background image

Scientific Technical Review,Vol.LVII,No.3-4,2007 

 

3

 

UDK: 512.514. 53:929  

COSATI: 12-02 

Leonhard Euler (1707-1783) 

and Rigid Body Dynamics 

Edited by Katica (Stevanovi

ć

) Hedrih, PhD (Eng)

1)

 

The introductory test of this volume is dedicated to the 300th anniversary of the birth of Leonhard Euler, one of the 
most distinguished scientists of the 18th century in the fields of mathematics and mechanics. Born on 15 April 1707 in 
Basel, Switzerland, he devoted his life to mathematics instead to theology, much against his father wish and owing to 
famous Bernoulli. Although the majority of his work concerned elementary mathematics, he also contributed 
significantly to astronomy and physics. 
Partially blind in his late twenties and totally blind in his late years, Euler was nonetheless exceptionally productive in 
his studies – 500 titles appeared during his lifetime and 400 more were published after his death. Laplace used to tell 
his students: â€œRead Euler, read Euler! He is the teacher of us all!” 

 

                                                           

1)

  Faculty of Mechanical Engineering University of NiĆĄ, Mathematical Institute SANU, Aleksandra Medvedeva 14, 18000 Nis, SERBIA 

Introduction 

 

statement attributed to Pierre-Simon Laplace 

expresses Euler's influence on mathematics: "

Read 

Euler, read Euler, he is the teacher (master) of us all

". 

The Euler Committee of the Swiss Academy of Sciences 

was founded in 1907 with the task to publish all scientific 

books, papers and the correspondence of Leonhard Euler 
(1707-1783) in a scientific edition.  

Euler was one of the leading and most famous scien-
tists in the mathematics as well as in the mechanics of 
the 18th century. 

Euler's books and papers are edited in the Series I-III, the 

correspondence in the Series IV. In the last 90 years 71 
volumes of the Series I-III have been published. The last 

three volumes are in preparation and should appear shortly. 
The Series IV with Euler's scientific correspondence will 

contain 10 volumes. Four volumes have been published and 
three volumes are in preparation.  

 

Fugure 1.

 Aleksandr Mikhailovich Lyapunov (1857 â€“ 1918) Editor of two 

volumes of 

Euler’s collected works

This huge endeavor can only succeed with the aid of 

internationally acclaimed scientists as coworkers and with 
the financial support of the Swiss National Science 

Foundation, the Swiss Academy of Sciences and many 
long-term substantial contributions from Swiss industrial 

corporations. 

A. M. Lyapunov opened a new page in the history of 

global science. He also contributed as an editor of two 

volumes of 

Euler's collected works

.  He  took  part  in  the 

publication of Euler's Selected Works and was the editor of 

the 18th and 19th part of this miscellany.  

The “Euler phenomenon” 

Three factors go a long way towards explaining the 

“Euler phenomenon”: First of all, his - perhaps unique - 
gifted memory. He seemed to have remembered whatever 

he had heard, seen, thought, or written in his whole life, as 
countless contemporaries confirmed. For example, in his 
advanced age he was able to delight his relatives, friends, 

and acquaintances with a literal (Latin) recitation of any 
song from Virgil’s Aeneis, and he could reproduce by heart 

the minutes of the academy meetings decades later, not 
mentioning his memory concerning mathematics. 

Furthermore, Euler’s prodigious memory went hand in 
hand with a rare ability to concentrate. Noise and bustle in 
his immediate environment hardly disturbed his thinking: 

“A child on his knees, a cat on his back - this is how he 
wrote his immortal works,” reported ThiĂ©bault, his 

colleague from the Berlin academy. The third factor in the 
“Euler mystery” is, quite simply, constant, meticulous 

work. 

Reputation 

Leonhard Euler’s influence and reputation were already 

impressive during his lifetime. For almost two decades he 
was (according to Andreas Speiser) the intellectual leader 
of the Protestant part of Germany, and (according to Eduard 

Winter) he performed inestimable services as the “golden 
bridge between two academies”. The 10 volumes of his 

correspondence testify to this role, as does the fact that, 
during his Berlin years, Euler published 109 papers in the 

background image

4

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

 

Petersburger Kommentare and 119 papers in the MĂ©moires 
of the Berlin academy. And although Euler’s energy was 

sufficient for him to keep up his activities at both 
institutions, the institutions themselves could not easily 

cope with the almost inexhaustible tide of Euler’s 
productivity. To judge simply from the extent of his work, 

Euler is in the company of the most prolific members of the 
human race, e.g, Voltaire, Leibniz, Telemann or Goethe. 
The directory of Euler’s writings published by G. Eneström 

(1910-1913) takes up an entire volume and contains almost 
900 titles, some 40 books among them. 

Productivity  

The following table summarizes the extent of Euler’s 

writings specified by him as ready for publication, arranged 

according to decades (not included are a few dozen works 
that have not yet been dated): 

      Year                 Works   

 % 

1725–1734 

 35 

 5 

1735–1744 

 50 

 10 

1745–1754 

 150 

 19 

1755–1764 

 110 

 14 

1765–1774 

 145 

 18 

1775–1783 

 270 

 34 

Specific disciplines 

With respect to specific disciplines, the writings are 

classified approximately as follows: 

−

 

Algebra, number theory, analysis  

 

40% 

−

 

Mechanics and other physics 

 

 

8% 

−

 

Geometry, including trigonometry 

 

18% 

−

 

Astronomy 

     11% 

−

 

Ship theory, artillery, architecture 

 

2% 

−

 

Philosophy, music theory, theology, 

and anything else not included above   

1% 

The classification of Euler’s purely mathematical works is 
approximately as follows: 

−

 

Algebra, combination and probability theory  10% 

−

 

Number 

theory 

    13% 

−

 

Fundamental analysis and differential calculus  7% 

−

 

Infinite 

series 

    13% 

−

 

Integral 

calculus 

    20% 

−

 

Differential 

equations 

   13% 

−

 

Calculus 

of 

variations 

   7% 

−

 

Geometry, including differential geometry 

17% 

Awards 

Leonhard Euler won 12 international academy prizes, 

not counting the prizes of his sons Johann Albrecht (7) and 

Karl (1), which can essentially also be credited to Euler’s 
account. The French King Louis XVI awarded Euler 1000 

rubles for his â€œsecond ship theory”, and the Russian 
empress Catherine II gave him double that amount so that 

the blind doyen of Petersburg could receive a 
supplementary salary in 1773. 

Influence 

As far as Euler is concerned, the opinions of the most 

important mathematicians are unanimous. Laplace used to 

say to his students: “Read Euler, read Euler! He is the 
master of us all!” and Gauss explained emphatically: “The 

study of Euler’s works remains the best instruction in the 

various areas of mathematics and can be replaced by no 
other.” Indeed, through his books, which are consistently 

characterized by the highest striving for clarity and 
simplicity and which represent the first actual textbooks in 

a modern sense, Euler became the premier teacher of 
Europe not only of his time but well into the 19

th

 century.

 

Formation and Training 

1707 Born on 15 April in Basel, the son of the Protestant 

minister Paul Euler and Margaretha Brucker.  

Leonhard Euler’s father was Paul Euler who studied 

theology at the University of Basel and attended Jacob 
Bernoulli’s lectures there. In fact Paul Euler and Johann 

Bernoulli both lived in Jacob Bernoulli’s house while they 
were undergraduates at Basel. Leonhard Euler was born in 

Basel, but the family moved to Riehen when he was one 
year old and it was in Riehen, not far from Basel, that 

Leonard was brought up. Paul Euler had some 
mathematical training and he was able to teach his son 
elementary mathematics along with other subjects.  

Euler’s father wanted his son to follow him into the 

church and sent him to the University of Basel to prepare 

for the ministry. He entered the University in 1720, at the 
age of 14, first to obtain a general education before going 

on to more advanced studies. Johann Bernoulli soon 
discovered Euler’s great potential for mathematics in 
private tuition that Euler himself engineered.  

In 1720 Leonhard entered Basel University, which was 

founded in 1460. Initially he studied theology, Oriental 

languages and history, but soon switched to mathematics under 
Johann Bernoulli (1667-1748), who became the world's most 

cited mathematician following the death of Isaac Newton 
(1643-1727). Quick to recognize Euler's mathematical genius, 
Bernoulli challenged him by having him read the works of the 

masters, and especially by instructing him personally in 
contemporary mathematical research. 

In 1723 Euler completed his Master’s degree in 

philosophy having compared and contrasted the 

philosophical ideas of Descartes and Newton. He began his 
study of theology in the autumn of 1723, following his 
father’s wishes, but, although he was to be a devout 

Christian all his life, he could not find the enthusiasm for 
the study of theology, Greek and Hebrew that he found in 

mathematics. Euler obtained his father’s consent to change 
to mathematics after Johann Bernoulli had used his 

persuasion. The fact that Euler’s father had been a friend of 
Johann Bernoulli’s in their undergraduate days undoubtedly 
made the task of persuasion much easier. 

Nicolaus Bernoulli 

(1623-1708)

 

Jakob Bernoulli  

(1654–1705)

Nicolaus I Bernoulli 

(1687-1759)

Nicolaus Bernoulli 

(1662–1716)

Johann Bernoulli 

(1667–1748)

 

Nicolaus II Bernoulli 

(1695–1726)

 

Johann III Bernoulli 

(1744–1807)

 

Daniel Bernoulli (1700–

1782)

 

Johann II Bernoulli 

(1710–1790)

Nicolaus Bernoulli 

(1623-1708)

Daniel II Bernoulli 

(1751–1834)

 

 

Figure 2.

 

Family tree of the Bernoulli family 

Euler completed his studies at the University of Basel in 

1726. He studied many mathematical works during his time 
in Basel, and Calinger reconstructed many of the works that 
Euler read following the advice of Johann Bernoulli. They 

include works by Varignon, Descartes, Newton, Galileo, 
van Schooten, Jacob Bernoulli, Hermann, Taylor and 

Wallis. By 1726 Euler had already a paper in print, a short 
article on isochronous curves in a resisting medium. In 

background image

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

5

 

1727 he published another article on reciprocal trajectories 
and submitted an entry for the 1727 Grand Prize of the 

Paris Academy on the best arrangement of masts on a ship.  

In 1727, Catherine I of Russia invited Euler to join the 

faculty of the Academy of Sciences in St. Petersburg. He 
became chairman of mathematics there in 1733, replacing 

Daniel Bernoulli. In 1735, he lost sight in one eye while 
working around the clock for three days to solve a 
mathematic problem that took other mathematicians months 

to solve. While in Russia, he prepared some 90 papers for 
publication and wrote the two-volume book Mechanics. He 

collaborated with Daniel Bernoulli in the field of fluid 
mechanics and derived the equation that related velocity 

and pressure, which became known as Bernoulli's equation. 
He also conceived of pressure as something that could 
change from point to point throughout a fluid.  

 

Figure 3.

 Methodus inveniendi - Leonhard Euler  

The cover page of Euler's Methodus inveniendi lineas curvas. 

In 1741, at the urging of Frederick the Great, Euler 

moved to Berlin and became professor of mathematics at 
the Berlin Academy of Sciences, which he turned into a 
major academy. Over the next 25 years, Euler prepared at 

least 380 papers for publication. After his relationship with 
Frederick deteriorated, he accepted the invitation from 

Catherine the Great to return to St. Petersburg in 1766 
where he became director of the Academy of Sciences. 

Soon after his return, he became almost totally blind. 
Nevertheless, he excelled at solving complex calculations 
in his head. While in St. Petersburg, he worked on 

developing a better theory of lunar motion that involved the 
interactions of the Sun, Moon, and Earth. 

Euler contributed to the subjects of geometry, calculus, 

trigonometry, and number theory. He standardized 

mathematical notation using Greek symbols that continue to 
be used today. He also contributed to the fields of 
astronomy, mechanics, optics, and acoustics, and made a 

major contribution to theoretical aerodynamics. He derived 
the continuity equation and the equations for the motion of 

an in viscid, incompressible fluid. 

Euler suffered a stroke and died on September 18, 1783 

in St. Petersburg. 

First Petersburg period 

1727 Euler's thesis entitled De Sono (On Acoustics) 

formed the basis for his application for a post as professor 
of physics in Basel, but he was passed over on account of 

his youth. Through the help of the Bernoullis, he was 
offered a position in St. Petersburg at the Academy of 

Science, founded by Peter the Great in 1725. There he 
worked first as an assistant professor, then from 1730 as a 
professor and member of the academy (he had no teaching 

commitments, though he did write a textbook on 
elementary mathematics). The principal contributions of 

this early Petersburg period include a two-volume work on 
mechanics, a book on music theory and Scientia navalis 

(about hydrodynamics, shipbuilding and navigation), which 
was eventually published in 1749.  

1734 At the beginning of January, Euler married 

Katharina Gsell, a daughter of a Swiss painter George 
Gsell, who was working in St. Petersburg. Euler's son 

Johann Albrecht was born at the end of November, the only 
one of his offspring to follow in his footsteps as a 

mathematician and member of the Academy. Only three of 
Euler's thirteen children would survive him. He had twenty-
one grandchildren.  

1738 As a result of a severe abscess, Euler lost the sight 

of his right eye.  

Berlin years  

1741 Conscious of the political turmoil in the Russian 

empire, Euler accepted Frederick II's offer of a 

professorship at a newly established Prussian Academy 
("Berlin Academy") and settled with his family in Berlin. 

There he held a position as director of the mathematics 
department. Maupertuis, who in 1736 made a name for 
himself in a famous expedition to Lapland (the purpose of 

which was to determine whether the Earth was indeed an 
oblate spheroid) became president of the Academy, though 

as a scientist, he ranked far below Euler.  

In addition to hundreds of treatises written during the 

Berlin period, Euler produced major works on the calculus 
of variations, the theory of special functions, differential 
equations, astronomy as well as a second masterpiece on 

mechanics and a popular work on physics and philosophy 
titled Lettres Ă  une princesse d'Allemagne. The basic 

outline of his celebrated work on algebra also dates from 
the Berlin period. During this time, Euler maintained active 

connections with the Petersburg Academy, and he helped to 
promote interactions between the two internationally 
renowned academies. Euler was a member of all the 

important academies of his time and received many awards. 

Second Petersburg period 

1766 Frederick II's bumbling was influential in Euler's 

accepting an offer from Catherine the Great to return to St. 
Petersburg, where he remained until his death.  

1771 In the aftermath of a failed cataract operation, 

Euler lost the sight of his remaining good eye and soon 
became nearly completely blind. During the great St. 

Petersburg fire, he was saved from his burning house at the 
last moment by the Basler artisan Peter Grimm. Yet, 

amazingly, his productivity increased: approximately half 
of his prodigious output occurred during this second 

Petersburg period, including three-volume works on 

background image

6

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

 

integral calculus and optics (Institutiones calculi integralis 
and Dioptrica) as well as the authoritative version of his 

work on algebra.  

1773 Following the death of his wife Katherina, in 1776 

Euler married her half-sister Abigail Gsell.  

1783 On 18 September Euler suffered a stroke and died 

quickly and painlessly.  

Euler's contributions to mathematics cover a wide range, 

including analysis and the theory of numbers. He also 

investigated many topics in geometry. 

Rigid body Kinematics 

Euler's contributions to mathematics cover a wide range, 

including analysis and the theory of numbers. He also 
investigated many topics in geometry with application to the 

.kinematics. Euler equations in the area of rigid body 
kinematics - rotation about a fixed point - are very important 

and applicable in future development in dynamics. 

 

Figure 4. 

Sphere geometry of rotation 

 

Figure 5.

 Kinematics of the rigid body rotation around a fixed point- Euler’s 

angles: 

ψ

 angle of precession, 

ϑ

 angle of nutation 

ϕ

 angle of 8 self rotation) 

New Vector to Rigid body rotation around a fixed point and 
instantaneous axis through a fixed point 

Let us consider the special case of rotation around the 

fixed point 

O

 and around the moving axis oriented by the 

unit vector 

n

r

 with the rotation around the fixed point 

O

 

using Euler’s angles: angles 

ψ

 of precession , angle 

ϑ

of 

nutation an angle 

ϕ

 of self rotation as well as the mass 

moment vectors conected by the fixed point 

O

and the 

rotating axis, also around the fixed point. 

Using Euler’s angles 

(

)

, ,

ψ Ï‘ Ï•

, the Euler angular 

velocities are defined as follows: 

ψ

&

 - anglular velocity of 

precession, is defined by 

k

ψ

ω

ψ

=

r

r

&

in the direction of 

k

r

Ξ

&

 

- angular velocity of nutation is defined by 

e

ϑ

ω

ϑ

=

r

r

&

 in the 

direction of 

e

r

 (knot axis) and 

ϕ

&

 -angular velocity of self 

rotation is defined by 

k

ϕ

ω

ϕ â€Č

=

r

r

&

 in the direction of 

k

â€Č

r

 (axis 

of body self rotation). Overall instantaneous angular 
velocity of the body rotation around the fixed point is: 

( )

[ ]

[

]

dm

r

n

r

J

d

n

O

r

r

r

r

r

,

,

=

 

[ ]

[

]

( )

n

O

O

J

d

dm

r

r

L

d

r

r

r

r

r

r

ω

ω

=

=

,

,

 

R

r

r

 

n

r

 

[ ]

[

]

r

r

dm

dm

S

O

r

r

r

r

,

,

2

ω

=

 

On

dJ

 

( )

n

O

D

d

r

r

 

O

 

( )

dm

v

t

p

d

r

r

=

 

[ ]

r

v

r

r

r

,

ω

=

 

dm

 

( )

r

N

r

 

A

 

AN

F

r

 

An

F

r

 

F

r

P

r

r

 

P

G

 

C

r

r

 

C

 

L

n

r

r

ω

ω

=

 

 

Figure 6.

 Rigid body dynamics around the fixed point. Mass moment vectors 

coupled for the fixed point and the instantaneous axis and Linear momentum 
and angular momentum for the fixed point and the rigid body dynamics 

 

e

k

k

ω Ï‘

ψ

ϕ

â€Č

=

+

+

r

r

r

r

&

&

&

,  

with the components in the fixed coordinate system 

Oxyz

 

(see Fig.7): 

 

A

O

≡

 

ω

r

 

v

r

 

p

d

r

 

F

I

d

r

 

x

y

 

z

 

Ο

 

η

 

ζ

 

dm

 

r

r

 

ϕ

 

ϕ

 

ϕ

&

 

ϑ

 

ψ

&

 

ϑ

 

ϑ

&

 

ψ

 

e

r

 

ψ

d

r

 

c

r

 

 a* 

 

A

O

≡

 

ω

r

−

 

v

r

−

 

p

d

r

−

 

F

I

d

r

−

 

x

y

 

z

 

Ο

 

η

 

ζ

 

dm

 

r

r

 

ϕ

−

 

ϕ

−

 

ϕ

&

−

 

ϑ

−

 

ψ

&

−

 

ϑ

−

 

ϑ

&

−

 

ψ

−

 

e

r

 

ψ

−

d

r

 

c

r

 

 b

∗

 

Figure 7. 

a

∗

 and b

∗

 Dynamics of the rigid body rotation around the fixed 

point- Euler’s angles: 

ψ

 - roll, 

ϑ

- pitch and 

ϕ

- yaw. 

(

ψ

 angle of precession , 

ϑ

 angle of nutation an 

ϕ

 angle of self rotation) 

background image

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

7

 

(

)

cos

sin sin

x

i

ω

ϑ

ψ Ï•

ψ

ϑ

=

+

r

r

&

&

(

)

sin

cos sin

y

j

ω

ϑ

ψ Ï•

ψ

ϑ

=

−

r

r

&

&

(

)

cos

z

k

ω

ψ Ï•

ϑ

=

+

r

r

&

&

or in the scalar form  

 

cos

sin sin

x

ω

ϑ

ψ Ï•

ϑ

ψ

=

+

&

&

 

 

 

cos

sin cos

y

ω

ϑ

ψ Ï•

ϑ

ψ

=

−

&

&

 

 

cos

z

ω

ψ Ï•

ϑ

= +

&

&

 

 

The components of the instantaneous angular velocity in 

the moving coordinate system 

O

Οηζ

 fixed with the rigid 

body are (see Fig.7): 

 

(

)

cos

sin sin

i

Ο

ω

ϑ

ϕ Ïˆ

ϕ

ϑ

â€Č

=

−

r

r

&

&

,  

 

(

)

sin

cos sin

j

η

ω

ϑ

ϕ Ïˆ

ϕ

ϑ

=

+

r

r

&

&

,  

 

(

)

cos

k

ζ

ω

ϕ Ïˆ

ϑ

â€Č

=

+

r

r

&

&

 

 

or in the scalar form  

cos

sin sin

Ο

ω

ϑ

ϕ Ïˆ

ϕ

ϑ

=

−

&

&

 

sin

cos sin

η

ω

ϑ

ϕ Ïˆ

ϕ

ϑ

=

+

&

&

 

cos

ζ

ω

ϕ Ïˆ

ϑ

= +

&

&

 

The linear momentum (impuls of the motion) and the 

angular momentum (kinetic moment of the motion) of the 
body rotation around the fixed point 

O

 expressed by the 

body mass moment vectors are in the following forms: 

−

 

∗

The linear momentum (impulse of the body mass mo-

tion) 

( )

p t

r

 of motion of a material system, or a rigid 

body rotating around a fixed axis 

n

r

 with the angular ve-

locity 

n

ω Ï‰

=

r

r

 is given in the following form: 

 

( )

[ ]

[

]

( )

0

,

,

n

C

V

p t

n r dm

n r

M

S

ω

ω

ω

=

=

=

∫∫∫

r

r

r

r r

r r

,  

where  

( )

[ ]

0

,

n

V

S

n r dm

=

∫∫∫

r

r

r r

( )

0

n

S

r

r

 is the mass linear moment of the body with respect to 

the pole 

O

 and for the axis oriented by the unit vector 

n

r

passing through the point 

O

 (see Refs. Hedrih 1991, 1992, 

1993a,b, 1998a,b,c, 2001,2007).  

−

 

∗

Angular momentum 

0

r

L

 for the rigid body rotating 

around the fixed axis oriented by the unit vector 

n

r

through the pole 

O

, with the angular velocity 

n

ω Ï‰

=

r

r

 is 

in the following form: 

 

[ ]

[

]

( )

0

0

, ,

n

V

r n r

dm

ω

ω

=

=

∫∫∫

r

r

r

r r r

L

J

 

 

where we introduce the following notation 

 

( )

[ ]

[

]

J

, ,

def

n

O

V

r n r

dm

=

∫∫∫

r

r

r r r

 

 

for the mass inertia moment vector 

( )

0

J

n

r

r

 

for the pole

  O

 and 

the fixed axis oriented by the unit vector 

n

r

The mass inertia moment vector 

( )

0

J

n

r

r

 has two 

components: one component 

0

n

J

 is in the rotation axis 

direction and corresponds to the axial body mass inertia 
moment and the second component 

( )

0

n

D

r

r

 is orthogonal to 

the rotation axis and is the deviational component in the 
deviational plane. 

( )

0

n

J

r

r

 can be expressed in the following 

form (see Refs. Hedrih 1998a,b,c, 2001,2007): 

( )

( )

(

)

( )

( )

0

0

0

0

0

,

,

,

n

n

n

n

n

O

n J

n

n

n

J n

⎡

⎀

⎡

⎀

=

+

=

+

⎣

⎊

⎣

⎊

J

J

D

r

r

r

r

r

r

r

r

r

r

r

r

r

Kinetic energy for that case of the model motion is: 

(

)

[ ]

[

]

(

)

( )

(

)

[ ]

( )

2

2

0

0

2

2

2

0

,

, , ,

, J

,

2

n

V

n

k

n

V

n r n r

dm

n

n r

dm

J

E

ω

ω

ω

ω

ω

=

=

=

=

=

∫∫∫

∫∫∫

r

r

r

r

r

r r r r

r

r r

L

For obtaining the necessary mass moment vector 

( )

0

n

J

r

r

 

for the rotation axis oriented by the unit vector 

n

r

 through 

the pole 

O

, or the mass moment vector 

( )

n

C

J

r

r

 for the parallel 

axis oriented by same unit vector 

n

r

 through the rigid body 

mass center 

C

, we can use the following vector 

expressions: 

( )

[ ]

[

]

( )

( )

( )

0

0

0

0

, ,

cos

cos

cos

k

i

j

n

C

V

r n r

dm

α

α

Îł

=

=

+

+

∫∫∫

J

J

J

J

r

r

r

r

r

r

r

r r r

 

( )

[

]

[

]

( )

( )

( )

0

, ,

cos

cos

cos

k

i

j

n

C

C

C

C

V

n

dm

ρ

ρ

α

α

Îł

=

=

+

+

∫∫∫

J

J

J

J

r

r

r

r

r

r

r

r

r

r

 

( )

( )

[

]

[

]

0

, ,

n

n

C

C

C

r

n r

M

=

+

J

J

r

r

r

r

r r r

 

where cos

α

cos

ÎČ

 and 

cos

Îł

 are cosines of the direction of 

the unit vector 

n

r

 rotating axis orientation with respect to the 

corresponding system coordinates, 

M

is the rigid body mass, 

and 

C

r

r

 is the vector position of the rigid body mass center. 

For this considered case of the material system model 

rotation around the fixed point, it is necessary to point out that 
both vectors of mass moments are changeable with respect to 
the fixed point and instantaneous axis of rotation. This happens 

because the instantaneous axis and the rigid body change their 
relative positions and the relation to each other during the body 

rotation motion around the fixed point.  

Euler equations in the vector form, using the mass 

moment vectors coupled to the fixed point and the 
instantaneous axis are: 

( )

( )

( )

( )

0

0

0

1

,

S

n

n

n

k

AN

An

k

dp t

S

S

S

F

G

F

F

dt

ω

ω

ω Ï‰

=

⎡

⎀

=

+

+

=

+ +

+

⎣

⎊

∑

r

r

r

r

r

r

r

r

r

r

r

r

&

&

 

 

( )

( )

( )

*

0

0

0

0

1

J

J

, J

,

,

S

n

n

n

k

k

C

k

d

r F

r G

dt

ω

ω

ω Ï‰

=

⎡

⎀

⎡

⎀

⎡

⎀

=

+

+

=

+

⎣

⎊ âŽŁ

⎊

⎣

⎊

∑

L

r

r

r

r

r

r

r

r

r

r

r

r

&

, (A) 

as well as  

 

*

0

0

0

1

L

L

, L

,

,

S

k

k

C

k

d

r F

r G

dt

ω

=

⎡

⎀

⎡

⎀

⎡

⎀

= +

=

+

=

⎣

⎊

⎣

⎊ âŽŁ

⎊

∑

r

r

r

r

r

r

r

r

r

M

, (B) 

This previous vector equation (B) is equation of the 

background image

8

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

 

motion and it is possible to express it in the scalar form by 
three differential equations of Euler‘s type: 

(

)

(

)

(

)

0

0

0

0

0

1

,

.

,

,

,

S

k

k

C

k

L

L

L

r F

i

r G

i

i

Ο

η

ζ

ζ

η

Ο

ω

ω

=

+

−

=

⎡

⎀

⎡

⎀ â€Č

â€Č

â€Č

=

+

=

=

⎣

⎊

⎣

⎊

∑

&

r

r

r

r

r

r

r

r

M

M

 

 

(

)

(

)

(

)

0

0

0

0

0

1

L

L

L

,

,

,

,

M ,

M

S

k

k

C

k

r F

j

r G

j

j

η

ζ

Ο

Ο

ζ

η

ω

ω

=

+

−

=

⎡

⎀

⎡

⎀ â€Č

â€Č

â€Č

=

+

=

=

⎣

⎊

⎣

⎊

∑

&

r

r

r

r

r

r

r

 

 

(

)

(

)

(

)

0

0

0

0

0

1

,

,

,

,

,

S

k

k

C

k

L

L

L

r F

k

r G

k

k

ζ

Ο

η

η

Ο

ζ

ω

ω

=

+

−

=

⎡

⎀

⎡

⎀ â€Č

â€Č

â€Č

=

+

=

=

⎣

⎊

⎣

⎊

∑

&

r

r

r

r

r

r

r

r

M

M

 

or: in the following shorter form: 

 

0

0

0

0

L

L

L

Ο

η

ζ

ζ

η

Ο

ω

ω

+

−

=

&

M

,  

 

0

0

0

0

L

L

L

η

ζ

Ο

Ο

ζ

η

ω

ω

+

−

=

&

M

,  

 

0

0

0

0

L

L

L

ζ

Ο

η

η

Ο

ζ

ω

ω

+

−

=

&

M

.  

For the case in which the coordinate axes of the moving 

coordinate system fixed to the rigid body are body principal 
mass inertia moment axes, from the previous Euler system 

of differential equations we have: 

(

)

1 01

2 3

02

03

01

J

J

J

ω

ω Ï‰

−

−

=

&

M

 

(

)

2 02

1 3

02

01

02

J

J

J

ω

ω Ï‰

−

−

=

&

M

,  

 

(

)

3 03

1 2

01

02

03

J

J

J

ω

ω Ï‰

−

−

=

&

M

.  

The first vector equation from the system (A) of the 

vector equations is possible to obtain kinetic pressure to the 

fixed point (bearing, or to kinetic reaction or necessary 
action by the body). 
Citations 
* The most cited mathematician of all times 

* Over 20 formulae of elementary mathematics bear Euler’s 
   name 
* An even greater number of formulas and notions of 

   advanced mathematics bears his name. 
* The most fruitful mathematician of all times  

   (800 pages per year) 

Some elementary Euler formulae and theorems 

 

Figure 16.

 Euler’s line 

 

Figure 8. 

 Euler’s line  

 

cos

sin

ix

e

x

i

x

=

+

 

Figure 9.

 Euler’s formula 

Graph theory 

 

Figure 10. 

The problem of seven Koenigsberg bridges 

If all nodes are even, the graph can be drawn by starting 

from each of them (1736). 

A graph with more than two odd nodes cannot be drawn 

in a single stroke. 

  

 

Figure 11.

 Examples of graphs. 

background image

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

9

 

Concluding Remarks 

Euler's program for mechanics presented in the treatise 

(Mechanics or the analytical representation of the science 
of motion) paved the way for a successful development of 
mechanics in the 18th century. In contrast to Newton's 

geometry-related procedure in the Principia, Euler 
formulated mechanical laws preferentially in terms of the 

differential calculus. Euler claimed that ''those laws of 
motion which a body observes when left to itself in 

continuing either rest or motion pertain properly to 
infinitely small bodies''. Geometrically, these bodies can be 
considered as points, but mechanically they are less than 

any extended body, but different from mathematical points 
due to their finite mass. Analytically, motion is described in 

terms of infinitesimal time intervals whereas, 
geometrically, it is related to straight lines and planes as 

basic elements.  

In fluid dynamics, the 

Euler equations

 govern the 

compressible, in viscid flow. They correspond to the 

Navier-Stokes equations with zero viscosity and heat 
conduction terms. They are usually written in the 

conservation form shown below to emphasize that they 
directly represent conservation of mass, momentum, and 

energy. 

Momentum Equation for Frictionless Flow: Euler’s 

Equation 

Euler’s Equation 

DV

g

p

Dt

ρ

ρ

=

− âˆ‡

v

v

 

 

In the Cartesian coordinate system 

x

p

u

u

u

u

u

v

w

g

t

x

y

z

x

ρ

ρ

⎛

⎞

∂

∂

∂

∂

∂

=

+

+

+

=

−

⎜

⎟

∂

∂

∂

∂

∂

⎝

⎠

 

z

p

u

w

g

t

x

y

z

z

υ

υ

υ

υ

ρ

υ

ρ

∂

⎛

⎞

∂

∂

∂

∂

=

+

+

+

=

−

⎜

⎟

∂

∂

∂

∂

∂

⎝

⎠

 

z

p

w

w

w

w

u

w

g

t

x

y

z

z

ρ

υ

ρ

∂

⎛

⎞

∂

∂

∂

∂

=

+

+

+

=

−

⎜

⎟

∂

∂

∂

∂

∂

⎝

⎠

 

In the cylindrical coordinate system 

2

r

r

r

r

r

r

z

r

p

V

V

V

V

V

V

a

V

V

g

t

r

r

z

r

r

Ξ

Ξ

ρ

ρ

ρ

Ξ

⎛

⎞

∂

∂

∂

∂

∂

=

+

+

+

−

=

−

⎜

⎟

∂

∂

∂

∂

∂

⎝

⎠

 

1

r

r

z

V

V

V

V

V V

V

a

V

V

t

r

r

z

r

p

g

r

Ξ

Ξ

Ξ

Ξ

Ξ

Ξ

Ξ

Ξ

ρ

ρ

Ξ

ρ

Ξ

⎛

⎞

∂

∂

∂

∂

=

+

+

+

−

⎜

⎟

∂

∂

∂

∂

⎝

⎠

∂

=

−

∂

 

z

z

z

z

z

r

z

z

p

V

V

V

V

V

a

V

V

g

t

r

r

z

z

Ξ

ρ

ρ

ρ

Ξ

⎛

⎞

∂

∂

∂

∂

∂

=

+

+

+

=

−

⎜

⎟

∂

∂

∂

∂

∂

⎝

⎠

 

Continuity 

0

V

∇ â‹… =

r

 

Euler's contributions to Rational or Mathematical Fluid 

Mechanics are important contributions as well as his 

contribution to the General Theory of the Motion of Fluids. 
Euler's generalization of the stream function concept to a pair 

of stream functions or stream surfaces is also the result of his 
research. Euler's Potential had been formulated about 100 

years before a similar detailed mathematical exposure was 
formulated by Jacobi and Clebsch around 1844. Furthermore, 
Euler's work initiated the establishment of naval science in 

Russia and influenced the art of building naval ships in 
Russia in the 18th century in particular. An overview about 

Euler's accomplishments in Naval Architecture and Ship 
Hydrodynamics at Russia's St. Petersburg Academy of 

Sciences is also an important contribution to world science 
and to mechanical engineering. 

The theory of magnetism for which he was awarded the 

Paris Academy Prize in 1744 is also very well known. Euler 
began with Descartes' idea that all magnetic phenomena are 

elicited from the circulation of imperceptible conduits 
throughout the corpuscular magnetic body. Euler imagined 

that the magnetic body possessed pores which formed 
continuous piping, parallel and bristling, similar to veins or 

valves and so narrow as to only allow passage for the most 
subtle parts of the ether, the elasticity of which pushes the 
relaxed parts into the magnet pores. Then the force causes it 

to bend onto itself at the exit only to return again and form 
a type of vortex. Through this ingenious idea which was 

developed after much thought, Euler was able to explain 
magnetic phenomenon. The hypothesis was proved out by 

experiments and these conformed to natural laws which in 
turn ensured its ultimate probability.  

The Opera Omnia 

 

"Read Euler, read Euler, he is the teacher (master) of us all". 

Pierre-Simon, marquis de Laplace (March 23, 1749 - March 5, 1827) 

Published by Birkhauser and the 

Euler Commission

 of 

Switzerland, the 

Opera Omnia

 is the definitive printed 

source for Euler's works. The publication began in 1911, 
and to date 76 volumes have been published, comprising 

almost all of Euler's works. 

Principle:  

“

Mathematicians do not have biography, they have 

bibliography

” 

References 

The URL of this page is: 

http://www-history.mcs.st-andrews.ac.uk/Biographies/Euler.html

 

http://www.leonhard-euler.ch/

 

For more information about the Euler Commission please contact Herr 

Prof.Dr.Hanspeter Kraft President of the Euler Commission 
Hanspeter.kraft@unibas.ch  

background image

10

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

 

[1]

 

FINKEL,B.F. (1897).: 

Biography - Leonard Euler

, The American 

Mathematical Monthly 4 (12): 300. 

[2]

 

IOAN,J.(2002): 

Remarkable Mathematicians: From Euler to von 

Neumann

, Cambridge, 2. ISBN 0-521-52094-0. 

[3]

 

CALINGER,R. (1996): 

Leonhard Euler: The First St. Petersburg 

Years (1727–1741)

, Historia Mathematica 23 (2): 156.  

[4]

 

CALINGER,R. (1996): 

Leonhard Euler: The First St. Petersburg 

Years (1727–1741)

, Historia Mathematica 23 (2): 125.  

[5]

 

CALINGER,R. (1996): 

Leonhard Euler: The First St. Petersburg 

Years (1727–1741)

, Historia Mathematica 23 (2): 127. 

[6]

 

CALINGER,R. (1996): 

Leonhard Euler: The First St. Petersburg 

Years (1727–1741)

, Historia Mathematica 23 (2): 128–129. 

[7]

 

HOME,R.W. (1988): 

Leonhard Euler's 'Anti-Newtonian' Theory of 

Light

, Annals of Science 45 (5): 521–533. 

[8]

 

O'CONNOR,J., EDMUND,J., ROBERTSON,F.: "Leonhard Euler". 

MacTutor History of Mathematics archive

.  

[9]

 

Leonhard Euler at the Mathematics Genealogy Project  

[10]

 

WEISSTEIN,E.W.: Euler, Leonhard (1707–1783) at ScienceWorld.  

How Euler did it Website containing columns explaining how Euler solved 

various problems.  
[11]

 

GLADYSHEV,G.,P. (2007): “Leonhard Euler’s methods and ideas 
live on in the thermodynamic hierarchical theory of biological 

evolution,” 

International Journal of Applied Mathematics & 

Statistics

 (IJAMAS), Special Issue on Leonhard Paul Euler’s: 

Mathematical Topics and Applications (M. T. A.), Vol. 11, Nu. N07, 

November, 2007.  

[12]

 

CONDORCET,M.J.: 

Eulogy for Euler

(See this link).  

[13]

 

G DU PASQUIER: 

Leonhard Euler et ses amis

 (Paris, 1927).  

[14]

 

SPEISS,O.: 

Leonhard Euler

 (1929).  

[15]

 

THIELE,R.: 

Leonhard Euler

 (Leipzig,1982).  

[16]

 

YUSHKEVICH,A.P., WINTER,E. (eds.): Leonhard Euler and 

Christian Goldbach: Briefwechsel 1729-1764 (Berlin, 1965).  

[17]

 

ANDREWS,G.E.: 

Euler's pentagonal number theorem

, Math. Mag. 

56 (5) (1983), 279-284.  

[18]

 

ANTROPOV,A.A.: 

On Euler's partition of forms into genera

Historia Math. 22 (2) (1995), 188-193.  

[19]

 

Chobanov,G., Chobanov,I.: Lagrange or Euler? I. The past, 

Annuaire 

Univ. Sofia Fac. Math. MĂ©c.

 73 (1979), 13-51.  

[20]

 

CHOBANOV,G., CHOBANOV,I.: Lagrange or Euler? II. The 
present, 

Annuaire Univ. 

Sofia Fac

.

 Math. Inform

.

 82 (2) (1988), 5-62.  

[21]

 

CHOBANOV,G., CHOBANOV,I.: Lagrange or Euler? III. The 
future, 

Annuaire Univ. Sofia Fac. Math. Inform.

 82 (2) (1988), 63-

109.  

[22]

 

DAVIS,P.J.: Leonhard Euler's integral: A historical profile of the 
gamma function, 

Amer. Math. Monthly

 

66

 (1959), 849-869.  

[23]

 

FELLMANN,E.A.: Leonhard Euler 1707-1783 : Schlaglichter auf 

sein Leben und Werk, 

Helv. Phys. Acta

 

56

 (6) (1983), 1099-1131.  

[24]

 

FINKEL,B.F.: Biography. Leonard Euler, 

Amer. Math. Monthly

 

4

 

(1897), 297-302.  

[25]

 

FRASER,C.G.: The origins of Euler's variational calculus, 

Arch. 

Hist. Exact Sci.

 47 (2) (1994), 103-141.  

[26]

 

GRAU,C.: Leonhard Euler und die Berliner Akademie der 
Wissenschaften, in 

Ceremony and scientific conference on the 

occasion of the 200th anniversary of the death of Leonhard Euler

 

(Berlin, 1985), 139-149.  

[27]

 

GRAY,J.: Leonhard Euler 1707-1783, 

Janus: archives 

internationales pour l'histoire de la medecine et pour la geographie 
medicale

 72 (1985), 171-192.  

[28]

 

GRAY,J.: Leonhard Euler: 1707-1783, Janus 72 (1-3) (1985), 171-192. 

[29]

 

HOLLINGDALE,S.H.: Leonhard Euler (1707-1783): 

a bicentennial 

tribute

, Bull. Inst. Math. Appl. 19 (5-6) (1983), 98-105.  

[30]

 

HOME,R.W.: 

Leonhard Euler's 'anti-Newtonian' theory of light

Ann. of Sci. 45 (5) (1988), 521-533.  

[31]

 

KNOBLOCH,E.: 

Leibniz and Euler: problems and solutions 

concerning infinitesimal geometry and calculus

, Conference on the 

History of Mathematics (Rende, 1991), 293-313.  

[32]

 

Loeffel,H.: Leonhard Euler (1707-1783), 

Mitt. 

Verein. Schweiz

Versicherungsmath. (1) (1984), 19-32.  

[33]

 

MIKHAILOV,G.K.: 

Leonhard Euler and his contribution to the 

development of rational mechanics

 (Russian), Adv. in Mech. 8 (1) 

(1985), 3-58.  

[34]

 

SAMELSON,H.: 

In defense of Euler

, Enseign. Math

.

 (2) 42 (3-4) 

(1996), 377-382.  

[35]

 

TREDER,H-J.: 

Euler und die Gravitationstheorie

, in Ceremony and 

scientific conference on the occasion of the 200th anniversary of the 
death of Leonhard Euler (Berlin, 1985), 112-119.  

[36]

 

TRUESDELL,C.: 

Euler's contribution to the theory of ships and 

mechanics

, Centaurus 26 (4) (1982/83), 323-335.  

[37]

 

TRUESDELL,C.: Prefaces to volumes of Euler's Opera Omnia. 

[38]

 

TYULINA,I.A.: 

Euler's hydraulic studies

 (Russian), in Investigations 

in the history of mechanics 'Nauka' (Moscow, 1983), 167-177.  

[39]

 

MAANEN,J.A.: Leonhard Euler (1707-1783): 

man, worker, migrant

genius (Dutch), Nieuw Tijdschr. Wisk. 71 (1) (1983/84) 1-11. 

[40]

 

VELDKAMP,G.R.: Leonhard Euler (Dutch), Nieuw Tijdschr. Wisk. 

71 (2) (1983), 47-54.  

[41]

 

YUSHKEVICH,A.P.: 

Leonhard Euler and mathematical education 

in Russia

 (Russian), Mat. v Shkole (5) (1983), 71-74.  

[42]

 

YUSHKEVICH,A.P.: 

Life and mathematical achievement of Leonard 

Euler 

(Russian), Uspekhi Mat. Nauk (N.S.) 12 4(76) (1957), 3-28. 

[43]

 

YUSHKEVICH,A.P.: Leonhard Euler : 

Life and work 

(Russian), in 

Development of the ideas of Leonhard Euler and modern science 
“Nauka” (Moscow, 1988), 15-46.  

[44]

 

RAĆ KOVI

Ć

,D., 

Dinamika

, Nau

č

na knjiga, Beograd, 1956. 

[45]

 

HEDRIH,S.K. (2001): V

ector Method of the Heavy Rotor Kinetic 

Parameter Analysis and Nonlinear Dynamics

, University of NiĆĄ 

2001,Monograph, pp.252. (in English), YU ISBN 86-7181-046-1. 

[46]

 

KECHRIS,K.: Leinhar Euler  

[47]

 

http://en.wikipedia.org/wiki/Template:Bernoulli_family 

[48]

 

www.mathematik.ch 

[49]

 

http://en.wikipedia.org/wiki/Leonhard_Euler 

[50]

 

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html

 

[51]

 

HEDRIH,S.K. (1991): A

nalogy between models of stress state, strain 

state and state of the body mass inertia moments

, Facta Universitatis, 

Series Mechanics, Automatic Control and Robotics, NiĆĄ, vol.1, N 1, 
1991, pp.105-120. 

[52]

 

HEDRIH,S.K. (1992): 

On some interpretations of the rigid bodies 

kinetic parameters

, XVIIIth ICTAM HAIFA, Abstracts, pp.73-74.  

[53]

 

HEDRIH,S.K. (1993a): 

The mass moment vectors at n-dimensional 

coordinate system

, Tensor, Japan, Vol.54 (1993), pp.83-87. 

[54]

 

HEDRIH,S.K. (1993b): 

Same vectorial inter-pretations of the kinetic 

parameters of solid material lines

, ZAMM. Angew. Math. Mech. 

73(1993) 4-5, T153-T156. 

[55]

 

HEDRIH,S.K. (1998a): 

Vectors of the Body Mass Moments

Monograph paper, Topics from Mathematics and Mechanics, 

Mathematical institute SANU, Belgrade, Zbornik radova 8(16), 1998, 
pp.45-104. 

[56]

 

HEDRIH,S.K. (1998b): 

Vector method of the kinetic parameters 

analysis of the rotor with many axes and nonlinear dynamics

, Parallel 

General Lecture, Third International Conference on Nonlinear 

Mechanics, August 17-20, 1998, Shanghai, China, pp.42-47. 

[57]

 

HEDRIH,S.K. (1998c): 

Derivatives of the Mass Moments Vectors 

with Applications

, Invited Lecture, Proceedings, 5th National 

Congress on Mechanics, Ioannina, 1998, pp.694-705 

[58]

 

HEDRIH,S.K. (2001): Vector Method of the Heavy Rotor Kinetic 
Parameter Analysis and Nonlinear  Dynamics, University of NiĆĄ 

2001, Monograph, pp.252. (in English), YU ISBN 86-7181-046-1. 

[59]

 

HEDRIH,S.K. (2001): Derivatives of the Mass Moment Vectors at 
the Dimensional Coordinate System N, dedicated to memory of 

Professor D. Mitrinovi

ć

, Facta Universitatis Series Mathematics and 

Informatics, 13 (1998), pp. 139-150. (1998, published in 2001. Edited 
by Milovanovi

ć

,G.). 

[60]

 

HEDRIH,S.K. (2007): 

For optimal time of study: vector and tensor 

methods in classical mechanics

, Plenary Lecture, Proceedings 

Nonlinear Dynamics, Dedicated to the 150th Anniversary of A.M. 

Lyapunov,  Polytechnic Kharkov, 2008. pp.98-107. 

Received: 15.05.2007.  

background image

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

11

 

Leonardo Ojler (1707-1783) i mehanika krutog tela 

Uvodni tekst ovog broja 

č

asopisa posve

ć

en 300. godiĆĄnjici od ro

đ

enja Leonarda Ojlera, jednog od najpoznatijih 

nau

č

nika XVIII veka iz oblasti matematike i mehanike. Ro

đ

en je 15. aprila 1707 godine u Bazelu, Ć vajcarska. 

Zahvaljuju

ć

i znamenitom Bernuliju, koji je uticao na njegovog oca da promeni svoju odluku, posvetio se matematici 

umesto teologiji. Iako je ve

ć

i deo njegovog rada bio iz oblasti elementarne matematike dao je zna

č

ajan nau

č

ni 

doprinos i u oblasti astronomije i fizike. 
U svojim radnim dvadesetim godinama Ojler je izgubio oko. Kasnije je ostao i bez drugog oka, ali je uprkos tome bio 
vrlo produktivan. Tokom ĆŸivota objavio je oko 500 knjiga i radova, a joĆĄ oko 400 radova objavljeno je posthumno. 
Laplas je govorio svojim studentima: "

Č

itajte Ojlera, 

č

itajte Ojlera! on je gospodar sviju nas" 

 

Leonhard Euler (1707-1783) et la mĂ©canique du corps solide 

L’éditorial de ce numĂ©ro est dĂ©diĂ© au 300

iĂšme

 anniversaire de la naissance de Leonhard Euler, savant cĂ©lĂšbre du 18

iĂšme

 

siĂšcle, trĂšs connu pour ces travaux en mathĂ©matique et mĂ©canique. Il est nĂ© le 15 avril 1707 Ă  BĂąle, en Suisse. Il devait, 
selon le dĂ©sir de son pĂšre, Ă©tudier la thĂ©ologie, mais grĂące Ă  cĂ©lĂšbre savant Bernoulli qui a influencĂ© le pĂšre de 
Leonhard, celui-ci a pu se consacrer aux mathĂ©matiques. Bien que la majeure partie de son travail concerne les 
mathĂ©matiques Ă©lĂ©mentaires, sa contribution est considĂ©rable en astronomie et en physique. A l’ñge de vingt ans 
Euler a perdu un Ć“il; plus tard il a perdu son autre Ɠil, mais malgrĂ© cela il Ă©tait trĂšs productif. Au cours de sa vie il a 
publiĂ© environ 500 livres et travaux; aprĂšs sa mort, on a publiĂ© encore 400 travaux. Laplace disait souvent Ă  ses 
Ă©tudiants: "Lisez Euler, lisez Euler! Il est maĂźtre de nous tous". 

 

 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 

 
 

 
 

background image

12

 

K.S.HEDRIH: LEONHARD EULER (1707-1783) AND RIGID BODY DYNAMICS 

 

 
 

 
 

 

 

Leonhard Euler