background image

 

 

Successful Flight Demonstration Conducted by the Air Force 
and United Launch Alliance Will Enhance Space Transportation 

 
The Air Force and United Launch Alliance (ULA) 
successfully completed numerous on-orbit 
cryogenic-fluid-management demonstrations on 
the Atlas V AV-017 mission following successful 
insertion of the DMSP-18 spacecraft.  Six 
distinct demonstrations were performed 
specifically designed to improve our 
understanding of propellant settling and slosh, 
pressure control, RL10 chilldown and RL10 two-
phase shutdown operations.  Lessons learned 
will guide further upgrades to ULA’s current 
Atlas and Delta cryogenic upper stages 
improving performance and allowing longer, 
more demanding missions.  These results also 
directly benefit current operation of the Air Force 
Evolved Expendable Launch Vehicle fleet, 
development of ULA’s planned Advanced 
Common Evolved Stage and other cryogenic 
systems. 
 
Special research and development 
instrumentation was added to Centaur, the Atlas 
cryogenic upper stage, to support the 
demonstration including temperature 
measurements on the LH2 sidewall, forward 
bulkhead, LH2 feedline, RL10 pump housing 
and aft bulkhead components.  The 
demonstrations commenced once Centaur had 
maneuvered a safe distance away from DMSP-
18 to ensure no risk to the spacecraft.  The 
Centaur disposal burn was delayed by 2.4 hours 
to allow for the low acceleration demonstrations.  
The disposal burn itself provided a unique 
opportunity to perform demonstrations without 
an attached payload.  The light weight of DMSP-
18 allowed 12,000 lbs of remaining LO2 and 
LH2 propellant, 28% of Centaur’s capacity, for 
the demonstrations.   
 
A preliminary data review of the demonstrations 
showed very favorable results.  The majority of 
instrumentation worked properly, providing a 
wealth of data. 
 

1) 

Low-G Settling Demonstration:

 

Centaur and other cryogenic space 
propulsion systems, such as the Delta 
IV second stage and Saturn V’s S-4B 
stage, use on-orbit settling to separate 
liquid from gas.  This separation is  

 

Lift-off of AV-017 carrying the DMSP satellite 
for the Air Force. 

 

Centaur’s sidewall was painted white and 
numerous dedicated instruments were added 
to support the on-orbit CFM demonstrations. 

background image

 

 

critical, enabling the stages to vent pure gas to control tank pressure.  The required 
magnitude of settling acceleration directly affects the stage performance and maximum 
coast duration.  For this demonstration, Centaur was settled by pulsing its four hydrazine 
thrusters at a reduced duty cycle to provide half of the acceleration that is typically used 
to support Centaur’s longer coast missions.  Lower duty cycle settling reduces the 
hydrazine consumption rate, allowing longer mission durations. 

Results from the sidewall and bulkhead temperature measurements show that LH2 
remained settled for the majority of the phase.  A slosh wave did briefly cool the forward 
bulkhead after initially achieving the lower settling level, but the LH2 remained adequately 
settled for the remainder of the demonstration.  The short sloshing period can be 
accommodated on future operational missions by inhibiting venting during the start of a 
coast.  Ultimately, this lower acceleration level is shown to adequately support future long 
coast missions. 

2) 

Solid-Body-Rotation Settling Demonstration:

  

For coasts longer than about 15 minutes, Centaur is rolled around its longitudinal axis to 
ensure uniform heating.  Typically, the roll direction is regularly reversed to prevent solid 
body rotation of the propellant.  For this demonstration, Centaur maintained a single roll 
direction to ensure solid body rotation.  Following the low axial settling period, settling 
thruster firing was terminated with the objective to demonstrate that low level centrifugal 
acceleration could adequately retain liquid slosh.  The liquid slosh must be kept 
sufficiently damped such that the hydrogen vent port, located on the forward door near 
the tank centerline, remains clear of liquid.   

Initial post flight review of the attitude control thruster firings indicates that the solid body 
rotation did not induce nutation affects that would adversely affect future missions.  
Likewise, Centaur hydrogen tank venting and bulkhead temperature measurements 

Liftoff

Maximum Dynamic Pressure
Alt = 37,800 ft
Max Q = 482 psf

Atlas/Centaur Separation

Alt = 594,524 ft

= 97.8 nm

Down Range = 145.9 nm

SC Separation
Alt = 462.7 nm

Centaur MECO1
Alt = 462.6 nm
Down Range = 1,837 nm
T+ 917.1 sec

Centaur CCAM
MET = 1,086 to 2,086 sec

Demonstration  Coast

MET = 2,086 to 10,686 sec

Centaur MES1

Alt = 666,437 ft

=  109.7 nm

Down Range = 166.1 nm

PFJ
Alt = 118.9 nm
Down Range = 182.2 nm

Centaur Disposal Burn

ALT = 454.2 nm@ MES2

T+ 10,685.7 sec

ALT = 495.0 nm @ MECO2

Liftoff

Maximum Dynamic Pressure
Alt = 37,800 ft
Max Q = 482 psf

Atlas/Centaur Separation

Alt = 594,524 ft

= 97.8 nm

Down Range = 145.9 nm

SC Separation
Alt = 462.7 nm

Centaur MECO1
Alt = 462.6 nm
Down Range = 1,837 nm
T+ 917.1 sec

Centaur CCAM
MET = 1,086 to 2,086 sec

Demonstration  Coast

MET = 2,086 to 10,686 sec

Centaur MES1

Alt = 666,437 ft

=  109.7 nm

Down Range = 166.1 nm

PFJ
Alt = 118.9 nm
Down Range = 182.2 nm

Centaur Disposal Burn

ALT = 454.2 nm@ MES2

T+ 10,685.7 sec

ALT = 495.0 nm @ MECO2

A 2.4 hour post-spacecraft mission extension was added to the DMSP-18 launch to allow for a 
number of on-orbit demonstrations. 

background image

 

 

confirm that the centrifugal settling maintained adequate liquid control and that 
disturbances caused by gaseous hydrogen and oxygen venting had no negative mission 
impact.  Initial flight review indicates that centrifugal settling is promising, but the on-going 
detailed data review will be required to determine if it is beneficial for future flights. 

3) 

Oxygen Venting on-Orbit:

  

Centaur’s oxygen vent is not balanced so oxygen venting produces a torque on the 
vehicle.  This is not a problem during current missions since Centaur does not vent on-
orbit, however, longer duration missions in the future may require on-orbit oxygen venting 
to control tank pressure.  This demonstration was designed to determine both oxygen 
and hydrogen liquid propellant management characteristics and vehicle control with the 
asymmetric force generated during oxygen venting.   

Oxygen venting was conducted during both the low acceleration and centrifugal settling 
demonstrations.  Results show that the LH2 remained settled during the low-g settling 
phase.  No adverse propellant motion or vehicle control issues were observed.  Following 
the GO2 vent during the Solid-Body Rotation settling phase, LH2 sloshing was observed 
on the forward bulkhead as predicted.  If future missions utilize solid body rotation settling 
we may need to inhibit hydrogen venting for a short period of time following oxygen 
venting. 

4) 

LH2 Pulsed Chilldown:

 

Prior to pumping LO2, the RL10 engines must be chilled.  This is typically accomplished 
by flowing cryogenic propellants through the engine.  Flight demonstrations conducted 
during the 1990’s on Atlas and Titan Centaurs demonstrated that pulsing the LO2 flow 
significantly reduces the required quantity of propellant.  Information gained from the 
1990’s demonstrations formed the basis of Centaur’s current LO2 “trickle” chilldown 
process that substantially reduced the required LO2 consumption.   

The demonstration performed on the DMSP-18 mission was designed to provide similar 
data for the LH2 pump chilldown.  The long coast during which the settling 
demonstrations were performed allowed the Centaur feedlines and RL10 engine 
hardware to warm to relatively high temperatures.  The LH2 flow was then pulsed 
multiple times prior to the second main engine start.  Each pulse consisted of a period of 
liquid flow followed by a period of no flow to allow LH2 to boil and cool the pump.  Flight 
results showed that the pulsed chilldown did a good job of removing heat from the 
feedline and pump housing while reducing propellant usage.  This chilldown technique 
shows good promise for future long coast missions.   

5) 

GO2 Venting during Engine Burn:

 

There are certain situations where it is advantageous to rapidly reduce Centaur LO2 tank 
pressure during the burn.  The influence of this pressure change on RL10 operation and 
Centaur environment was demonstrated on this mission.  Extra instrumentation was 
mounted on various Centaur aft bulkhead components to determine the vibration 
environment and validate that the oxygen vent plume did not create an adverse 
environment by interacting with the engine plume.  Mission results show that no adverse 
environment was observed and RL10 engine operation was unaffected by the pressure 
change, thus demonstrating that venting of the oxygen tank is feasible for future 
missions. 

6) 

Modified Minimum Residual Shutdown (MRS):

 

MRS allows Centaur to continue RL10 operation until liquid pull-through.  Centaur utilizes 
MRS to maximize performance for missions where precise orbit injection accuracy is not 

background image

 

 

required.  Normal MRS logic commands RL10 shutdown as soon as acceleration starts to 
fall off.  This demonstration allowed the RL10 to continue operation until thrust fell 
substantially. 

Good data was obtained.  Engine thrust decayed once the LO2 was depleted and vehicle 
acceleration dropped precipitously as expected.  Following pull-through, the RL10 
continued to generate thrust by burning a combination of liquid and gaseous propellants 
before the RL10 reached final shut down at a preset time.  During this period, Centaur 
experienced a few thrust spikes possibly caused by ingestion of trapped liquid.  Potential 
benefits of utilizing this two-phase engine operation for future missions include increased 
engine performance or improved Centaur disposal options. 

 
Useful data has already been obtained from these demonstrations and on-going detailed analysis 
by the Air Force and ULA will quantify the potential benefits and impacts of implementing these 
techniques.  Just as flight demonstrations in the past have led to the high capability of today’s 
Centaur, the results of these demonstrations will further allow ULA to improve on second stage 
design and operation to guide development towards more advanced space-based cryogenic 
systems. 
 
 
For further information please contact:  
 
Capt David Ilgenfritz, USAF 
Systems Engineering and Analysis Branch Chief, Atlas Engineering Division 
email: david.ilgenfritz@losangeles.af.mil 
Office: 310-653-3044  

 

Or 

 

Mr. Mark Dornseif  
Customer Program Office, United Launch Alliance Atlas AF/EELV Programs  
email: mark.j.dornseif@ulalaunch.com  
Office: 303-269-5269