
the same order as the confidence limits. 

 20 

background image

Colenbrander – Measuring Vision and Vision Loss 

For a finer gradation on an ETDRS-type chart 

letter-increments

 can be counted.  The total 

number of letters read, starting from 20/2000 

(0.01) 

is the VAR or VAS discussed above.  

Letter-increments are appropriate in research settings where measurements are repeated and 
then averaged to detect smaller changes. 

Another factor that may affect the score is whether subjects are encouraged to guess.  Since 
different subject may vary in their willingness to guess, forcing all to guess will produce more 
homogeneous results. 

When a subject cannot read a line on a chart, some clinicians will present an isolated line or an 
isolated letter.  This reduces the crowding effect, makes fixation easier and can improve de 
visual acuity score.  Pointing to a letter may also make the task easier.  One should be aware 
that using different presentation modes at different times reduces the comparability of the 
scores. 

 

TABLE 8  â€“  Visual Acuity Ranges and Visual Acuity Notations 

EQUIVALENT 

NOTATIONS 

TRUE SNELLEN FRACTIONS   

(numerator = test distance) 

Visual Angle 

Notations

 

 

ICD-9-CM RANGES 

Deci-

mal 

US 6.3 

6 m 

5 m 

4 m 

1 m 

MAR 
(1/V) 

Log 

MAR 

VISUAL 
ACUITY 

SCORE 

Range of 
 Normal 
 Vision 

1.6 
1.25 

1.0

 

0.8 

20/12.5 
20/16 

20/20

 

20/25 

6.3/4 
6.3/5 

6.3/6.3

 

6.3/8 

6/3.8 
6/4.8 
6/6 
6/7.5 

5/3.2 
5/4 

5/5

 

5/6.3 

4/2.5 
4/3 

4/4

 

4/5 

1/0.63 
1/0.8 

1/1

 

1/1.25 

0.63 
0.8 

1.0

 

1.25 

-0.2 

–0.1 

0

 

+0.1 

110 
105 

100

 

95 

 
 
(Near-) 
Normal 
Vision  Near- 

 Normal 
 Vision 

0.63 
0.5 
0.4 
0.32 

20/32 
20/40 
20/50 
20/63 

6.3/10 
6.3/12.5 
6.3/16 
6.3/20 

6/9.5 
6/12 
6/15 
6/19 

5/8 
5/10 
5/12.5 
5/16 

4/6.3 
4/8 
4/10 
4/12.5 

1/1.6 
1/2 
1/2.5 
1/3.2 

1.6 
2.0 
2.5 
3.2 

0.2 
0.3 
0.4 
0.5 

90 
85 
80 
75 

Moderate 
 Low 
 Vision 

0.25 
0.20 
0.16 
0.125 

20/80 
20/100 
20/125 
20/160 

6.3/25 
6.3/32 
6.3/40 
6.3/50 

6/24 
6/30 
6/38 
6/48 

5/20 
5/25 
5/32 
5/40 

4/16 
4/20 
4/25 
4/32 

1/4 
1/5 
1/6.3 
1/8 



6.3 

0.6 
0.7 
0.8 
0.9 

70 
65 
60 
55 

Severe 
 Low 
 Vision 

0.10

 

0.08 
0.063 
0.05 

20/200

 

20/250 
20/320 
20/400 

6.3/63

 

6.3/80 
6.3/100 
6.3/125 

6/60 
6/75 
6/95 
6/120 

5/50

 

5/63 
5/80 
5/100 

4/40

 

4/50 
4/63 
4/80 

1/10

 

1/12.5 
1/16 
1/20 

10

 

12.5 
16 
20 

+1.0

 

1.1 
1.2 
1.3 

50

 

45 
40 
35 

 
 
 
 
Low 
Vision 

Profound 
 Low 
 Vision 

0.04 
0.03 
0.025 
0.02 

20/500 
20/630 
20/800 
20/1000 

6.3/160 
6.3/200 
6.3/250 
6.3/320 

6/150 
6/190 
6/240 
6/300 

5/125 
5/160 
5/200 
5/250 

4/100 
4/125 
4/160 
4/200 

1/25 
1/32 
1/40 
1/50 

25 
32 
40 
50 

1.4 
1.5 
1.6 
1.7 

30 
25 
20 
15 

Near- 
Blindness 

0.016 
0.0125 

0.01

 

  --- 

20/1250 
20/1600 

20/2000

 

   --- 

6.3/400 
6.3/500 

6.3/630

 

  --- 

6/380 
6/480 
6/600 
  --- 

5/320 
5/400 

5/500

 

  --- 

4/250 
4/320 

4/400

 

  --- 

1/63 
1/80 

1/100

 

  --- 

63 
80 

100

 

 

1.8 
1.9 

+2.0

 

 

10 

0

 

--- 

 
 
(Near-) 
Blind-
ness 

Blindness 

No Light Perception (NLP) 

 

 21 

background image

Colenbrander – Measuring Vision and Vision Loss 

Legend, Table 8.  

The visual acuity ranges (rows) in this table follow the “preferred numbers†series.  

Note that when the viewing distances (columns) also follow this series (1, 4, 5 or 6.3 m; 20 ft), the 
required letter sizes (numerator of the Snellen fraction) are also preferred numbers.  When the chart 
is designed for 6 m (5% less then a preferred number) the required letter sizes also have to be 
reduced by 5% and no longer are preferred numbers.   

For chart design, the exact numbers, as shown in this table, should be followed.  For clinical naming it 
is acceptable to round 32 to 30, 63 to 60, etc.  The error involved is 5% or 1/5 line interval, and 
corresponds to 1 letter seen or not seen on a standard chart. 

Note that the MAR notation (Minimum Angle of Resolution or Recognition) equals the denominator of 
the 1-meter Snellen fraction.  MAR = 1/V, therefore: log(MAR) = log(1/V) = – log(V).  The minus sign 
indicates that logMAR values are best understood as measures of 

vision loss

, rather than as 

measures of visual acuity.  

 
Choice of test symbols 

Most visual acuity charts utilize 

letters

.  For the patient, this choice gives a sense of immediate 

validity, when the primary objective is to read.  For the practitioner, errors are easy to spot, 
since most practitioners know their chart by heart.  Use of letters, however, is warranted only if 
the assumption may be made that familiarity with the alphabet plays a trivial role.  The Sloan 
letter set is shown in Figure 7. 

For less literate adults the use of a 

number

 chart may be more appropriate. 

For illiterate patients and pre-school children, 

pictures

 may be used.  However, it is difficult to 

judge the equivalence of letters and pictures and a child’s performance may depend on whether 
naming of pictures is a game that is played at home. 

 

Figure 7  Sloan letters 

Legend:

 

Sloan designed a series of letters without serifs that are widely used in the U.S.  Their 

average difficulty approximates that of Landolt C’s. 

 

LEA symbols(Figure 8.)

 were devised by Lea Hyvärinen (

45

).  They form a set of four simple 

symbols (square, circle, house, apple) that require little naming ability.  They are left-right 
symmetrical, so that left-right reversals in young children will not influence the results.  They 
have been designed to blur equally and have been calibrated against Landolt C’s (

46

(see 

Figure 9)

.  They form excellent tests for children, and can also be used for adults.  The same 

symbols are used in a variety of tests, as a letter chart, as a contrast sensitivity chart, in a 
reading format, on single symbol cards, on a domino game for older children and as a jigsaw 
puzzle for the very young.  

 

 

 22 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

 

Figure 8  LEA symbols 

Legend:

 

This chart combines the Bailey-Lovie layout with LEA symbols (

45

) for use with children 

and illiterate subjects.  See figure 9 to compare their calibrated size to other optotypes. 

 

The 

HOTV

 test contains four symbols: H, O, T and V, also chosen because they have no 

characteristics that require a sense of laterality.  To standardize the effect of contour interaction 
when the symbols are presented singly, they may be surrounded by crowding bars. 

Tumbling E’s

 are probably the symbols most often used for the testing of children.  They do 

require a sense of laterality, which can be a stumbling block for young and for developmentally 
delayed children.  They can be presented in a chart format or as single symbols.  When 
comparing findings, it should be remembered that presentation as single symbols is an easier 
test than presentation in a chart format.  Comparison of these different conditions and of 
findings on a closer spaced chart may give insight in the importance of crowding and of lateral 
contour interaction, which can be particularly informative in the treatment of amblyopia.   

Tumbling E’s also are the basis for the WHO Low Vision training kits, which are widely used in 
developing countries and in countries where the Roman alphabet is not used. 

Landolt C’s

 (

22

) have become the symbols of choice for many scientific measurements.  They 

are much less frequently used in a clinical setting, except in Japan where the characters of the 
Kanji alphabet are too complex.  When used in a chart format it is harder to detect errors, unless 
the observer points to the symbol.  However, pointing, like single presentation, affects the 
difficulty of the test. 

The Visual Acuity Measurement Standard of the International Council of Ophthalmology (

23

requires that letter charts in non-Roman alphabets (Cyrilic, Arabic, Hindi, Kanji, Hebrew, etc.) be 
calibrated against Landolt C’s for equal recognizability. 

Grating acuity

 is another visual acuity measurement that is mostly used in the laboratory and 

mostly in connection with contrast measurements.  For infants it can be used on cards as a 

Preferential Looking

 test.  Preferential looking is a 

detection

 test and thus not strictly 

equivalent to a 

recognition

 test. 

 23 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

Figure 9  Various symbols 

Legend:

 

This chart depicts a selection of commonly used optotypes.  First row: Snellen H (with 

serifs, 5x5), Sloan H (no serifs, 5x5), British H (no serifs, 4x5).  Other letter chart variations, such as 
charts with non-Roman alphabets and number charts are not shown.  Second row: LEA symbol 

(see 

also Figure 6)

, tumbling E, Landolt C.  The latter groups have only four symbols each, so that the 

guessing level is higher than with letter charts.   

Most optotypes approximate the recognizability of Landolt C’s; they represent 20/20 

(1.0) 

acuity when 

their height subtends about 5’.  Recognition within the LEA symbol set 

(Figure 8)

 is more difficult; 

calibration experiments established that the symbols need to be about 35% larger.

 

 

 

Summary 

When recording visual acuity for patients in the range of normal vision, the preferred 
measurement tool will often be a projector chart at 5 m or 6 m or 20 ft. in a darkened room.  The 
preferred notation will be a Snellen equivalent.  In continental Europe this will most often be 
decimal notation, in Britain it will be the 6/6 equivalent, in the U.S. it will mean use of a 20/20 
equivalent. 

When recording visual acuity for patients in the Low Vision range, the preferred tool will be a 
lighted chart in a lighted room at a distance of 1 meter.  The preferred notation will be a true 
Snellen fraction with 1 as the numerator.  It is often useful to add the commonly used Snellen 
equivalent in parentheses.  Thus, the ability to recognize an 8 M letter at 1 meter would be 
recorded as 1/8 (20/160) or 1/8 (0.125).  If the same patient were tested on an ETDRS chart at 
4 m the notation could be 4/32 (1/8, 20/160).  

 24 

background image

Colenbrander – Measuring Vision and Vision Loss 

Visual Acuity Measurement â€“ Near vision 

Although the testing of reading vision predated the development of letter charts to measure 
distance vision, the methodology to accurately measure reading acuity has lagged behind.  This 
is in part due to the fact that the prescription of a reading correction for normally sighted 
individuals is aimed more at achieving reading comfort than at accurate measurement.  It is also 
due to the lack of accurate measuring tools.  Reading distances are more often estimated than 
measured, while the “Jaeger numbersâ€, which are widely used in the U.S., have no numerical 
meaning.  Under these circumstances, it is not surprising that many practitioners believe that 
reading acuity and distance acuity have little in common.  We will show that this is not so. 

As is the case for distance vision, accurate determination of near vision acuity requires 
measurement of two variables: letter size and viewing distance.  For distance vision the viewing 
distances are standardized, so that only the letter sizes vary.  For individuals in the normal 
visual acuity range reading distances may be standardized, but the standards vary.  Some use 
40 cm 

(16â€, 2.5 D reading add)

, or 14†

(35 cm, 2.75 D add)

, others use 33 cm 

(13â€, 3 D add)

 or 

even 30 cm 

(12â€, 3.25 add) 

or 25 cm 

(10â€, 4 D add, the reference point for the power of 

magnifiers)

.  Individuals in the Low Vision range often need distances that are even shorter and 

certainly cannot be handled with a “one size fits all†distance.  They need a formula in which 
both the letter size and the viewing distance can be varied easily. 

Modified Snellen Formula 

The standard Snellen formula  

V = viewing distance / letter size

  becomes awkward to use 

when the numerator (viewing distance in meters) is itself a fraction within a fraction.  This can be 
overcome by using the reciprocal value of the viewing distance.  The reciprocal of a metric 
distance is known as the 

diopter (2 diopters = 1/2 m, 5D = 1/5 m, etc.) 

(

20

)

.

   

 

 

 

 

 

 

 

 

    

m

   

 

 

 

 

 

   M 

 

  1 

The traditional formula: 

V  =  ----

 thus 

becomes: 

1 / V

  =  ----  =  M x ----  =  

M x D

 

 

 

 

 

 

 

 

 

    

M

   

 

 

 

 

 

   m 

 

  m 

 or: 

 

1 / V = M x D

 = letter size 

(in M-units) 

x viewing distance 

(in diopters) 

Use of this modified Snellen formula has several advantages.   

• 

Use of reciprocal values turns the usual Snellen 

fraction

 into a 

multiplication,

 while the 

viewing distance changes from a fraction into a whole number.  Both changes make the 
formula far easier to calculate in one’s head.   

• 

The value 1/V relates directly to the letter chart acuity measured at 1 meter; the numerator 
indicates the amount of magnification needed to bring the subject to standard performance. 

• 

Expressing the reading distance in diopters relates directly to the amount of accommodation 
and/or the reading add that must be used for this distance. 

The results of these calculations are listed in Table 9.  This table is based on the use of 
preferred numbers, so that the same values appear for the viewing distances, the letter sizes 
and the resulting visual acuity values. 

Many reading cards are calibrated for a specific reading distance, i.e. for a specific column in 
Table 9.  This has led to the habit of using visual acuity values to refer to letter sizes.  For 
instance, a letter size that would represent 20/100 at 40 cm might be referred to as a “20/100 
letterâ€.  The table shows that the same letter at 25 cm would represent an entirely different 
acuity value.  A “20/100 letter†on a 20 ft. chart is very different again. 

 

 25 

background image

Colenbrander – Measuring Vision and Vision Loss 

TABLE 9  â€“  Modified Snellen Formula    1 /V = M x D    for Near Vision 

V i ew i ng   D i s t an c e   

(glasses to text, not valid for magnifiers)

 

5cm 6.3cm 8cm  10cm 12.5cm 16cm 20cm 25cm 32cm 40cm 50cm 

 

100 cm 

2†2.5†3.2†4† 5†6.3â€

8† 10†12.5â€

16†20† 

40†

 

Letter  

Size 

20 D  16 D  12.5D  10 D  8 D  6.3 D  5 D  4 D  3.2 D  2.5 D  2 D 

 

1 D 

ICD-9-CM 

3.2p 

J 1 

0.4 M 

20/160

 

6.3 

20/125

 

20/100

 

20/80

3.2

20/63

2.5

20/50

20/40

1.6

20/32

1.25

.

20/25

20/20

 

0.8 

20/16

 

   0.4

1/0.4

4p 

J 1 

0.5 M 

10

 

20/200

 

20/160

 

6.3 

20/125

 

20/100

20/80

3.2

20/63

2.5

20/50

20/40

1.6

20/32

1.25

.

20/25

 

20/20

 

    0.5

1/0.5

Above 

5p 

J 1,2 

0.63M 

12.5

 

20/250

 

10

 

20/200

 

20/160

 

6.3

20/125

20/100

20/80

3.2

20/63

2.5

20/50

20/40

1.6

20/32

 

1.25

.

20/25

 

    0.63

1/0.63

63p 

J 2-5 

0.8 M 

16 

20/320

 

12.5

 

20/250

 

10

 

20/200

 

20/160

6.3

20/125

20/100

20/80

3.2

20/63

2.5

20/50

20/40

 

1.6 

20/32

 

    0.8

1/0.8

8p 

J 3-6 

1 M 

20

 

20/400

 

16

 

20/320

 

12.5

 

20/250

 

10

20/200

8

 

20/160

6.3

20/125

5

 

20/100

4

 

20/80

3.2

20/63

2.5

20/50

 

2

 

20/40

 

   

1

 

1/1

 

10p 

J 4-7 

1.25M 

25

 

20/500

 

20

 

20/400

 

16 

20/320

 

12.5

20/250

10

20/200

20/160

6.3

20/125

20/100

20/80

3.2

20/63

 

2.5

 

20/50

 

   

1.25

1/1.25

Normal rang

12p 

J 7-10 

1.6 M 

32

 

20/630

 

25

 

20/500

 

20

 

20/400

 

16

20/320

12.5

20/250

10

20/200

20/160

6.3

20/125

20/100

20/80

 

3.2 

20/63

 

    1.6

1/1.6

16p 

J 7-10 

2 M 

40

 

20/800

 

32

 

20/630

 

25

 

20/500

 

20

20/400

16

20/320

12.5

20/250

10

20/200

20/160

6.3

20/125

20/100

 

20/80

 

   

2

 

1/2

 

20p 

J10-12 

2.5 M 

50

 

/1000

 

40

 

20/800

 

32

 

20/630

 

25

20/500

20

20/400

16

20/320

12.5

20/250

10

20/200

20/160

6.3

20/125

 

20/100

 

    2.5

1/2.5

25p 

J 14 

3.2 M 

63

 

/1250

 

50

 

/1000

 

40

 

20/800

 

32

20/630

25

20/500

20

20/400

16

20/320

12.5

20/250

10

20/200

20/160

 

6.3 

20/125

 

 

  3.2

1/3.2

Near-normal

 

32p 

J 16 

4 M 

80

 

/1600

 

63

 

/1250

 

50

 

/1000

 

40

20/800

32

20/630

25

20/500

20

20/400

16

20/320

12.5

20/250

10

20/200

 

20/160

 

   

4

 

1/4

 

40p 

J - 

5 M 

100 

/2000

 

80

 

/1600

 

63

 

/1250

 

50

/1000

40

20/800

32

20/630

25

20/500

20

20/400

16

20/320

12.5

 

20/250

 

10

 

20/200

 

   

5

 

1/5

 

50p 

J - 

6.3 M 

125

 

/2500 

100 

/2000

 

80

 

/1600

 

63

/1250

50

/1000

40

20/800

32

20/630

25

20/500

20

20/400

16

20/320

 

12.5

 

20/250

 

    6.3

1/6.3

63p 

J - 

8 M 

160 

/3200

 

125

 

/2500 

100 

/2000

 

80

/1600

63

/1250

50

/1000

40

20/800

32

20/630

25

20/500

20

20/400

 

16 

20/320

 

   

8

 

1/8

 

Moderate L.V. 

80p 

J - 

10 M 

200

 

/4000

 

160 

/3200

 

125

 

/2500 

100

/2000

80

/1600

63

/1250

50

/1000

40

20/800

32

20/630

25

20/500

 

20

 

20/400

 

    10

1/10

100p 

J - 

12.5M 

250

 

/5000

 

200

 

/4000

 

160 

/3200

 

125

/2500 

100

/2000

80

/1600

63

/1250

50

/1000

40

20/800

32

20/630

 

25

 

20/500

 

    12.5

1/12.5

 

 

Near-total Visual Acuity Loss 

Profound Low Vision 

Severe

Low Vision 

 
Legend:

 

Columns indicate reading distances.  Rows indicate letter sizes.  The resulting reading acuity values 
are found at the intersections.  The large number in each box represents the MxD value 
(magnification requirement).  The small number represents the visual acuity value.  Note that the 
visual acuity values are arranged in diagonal bands.  The same visual acuity value can be 
represented by many different combinations of viewing distance and letter size.  For each diagonal 
band the outer edge of the table indicates the ranges of vision loss in ICD-9-CM. 
The J-designations in the first column refer to values found on current charts.  Note that these are 
different from Jaeger’s original sizes, which are shown in Table 5. 

 

 26 

background image

Colenbrander – Measuring Vision and Vision Loss 

As visual acuity drops (MxD increases), subjects can compensate in two ways.  They may move 
to a different column, i.e. bringing the same print size closer by increasing the reading add (or 
the amount of accommodation in younger people).  They can also move to a different row, i.e. 
enlarging the print size, while maintaining the reading distance.  Large print books enlarge the 
physical print size; various magnification devices enlarge the virtual print size. 
Under most circumstances letter chart acuity and reading acuity – if measured appropriately and 
with the proper refractive correction â€“ will be similar.  However, when measuring letter chart 
acuity, subjects are often pushed for threshold or marginal performance, whereas reading tests 
more often aim at a level of comfortable performance.  For this reason, the magnification 
requirement for reading acuity may be somewhat greater than that for letter acuity.  The 
difference, known as the “magnification reserve†(

47

), is needed for reading fluency.   

While 20/20 

(1.0)

 acuity implies the ability to read 1 M print at 1 m, comfortable reading of 

newsprint (1 M) is generally done at 40 cm, indicating a 2.5x magnification reserve 

(4 line-

intervals)

.  Traditionally, the power of magnifiers is referenced to the ability to read at 25 cm 

(10â€).

  1 M at 25 cm denotes 20/80 

(0.25)

.  Note that this is the top value in the Low Vision 

band. 

To verify the relationship between reading acuity and letter chart acuity, the two values were 
compared for 150 consecutive patients from the author’s Low Vision service.  The results are 
shown in Table 10.  It shows that there is a close relationship between letter chart acuity and 
reading acuity and that this relationship holds up at all visual acuity levels.  Usually, the two are 
within one line from each other (diagonal gray band); for some patients the magnification need 
for reading is larger than the magnification need for letter recognition (spread to the right of the 
diagonal).  This difference is the magnification reserve, defined above.  Since the objective of 
visual acuity measurement in the Low Vision range is to help patients function with their own 
fixation ability, the author does not push patients for maximum letter chart acuity by pointing to 
letters or by isolating letters 

(see the earlier discussion under choice of criterion)

.  Had he used 

these techniques to improve the letter chart acuity, the magnification reserve for reading fluency 
would probably have appeared somewhat greater. 

 

 27 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

TABLE 10 – Magnification Need for Letter Chart Acuity and Reading Acuity 

80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/1600 

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/1200 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 >

20/1000 

40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

20/800 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1    

20/600 

25 

 

 

 

 

 

 

 

 

 

 

 

 

 

1    

20/500 

20 

 

 

 

 

 

 

 

 

 

 

2    

1 >

20/400 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 2  1 

 

1 >

20/300 

12 

 

 

 

 

 

 

 

 

 

 

 

1     

20/250 

10 

 

 

 

 

 

 

 

 

3 1    2 

 

 

 

 

20/200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/150 

 

 

 

 

 

 

2        

20/120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/80 

 

 

 

 

 

3 1 1 1 

 

 

 

 

 

 

 

 

 

20/60 

2.5 

 

 

 

 

 

1       1 

 

 

 

 

20/50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/40 

1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/30 

1.2 

 

 

 

 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/25 

Magnification Need – LETTER CHART   ( 1 /

 V ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/20 

 

 

1 1.2 1.5 2 2.5 3  4  5  6  8  10 12 15 20 25 30 40 50 60 80   

 

 

Magnification Need – CONTINUOUS TEXT   ( M x D ) 

 

 

Legend:

  The table compares the magnification need found for letter chart testing (1/V) with the 

magnification need for continuous text reading (MxD) for 150 consecutive Low Vision patients.  The 
numbers indicate the number of patients in each cell.  For most patients the two values are the same 
or differ by only one line interval (gray diagonal band).  For a number of patients the magnification 
need for continuous text is somewhat greater; this is known as the magnification reserve needed for 
reading fluency.  For a few patients the magnification need for continuous text was significantly 
greater (isolated gray cells).  These patients represent exceptional cases; for most of them letter 
acuity was obtained in a small island surrounded by scotoma, while reading acuity utilized a larger, 
more eccentric area, requiring more magnification.  

 

 28 

background image

Colenbrander – Measuring Vision and Vision Loss 

Letter size notations for continuous text 

For letter charts with metric notation the unit for letter size measurement is the M-unit, as it was 
defined by Snellen and named by Sloan.  A corresponding “F-unit†for charts with feet notation 
was never defined, and would probably only lead to confusion since calculating with non-metric 
measurements is so much harder.  The situation for continuous text letter sizes is more diverse. 

Jaeger numbers 

In the U.S. 

Jaeger numbers

 are widely used.  We have seen that these numbers have no 

numeric meaning since they refer to item numbers in a printing house catalogue in Vienna in 
1854.  They cannot be used for calculations.  Furthermore, since Jaeger did not establish an 
external reference, those who wanted to produce similar samples had to approximate Jaeger’s 
samples with fonts that happened to be available at their local print shop.  The result is great 
inconsistency in the use of Jaeger numbers.  The first column in Table 9 indicates the range of 
Jaeger ratings that were found to represent the same physical letter size, when comparing a 
number of contemporary “Jaeger†cards. 

Other countries have used similar samples, such as “de Wecker†samples in Germany and 
“Parinaud†samples in France. 

Printer’s points 

The need for a numerical designation lead some practitioners to the use of 

printer’s points

.  

This might have been useful if printer’s points referred to the letter height; instead they refer to 
the height of the slug on which letters used to be mounted.  On average, lower case letters tend 
to be about 50% of the slug height.  Thus: 
 

 

 

1 point (slug height) = 1/72 inch   

1 point (letter size) = about 1/144 inch 

However, this relationship varies with the type font.  E.g. in the TrueType family of computer 
fonts an Arial letter of 8 points has the same size as a Times New Roman letter of 9-points.  
Another problem is that the point notation does not apply to the optotypes used for distance 
vision, so that comparison of far and near measurements is impossible. 

A and N series 

On British type samples the size in printer’s points is designated by the notation N = … .  British 
cards often also carry an A = … notation.  The A series is based on the logarithm of the letter 
size.  As such, it is related to the “letter size credit†mentioned in Table 5 ( A = 17 – letter size 
credit/5 ) 

M-units

 

The 

M-unit

 is the only letter size unit that applies to distance charts as well as to reading 

samples.  It is the only unit that allows comparisons between the two tests.  It is the letter size 
unit used in this chapter and on an increasing number of newer reading cards.  It is convenient 
that 1 M is the size of average news print. 

By definition 1 M-unit subtends 5’ of arc at 1 meter and equals 1.454 mm.  Useful equivalents 
are: 7 M = 10 mm 

(error â€“2% or 0.1 line-interval)

 and  1 M = 1/16 inch 

(error +10% or 0.4 line-

interval)

.  Based on the size of lower case letters without ascenders or descenders (x-height), 

8 points = 1 M for the TT-Arial and TT-Courier computer fonts, but for the TT-Times New 
Roman computer font 1 M = 9 points. 

 

 29 

background image

Colenbrander – Measuring Vision and Vision Loss 

Reading Fluency 

For reading tests it is important to record not only the letter size and the distance at which the 
subjects can just decipher the text, but also the level at which they can read with reasonable 
fluency.  Most reading cards have short paragraphs with large letters and longer paragraphs 
with smaller letters.  On such cards only a subjective comparison of reading fluency with 
different levels of magnification is possible. 

Cards on which all paragraphs have the same length offer the opportunity to measure the 
reading speed objectively.  This layout was pioneered by the MN-read cards (

48

) and is now also 

available in other cards in multiple languages (

36

). 

 

 

 

Figure 10  

Reading card with proportional paragraphs. 

Legend:  

All paragraphs on this chart have the same length, so that reading times and reading 

fluency can be compared.  The set of smaller paragraphs is duplicated to avoid memorization.  A ruler 
with a diopter scale is provided to compare the reading distance to the reading add and to facilitate 
the use of the modified Snellen formula:  1/V = M x D 

(see text)

.  Various languages are available.  

The same text appears on the back of the chart in Figure 6 (

36

). 

 

When the reading time is recorded for each print size, the usual pattern will be that the subject 
reads at a reasonably stable rate at larger print sizes.  At smaller sizes reading becomes slower 
and then impossible (“fast – fast – slowâ€).  The print size just before the reading speed starts to 
drop off is the critical print size.  Providing magnification of ordinary print to the critical print size 
will give the best reading performance with the least magnification (largest field of view). 

 30 

background image

Colenbrander – Measuring Vision and Vision Loss 

Some subjects will show a different pattern that can be characterized as â€œslow – fast – slowâ€.  
This pattern occurs when macular degeneration patients read in a small island of vision within a 
peri-central scotoma.  For large text the island is not large enough to cover a whole word; this 
slows reading down.  At medium print sizes more letters are covered and reading speeds up.  At 
the smallest sizes reading slows down again.  The same pattern can be seen in patients with 
extreme tunnel vision in end-stage glaucoma or RP.  In these cases it is very important not to 
prescribe too much magnification.  Underlining technique to facilitate tracking along the line may 
also be beneficial. 

Occasionally, the pattern is “slow – slow – slowâ€.  This pattern, which can be seen in patients 
with scattered drusen, indicates that magnification alone will be of limited benefit.  In these 
patients, other means such as underlining to facilitate tracking, together with training and 
practice in the most effective use of the available retinal areas can lead to more improvement 
than the use of magnification alone. 

 

 31 

background image

Colenbrander – Measuring Vision and Vision Loss 

Infant vision testing 

In infants, both the physical basis of visual acuity and the cognitive skills to use it are still 
developing.  Standard visual acuity testing is impossible, yet early detection of deficits is 
extremely important.  Not acting on a suspicion of vision loss may cause developmental delays, 
since it deprives the infant of its most abundant source of stimulation. 

Instead of adult vision testing techniques, we must use behavioral observations.  The list in 
Table 11 was provided by Dr. Lea Hyvärinen.  It provides a transition to the discussion of the 
next aspect of vision loss, that of Functional Vision. 

 

TABLE 11 – Visual Behavioral Milestones 

 

What I See – Visual milestones for the first and second year 

 
0 – 3 months 

As a newborn infant, I look at light sources and turn my eyes and head toward 
them.  I develop 

eye contact

 between 6-8 weeks and follow objects that move 

slowly, first horizontally, later vertically.  By the end of the second month, I 
become interested in looking at mobiles. 

3 – 6 months

 

I discover my hands, reach towards objects, then 

grasp

 hanging objects.  I watch 

toys fall and roll away.  My visual interest sphere widens gradually.  If my vision 
is equal in both eyes, I don’t mind it if you cover my eyes with a cap or a patch, 
one at a time. 

7 – 10 months

 

I notice small bread 

crumbs

.  First I touch them, then I try to grab them.  I like to 

watch you draw simple pictures for me.  I also recognize objects that are partially 
hidden. 

11 – 12 months

 

I love to 

play hide and seek

 and know my way around my home.  I can look out 

the window and recognize people.  I also start to recognize some people. 

18 months

 

I can 

play with simple puzzles

.  I am interested in books and pictures and I can 

recognize that pictures are representations of real objects.  I like to watch you 
draw while you tell stories.  I may be able to name pictures and objects (such as 
my LEA puzzle shapes: apple, house, block and ball). 

24 months

 

I love to scribble and color.  I understand that pictures can be large and small 
and still represent the same thing.  I can also arrange similar pictures in groups.  
At this age, my vision can be tested while I play – if I am in the mood!  When my 
vision is tested, I see small pictures equally well with my right and left eye. 

 

Courtesy of Lea Hyvärinen, MD 

 32 

background image

Colenbrander – Measuring Vision and Vision Loss 

ASSESSMENT of FUNCTIONAL VISION 

In the introduction (Table 1), a distinction was made between 

visual functions

 and 

functional 

vision

.  Visual functions (such as visual acuity) can be measured for each eye separately.  

Functional vision is a property of the person, for adults it denotes the ability to perform Activities 
of Daily Living (ADL) such as reading.  Measuring reading fluency begins to measure such an 
ability, although full reading proficiency includes other factors such as reading comprehension 
and reading endurance as well. 

When we embark upon an individualized rehabilitative plan, for instance to improve reading 
proficiency, we need to 

measure

 the individual’s performance directly and then compare the 

findings before and after the intervention.  For other purposes, however, it may be sufficient to 

estimate

 the reading ability based on the 

measured

 visual acuity 

(see Table 12)

.  Such 

estimates are necessarily based on statistical averages and ignore individual differences.  This 
approach has some advantages if the purpose is the assignment of disability benefits, since we 
want to avoid penalizing those who have made a successful adjustment by reducing their 
benefits.   

 

TABLE 12 – Rehabilitation Needs vs. Assignment of Benefits 

ASPECTS: 

Structural change, 

Anatomical change 

Functional change at 

the Organ level 

Ability to perform 

ADL Activities 

Social, Economic 

Participation 

 

 

 

 

REHABILITATION NEEDS 

 

 

 

 

 

 

Ability and Participation Profile 

Æ

 Need for Rehabilitative Care 

Based on assessment of actual abilities, 
since successful adaptations reduce the 

need for additional Rehabilitative Care. 

 

 

 

ASSIGNMENT of BENEFITS 

 

 

 Impairment 

Measurement 

 Estimate 

of 

Average Ability 

 Assignment 

of 

Benefits 

Based on generic ability estimates. 

Individual variations are ignored, since 

successful adaptations should not be 

penalized by a reduction in benefits. 

 

 

 

Legend:

  Determination of Rehabilitation Needs is different from the assignment of benefits.  The 

difference in purpose explains a difference in approach 

(see text)

 

Functional Vision Estimates 

Use of statistical ability estimates is meaningful only if a reasonable correlation can be 
established between visual function measurements and functional vision.  Ophthalmology was 
one of the first fields were attempts were made to establish such a correlation.  Best known, 
although not the first, is the 

Visual Efficiency Scale

 developed by Snell in 1925.  Snell had done 

a survey, establishing that persons with 20/200 

(0.1)

 visual acuity had lost 80% of their 

employability in 1925 (

49

).  He combined this with a study about progressive visual blur to come 

up with a formula assigning a Visual Efficiency % rating to every visual acuity level (

50

).  In the 

same year, his report was adopted by the AMA Committee on Compensation for Eye Injuries 
(

51

). 

 33 

background image

Colenbrander – Measuring Vision and Vision Loss 

In 1958, this report was one of several published as 

Guides to the Evaluation of Permanent 

Impairment (

52

);

 later these reports were published in book form (

4

).  Several editions followed in 

which some additions were made, but in which the basis of Snell’s scale remained unchanged.  
This was the situation up to the 4

th

 edition (1993) of the AMA 

Guides

.  The Visual Efficiency 

scale can be found quoted in many publications. 

The AMA Vision chapter in the 5

th

 edition (2000) incorporates radical changes.  The Visual 

Efficiency system has been replaced by the Functional Vision Score system.  The major change 
is that 20/200 

(0.1) 

visual acuity is no longer rated as an 80% loss (of employability in 1925) but 

as a 50% loss of the generic ability to perform Activities of Daily Living.  This statistical estimate, 
combined with individual factors such as specific job requirements can then contribute to an 
administrative decision about the assignment of benefits, which is a separate step, not covered 
by the AMA 

Guides

.  Other changes in the 5

th

 edition involve some changes in the rules for 

combining losses and the elimination of various inconsistencies, which had crept in over the 
years. 

 
General Ability Score 

To compare performance across dissimilar abilities (reading ability, hearing ability, walking 
ability, etc.) a set of generic ability ranges is needed.  A useful scale is: 

.  100 +/- 10  

Normal range   

Normal function, with reserve capacity 

.    80 +/- 10  

Mild loss   

 

Normal function, but loss of reserve capacity 

.    60 +/- 10  

Moderate loss  

Normal function, but need for some aids 

.    40 +/- 10  

Severe loss   

Restricted function, slower than normal, even with aids 

.    20 +/- 10  

Profound loss   

Restricted function, marginal performance, even with aids 

.      0 +/- 10  

(Near-)total loss  Cannot perform, needs substitution skills. 

This scale recognizes that most functions have reserve capacity.  When the reserve capacity is 
lost, peak performance will suffer, but average performance will still be acceptable.  When loss 
proceeds further some assistive devices will be needed to enhance the function (enhancement 
aids).  When loss proceeds beyond the mid-point of the scale, performance is restricted and 
finally impossible.  At that point enhancement aids are no longer useful, the patient needs 
substitution aids to replace the lost function (talking books instead of magnifiers, lip reading 
instead of a hearing aid, a wheelchair instead of crutches, etc.). 

 
Visual Acuity Score 

In Table 6 the set of ICD-9-CM visual acuity ranges was compared to a set of reading ability 
ranges.  We found a good fit.  The 

Visual Acuity Score

, discussed under visual acuity notations, 

fits equally well with the visual acuity ranges as with the General Ability Scale quoted above.  
We may conclude that the Visual Acuity Score 

(Table 13)

 provides a reasonable statistical 

estimate of the generic ability to perform tasks requiring detail vision. 

Converting the visual acuity value to a 

Visual Acuity Score

 (VAS) is the first step in a three 

step process.  It converts the non-linear list of visual acuity values to a linear scale, which can 
be used for averaging and for other calculations. 

The next step is to combine the scores obtained for the right eye, the left eye, and binocularly to 
a statistical ability estimate: the 

Functional Acuity Score

 (FAS).  This is done by averaging.  

Since normal vision is binocular vision, the binocular score receives 60% of the weight; the right 
eye and left eye receive 20% each.  Thus, the formula is: FAS = ( 3 x VAS

OU

 + VAS

OD

 + VAS

OS

 ) 

/ 5.  

 34 

background image

Colenbrander – Measuring Vision and Vision Loss 

The last step is to combine the Functional Acuity Score (FAS) with a similarly derived Functional 
Field Score (FFS) to a single 

Functional Vision Score

 (FVS) as indicated in Table 14. 

 

TABLE 13  â€“  Ability Score and Ranges of Estimated Ability Loss 

Ranges 

Ability 

Score 

 

Visual 

Acuity 

ESTIMATED 

Reading Ability 

Field 

radius 

ESTIMATED Skills for 

Orientation and Mobility 

Range of 
 Normal 
 Vision 

110 
105 
100 

95 

 

20/12.5 
20/16 
20/20 
20/25 

Normal reading speed 

Normal reading distance 

Reserve capacity for 

small print  

 
 

60

°

 

 

Normal Visual Orientation 

Normal Mobility skills

 

 
 
(Near-) 
Normal 
Vision  Near- 

 Normal 
 (Mild 
   Loss) 

90 
85 
80 
75 

 

20/32 
20/40 
20/50 
20/63 

Normal reading speed 

Reduced reading 

distance 

No reserve for small print 

50

°

 

 

40

°

 

 

Normal “O+M†performance 

Needs more scanning 

Occasionally surprised by 

events on the side 

Moderate 
 Low 
 Vision 

70 
65 
60 
55 

 

20/80 
20/100 
20/125 
20/160 

Near-normal with  

reading aids 

Low power magnifiers  

and large print books

 

30

°

 

 

20

°

 

 

Near-normal performance 

 

Requires scanning for 

obstacles

 

Severe 
 Low 
 Vision 

50 
45 
40 
35 

 

20/200 
20/250 
20/320 
20/400 

Slower than normal 

with reading aids 

High power magnifiers 

10

°

 

 

8

°

 

 

Visual mobility is slower than 

normal 

Requires

 

continuous scanning

 

May use cane as adjunct 

 
 
 
 
Low 
Vision 

Profound 
 Low 
 Vision 

30 
25 
20 
15 

 

20/500 
20/630 
20/800 
20/1000 

Marginal with aids 

Uses magnifiers for spot 

reading, may prefer 

talking books 

6

°

 

 

4

°

 

 

Must use long cane for 

detection of obstacles

 

May use vision as adjunct for 

identification 

 
Near- 
Blindness 

10 
50 

 

 

20/1250 
20/1600 
20/2000 
   --- 

No visual reading 

Must rely on talking 

books, Braille or other 

non-visual sources 

2

°

 

 

less 

 

 
(Near-) 
Blind-
ness 

Total 
Blindness 

 

 

NLP  

 

Visual orientation unreliable 

Must rely on long cane, sound, 

guide dog, other blind mobility 

skills 

 

Legend.

  The first block lists the ranges of vision loss as defined in ICD-9-CM with the General Ability 

Score discussed in the text.  This score is also used as the Visual Acuity Score (VAS) and Visual 
Field Score (VFS).  The second block lists the corresponding visual acuity levels with estimated 
ranges of reading performance.  The third block lists the corresponding visual field ranges with 
estimated ranges of Orientation and Mobility (O&M) performance.  There is reasonable 
correspondence between the performance ranges in all three blocks. 

 

 35 

background image

Colenbrander – Measuring Vision and Vision Loss 

Visual Field Score 

A similar scoring system can be developed for visual field loss.  While visual acuity loss may 
manifest itself primarily in a loss of reading ability, visual field loss will affect another set of ADL 
skills, commonly covered under the term 

Orientation and Mobility

 (O & M) skills.  The 

importance of these skills is obvious, but designing a good measurement tool for O & M skills is 
difficult.  The technical aspects of visual field measurement have been discussed elsewhere.  
Modern static perimetry plots are a great help in defining the underlying disorder; they are 
harder to interpret with regard to the functional consequences.  Traditional Goldmann isopters 
were easier to interpret in this regard.  Also, for diagnostic purposes, the central 30° are the 
most informative, whereas a full-field plot is needed to predict O & M skills.  Capturing all 
aspects of visual field loss in a single number is a serious oversimplification of a complex reality.  
Nevertheless, it has been attempted because of administrative demand. 

The old AMA 

Guides

 offered two options; (a) a formula-based calculation, and (b) use of overlay 

grids.  The formula gave equal weight to upper and lower field and to peripheral and central 
loss.  The overlay grids, designed by Esterman (

53

), gave double weight to the lower field and 

concentrated most weight in the Bjerrum area.  The two methods do not give the same result 
and differ from the traditional “legal blindness†criterion 

(20° diameter, 10° radius)

The new AMA 

Guides

 use a method, which can be implemented with paper and pencil or with 

an overlay grid, and has the potential of being implemented on an automated perimeter (

54

).  50 

points are assigned to the central 10° radius (20° diameter), since this area corresponds to 
about 50% of the primary visual cortex; the other 50 points are assigned to the periphery.  The 
points are arranged along ten meridians, three in each of the lower quadrants and two in each 
of the upper quadrants. This gives the lower field 50% extra weight.  Measuring along meridians 
within the quadrants, rather than along the principal meridians, avoids special rules for 
hemianopias.  Along each of the ten meridians 5 points are counted from 0° to 10° and 5 points 
from 10° to 60°.  This maintains the traditional equivalence between a visual acuity loss to 
20/200 

(0.1)

 and a visual field loss to 10°, and assigns 100 points to a field of 60° average 

radius.  The assignments are summarized in Fig. 11. 

 

15

15

10

10

5

5

 

10 

10 

15 

15  15 

10 

15 

10 

 
 
 

 

 

 

Figure 11  

Diagrams for field scores 

Legend:

 

These diagrams depict the test points for the Visual Field Score.  Note that the central 

10° radius scores 50 points and that the lower field scores 50% more than the upper field. 

 

Similar to the Visual Acuity Score, which can be calculated as the number of letters read on a 
standardized chart, the 

Visual Field Score

 can be calculated as the number of points seen on a 

standardized grid.  Table 13 compares the Visual Acuity Score with ranges of reading skills and 

 36 

background image

Colenbrander – Measuring Vision and Vision Loss 

the Visual Field Score with ranges of O & M skills.  There is reasonable agreement, indicating 
that the Visual Field score is a reasonable estimate of O & M ability. 

The next step is to combine the Visual Field Scores (VFSs), obtained for the right eye, the left 
eye, and binocularly, to obtain a statistical ability estimate: the 

Functional Field Score

 (FFS).  

As for the Functional Acuity Score (FAS) this is done by averaging.  The formula is: FFS = ( 3 x 
VFS

OU

 + VFS

OD

 + VFS

OS

 ) / 5.  The binocular visual field is not measured directly, but 

constructed by superimposition of the monocular fields. 

 

Combining Visual acuity and visual field values 

After the Functional  Acuity Score and the Functional Field Score have been calculated, they 
must be combined to a single 

Functional Vision Score 

for the whole person.  The formula is:  

FVS = FAS x FFS / 100.  The process is summarized in Table 14.  For more detailed rules, the 
reader is referred to the AMA 

Guides 

(

4

). 

 

TABLE 14  â€“  Calculating the Functional Vision Score 

 
Measured 

impairment 

    Estimated 

functions 

  Global Impairment  

 (of 

each 

eye) 

      (of 

the 

person) 

     of the Visual System 

Visual Acuity Score – OD   

\

 

Visual Acuity Score – OS  

 

   

Functional ACUITY Score

  

\

 

Visual Acuity Score – OU   

/

   

 

 

 

 

 

(FAS)   

  

\

 

    

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

Functional VISION Score

 

Visual Field Score  â€“  OD   

\

   

 

 

 

 

 

 

 

 

  

/   

 

 

 

 

(FVS) 

Visual Field Score  â€“  OS  

 

   

Functional FIELD Score

   

/

 

Visual Field Score  â€“  OU   

/

   

 

 

 

 

 

(FFS) 

 
Other visual functions 

(if significant)

 

         

 

 

 

 

Individual 

adjustments 

 

 
Legend:  

The Functional Acuity Score is based on the visual acuity values for each eye and 

binocularly; combined with a similarly derived Visual Field Score, it determines the Functional Vision 
Score 

(see text)

 37 

background image

Colenbrander – Measuring Vision and Vision Loss 

Direct Assessment of Visual Abilities and Functional Vision 

While the statistical estimates of Functional Vision as outlined above can be useful for 
administrative purposes, the planning of individual rehabilitation efforts, requires a more detailed 
assessment of the individual’s abilities.  This can take the form of an 

Ability Profile

 in which the 

ability to perform each of a series of ADL activities is rated.  Such profiles can be simple or 
complex. 

A simple, yet effective, visual ability profile is used by Lea Hyvärinen (

55

).  Her model is 

particularly effective for children and infants, since it contains only four ADL groups:  
    

 

Visual Communication

 

   Daily 

Living 

skills, 

 

 

 

 

Orientation and Mobility

 and  

    

 

Sustained Near vision 

(incl. reading) 

and three performance levels:  
    

 

Performs like a Sighted person  

  

 

 

Performs like a Low Vision person  

  

 

 

Performs like a Blind person. 

The early recognition of vision defects and their remediation or compensation is important, since 
vision alone provides as much input to the brain as all other senses combined.  Loss or 
reduction of this input can have a profound effect on all aspects of an infant’s development (see 
Table 11).   

Overall visual functioning can be affected by several types of impairments.  With regard to 
rehabilitation efforts, it is important to make a distinction between 

Ocular Visual Impairment

 

(OVI, caused by pre-chiasmal lesions, such as a macular scar) and 

Cerebral

 (or Cortical) 

Visual Impairment

 (CVI, caused by post-chiasmal lesions).  Cerebral lesions can also cause 

defects in the higher visual functions: 

Visual Perceptual Impairment 

(VPI).  CVI and VPI are 

harder to quantify, but the newer neuro-imaging techniques have helped our understanding of 
these processes. 

In children the major cause of CVI and VPI is peri-natal asphyxia and ischemia.  Since this 
affects all parts of the brain, such children will often have other, non-vision related problems, 
which make the diagnosis more difficult.  Nevertheless, it has been possible to identify types of 
visual processing that are affected in some children and not in others.  A child can be said to 
have VPI if its visual processing capability is more restricted than its general developmental (not 
chronological) age would suggest

56

.  VPI can be task specific and can exist in the presence of 

normal acuity.  Thus, the fact that a child’s visual acuity is not in the Low Vision range (Table 
13) does not mean that the child does not need rehabilitative interventions.  Unfortunately, many 
agencies and professionals are not yet aware of this fact. 

Visual Perceptual Impairments can also exist in the adult (e.g. after a stroke in the elderly).  In 
the adult brain the effects may be less generalized.  It is important to separate the VPI from a 
possibly coexisting OVI (e.g. macular degeneration), since the rehabilitative efforts have to be 
very different. 

For adult vision rehabilitation plans, the various activities and performance levels will need to be 
specified in more detail.  Colenbrander has proposed a profile (

43

) with ten ADL groups:  

 

 

 

Self 

care 

     

personal care, clothing, health care

 

 

 

 

Meals   

 

 

 

 

 

preparation, cooking, appliances, eating

 

 

 

 

Home management   

 

housework, gardening, small repairs

 

 

 

 

Reading 

     

personal, informational, recreational 

 

 

 

Communication 

   

handwriting, typing, word  processing, telephone 

 38 

background image

Colenbrander – Measuring Vision and Vision Loss 

 

 

 

Financial management

   

handling cash, checks, bill paying, banking

 

 

 

 

Consumer interactions   

retail services, public services

 

 

 

 

Orientation, Mobility  

 

orientation, walking, driving

 

 

 

 

Leisure      

active, passive, social interactions

 

 

 

 

Education / Vocational   

blackboard, notes, tests, reading assignments,  

 

           or: 

specified 

vocational 

tasks. 

To rate performance for each of these activities the 100-point scale used for the visual acuity 
and visual field scales is too detailed and  should be reduced to a 10-point ability scale.  
Although the scores for the 10 activity groups could be combined to a 100-point global score, 
this is not recommended, since the purpose of an ability profile is to highlight differential 
performance, and hence different rehabilitation needs, in different areas. 

Other groups have devised numerous other lists, often directed at specific problems.  ICIDH-2 
(

3

) provides a very detailed taxonomy of activities, from which relevant ones can be selected. 

 

Direct Assessment of Participation 

To judge the actual impact of vision loss on a person’s 

Quality of Life

, an even broader 

perspective is needed.  In ICIDH-80 this aspect was described as 

handicap 

and measured in 

terms of 

loss of independence

; in ICIDH-2 it is described under the heading 

participation.

  

These terms describe different sub-aspects.  Handicap describes the barriers that need to be 
overcome, participation describes the result of overcoming them.  Loss of independence seems 
to imply full independence as an ideal; participation also stresses interdependence.   

How well different individuals can overcome their barriers, depends not only on the impairment 
and on the abilities of the individual, but also on the society and the environment in which the 
individual operates.  The Americans with Disabilities Act (ADA) has drawn much needed 
attention to accommodations that can be made in the workplace.  The story of Helen Keller is 
one example of how some people can achieve full participation in spite of extraordinary 
handicaps. 

Improving the 

Quality of Life

 and the 

Participation

 aspect remains the ultimate goal of all 

rehabilitative interventions.  For this reason, the National Eye Institute has developed a 

Visual 

Function Questionnaire

 (VFQ) (

57

) with 50 or 25 items.  The NEI-VFQ is used in many NEI 

sponsored clinical studies and also in private studies.  Other groups have developed similar 
instruments and more activity in this field may be expected. 

 

Summary 

The assessment of vision loss can be approached from different points of view.  

Visual functions

 

such as visual acuity are easily measured and are often used to characterize patients or patient 
groups.  

Functional Vision

 and the ability to perform Activities of Daily Living (ADL) are more 

difficult to measure.   

For administrative uses, a statistical estimate of the ADL ability may be derived from the visual 
function measurements.  For individual rehabilitation plans the individual abilities must be 
evaluated in an Ability Profile. 

Improving the 

Participation

 aspect is the ultimate goal of all rehabilitative efforts.  Instruments 

such as the NEI-VFQ can be used to assess this aspect. 

 

 39 

background image

Colenbrander – Measuring Vision and Vision Loss 

 REFERENCES 

                                            

1

  

Dimensions of Visual Performance

, A. Colenbrander - Low Vision Symposium, American Academy of  

Ophthalmology, Transactions AAOO, 83:332-337, 1977. 

2

  

International Classification of Impairments, Disabilities and Handicaps

 (ICIDH-80), World Health 

Organization, Geneva, 1980. 

3

  

International Classification of Functioning, Disability and Health

 â€“ (ICF), World Health Organization, 

Geneva, 2001. 

4

  

Guides to the Evaluation of Permanent Impairment

 â€“ American Medical Association, Chicago.  1st 

Ed., 1971; 2nd Ed., 1984; 3rd Ed., 1988; 3rd Ed.rev., 1990, 4th Edition, 1993.  5th edition expected in 
2000. 

5

  

Seeing into Old Age: Vision Function Beyond Acuity,

 Haegerstrom-Portnoy G, Schneck ME, Brabyn 

JA.  Optom. And Vision Sci. 76(3): 141-158 (1999). 

6

  

Schriftnummerproben für Gesichtsleidende

, Küchler, Darmstadt, 1843. 

7

  

Schriftskalen

, Eduard von Jaeger .  1854 (first edition).  

Also:

 1857 (second edition with texts in 

German, French, English, Italian, Czech (then part of the Austrian Empire), Russian, Hebrew). 

8

  

Ueber Staar und Staaroperationen,

 Jaeger E.  Vienna, LW Seidel, 1

st

 ed. 1854. 

9

  

On the Anomalies of Accommodation and Refraction

, Donders FC. New Sydenham Society, London, 

1864. 

10

  

Letterproeven tot Bepaling der Gezichtsscherpte

, Snellen H.  Utrecht, Weyers, 1862 (Dutch edition, 

also single language editions in German, French, Italian) 

Also:

 

Optotypi ad Visum Determinandum

.  Repeated international editions (with texts in Dutch, French, 

German (gothic and roman type), English, Italian, and Latin), incl. 23

rd

 edition, 1937. 

11

   Robert Hooke - Posthumous works, published 1705. 

12

  

Onderzoekingen naar de invloed van de leeftijd op de gezichtsscherpte

 

(Research on the influence of 

age on visual acuity), 

de Haan V – Doctoral Dissertation, Utrecht, 1862. 

13

  

Visual Acuity changes throughout adulthood in Normal Eyes:  Seeing beyond 6/6.

  Elliott DB, Yang 

KCH, Whitaker D.  Optom. Vision Sci. 72:186-191 (1995). 

14

  

Racial Variations in Vision, 

Taylor HR.  Am. J. Epidemiol. 113 (1): 62-80. 

15

  

Ophthalmic test types, 

Bennet AG.  Br. J. Physiol. Optics, 22:238-271 (1965). 

16

  

British Standard - Test Charts for Determining Distance Visual Acuity

 BS 4274. London, British 

Standards Institution (1968) 

17

  

On a new series of test-letters for determining the acuteness of vision, 

Green J

.

  Transact. Amer. 

Opth. Soc. 4

th

 meeting (1868), p 68-71.  

Also:

 

Test letters,

 Green, Ewing.  St. Louis, 1886. 

18

   Metric System.  Proposed in France in 1789.  Legally accepted in France in 1799.  Accepted 

worldwide (including U.S.A.) through the Treaty of the Meter in 1875. 

19

  

Echelle typographique décimale pour mesurer l'acuité visuelle

, Monoyer F.  Gaz. Med. Paris 21:258 

(1875) 

20

   Monoyer F. - Ann. Oculistiques (Paris) 68:101 (1872) - proposed diopter notation. 

21

  

Bestimmung der Sehschärfe, 

Snellen H, Landolt E,  in: 

Die Functionsprüfungen des Auges

 in: 

Graefe-Saemisch Handbuch

, first edition, vol. 3 (1874).  Also published as: '

Optometrologie'

 (1874). 

22

  

Bestimmung der Sehschärfe, 

Landolt E in: 

Die Functionsprüfungen des Auges

 in: 

Graefe-Saemisch 

Handbuch

, second edition (1904) 

 40 

background image

Colenbrander – Measuring Vision and Vision Loss 

                                                                                                                                             

23

  

Visual Acuity Measurement Standard

 - International Council of Ophthalmology, 1984, in: Italian J. 

Opht., pp. 1-15, II/I (1988). 

24

   Hess.  XI Int. Congress of Ophth., Naples (1909) 

25

  

New Test Charts for the Measurement of Visual Acuity at Far and Near Distances,

 Sloan LL.  Am J 

Ophth. 48:807-813 (1959). 

26

  

Reading Aids for the Partially Blind

, Sloan LL, Habel A.  Am. J. Ophth. 42:863-872 (1963). 

27

  

Eduard Jaeger’s Test-Types (Schrift-Scalen) and the Historical Development of Vision Tests,

 Runge 

PE.  AOS thesis, 2000. 

28

  

International Classification of Diseases, 9th Revision (ICD-9)

, World Health Organization, Geneva, 

1977. 

29

  

Proc. XXIII International Congress of Ophthalmology.

 â€“ 1978, pp 69-74.  Elsevier, Amsterdam. 

30

  

International Classification of Diseases, 9th Revision - Clinical Modification

 

(ICD-9-CM)

.  First edition: 

Commission on Professional and Hospital Activities, Ann Arbor, 1978.  Later editions by: U.S. Public 
Health Service, 1980, and others. 

31

  

New Design Principles for Visual Acuity Letter Charts, 

Bailey IL, Lovie JE..  Am J Optom & Physiol 

Opt  53:740-745 (1976). 

32

  

Applying new Design Principles to the Construction of an Illiterate E chart, 

Taylor HR.  Am J Optom 

Physiol Optics 55:348-351 (1978). 

33

  

New Visual Acuity Charts for Clinical Research, 

Ferris FL, Kassov A, Bresnick GH, Bailey I.  Am J 

Ophthalmol  94:91-96 (1982). Also: 

Measurement Guidelines for Collaborative Studies

.  National Eye Institute (NEI), Bethesda, MD. 

34

  

From 20/20 to 6/6 or 4/4?, 

Hofstetter HW.  Am. J. Optom. 50(3):212-221 (1973). 

35

  

Reading Glasses for Patients with Very Poor Vision,

 Kestenbaum A, Sturman RM.  Arch. Ophth. 

56:451-470 (1956), also Am. J. Ophth. 36:1143-1144 (1953). 

36

  

Low Vision Test Chart.

  One side: Letter chart from 50M to 1M, representing acuity values from 1/50 

(20/1000, 0.02)  to  1/1 (20/20, 1.0); 1m cord attached.  Other side: standardized reading segments (10M 
to 0.6M ) for reading rate measurements; diopter ruler included.  Available in English, Spanish, 
Portuguese, German, French, Dutch, Swedish, Finnish.  From: Precision Vision, 944 First Street, LaSalle, 
IL 61301, USA.  Telefax: 1-815-223-2224. 

37

  

Visual Acuity Measurements in Low Vision Patients. 

 Colenbrander A, Fletcher DC.  Journal of Vision 

Rehabilitation, 4(1): 1-9 (1990). 

Also:

 

The Basic Low Vision Examination, 

Colenbrander A

.

  In: 

Low Vision Rehabilitation

, Colenbrander, 

Fletcher eds., Ophth. Clinics of North America (1994), 7-2: 151-162. 

38

  

De tactu: annotationices et physilogicae,

 Weber EH (1834), brought to wider attention in:  

Elemente 

der Psychophysik, 

Fechner GT (1860). 

39

  

Scaling of Visual Acuity Measurement

, Westheimer G.  Arch. Ophth. 97:327-330, 1979. 

40

  

Preferred Numbers,

 ISO standard # 3

.  

Also: DIN standard # 323. 

41

  

Neue Probetafel zur bestimmung der Sehschärfe

, Colenbrander MC.  Klin. Monatsbl für Aug. 99:213 

(1937) and Ophthalmologica 99:402 (1940) 

42

  

Measurement of visual acuity – Towards standardization,

 Bailey, IL..  In Vision Science Symposium -

Tribute to Gordon Heath. Indiana University, 1988. 

43

  

The Functional Vision Score. A Coordinated Scoring System for Visual Impairments, Disabilities and 

Handicaps,

 Colenbrander A.  In: 

Low Vision - Research and New Developments in Rehabilitation

Kooijman et al. eds., Studies in Health Technology and Informatics, IOS Press, Amsterdam, 1994, pp. 
552-561. 

 41 

background image

Colenbrander – Measuring Vision and Vision Loss 

                                                                                                                                             

44

  

Repeatability of Visual Acuity Measurement, 

Raasch TW, Bailey IL, Bullimore MA.  Optom. And 

Vision Sci.  75(5): 342-348. 

45

  

New visual acuity test for pre-school children,

 Hyvärinen L, Näsänen R, Laurinen P. Acta Ophthalmol. 

58:507-511 (1980). 

46

   LEA symbol calibration data are available at: www. lea-test.sgic.fi/en/vistests/  

47

  

Visual requirements for reading, 

Whittaker SG, Lovie-Kitchin J.  Optometry and Vision Science 70: 

54-65 (1993). 

48

  

Psychophysics of reading. XV. Font effects in normal and low vision.

  Mansfield JS, Legge GE, Bane 

MC.  Investigative Ophthalmology & Visual Science, 37, 1492-1501, (1996).  The MNREAD Acuity Chart 
(Lighthouse Low Vision Products, Inc., Long Island City, New York) 

49

   

Visual Efficiency of Various Degrees of Subnormal Visual Acuity, its Effect on Earning Ability, 

Snell 

AC  J AMA 85(18): 1367-1373. 

50

  

The Percentage Evaluation of Macular Vision

, Snell AC, Sterling S.  Arch. Ophth. 54:443-461, (Sept.) 

1925. 

51

  

Report of the Committee on Compensation for Eye Injuries

, J AMA 85(2): 113-115, (July) 1925. 

52

  

Guides to the Evaluation of Permanent Impairment - Committee report

. JAMA 168 (4): 475-485, 

1958.  

53

  

Grid for Scoring Visual Fields. I – Tangent Screen, 

Esterman B.  Arch. Ophth. 77:780-786, 1967. 

Grid for Scoring Visual Fields. II – Perimeter,

 Esterman B. Arch. Ophth. 79:400-406, 1968. 

III – Functional Scoring of the Binocular Field,

 Esterman B.  Ophthalmology, 89(11): 1226-1234, (Nov.) 

1982. 

54

  

Preliminary Implementation of the Functional Vision Score on the Humphrey Field Analyzer, 

Colenbrander A, Lieberman, MF, Schainholz DC.  Proceedings of the International Perimetric Society, 
Kyoto, 1992. 

55

  

Classification of Visual Impairment and Disability, 

Hyvärinen L.

 

Bull. Soc. Belge Ophtal., 215, 1-16, 

1985.  

56

  

Separating Visual Perception and Non-verbal Intelligence in Children with Early Brain Injury,

 Stiers A, 

De Cock P, Vandenbussche E.  Brain & Development 21 (1999): 397-406 

57

  

Psychometric Properties of the National Eye Institute Visual Function Questionnaire (NEI-VFQ),

 

Mangione CM et al.  Arch. Ophthalmol. 116:1496-1504 (1998). 
 

 42 


Document Outline